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Sommaire

Cette thèse à publications présente toutes nos contributions qui se rapportent à
la segmentation d’images Térahertz. La thèse comprend quatre chapitres. Les deux
premiers chapitres introduisent deux nouvelles approches de segmentation basées sur
des techniques d’échantillonnage. Dans la première approche, nous formulons la tech-
nique de classification K-means dans le cadre de l’échantillon d’ensembles ordonnés
pour surmonter le problème d’initialisation des centres. Le deuxième chapitre aborde
la sélection des données à travers la pondération de caractéristiques et l’échantillon-
nage aléatoire simple pour la classification des pixels en vue d’une segmentation des
images Térahertz. Une estimation automatique de la taille de l’échantillon aléatoire et
du nombre de caractéristiques sélectionnées sont également proposés. Les deux cha-
pitres suivants introduisent une autre famille de techniques de classification des séries
chronologiques basées sur la régression et qui sont adaptées aux séries chronologiques.
Nous supposons que les valeurs associées à chaque pixel d’une image Térahertz sont
échantillonnées à partir d’un modèle autorégressif. La segmentation de l’image est
alors vue comme un problème de classification de séries chronologiques. Ainsi, dans
le troisième chapitre, la classification est formulée comme un problème d’optimisa-
tion non-linéaire. L’ordre du modèle et le nombre de classes sont estimés en utilisant
un critère généralisé d’information. Finalement, le quatrième chapitre est une géné-
ralisation des résultats obtenus dans le troisième chapitre. Au lieu de considérer un
problème de moindres carrés, nous proposons une approche de classification proba-
biliste basée sur le mélange de modèles autorégressifs. Les paramètres de l’approche
proposée sont automatiquement estimés en utilisant un critère généralisé d’informa-
tion.
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SRS Simple random sampling

RSS Ranked set sampling

SRS-K-Means K-Means based SRS sampling

Ranked-K-Means K-Means based RSS sampling

W-K-Means K-Means based feature weighting

SS-K-Means K-Means based feature selection and random pixel sampling

GMM Gaussian mixture model

KHM K-Harmonic means

AR Autoregressive model

K-AR K-Autoregressive models

MoAR Mixture of Autoregressive models
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Introduction

Le présent chapitre introduit la technologie d’imagerie avec les radiations Téra-
hertz. Il présente ensuite le processus de formation de cette technologie d’images et
énumère les motivations pour analyser les images Térahertz. Ce chapitre décrit la
feuille de route pour notre thèse et un bref résumé des contributions présentées dans
notre travail.

1 Radiation et imagerie Térahertz
Au cours des dernières années, des nombreux groupes de recherche à travers le

monde sont intéressés à la portion Térahertz (THz) des rayonnements électromagné-
tiques [33, 42, 63, 112]. Les rayonnements Térahertz (rayons T) se réfèrent à la région
du rayonnement électromagnétique occupant la bande de fréquences de 0.1 à 10 THz
(qui correspond à des longueurs d’ondes comprises entre 3 mm et 3 μm), délimitées
par les micro-ondes et les ondes infrarouges (voir la figure 1). Par rapport aux régions
optiques, infrarouges et rayons X, les développements technologiques avancés dans
la région Térahertz sont limités. Cependant, les progrès récents dans les technologies
électro-optiques rendent actuellement la région Térahertz disponible pour un usage
pratique. Ces progrès technologiques ont rendu possible la génération et la détection
des rayons T avec des dispositifs efficaces. Une portion inutilisée du spectre électroma-
gnétique devient disponible, c’est une portion d’un grand potentiel pour la détection
et l’imagerie en microélectronique [6, 5, 63], en diagnostic médical [54, 55, 85, 112],
en contrôle environnemental [33, 83, 82], en sécurité [101, 71, 76], en identification
chimique et biologique [113, 52, 102], en contrôle de qualité [14, 82, 58, 59], etc.

Depuis 1995, les rayonnements Térahertz ont offert des nouvelles possibilités pour
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1. Radiation et imagerie Térahertz

figure 1 – Spectre des ondes électromagnétiques. Les ondes Térahertz sont définies
entre les micro-ondes et les ondes infrarouge.

des applications scientifiques et industrielles [42, 54, 82, 83, 99, 90, 66, 60]. Bien
que d’autres portions électromagnétiques sont assez utilisées dans des applications
de l’imagerie numériques, les propriétés de l’imagerie avec les rayonnements Téra-
hertz leurs permettent d’occuper une position importante. Le tableau 1 résume les
principaux avantages et inconvénients de l’imagerie avec les rayons T par rapport
aux autres technologies, telles que les micro-ondes, les infrarouges et les rayons X.
Les micro-ondes offrent une bonne profondeur de pénétration à travers des objets
opaques, mais ils permettent une faible résolution spatiale. Les rayonnements infra-
rouges offrent une bonne résolution spatiale, mais ils permettent une faible profondeur
de pénétration à travers les objets opaques. Les rayons X offrent la meilleure résolution
spatiale et la profondeur de pénétration la plus élevée, mais ils sont potentiellement
invasifs pour les organismes vivants ou les tissus biologiques inspectés. L’imagerie avec
les rayons T offre un bon compromis entre les modalités mentionnées ci-dessus. Les
rayons T sont moins énergétiques que les rayons X et ne semblent pas présenter aucun
risque de santé pour l’inspection des organismes vivants, des tissus biologiques, des
nourritures et textiles industriels [23]. Les rayons Térahertz produisent des informa-
tions spectrales non disponibles à travers d’autres types de rayons et rendent possible
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1. Radiation et imagerie Térahertz

Radiations Avantages Inconvénients
- Pas dangereuses - Faible résolution spatiale

Micro- - Bonne pénétration dans des nombreux - Les métaux et l’eau bloquent le rayon-
ondes matériaux nement

- Système d’acquisition d’images rapide - Imagerie spectrale non disponible
- Coût élevé de maintenance

- Pas dangereuses - Faible profondeur de pénétration
Infra- - Bonne résolution spatiale - Imagerie spectrale non disponible
rouges - Système d’acquisition d’images rapide

- Coût acceptable de maintenance
- Haute profondeur de pénétration - Dangereuses pour les êtres vivants

Rayons X - Excellente résolution spatiale - Coût élevé de maintenance
- Système d’acquisition d’images rapide - Imagerie spectrale non disponible
- Pas dangereuses - Système d’acquisition d’images lent

Rayons T - Bonne profondeur de pénétration - Les métaux et l’eau bloquent le rayon-
- Bonne résolution spatiale nement
- Imagerie spectrale disponible - Coût élevé de maintenance

tableau 1 – Résumé des principaux avantages et inconvénients de l’imagerie avec les
radiations (rayons) Térahertz par rapport aux autres technologies. Tableau extrait de
[95]

la discrimination des matériaux spécifiques à l’intérieur d’un objet. Par rapport aux
micro-ondes, les courtes longueurs d’onde de la portion Térahertz permettent une plus
grande résolution spatiale. En résumé, les rayons Térahertz sont caractérisés par plu-
sieurs propriétés importantes, parmi lesquelles, l’inspection non invasive des objets, la
pénétration à travers des objets secs et non métalliques tels que le plastique, le carton,
le bois et le tissu et offrent une identification spécifique des matériaux [54, 19, 23].

