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Abstract

Background

Inflammation contributes to breast cancer development through its effects on cell damage.

This damage is usually dealt with by key genes involved in apoptosis and autophagy

pathways.

Methods

We tested 206 single nucleotide polymorphisms (SNPs) in 54 genes related to inflammation,

apoptosis and autophagy in a population-based breast cancer study of women of European

(658 cases and 795 controls) and East Asian (262 cases and 127 controls) descent. Logistic

regression was used to estimate odds ratios for breast cancer risk, and case-only analysis

to compare breast cancer subtypes (defined by ER/PR/HER2 status), with adjustment for

confounders. We assessed statistical interactions between the SNPs and lifestyle factors

(smoking status, physical activity and body mass index).

Results and conclusion

Although no SNP was associated with breast cancer risk among women of European

descent, we found evidence for an association among East Asians for rs1800925 (IL-13) and

breast cancer risk (OR = 2.08; 95% CI: 1.32–3.28; p = 0.000779), which remained statistically

significant after multiple testing correction (padj = 0.0350). This association was replicated in
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a meta-analysis of 4305 cases and 4194 controls in the Shanghai Breast Cancer Genetics

Study (OR 1.12, 95% CI: 1.03–1.21, p = 0.011). Further, we found evidence of an interaction

between rs7874234 (TSC1) and physical activity among women of East Asian descent.

Introduction

Chronic inflammation has been linked to cancer development [1], and can influence breast

cancer through many mechanisms [2]. One way that chronic inflammation can contribute to

cancer is through persistent damage to cells and their components such as DNA. Apoptosis

and autophagy are two of the main processes that respond to the consequences of damage

caused by inflammation. Proteins involved in inflammation and apoptosis are associated with

the invasiveness of breast cancer lines [3] and the maintenance of stem cell properties [4].

Lifestyle factors such as smoking introduce sources of inflammation to breast tissue. Several

studies suggest a causal association between lifestyle factors and breast cancer susceptibility or

progression. For example, in premenopausal women, obesity can affect hormone-independent

breast cancer through chronic inflammation of the breast adipose tissue [5]. In addition, inher-

ited factors could aggravate chronic damage from inflammation, or alternately offset damage

and thus protect tissues from inflammation. Genes involved in inflammation and apoptosis

have previously been associated with cancer prognosis, [6,7] as well as susceptibility [8–10].

Breast cancers may be classified by pathologists using hormone receptor status (the estro-

gen receptor [ER] and progesterone receptor [PR]), or HER2 growth receptor status. Some

associations of different genes to risk are limited to only certain tumour subtypes [7,11], which

hint at etiological and biological differences between subtypes and suggest a benefit in examin-

ing the subtypes separately when enough samples and information are available.

The objective of this study was to replicate previously reported associations of polymor-

phisms in genes related to inflammation, apoptosis and autophagy with risk of breast cancer in

women of European and East Asian descent. Within these three gene categories, we included

additional genes previously shown to have an effect on cancer. We also tested for statistical

interactions of these genes with lifestyle factors that could affect inflammation, including body

mass index (BMI), physical activity and smoking status. Finally, we carried out case-only anal-

yses to examine whether these SNPs may have breast tumour subtype specific effects.

Materials and methods

Samples and SNPs

This study was approved by the joint Clinical Research Ethics Board of the University of Brit-

ish Columbia and BC Cancer. All participants gave written informed consent.

In brief, the Canadian Breast Cancer Study, a population-based case-control study, invited

women with in situ or invasive breast cancer, diagnosed from April 2005 to May 2009 [12].

Women were aged 20 to 80 and lived in Metro Vancouver, British Columbia (BC) or Kingston,

Ontario regions of Canada. In Vancouver, women were recruited through the BC Cancer Reg-

istry, and age-frequency matched controls were recruited through the Screening Mammogra-

phy Program of BC. In Kingston, cases and controls were recruited from the Hotel Dieu Breast

Assessment Program. DNA was obtained through a blood (91%) or saliva sample (9%). Addi-

tional information (including menopausal status, ethnicity, and lifestyle characteristics) was

Genetic risk in inflammation, apoptosis & autophagy
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obtained through a questionnaire, either by computer assisted telephone interview (22.2%) or

self-administered (77.8%).