Cependant, par rapport aux modalités d’imagerie bien développées, comme les in-
frarouges et les rayons X, les systèmes d’acquisition d’images THz ont des dispositifs
d’acquisition lents. Cette lenteur s’explique par l’immaturité de cette nouvelle moda-
lité. Dans ce qui suit, nous présentons le processus de formation d’images Térahertz,
suivi par d’autres défis rencontrés par cette technologie d’images et les motivations
pour son analyse et son interprétation.
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2. Formation d’images Térahertz

2 Formation d’images Térahertz
L’imagerie avec les rayons Térahertz peut être obtenue par une acquisition en

deux modes passif ou actif. Un système passif utilise la lumière du soleil comme une
source et détecte les rayons Térahertz émis naturellement par un objet. Le système
actif diffère du système passif par l’utilisation d’une source active des rayons THz
artificiels pour éclairer l’objet et détecter les rayons THz transmis ou réfléchis. Dans
notre travail, les acquisitions sont utilisées uniquement en mode actif.

Il y a presque quarante ans, la génération des radiations électromagnétiques est
apparue en utilisant le laser à impulsions ultra-brèves [11]. Les impulsions laser fem-
toseconde sont utilisées pour générer des impulsions électriques picosecondes dont les
bandes spectrales se trouvent dans la région Térahertz. La spectroscopie Térahertz
dans le domaine temporel est d’abord utilisée pour détecter ces impulsions à large
bande afin d’analyser la réponse spectrale des matériaux [114]. Cette technique est
ensuite étendue à l’imagerie Térahertz, qui peut être mise en oeuvre en mode de ré-
flexion ou de transmission. Dans la suite de ce chapitre, nous décrivons un système
d’acquisition de l’image THz en mode transmission (voir figure 2). Le système d’acqui-
sition enregistre les réponses spectroscopiques d’un échantillon qui est cartographié
à plusieurs positions contigus de pixels [63]. Le système d’acquisition d’images Té-
rahertz commence par émettre des impulsions laser ultra-rapide (typiquement entre
10 et 100 fs) vers un séparateur de faisceaux. Les impulsions laser sont divisées en
faisceaux de pompe et de sonde. Le faisceau de pompe est utilisé pour générer des
rayons Térahertz et le faisceau de sonde est utilisé pour détecter le champ électrique
des rayons THz d’une manière cohérente. Les rayons Térahertz à large bande sont gé-
nérés par l’illumination avec le faisceau de pompe dans un cristal (tel que ZnTe, GaAs
et InP) avec rectification optique [54]. Des miroirs paraboliques sont nécessaires pour
focaliser les rayons Térahertz produits vers un endroit où l’échantillon est situé. Les
rayons Térahertz interagissent avec l’échantillon avant d’être transmis au détecteur au
moyen de miroirs paraboliques. À un instant donné, le détecteur est déclenché par le
faisceau de sonde et l’amplitude du champ électrique Térahertz est mesurée. L’instant
de la mesure est déterminé par le retard du faisceau de sonde. Le balayage de toute
l’impulsion Térahertz par la ligne à retard du faisceau de sonde permet de reconstruire

19



2. Formation d’images Térahertz

figure 2 – Schéma typique d’un système de formation d’images Térahertz en mode
transmission (figure extraite de [54]). Les signaux THz sont projetés sur l’objet, inter-
agis avec celui-ci, puis détectés pour constituer un cube de données THz. Les signaux
projetés sont similaires, tandis que les signaux détectés sont modifiés qui illustrent
les différentes régions de l’objet.

cette impulsion en une série de points discrets [54]. L’ensemble d’impulsions détectées
sont alors enregistrées à plusieurs emplacements contigus qui constituent les pixels de
l’image THz. Chaque pixel est considéré comme une série chronologique représentée
par plusieurs bandes, caractéristiques ou attributs (par exemple, 1500 bandes). Ainsi,
la combinaison de ces séries en lignes et en colonnes constitue un cube de données
Térahertz brutes (par exemple, le cube R × C × P dans la figure 3, où R, C et P

représentent respectivement le nombre de lignes, de colonnes et de bandes). Pour
visualiser l’image THz, les caractéristiques peuvent être extraites pour créer l’image
2D. On peut sélectionner l’amplitude pour un délai de temps spécifique, l’amplitude
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3. Problématique de la thèse

(a) Cube 3D de données THz (b) Deux réponses (signaux) Térahertz

figure 3 – (a) Cube 3D de données Térahertz représenté par R×C pixels et caractérisé
par des P attributs brutes. Deux pixels colorés en bleu et en orangé appartiennent
respectivement à une région typique de la fibre de carbone et à une région endom-
magée. (b) contient deux réponses THz différentes colorées en bleu et en orangé qui
correspondent respectivement aux deux pixels de l’image Térahertz en (a) pour la
même couleur.

maximale ou minimale de chaque série ou l’amplitude de la transformée de Fourier
prise sur un intervalle de temps [54, 22].

3 Problématique de la thèse
L’imagerie dans le domaine Térahertz peut fournir des informations temporelles et

spectrales spécifiques et non disponibles pour d’autres modalités. Cependant, l’ima-
gerie Térahertz fait face à des défis pour pouvoir l’analyser et l’interpréter auto-
matiquement. La quantité énorme de caractéristiques brutes peut être un obstacle
pour décrire avec une certaine précision le contenu informationnel des images THz
[112, 85, 51]. De plus, certaines caractéristiques de l’image THz brute peuvent être
bruitées, redondantes ou non informatives [14]. Le nombre élevé de pixels peut aussi
être une barrière pour analyser ce type d’images [61, 15]. Le traitement de l’ensemble
complet des mesures nécessite une consommation élevée de la mémoire et de calcul.
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4. Contributions

L’objectif de cette thèse est de segmenter les images Térahertz en utilisant des mé-
thodes d’analyse de données. La segmentation de ces images consiste à partitionner
l’ensemble de pixels en plusieurs régions homogènes pour localiser des objets dans les
images. Ces objets sont supposés disjoints et les régions qui les constituent, forment
des classes séparées dans l’espace de caractéristiques. Vue la quantité énorme de ca-
ractéristiques, nous proposons dans cette thèse des stratégies de réduction de l’espace
de caractéristiques. L’extraction de caractéristiques et la reconnaissance d’objets sont
effectuées dans l’espace réduit. Pour ce faire, nous privilégierons d’utiliser des tech-
niques de classification pour analyser ce type d’images. Dans la section suivante, nous
présentons nos contributions relatives à l’analyse d’images Térahertz.

4 Contributions
Les deux premiers chapitres introduisent deux nouvelles approches de segmenta-

tion basées sur des techniques d’échantillonnage. Dans la première approche, nous
formulons la technique de classification K-means dans le cadre de l’échantillon d’en-
sembles ordonnés pour surmonter le problème d’initialisation des centres. Le deuxième
chapitre aborde la sélection des données à travers la pondération de caractéristiques et
l’échantillonnage aléatoire simple pour la classification des pixels en vue d’une segmen-
tation des images Térahertz. Une estimation automatique de la taille de l’échantillon
aléatoire et du nombre de caractéristiques sélectionnées sont également proposés.
Dans ces deux chapitres, nous avons réalisé des tests sur des ensembles de données de
synthèse et d’images Térahertz qui ont permis d’évaluer la performance des méthodes
proposées par rapport à l’état de l’art.

Les deux derniers chapitres introduisent une autre famille de techniques de clas-
sification des pixels basées sur la régression et qui sont adaptées aux séries chronolo-
giques. Nous supposons que les valeurs associées à chaque pixel d’une image Térahertz
sont échantillonnées à partir d’un modèle autorégressif. La segmentation de l’image
est alors vue comme un problème de classification de séries chronologiques. Ainsi, dans
le troisième chapitre, la classification est formulée comme un problème d’optimisation
non-linéaire. L’ordre du modèle et le nombre de classes sont estimés en utilisant un cri-
tère généralisé d’information. Finalement, le quatrième chapitre est une généralisation
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4. Contributions

des résultats obtenus dans le troisième chapitre. Au lieu de considérer un problème
de moindres carrés, nous proposons une approche de classification probabiliste basée
sur le mélange de modèles autorégressifs. Les paramètres de l’approche proposée sont
estimés en utilisant un critère généralisé d’information. Les résultats expérimentaux
montrent que l’approche proposée permet de segmenter des images Térahertz avec
plus de précision que d’autres approches de l’état de l’art. L’approche proposée est
utilisée aussi pour détecter la nature de la surface d’un robot mobile et discriminer
des événements transitoires pour assurer un fonctionnement sûr et économique du
processus de surveillance.

23



Chapitre 1

État de l’art

1 Introduction
L’interaction du rayonnement Térahertz avec l’objet à analyser peut être définie

en traitant l’ensemble de matériaux qu’ils constituent. Ces matériaux doivent avoir
des réponses dans le domaine THz pour dire que les différentes structures de l’objet
sont plus ou moins transmissibles ou réfléchissantes, afin de pouvoir les discriminer.
L’eau et les objets humides absorbent fortement les radiations THz ; toutefois, les
objets secs (tels que le papier, le tissu, le plastique et le bois) sont transparents
aux radiations THz et ne fournissent pas de radiations réfléchies significatives. Les
métaux sont opaques aux radiations Térahertz et reflètent la plupart des radiations
entrantes. D’autres matériaux intéressants, qui offrent des radiations THz spécifiques,
sont détaillés dans [54, 21].

Grace aux propriétés intéressantes des rayonnements Térahertz, plusieurs travaux
d’imagerie Térahertz ont été proposés dans la littérature. Dans les travaux de Kamba
et al. [69], l’imagerie Térahertz a été utilisée pour inspecter la structure des couches
internes de la monture en bois sur un tableau de peinture Japonais avant sa res-
tauration. Bowen et al. [26] ont proposé un certain nombre de techniques qui ont
été utilisées pour faciliter la récupération d’images Térahertz fiables à partir d’objets
complexes appartenant au domaine du patrimoine culturel. Ces techniques tentent de
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2. Travaux connexes sur la segmentation d’images Térahertz

surmonter les problèmes posés par les surfaces inégales, en améliorant la résolution
en profondeur et le contraste de l’image. Dans le domaine de la sécurité, Kowalski et
al. [71] ont proposé une application qui consiste à détecter et à visualiser des objets
cachés. Les propriétés des rayons THz et visibles sont exploitées et la combinaison des
images fournies par les deux types de caméras permet de découvrir des objets dange-
reux cachés à l’intérieur des vêtements. Un certain nombre de traitements d’images
Térahertz existent en littérature comprenant le débruitage d’impulsions THz, l’ex-
traction de bandes pertinentes et la segmentation par classification de pixels THz,
etc. En fait, il est connu que les systèmes d’imagerie Térahertz produisent des impul-
sions bruitées à cause des erreurs à la fois systématiques et aléatoires. Handley et al.
[61] proposent une première méthode permettant de réduire les erreurs aléatoires. Ce
travail modélise et extrait le bruit inclus dans les impulsions des images Térahertz.
Ferguson [51] a proposé deux techniques principales de prétraitement : le débruitage
par ondelettes et la déconvolution de Wiener. Ces méthodes ont été étudiées expé-
rimentalement et ses performances ont été quantifiées avant de segmenter l’image
Térahertz.

2 Travaux connexes sur la segmentation d’images
Térahertz

L’image Térahertz est décrit par un nombre énorme de caractéristiques. La haute
dimensionnalité des images Térahertz pose de nouveaux défis pour la détection de ca-
ractéristiques pertinentes. Le tableau 1.1 présente un résumé de plusieurs méthodes
de segmentation d’images Térahertz. Certains travaux sont résumés dans cette section
en termes d’espace de caractéristiques utilisées et de techniques de classification su-
pervisées ou non supervisées. L’espace de base est constitué par les vecteurs complets
dans le domaine temporel représentant les pixels de l’image Térahertz [21]. Les autres
espaces de caractéristiques sont obtenus en utilisant des transformations de Fourier
ou d’ondelettes [101, 110, 109]. Ces espaces peuvent être utilisés avec une seule bande
ou avec plusieurs bandes. Dans le premier cas, le choix de la bande peut être fixé à
priori de l’espace temporel ou spectral de l’image THz [50]. Certaines mesures issues
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2. Travaux connexes sur la segmentation d’images Térahertz

de la forme des vecteurs représentant les pixels dans le domaine temporel ou spec-
tral sont utilisées, telles que l’amplitude du pic maximal du vecteur [50, 22]. Dans le
deuxième cas, plusieurs bandes sont utilisées, telles que le vecteur entier de l’image
Térahertz, l’amplitude spectrale complète et une collection de bandes de l’image THz
[50, 110, 22, 21]. Certains auteurs proposent de réduire l’espace disponible en utili-
sant les modèles autorégressifs, les modèles autorégressifs et moyennes mobiles, l’ana-
lyse en composantes principales et l’arbre de décision [50, 109, 113, 14, 31, 85]. La
segmentation des images Térahertz est généralement réalisée en termes de classifica-
tion supervisée, telles que le classificateur Mahalanobis, SVM et réseaux de neurones
[50, 110, 109, 113], et de classification non supervisée, telles que K-means, ISODATA,
hiérarchique et KHM [101, 14, 15, 22, 21, 31, 85]. Dans la section suivante, nous pré-
sentons nos contributions relatives à l’analyse d’images Térahertz.