Fifty-two genes related to apoptosis, autophagy and inflammation were studied (Table 1),

eight of which had previously identified tagSNPs [13]. Thirty-eight genes were tagged using

Tagger [14] in Haploview [15] with HapMap CEU population data (Table 1). Additional SNPs

were selected for replication of findings from other studies; this resulted in addition of SNPs

for 10 candidate genes, and 7 genes with only replication SNPs (Table 1). Genotyping was

done as part of an Illumina Golden Gate Assay (San Diego, CA, USA) at the Genome Quebec /

McGill University Innovation Centre.

Quality control was performed by the authors as described in [12], using Illumina Genome

Studio v2011.1 (San Diego, CA, USA), PLINK v1.07 [16], GRR [17] and Microsoft Excel 2007

(Redmond, WA, USA). Of the 221 SNPs selected, 15 (7%) failed quality control for the follow-

ing reasons: failure in Illumina’s built-in controls (n = 6), GenTrain Score<0.4 (n = 2), poor

clusters (n = 4), monoallelic (n = 2), and call rate<0.95 (n = 1) (S1 Table).

For this analysis, only individuals of European and East Asian descent were included

(Table 2). Hormone receptor status (ER, PR and HER2 status) was determined using immu-

nohistochemistry and fluorescence in situ hybridization, as previously described [18], and

tumour marker status was dichotomized as “present” or “absent”, as opposed to the cut-off lev-

els of staining used for clinical purposes.

Statistical analysis

Statistical analyses were carried out in SVS (Golden Helix, Inc., Bozeman, MT, USA) and R

(version 3, R Foundation for Statistical Computing, Vienna, Austria) [19]. Logistic regression

was carried out in European and East Asian women separately, with the inclusion of terms for

age group, region of collection, menopausal status, and two interaction terms: menopausal sta-

tus—age group, and menopausal status–region of collection. Multiple testing correction was

applied using the false discovery rate method (FDR) [20] in two stages, as described previously

[21]. Briefly, FDR was applied within each gene first, to give a corrected p-value for each test.

The lowest p-value was taken to represent each gene, and finally another round of FDR was

applied to yield corrected p-values across all the genes tested. This allows correction for the dif-

ferent number of SNPs in each gene, as well as the number of genes tested. FDR-corrected p-

values of less than 0.05 were taken to indicate an association of the SNP with breast cancer.

SNPs that had p<0.05 before multiple testing correction were tested for interaction with

being overweight/obese at the time of diagnosis (defined as BMI�25), smoking status (non-

smokers vs. pack-years>0) and total lifetime physical activity. Total lifetime physical activity

measurements were measured as previously described [22,23] and included leisure-time,

household, and occupational activities of moderate-to-vigorous intensity, summarized using

metabolic equivalent (MET) scores (which are the ratio of the calculated metabolic rate for a

specific activity compared to resting metabolic rate). In interaction analyses described here

and previous work [24], active women were those>89.6 MET hrs/wk (the mean value among

controls, which can be approximated by running at a fast pace for a bit under an hour per

day). If there was a significant interaction, odds ratios for that SNP were computed within

each stratum. Interaction analyses were done separately for Europeans and East Asians. Addi-

tional analysis to compare the effect of rs7874234 with regards to lifetime physical activity (in

East Asian women) was conducted using StatPlus:mac (AnalystSoft Inc., Walnut, CA, USA).

Finally, logistic regression using only the cases was utilized to examine heterogeneity by hor-

mone (ER/PR) receptor status and HER2 status using the categories indicated in Table 2. Anal-

ysis was only done for SNPs with p<0.05 before multiple testing correction. We did not have
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Table 1. Genes studied.