Parmi les récents travaux, Holzinger et al. [72] ont proposé une approche de clas-
sification k plus proches voisins pour segmenter les mesures Térahertz de la structure
interne des dents contenant des caries. Les résultats de segmentation montrent les ré-
gions qui representent les structures internes en couches des dents. Siuly et al. [100] ont
proposé une méthode d’apprentissage automatique pour la classification des images
Térahertz dans le domaine biomédical. Des fonctions de corrélation croisée 2D, des
méthodes d’extraction de caractéristiques statistiques et de classification standards
sont utilisées ensemble pour analyser les images THz. Une étude des récents travaux
de l’analyse d’images biomédicales Térahertz est détaillée dans [108].
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2. Travaux connexes sur la segmentation d’images Térahertz

tableau 1.1 – Résumé de quelques travaux sur la segmentation d’images Térahertz
Methods Features Classification &

Clustering
Application domains

Berry et
al. [22]

TD & MxA & FWHM k-means &
ISODATA

Histopathology (basal cell
carcinoma and melanoma
diagnosis)

Berry et
al. [21]

Time series & Short time
Fourier transform &
DWT

k-means Medical (dental) &
histopathology (carcinoma and
melanoma diagnosis)

Yin et al.
[109]

DWT & AR/ARMA Mahalanobis
distance classifier

Biomedical (osteosarcoma cells
diagnosis) & security
(mail/packaging inspection)

Zhong et
al. [113]

PCA of the interval
0.4-1.6 THz

Minimum distance
classifier & NN

Chemistry (material identifica-
tion)

Yin et al.
[110]

Spectral magnitude &
spectral phase

SVM Biomedical (ribonucleic acid
recognition) & chemistry
(powder identification)

Nakajima
et al. [85]

PCA k-means & AH Histopathology

Brun et al.
[31]

PCA fuzzy k-means Histopathology (cancer
inspection from lung and
pancreas)

Stephani
[101]

DWT Hierarchical
chameleon

Security (mockup mail bomb
detection)

Ayech et
al. [14]

PCA & AR KHM Quality control (damage tasks
detection) & agricultural (crop
yield estimation)

Eadie et
al. [50]

MxA, MnA, -MnA/MxA,
MxA-MnA, FWHM,
T(t), F(f), T(t)/MnA, &
Decision tree

NN & SVM Medical (colon cancer diagnosis)
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Chapitre 2

Segmentation d’images Térahertz
utilisant K-means basée sur
l’échantillonnage ordonné

Dans le premier chapitre de la thèse, nous proposons une nouvelle approche de
segmentation d’images Térahertz basée sur la classification floue non supervisée. L’ap-
proche proposée est constituée de deux étapes. La première étape consiste à estimer
les centres optimaux en utilisant une nouvelle fonction objectif basée sur l’échan-
tillonnage d’ensembles ordonnés, alors que la deuxième étape consiste à regrouper
l’ensemble de pixels observés en fonction des centres estimés. Cette approche à deux
étapes est essentiellement moins sensible à l’initialisation des centres.

Dans ce chapitre, nous présentons un article intitulé Segmentation of Terahertz
imaging using K-means clustering based on ranked set sampling publié dans
le journal international de Elsevier Expert Systems with Applications, 2015 [15].
Le problème a été posé par le professeur Djemel Ziou. J’ai réalisé, validé et rédigé ce
travail sous sa supervision. Une version compacte de ce travail a été publiée dans la
conférence internationale IEEE International Conference on Image Processing
(ICIP2015), Québec, Canada, 2015, intitulée Ranked K-means clustering for
Terahertz image segmentation [17].
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Abstract

Terahertz imaging is a novel imaging modality that has been used with
great potential in many applications. Due to its specific properties, the seg-
mentation of this type of images makes possible the discrimination of diverse
regions within a sample. Among many segmentation methods, k-means clus-
tering is considered as one of the most popular techniques. However, it is
known that k-means is especially sensitive to initial starting centers. In this
paper, we propose an original version of k-means for the segmentation of
Terahertz images, called ranked-k-means, which is essentially less sensitive
to the initialization of the centers. We present the ranked set sampling de-
sign and explain how to reformulate the k-means technique under the ranked
sample to estimate the expected centers as well as the clustering of the ob-
served data. Our clustering approach is tested on various real Terahertz
images. Experimental results show that k-means clustering based on ranked
set sampling is more efficient than other clustering techniques such as the k-
means based on the fundamental sampling design simple random sampling
technique, the standard k-means and the k-means based on the Bradley
refinement of initial centers.
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1. Introduction

1 Introduction
In recent years, many research groups around the world are increasing their interest

on the Terahertz (THz) portion of the electromagnetic radiation [63, 112]. Terahertz
radiations (T-rays) have been used in many applications, due to their interesting prop-
erties, such as noninvasive property, penetration through dry and non-metallic objects
(plastic, paper, cloth, etc), and specific material characterization. The use of T-rays
for imaging has opened new possibilities for research and commercial applications
[54, 82, 83, 53, 69, 70, 26, 71, 65].

Terahertz pulsed imaging (TPI) system consists in collecting information from the
scene, as a sequence of two-dimensional images. Each image is constituted by a set
of grey level pixels acquired from a single spectral band. The combination of these
images constitutes a three-dimensional Terahertz data cube. Compared to the color
imaging, each pixel in the Terahertz imaging acquires many bands (e.g. 1024 bands)
from the electromagnetic spectrum, instead of the only three bands of the RGB color
representation. TPI system can provide specific temporal and spectral information
unavailable through other sensors characterizing each pixel of the THz image. The
segmentation of THz imaging supplies a wealth of information about test samples and
makes possible the discrimination of heterogeneous regions within an object. Among
many segmentation methods, k-means clustering [14, 24, 68, 77] is considered as one of
the most popular techniques developed in the last few decades, due to its simplicity
of implementation, fast execution and good computational performance. However,
it is well known that k-means might converge to one of numerous local minima,
and its result depends on initial starting conditions, which randomly generates the
initial clustering [68]. In other words, different clustering results can be produced after
different runs of k-means on the same input data. Given an association rule between
the data points and the centers, the clustering accuracy depends on the location of
the centers. The structure of the data and the sampling procedure has an effective
impact on the estimation of the centers. In machine learning, the impact of sampling
is often unmentioned. We show in this paper the effect of the sampling procedures in
the clustering process. Simple random sampling (SRS) is the mostly used procedure
in which the data points are assumed to be iid [38, 104] and there are only a few
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2. Related works on Terahertz image segmentation

results available when the sampling design is different [20, 28, 34]. However, in some
applications, such as the one explained in [77, 88, 89], using ranked set sampling
(RSS), may be cheaper and result in better and more informative samples from the
underlying population. In this paper, we study the problem of initial center sensitivity
of k-means technique; explain how to reformulate the k-means under the RSS design
to overcome the initialization problem and classify the observed data. The obtained
results are compared with the corresponding ones of simple random sample data. We
show that, using RSS, our approach leads to a better inference about the precision
of centers and therefore the precision of the obtained clusters. Experimental tests of
our approach are done to segment Terahertz images. The obtained results show the
interest of ranking the pixels and explain how the extra information via the rank of
each pixel in RSS will lead to a more efficient classification of pixels compared with
SRS and other techniques.

The rest of the paper is organized as follows: in section 2, we give an insight about
related works of various imaging applications in the Terahertz domain. Section 3 in-
troduces the k-means clustering based on the simplest sampling design SRS technique
that we call SRS-k-means. Section 4 presents the RSS technique and explains its ef-
ficiency compared to the SRS. The formulation of the general k-means in the case of
RSS sample and the different steps of the resulting algorithm, ranked-k-means, are
also described. Our clustering approach based on RSS sample is compared with the
clustering approach in the case of SRS, the standard approach of k-means and the
k-means using the Bradley refinement of initial centers on the real Terahertz images
of a carbon fiber sample, a flexure spring and a fruit grape. The results are illustrated
and discussed in section 5.

2 Related works on Terahertz image segmentation
The Terahertz image is formed by capturing THz radiations reflected from or

transmitted through objects. Water and moisture objects highly absorb THz radia-
tions, however, dry objects (such as paper, cloth, plastic and wood) are transparent
to THz radiations and provide no significant reflected radiations. Metals are opaque
to THz radiations and reflect most incoming radiations. Other interesting materials,
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2. Related works on Terahertz image segmentation

which offer specific THz radiations, are detailed in [54, 21]. The THz image is formed
by several bands (e.g. 1024 bands). The high dimensionality of THz images leads to
some new challenges for relevant feature detection. Indeed, the relevant features can
be embedded only on few bands [54, 21]. For this raison, in several related works, the
band having the maximal pick amplitude is used. It has pointed out that other bands
may contains relevant features and these bands are not known in advance [14, 109, 85].
The features are used for the segmentation of THz images. In the most related works,
classification of features is used for the segmentation of Terahertz images.

Table 2.1 presents a summary of several segmentation methods, regrouped in terms
of feature space used, classification or clustering techniques and application domains.
From this table, we deduce three important remarks. The first one concerns the var-
ious application domains using the Terahertz imaging which explains the interest of
analysing this now technology of imaging. The second remark concerns the feature
spaces used in the state of art. The basic feature space is the raw time series of THz
images [21]. Other feature spaces are obtained by using Fourier or Wavelet transforms
[109, 110, 101]. The feature space can be used with only one band or with several
bands. In the first case, the choice of the band can be priori fixed either from the time
series space (T(time=constant)) or from the spectral space (F(frequency=constant))
of the THz image [50]. Some measures from the shape of the entire time series or
other spectral transform are used, such as the maximal pick amplitude of the time
series (MxA), the minimal pick amplitude of the time series (MnA), the time de-
lay (TD) of the maximal pick of the time series, the full width at half maximum
pick (FWHM) [22, 50]. In the second case, several bands are used, such as the full
time series of the THz image, the full spectral amplitude, the full spectral phase,
and a collection of some bands such as MxA, MnX and FWHM [21, 110, 50, 22].
To reduce the feature space, autoregressive model (AR), autoregressive moving aver-
age model (ARMA), principal component analysis (PCA) and decision tree are used
as extraction or selection methods [109, 113, 85, 31, 14, 50]. The third remark con-
cerns methods of segmentation allowing identification of different regions in Terahertz
images. These methods are supervised (classification), such as Mahalanobis distance
classifier, minimum distance classifier, support vector machine (SVM) and neural net-
works (NN) [109, 113, 110, 50], and unsupervised classification, such as hard k-means,
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3. SRS-k-means clustering

fuzzy k-means, ISODATA, hierarchical chameleon, agglomerative hierarchical (AH)
and k-harmonic-means (KHM) [22, 85, 21, 31, 101, 14]. In our previous work [14],
the combined AR/PCA model are used to extract relevant features from the high
dimensional THz images of a carbon fiber sample, a flexure spring and a fruit grape.
These features are used in this paper for the validation purpose.

The k-means clustering has been shown efficient for the segmentation of Terahertz
images [22, 21, 31, 85]. However, k-means techniques are especially sensitive to initial
starting conditions and different runs of k-means segmentation on the same input
Terahertz image can produce different results. In the literature of k-means algorithm,
the sampling procedures is not exploited since the whole observed dataset, i.e. all
the pixels of the image, is used in the clustering process. We show in this paper the
effect of the sampling procedures in the clustering accuracy of the k-means technique.
Ranked set sampling procedure is proposed to extract a representative sample from
the observed population and provide therefore conclusions about the centers. Our
approach which is called ranked-k-means consists to reformulate the standard k-
means under the ranked sample to overcome the initialization problem and classify
the observed Terahertz data. Ranked-k-means is compared with the corresponding
ones using the simple random sampling that is called SRS-k-means and presented in
section 3.

3 SRS-k-means clustering
In data clustering, it is typically assumed that the data point observations, such

as the pixels of the THz image, are drawn from the continuous populations which
correspond to natural phenomena such as the real scene before image acquisition.
Obviously, the observed populations which constitute the accessible part from the
continuous population are only studied in order to attempt to learn something about
the inaccessible population. In this paper, the term "observed population" is simplified
to "population". It is constituted by a set of N data point realizations, denoted X

and represented as follows {x1, ..., xN}. We are interested in this section to classify
the observed dataset into homogeneous clusters. One of the well known clustering
techniques, k-means [77, 24], is used to regroup the dataset into a pre-defined number
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3. SRS-k-means clustering

Figure 2.1 – Example of data point observations distributed in bi-dimensional sub-
space: the full dataset (N=4000) in the left versus a small simple random sample
points (n=40) in the right.

L of clusters. K-means begins by randomly choosing L centers from the studied
dataset, one center for each cluster. K-means is a two steps iterative algorithm. The
first step consists to assign each data point to the cluster having the closest center
using either hard or soft decision rule [77, 24]. The second step consists to update the
centers values by computing the weighted average of data points belonging to each
cluster. The centers adjust their locations behind every iteration using the whole
observed data points until convergence, i.e. when the centers do not change. Making
use of the whole observed data points into the clustering process, the behavior of
the standard k-means can be considered as an exhaustive analysis, in other words,
the clustering of the whole unit measurements may occupy high time and memory
consuming, while a small number of sampling units can be practically fast, easily and
accurately representative of the whole observed population. In the state of art, few
authors used random sampling in order to avoid the use of the whole set of available
data [77]. Among them, Bejarano et al. [20] have proposed a sampling method that
consists to randomly permute the data point observations; follow by only extracting
the first n points from the permuted dataset as input of the k-means technique to
decrease runtime. Bradley and Fayyad [28] have proposed other approach to estimate
initial conditions for the k-means clustering. This approach is based on multiple small
random sub-sample solutions (T sub-samples). These sub-samples are classified using
k-means randomly initialized producing T sets of intermediate centers, each one with
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3. SRS-k-means clustering

L points. These center sets are fused into a superset containing T × L points. The
superset is then classified by k-means T times, each time initialized with a different
center set. Centers having the minimal objective function value are selected and then
considered as refined initial points for the clustering process. The sampling methods
used by Bejarano and Bradley are proprietary in the sense that they seems not be
known in statistics. Therefore, even if they perform well in the experimentations
carried by authors, their properties are unknown.

In this section, we propose an issue which seems not has been tackled concerning
the combination of the widely studied probabilistic sampling design: simple random
sampling (SRS) [38, 104] and the k-means clustering technique. A representative
sample from the observed population is then randomly selected and regrouped into
homogeneous clusters in order to get conclusions about the centers. In SRS, the
studied population, which represents the observed dataset X, must be firstly defined
and a good choice of the sample size n requires to be fixed. The size of the sample must
be chosen so as to achieve the best tradeoff between the estimation accuracy and the
low computational cost. In the SRS process the data are assumed to be i.i.d. and each
sample may be drawn either with or without replacement. In our work, the sample
is drawn with replacement, so each element from the population list is selected and
therefore returned to the list to be able selected another time. SRS with replacement
are used to fortify data points having the maximum chance of being selected and offer
therefore more reliability to the drawn sample. The main steps necessary to selecting
a simple random sample data are summarized as follows:

SRS(X,n) algorithm
1. Develop a population list of all the elements of the studied population and
assign each element a number to be able to access to the population.
2. Generate a list of n random numbers.
3. Select the elements {x1, ..., xn} that have numbers corresponding to the
generated random number list and save them in a dataset denoted XSRS.
4. Return XSRS.