Category Gene Tagged Replication SNPs Reference

Apoptosis BAX X

BBC3/PUMA X

BMI1 X

FAS X

MDM2 X

MIR125A X

MIR145 X

miR15a X

MIR206 X

MIR26A1 X

MIR30A X

MIRN155 X

MIRN155 X

PMAIP1/NOXA X

RFWD2 X

SKP2 X

Apoptosis & Autophagy BCL2 X

BECN1 X

MDM2 rs2279744 & rs937282 Gansmo et al. 2015, PubMed ID 26471763

pre-miRNA-27a rs895819 Yang et al. 2010, PubMed ID 19921425

TP53 X

Autophagy AKT1 X

ATG16L1 rs2241880 In Crohn’s disease: Grant et al. 2008, PubMed ID 18366306

DRAM X

FKBP1A X

FLJ20294 X

FRAP1 X

KIAA0226 X

KIAA0831 X

LKB1/STK11 X

PARK2 X

PTEN X

TSC1 X rs7874234 Mehta et al. 2011, PubMed ID 20658316

TSC2 X

H2AFX-related H2AFX X

YY1 X

Inflammation CASP8 Caspase-8 � rs1045485 Reviewed role in inflammation: Loza et al. 2007, PubMed ID 17940599

CFH Complement factor H � rs1061170 Reviewed role in inflammation: Loza et al. 2007, PubMed ID 17940599

CTLA4 � rs3087243 Reviewed role in inflammation: Loza et al. 2007, PubMed ID 17940599

IFIH1 Mda-5, Helicard � rs1990760 Reviewed role in inflammation: Loza et al. 2007, PubMed ID 17940599

IL-13 rs1800925 Erdei et al. 2010, PubMed ID 20418110

IL-4 rs2243248 Erdei et al. 2010, PubMed ID 20418110

IL-10 X

IL-6 X

IL1B X

IL23R X

IL4R � rs1801275 Reviewed role in inflammation: Loza et al. 2007, PubMed ID 17940599

(Continued)
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samples in each genotype category for the HER2 status case-only analysis in East Asian samples,

as the minor allele frequencies were too low. Multiple-testing correction was applied to all SNPs

Table 1. (Continued)

Category Gene Tagged Replication SNPs Reference

INF gamma rs2069705 Erdei et al. 2010, PubMed ID 20418110

IRF5 � rs2004640 Reviewed role in inflammation: Loza et al. 2007, PubMed ID 17940599

MAPK14 X

PTPN22 � rs2476601 Reviewed role in inflammation: Loza et al. 2007, PubMed ID 17940599

SEPS1 rs28665122 Role in inflammation: Curran et al. 2005, PubMed ID 16227999

TGFB1 � rs1982073 Reviewed role in inflammation: Loza et al. 2007, PubMed ID 17940599

TNF-alpha � rs1800629 & rs361525 Reviewed role in inflammation: Loza et al. 2007, PubMed ID 17940599

� Tag from Loza et al 2007

https://doi.org/10.1371/journal.pone.0209010.t001

Table 2. Characteristics of participants whose samples passed quality control.

European East Asian

Controls Cases Controls Cases

Region

Vancouver, Canada 721 573 127 262

Kingston, Canada 74 85 0 0

Age group (years)

20–29 0 2 0 1

30–39 5 20 0 17

40–49 202 148 53 97

50–59 271 212 34 68

60–69 201 169 30 46

70+ 116 107 10 33

Menopausal Status

Premenopausal 268 189 66 107

Postmenopausal 525 446 61 137

Hormone Receptor Status

ER and/or PR positive 0 477 0 174

ER/PR negative 0 100 0 29

HER2 Status

Negative 0 532 0 206

Positive 0 105 0 38

BMI

<25 458 308 103 200

25+ 336 329 24 44

Smoking Status

Non-smoker 406 295 111 220

Smoker 388 342 16 24

Physical Activity

<89.6 MET hrs/wk 383 329 77 137

>89.6 MET hrs/wk 401 293 49 101

Total 795 658 127 262

https://doi.org/10.1371/journal.pone.0209010.t002
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that underwent case-only analysis. Additional analysis to compare the effect of rs7236090 in dif-

ferent hormone receptor status groups in East Asian women was also done using StatPlus:mac.