Using the procedure SRS(X,n), a random sample of n points is collected from
the observed population X and stored as a new small dataset XSRS = {x1, ..., xn}.
The obtained sample represents the data under study and allows providing inferential
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3. SRS-k-means clustering

statistics for the whole observed data clustering. Figure 2.1 shows an example of a set
of data point observations X distributed in two clusters. A small random sample XSRS

is drawn from the observed population. Both X and XSRS are shown respectively on
the left and on the right. Each point on the right may be considered as a possible
point from the observed population having a random location. The datasets X and
XSRS have sizes respectively equal to 4000 and 40. The SRS sample represents only
1% of the observed population. The possible XSRS samples are comparatively varied;
however they can produce an expected behavior, only needed in our work, to give
an estimate about the centers. Then, a data sample XSRS is used as input for the k-
means algorithm. The novel version of k-means based on SRS is called SRS-k-means
algorithm. When the algorithm converges, we have a small random sample from the
population that has been regrouped into L clusters. On the basis of the obtained
centers, all the N points in the observed dataset are now classified by affecting each
observed data point to the nearest cluster represented by its center. The L obtained
clusters are the final output of our clustering based random sampling algorithm. As
discussed above, SRS-k-means is a two-step algorithm. The first step is called E-step
(estimation step) and consists to classify the XSRS data into L clusters; each one is
represented by its own estimated center ml. The E-step of SRS-k-means consists to
minimize the objective function which is defined as follows:

JESRS =
L∑

l=1

n∑
j=1

ua
jld(xj, ml), (2.1)

where ujl represents the membership degree of the jth object in the lth cluster; d

represents a distance metric (generally the Euclidian distance) that measures the
similarity between an object and a cluster center, and a > 1 represents the degree of
fuzzification. The values of the membership function ujl must verify the constraints
{ujl | ujl ∈ [0, 1] and ∑L

l=1 ujl = 1}. Then, the first order condition allows writing the
membership degrees and the centers as follows:

ujl =
⎛
⎝ L∑

h=1

(
d(xj, ml)
d(xj, mh)

) 1
a−1

⎞
⎠

−1

(2.2)
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4. Ranked-k-means clustering

and
ml =

∑n
j=1 ua

jlxj∑n
j=1 ua

jl

. (2.3)

Clustering step (C-step) is the second step of SRS-k-means and consists to affect
each point from the observed data X to the nearest cluster represented by its esti-
mated center. For that reason, we propose to estimate the membership degree of each
data point by minimizing the objective function given by the equation (2.1) using the
size of the whole dataset N instead of the sample size n. We note that this objective
function can be also used in the case where only the n data sample points are bringing
into the C-step. The first order condition allows computing the membership degrees
of data points to clusters as given by the equation (2.2).

The SRS-k-means technique appears faster than the traditional k-means; however,
the sensitivity problem to initial centers remains not yet resolved. To overcome this
drawback, we propose an extended approach of the SRS-k-means called ranked-k-
means which is implemented based on a more sophisticated sampling design ranked
set sampling.

4 Ranked-k-means clustering
The sampling methods can have a great influence on the performance of the k-

means clustering since classifying the full measurement of the variable of interest
is assumed costly. Considering that the cost of drawing a sample and ranking is
negligible, ranked set sampling (RSS), which is used in some applications, such as the
one explained in [80, 88, 89, 107], may provide cheaper, better and more informative
samples from the underlying population. Compared to SRS, RSS has been proven
theoretically [103] and shown empirically [37] to yield more precise estimator of the
population mean. Moreover, it has been shown that RSS provides an extra special
design structure that can be used to improve many data mining applications [88].
In this paper, we propose a novel approach of clustering called ranked-k-means that
consists to reformulate the k-means algorithm by using the RSS design. In RSS, a set
of data point realizations of some variables of interest is drawn by a SRS procedure and
then the data points in the set are ranked according to some pre-specified criterion.

38



4. Ranked-k-means clustering

In one dimensional case, it is obvious that data points can be ranked by using the
values of the variable of interest. Nevertheless, ranking multidimensional data sample
remains more complex. In the original version of the RSS [80], the ranking is done
by human judgment. However, for large datasets, only few applications exist in the
literature of RSS where ranking can be carried out by judgment with respect to the
variable of interest. In other versions of the RSS [88, 89], ranking is performed by using
some covariate information which can be represented as another available variable,
called concomitant variable. The concomitant variable, denoted Y , must be highly
correlated with the main variable of interest, but requires negligible cost. We adapt
this ranking criterion in our work to sort the different units in the RSS process. Since
then, different ranking procedures have been devised for different purposes such as in
[88, 89]. All the RSS variants share the same basic features and properties. Samples
ascertained through the RSS procedure contain more information (according to Fisher
information) than SRS of the same size, which explain why RSS is more efficient than
SRS as has demonstrated by many previous works [80, 89]. For our purpose, let us
consider a set X of N observed data points and a set XRSS of n = R × K data
sample points. The data sample points of a cycle r are generated as follows. A K ×K

samples are randomly drawn from the set X; i.e. SRS sampling. The sample points
{xi1, . . . , xiK} of the ith row are ranked; that is xi(1) ≤ . . . ≤ xi(K). The ith minimum
is saved. All the kept minima form the rth cycle {xr1, . . . , xrK}. The procedure is
repeated R times (i.e., R cycles) and constitutes the ranked sample XRSS of dimension
R × K. The RSS algorithm can be therefore summarized as follows:

RSS(X,K,R) algorithm
1. for r ← 1 to R do

XSRS ← SRS(X,K2)
Reformulate the XSRS in the K × K matrix form A.
Sort each kth row of A according to a concomitant variable Y and access
the kth minimum.

Store the resulting minima (xr1, . . . , xrK)t in the rth row of the matrix
XRSS of dimension R × K.

end
2. Return XRSS

Regrouping both samples XRSS and XSRS into L clusters is expected to give more
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4. Ranked-k-means clustering

precise centers mRSS than mSRS (l = 1 . . . L) when both samples are based on the
same sample size. In the case where L equal to 1, only one cluster is used, and the
centers m1,RSS and the centers m1,SRS represent also the means respectively of XRSS

and XSRS samples. In this case, McIntyre [80] has stated a relationship between SRS
and RSS which is defined as follows:

var(m̂1,RSS) = var(m̂1,SRS) − 1
RK2

K∑
k=1

(wk − w)2 (2.4)

where wk = ∑R
j=1 xjk and ∑K

k=1 wk = Kw. The inequality (2.5) can be therefore easily
deduced as follows:

var(m̂1,RSS) ≤ var(m̂1,SRS) (2.5)

The variance of m1,RSS is always less than or equal to the variance of m1,SRS regardless
of ranking errors which confirm the precision of the RSS regarding to the SRS in the
case of L = 1. When K = 1, the sample size n becomes equal to R, and SRS and
RSS samples give the same variance.