Replication analysis

Participants in the Shanghai Breast Cancer Genetics Study (SBCGS) are from four population-

based studies: the Shanghai Breast Cancer Study (SBCS), the Shanghai Women’s Health Study

(SWHS), the Shanghai Breast Cancer Survival Study (SBCSS) and the Shanghai Endometrial

Cancer Study (SECS, controls only). Detailed descriptions of these studies have been published

elsewhere [25]. Briefly, the SBCS included two recruitment phases, SBCS-I (1996–1998) and

SBCS-II (2002–2005). Breast cancer cases were identified through a rapid case ascertainment

system and the Shanghai Cancer Registry. Controls were randomly selected from the general

female population using the Shanghai Resident Registry and were frequency matched to cases

by age. The SBCSS included newly diagnosed breast cancer cases ascertained via the Shanghai

Cancer Registry between 2002–2006. The SECS was conducted from 1997–2003; only commu-

nity controls from the SECS were included in the SBCGS. The SWHS is a prospective cohort

study recruited from 1996–2000. The cohort has been followed by a combination of record link-

age and active follow-ups to identify cause-specific mortality and cancer incidence by site.

These studies are conducted among Chinese women in Shanghai using very similar protocols

for data and sample collection: 2,511 breast cancer cases and 2,135 controls were genotyped

using an Affymetrix 6.0 array; another 1,794 cases and 2,059 controls were genotyped using the

Illumina Multi-Ethnic Genotyping Array. Data quality control procedures were carried out as

previously described [25], followed by imputation with 1000 Genomes Project Phase 3 as refer-

ence. Logistic regression was performed under an additive model, with adjustment for age and

the top five principal components. Data for SNPs rs1800925 and rs7874234 were extracted.

Results

Characteristics of the cases and controls are summarized in Table 2. Briefly, quality control

measures resulted in data for 922 controls and 920 cases for 206 SNPs (S1 Table). Following

logistic regression analysis in Europeans (658 cases and 795 controls), 3 SNPs had p<0.05

before FDR correction and none had p<0.05 after multiple testing correction (S2 Table): (i)

rs6676805 (RFWD2) (OR = 0.730 (95% CI: 0.600–0.889) p = 0.00158 and after correction padj
= 0.213), (ii) rs617078 (RFWD2) (OR = 0.799 (95% CI: 0.681–0.938) p = 0.00585) and (iii)

rs8063461 (TSC2) (OR = 0.823 (95% CI 0.711–0.963) p = 0.00139 and after correction padj =

0.960). There was no evidence for an interaction of any of the three SNPs with excess weight,

smoking status, or exercise (S2 Table). There was also no evidence for differential effects

depending on the tumour subtype as determined by hormone receptor status (S2 Table).

Among East Asian women (262 cases and 127 controls), 7 SNPs had p<0.05 before multiple

testing correction (Table 3). Following FDR correction, the SNP rs1800925 (IL-13) was associated

with breast cancer risk (OR = 2.08 (95% CI: 1.32–3.28) p = 0.000779; after correction padj = 0.0350).

Among East Asian women, SNP rs7874234 (TSC1) (OR = 1.81 (95% CI: 1.00–3.28) p = 0.0418;

after correction padj = 1.00) interacted with physical activity (p = 0.0281). When separating cases

by physical activity totals, the association between rs7874234 and breast cancer risk was only seen

in women with an average lifetime weekly exercise of<89.6 MET hrs (OR = 1.24 (95% CI: 1.05–

1.46) p = 0.00909), with no association for women with>89.6 MET hrs.

Finally, rs7236090 (BCL2) (OR = 0.713 (95% CI:0.515–0.986) p = 0.0396) was differentially

associated in the hormone receptor (ER/PR) classified tumour subtypes in East Asian women

(p = 0.00612; after correction padj = 0.0429), with the strongest association seen for hormone

receptor positive tumours.
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We tested the IL-13 and TSC1 SNPs for replication of main effects by conducting lookups in

genome-wide association study (GWAS) data from the Shanghai Breast Cancer Genetics Study

(SBCGS) [25]. Rs1800925 in IL-13 was significantly associated with breast cancer in one of two

data sets tested, as well as in an overall meta-analysis of the SBCGS data (4305 cases and 4194

controls; OR 1.12, (95% CI: 1.03–1.21) p = 0.011) (Table 4), with the same direction of associa-

tion as in the Canadian data. Because exercise data was not available for the SBCGS, we were not

able to test rs7874234 in TSC1 for interaction with exercise in the replication study. No main

effect for association with breast cancer risk was observed for this SNP in the SBCGS (Table 4).

Discussion

We report an association between rs1800925 (IL-13) and breast cancer risk among East Asian

women, which was not heterogeneous across breast cancer subtypes. IL-13 was associated with

breast cancer risk in New Mexico [26]. A previous GWAS in the SBCGS did not report this

SNP as associated with breast cancer at a genome-wide significance level [25,27], nor was it

associated with breast cancer survival in Chinese women [28]. In a replication by data lookup

in the SBCGS GWAS data, we found that the p-value and direction of association were consis-

tent with association of this SNP with breast cancer in East Asian women. The odds ratio for

association in the larger study was smaller, 1.12 rather than 2.08, which likely means that the

true effect size is quite small. Alternatively, it is possible that the effect size is larger among East

Table 3. Logistic regression and interaction analysis results for East Asian samples for SNPs with p<0.05 before FDR.

Interaction p-value

SNP Gene Alleles (Major/

Minor)

Minor Allele

Frequ.

OR 95% CI p-value FDR-corrected p-

value

obesity smoking

status

exercise ER/PR status

corrected p-value

rs1800925 IL-13 G/A 0.167 2.08 1.32–3.28 0.000779 0.0350 0.486 0.805 0.746 0.720

rs353291 MIR145 A/G 0.489 0.657 0.483–

0.895

0.00704 0.158 0.396 0.782 0.933 0.526

rs2032809 BBC3/
PUMA

G/A 0.438 1.47 1.07–2.03 0.0163 0.488 0.496 0.767 0.845 0.721

rs6676805 RFWD2 C/G 0.310 1.48 1.06–2.08 0.0203 0.686 0.717 0.542 0.157 0.973

rs7731023 SKP2 A/G 0.089 0.58 0.351–

0.959

0.0343 1.00 0.986 0.910 0.143 0.767

rs7236090 BCL2 A/G 0.457 0.713 0.515–

0.986

0.0396 1.00 0.984 0.967 0.551 0.0429

rs7874234 TSC1 G/A 0.101 1.81 1.00–3.28 0.0418 1.00 0.982 0.930 0.0281 0.607

https://doi.org/10.1371/journal.pone.0209010.t003

Table 4. Replication results in the Shanghai breast cancer genetics study.

SNP Gene Alleles (Major/Minor)� Data set Minor Allele Frequ. OR 95% CI P-value

rs1800925 IL-13 C/T Data1 0.162 1.09 0.97–1.24 0.164

Data2 0.175 1.14 1.01–1.28 0.03
Meta 0.169 1.12 1.03–1.21 0.011

rs7874234 TSC1 C/T Data1 0.103 1.03 0.89–1.19 0.725

Data2 0.097 0.91 0.79–1.05 0.181

Meta 0.1 0.96 0.87–1.07 0.46

�Replication assays genotyped the opposite strand of those used in the discovery analysis; for both SNPs the minor allele is referred to as A in the discovery data and as T

in the replication data.

https://doi.org/10.1371/journal.pone.0209010.t004
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Asian women in Canada, potentially because they are not identical in ethnicity to women in

Shanghai, or because of different environmental contexts. Observation of this association in

two studies of East Asian women may mean that the association may be real (i.e., not a false

positive), although it did not reach genome-wide significance in the original GWAS in the

SBCGS. This SNP has also been associated with a shorter time to recurrence among those with

early stage breast cancer [29].