The inequality of equation (2.5) can be generalized in the case where L ≥ 1. The
new relationship is then deduced as follows:

L∑
l=1

var(m̂l,RSS) ≤
L∑

l=1
var(m̂l,SRS) (2.6)

For l = 1 . . . L, the sum of variances of m̂l,RSS is always less than or equal to the
correspondent of m̂l,SRS. In fact, the precision of the m̂l,RSS centers return essentially
to the reformulation of the population into spaced and compact small subpopulations.
Figure 2.2 shows the same example of the data point realizations in Figure 2.1. The
full dataset X and a small RSS sample XRSS are shown respectively on the left and
on the right. In this example, the XRSS has the same size of the XSRS in Figure 2.1.
The RSS population is then formulated into K ranked subpopulations (K=2 in the
example of Figure 2.2) where each one has its own distribution (first and second
subpopulations are symbolized respectively by "o" and "+"). The structure of the
ranked sample reflects the decrease of the ambiguity between subpopulations. In the
general case where the clusters number L ≥ 2, the obtained RSS measurements are
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4. Ranked-k-means clustering

Figure 2.2 – Example of data point observations distributed in bi-dimensional sub-
space: the full dataset (N=4000) in the left versus a small ranked set sample points
(n=40 and K=2) in the right.

expected to be more regularly spaced than those obtained through SRS and more
representative of the underlying population.

Let us consider the parameter wk which represents the mean of the kth subpopu-
lation of XRSS, given by the following equation:

wk =
R∑

r=1
xrk (2.7)

In addition to the ranked sample XRSS, the parameter wk is used in our clustering
approach to incorporate the rank information into the k-means process. In similar
way to the SRS-k-means, ranked-k-means is also a two-step algorithm. The E-step
consists to classify the XRSS data sample into L clusters, each one is represented by
its own estimated center m̂l. In the E-step, an objective function of the ranked-k-
means will be penalized by a regularization term, which is integrated in the distance
measure. Let us consider the following parameters: d represents a distance metric
(generally the Euclidian distance), ml represents the center of the lth cluster, urkl

represents the membership degree of xrk in the lth cluster, and a > 1 represents the
degree of fuzzification. The new objective function is defined as follows:

JERSS =
L∑

l=1

K∑
k=1

R∑
r=1

ua
rkl[d(xrk, ml) + α × d(wk, ml)], (2.8)
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4. Ranked-k-means clustering

Where parameter α, in the second term, controls the effect of the order statistic of xrk.
In essence, the addition of the second term in equation 2.8 formulates a rank constraint
and aims at keeping the closeness of the prototype of the lth cluster around the nearest
subpopulation means wk computed from the RSS sample. By an optimization way,
the objective function JERSS can be minimized with respect to urkl and ml. The
values of the membership function urkl must verify the constraints U = {urkl|urkl ∈
[0, 1] and ∑L

l=1 urkl = 1}. The membership degree of xrk to the lth cluster and the
center ml of the lth cluster are given as follows:

urkl =
⎛
⎝ L∑

h=1

(
d(xrk, ml) + α × d(wk, ml)
d(xrk, mh) + α × d(wk, mh)

) 1
a−1

⎞
⎠

−1

(2.9)

and
ml =

∑K
k=1

∑R
r=1 ua

rkl(xrk + α × wk)
(α + 1) ∑K

k=1
∑R

r=1 ua
rkl

. (2.10)

When α is set to zero, the algorithm is equivalent to the original k-means applied on
the XRSS sample, while increasing the value of α, the algorithm promotes the rank
effect for each xrk to its own subpopulation in RSS sample.

The ranked-k-means requires therefore reorganizing the observed data X in sub-
population form (XRSSF ) to be used in the C-step process. The order statistic k(xj) of
each data point xj is then estimated by minimizing the equation ∑K

k=1
∑R

r=1(d(xj, xrk)+
αd(xj, wk)) with respect to the index k. The obtained dataset is then rearranged in
a Rk × K matrix, where Rk represents the entire cycle number of each order statistic
in XRSSF . However, the minimized equation may occupy high time consuming, that
is why we propose to reduce the equation as follows ∑K

k=1 d(xj, wk) which gives ap-
proximately the same results. The C-step consists therefore to regroup each element
from the XRSSF to the nearest cluster represented by its own estimated center. For
that reason, we propose to estimate the membership degree of each observed point
xrk to the lth cluster using the following objective function:

JCRSS =
K∑

k=1
JCRSS,k, (2.11)
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where
JCRSS,k =

Rk∑
r=1

L∑
l=1

ua
rkl(d(xrk, ml) + α × d(wk, ml)). (2.12)

By an optimization way, the objective function JCRSS can be minimized with respect
to the urkl. The membership degrees of data points to clusters are then given by the
equation (2.9). The order statistic of each data point can be defined as follows:

k = arg min
k

(JCRSS,k) (2.13)

The two steps which constitute the ranked-k-means algorithm can be summarized
as follows:

E-step algorithm
1. Data: XRSS = RSS(X,K,R) algorithm

Compute wk as the mean of the kth subpopulation
Initialize the centers ml by random points from XRSS

2. Do
Update centers ml using Eq. (2.10)
Update membership degrees U using Eq. (2.9)

Until |mt − mt−1| < threshold1
3. Return the obtained centers ml

C-step algorithm
1. Data: XRSSF (rearranged data in Rk × K matrix)

Centers: m (centers obtained from the E-step)
2. Do

Update the membership degree U using Eq. (2.9)
Update the order statistic using Eq. (2.13)

Until |U t − U t−1| < threshold2
3. Return U .

In the E-step, the XRSS sample is obtained by applying the RSS(X,K,R) al-
gorithm on the observed data X. The output of the E-step is constituted by the
estimated centers. In the C-step, the membership degrees and the order statistics of
data points adjust their values behind every iteration until the membership degrees
do not change.
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Figure 2.3 – Dataset 1 constituted by three Gaussian distributions. First and second
rows represent respectively SRS and RSS samples with its histograms. Ranked-k-
means is used with α=0.2 and K=3. Red vertical lines represent the centers of each
cluster obtained by the E-step of SRS and ranked k-means.

Figure 2.4 – Dataset 2 constituted by five Gaussian distributions. First and second
rows represent respectively SRS and RSS samples with its histograms. Ranked-k-
means is used with α=0.4 and K=5. Red vertical lines represent the centers of each
cluster obtained by the E-step of SRS and ranked k-means.

5 Experimental results
In this section, we investigate the performance of our approach on real Terahertz

images. As the ground truth of the THz images is not very precise in our work, we
start firstly by studying and showing the performances of the clustering techniques
on several artificial and real standard datasets. Since the clustering accuracy depends
on the location of the centers, we experimentally show in this case that SRS has
ineffective impacts. In this section, we empirically show that by incorporating the rank
information about the sample points, ranked set sample can be more representative
of the true underlying population and therefore more efficient to estimate centers for
the process of the clustering step. Experimental tests have been realized on artificial,
standard and Terahertz datasets.
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Figure 2.5 – Dataset 3 constituted by ten Gaussian distributions. First and second
rows represent respectively SRS and RSS samples with its histograms. Ranked-k-
means is used with α=0.2 and K=10. Red vertical lines represent the centers of each
cluster obtained by the E-step of SRS and ranked k-means.