In the literature, the evidence for associations with the other genes we tested was inconclu-

sive. We were unable to replicate associations with (i) IL-6, as previously found in 6292 cases

and 8135 controls from Germany [30], 2325 cases and 2525 controls from North America [31],

and 305 cases and 200 controls from Tunisia [32]; or (ii) FAS, as previously found in a meta-

analysis of Asian populations [33] and in a study of 1053 cases and 1102 controls from New

York, USA [34]. This may be due to insufficient power in our study because of smaller numbers

(922 controls and 920 cases compared to other studies [30,31,34]), or because the tagSNP

approach did not examine the SNP for which the association was reported [30,31]. Alterna-

tively, for SNPs such as rs1800795 [32], which was tested with sufficient power in women of

European ancestry, the difference could be attributed to population-specific genetic differences,

or to a true failure to replicate a previous false positive. Consistent with our findings, other stud-

ies also found no role for the same genes we tested in studies where populations enrolled were

not enriched for positive cancer family history (for example, TNF-a [35] orMDM2 [36]).

The association of CASP8 with breast cancer depended on BRCA1/BRCA2mutation carrier

status in some studies [37], but not others [38,39]. TP53 variants are associated with breast

cancer only in BRCA2 carriers [40], not in the general population [41]. Pre-miR-27a polymor-

phisms were associated with familial, but not sporadic, breast cancer [42]. As we do not have

information for the BRCA1 and BRCA2mutation status of the women in our study, and such

women would likely be a minority of those in our study, we are unlikely to detect associations

that only apply to mutation carriers.

We found evidence that, in East Asian women, breast cancer risk conferred by rs7874234

(TSC1) could be attenuated by physical activity, as women with high total physical activity

scores (>89.6 MET hrs/wk) no longer had significant association for breast cancer risk.

Although obesity and smoking are known to contribute to inflammation, we did not find evi-

dence for an interaction between these factors and genetic influencers of inflammation.

Finally, we observed heterogeneity by tumour subtype for the BCL2 SNP rs7236090, for

which the minor allele was protective of breast cancer. BCL2 has been described as a favour-

able prognostic marker for all types of early-stage breast cancer [43]. In our dataset among

East Asian women, the protective effect was strongest in women with ER/PR positive tumours,

a lower risk subgroup of breast cancer.

Overall, we found evidence for associations with breast cancer risk with single SNPs in 2

genes (RFWD2 and TSC2) among women of European descent, but neither remained statisti-

cally significant after correction for multiple testing. We found one SNP in IL-13 associated

with breast cancer among women of East Asian descent that remained statistically significant

after multiple testing correction, and this was replicated in the SBCGS. Six other SNPs had evi-

dence for an association in East Asian women before multiple testing correction; of these, one

in TSC1 appears to interact with physical activity.

It is important not to over-interpret the apparent negative results for many genes. We did

not fully tag these genes, on average using 5 SNPs per gene and an r2 cutoff of 0.8, so there may

be some unrepresented genetic variation. Even if many genes have an apparent null association

with breast cancer risk, these pathways could still be important. For example, polymorphisms

in microRNA binding sites, but not in the microRNAs themselves, have been associated with

breast cancer [44]. Recent genome-wide association studies of breast cancer have revealed a
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strong enrichment for SNPs in distal transcription factor binding sites [45], which our study

did not capture. Further, our relatively small sample size limited our power to detect individual

SNPs with very small effects.

In conclusion, we replicated an association of SNP rs1800925 in IL-13 with breast cancer

risk among women of East Asian descent, and not among women of European descent. We

also provide evidence that the TSC1 SNP rs7874234 may interact with physical activity to influ-

ence breast cancer risk. Finally, we find that rs7236090 in BCL2 has the strongest protective

effect associated with hormone receptor positive breast cancer subtype among women of East

Asian descent. These findings support the importance of considering potential environmental

interactions in genetic susceptibility models, while finding an approach that balances the

increased number of statistical tests conducted.
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