Figure 2.6 – First row represents RSS sample of dataset 1 and its histogram, and
the red vertical lines represent the estimated centers ml. Below the first row, each
row represents one subpopulation of RSS and its histogram, and the red vertical lines
represent the subpopulation means wk.
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Figure 2.7 – First row represents RSS sample of dataset 2 and its histogram, and the
red vertical lines represent the estimated centers ml. Below the first row, each row
represents one subpopulation of RSS and its histogram (for ranks 1, 2 and 5), and
the red vertical lines represent the subpopulation means wk.

5.1 Artificial and standard datasets

In order to study with more details the performance of our approach, we start our
tests on mono-dimensional datasets. This choice enabled us to simply and strongly
show the interests of our approach and offer better illustration of the results. In-
terpretations that will be acquired by this study will then be facing more complex
situation of multi-dimensional Terahertz data in section 5.2. Three artificial datasets
were generated respectively by three, five and ten Gaussian distributions and comport
respectively 1500, 500 and 1000 points. Our approach based on RSS is compared to
SRS-k-means. Figures from 2.3 to 2.5 show the used datasets with both samples. For
each dataset in these figures, first and second rows represent respectively SRS and
RSS samples in the left and its histograms in the right. Experimental tests are done
in the same condition that is the same initial centers. RSS design was used with a
cycle number R equal to the round of N/K. For datasets from 1 to 3, RSS was used
respectively with K equal 3, 5, and 10, i.e. with K = L. The parameter α is fixed to
0.2 for dataset 1 and dataset 3, and 0.4 for dataset 2. It is shown in figures 2.3, 2.4
and 2.5 that ranked samples are more effective than random samples to estimate
centers (represented by the red vertical lines) for the C-step process. Obviously, fig-
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Figure 2.8 – First row represents RSS sample of dataset 3 and its histogram, and the
red vertical lines represent the estimated centers ml. Below the first row, each row
represents one subpopulation of RSS and its histogram (for ranks 1, 2, 7 and 10), and
the red vertical lines represent the subpopulation means wk.

ure 2.3 shows that for SRS sample, the center locations of all clusters are skewed. On
the other side, RSS gives better estimation of the three centers. The same thing in
figures 2.4 and 2.5, the centers of the 2nd and 3rd clusters of SRS sample of dataset
2 and the centers of 2nd, 9th and 10th clusters of SRS sample of dataset 3 are clearly
skewed. While, in RSS samples, the centers are better located and show that RSS ap-
pear more representative of the population mean of different clusters of dataset 2 and
dataset 3. In fact, the RSS sampling procedure consists to reformulate the datasets
into K ranked sub-sets where each one has its own distribution visualized below the
first row of figures 2.6, 2.7 and 2.8. This reformulation reflects the decrease of the
ambiguity between the sub-sets. The obtained measurements of RSS are expected to
be more regularly spaced than those obtained through SRS, and consequently ranked
sample is more representative of the whole population.

In this study, our estimation approach depends on four parameters: the fuzzifica-
tion degree a, the rank effect α, the subpopulation number K and the sample size
n. The sample size n and the cycle number R are strictly dependent because n is
equal to R × K. Our tests was applied for all datasets with a = 2, as that was one

47
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Figure 2.9 – Center positions obtained by our estimation approach in dataset 1 for
α=0, α=0.2 and α=1.

of the best values used in the literature of fuzzy clustering techniques [24]. In the
rest of this section, we will study the effect of α, K and n on the achieved tests. Fig-
ure 2.9 shows the center positions obtained by our estimation approach on dataset
1 for three different values of α (0, 0.2 and 1). In this figure, we observe, for α = 0,
that the centers of the 2nd and 3rd clusters are clearly skewed. On the other hand,
for α = 0.2, the centers are clearly better located. For α = 1, the centers come close
to the mean wk of each of the three subpopulations in figure 2.6. Figure 2.10 shows
the variation of the found centers of clusters for each real value of α from 0 to 2.
In this figure, tests are achieved for the three Gaussian datasets with two different
values of K. We observe that for α equal to 0, the centers of the 2nd and 3rd clusters
are clearly skewed in figure 2.10 (a), 3rd center (for K = 5), 1st and 2nd centers (for
K = 10) in figure 2.10 (b) are largely skewed. Furthermore, in figure 2.10 (c), the
centers of 2nd, 3rd, 4th and 5th clusters (for K = 10) and 3rd, 4th and 5th centers (for
K = 20) are skewed. Incrementing α between 0.2 and 1, all the centers became better
located for datasets. Beyond the value 1, the centers become stationeries and close to
the subpopulation mean wk, represented by the red vertical lines in figures 2.6, 2.7
and 2.8 of the K subpopulations of dataset 1, dataset 2 and dataset 3. Figure 2.11
shows the effect of parameter K on the obtained center positions of dataset 1. In this
figure, we observe, for K = 1, that the first center is inclined to the right, and, the
2nd and 3rd centers are fused in the position 0.4. On the other hand, for K = 3, the
centers are well located with a slightly deviation of the first center. For K = 6, the
centers are perfectly located for the three clusters. Figure 2.12 shows the variation
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(a) Dataset 1: left (K = 3) and right (K = 6)

(b) Dataset 2: left (K = 5) and right (K = 10)

(c) Dataset 3: left (K = 10) and right (K = 20)

Figure 2.10 – Variation of the obtained centers for each value of α (from 0 to 2) for
the three datasets. The parameter K is equal respectively to 3, 5 and 10 in the left
and 6, 10 and 20 in the right. The sample size n is fixed to the whole dataset size N .

of the found centers of clusters for each value of K from 1 to 20. In this figure, tests
are achieved for the three Gaussian datasets with two different values of α. For all
datasets, we observe that for the lowest values of K, the centers are very poorly lo-
cated, such as the centers of the 2nd and 3rd clusters in figure 2.12 (b), 2nd clusters
(for K = 5) and 2nd and 3rd clusters (for K = 10) in figure 2.12 (c), 2nd, 3rd, 4th and
5th clusters (for K = 10) and 2nd, 3rd and 4th clusters (for K = 20) in figure 2.12 (d).
Increasing the value of K, all center locations are highly improved essentially when
K exceeds L. We observe that for a good choice of α and K, our estimation approach
appears more robust and significant centers can be therefore estimated for the clus-
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5. Experimental results

Figure 2.11 – Center positions obtained by our estimation approach in dataset 1 for
K = 1, K = 3 and K = 6.

tering process. Different tests are achieved by browsing the whole data points, i.e.
n = N . Figure 2.13 shows the center positions obtained by our estimation approach
on dataset 1 for three different values of n. In this figure, we observe that different
centers are wrongly located for n equal to 48. However, the centers take their correct
locations when n equal to 150 and 1500. Our approach is also tested with sequences
of values of n (from 1 to N) and the variation of the found centers location is showed
in figure 2.14. In several cases, we observe that suitable results can be reached with
low sample sizes especially for α between 0.2 and 1, and K ≥ L. This last inference
shows that our approach can be very useful for large scale datasets.

Two other multi-dimensional datasets, Iris data and Yeast data, are tested by the
clustering techniques. The datasets, differ in dimension and number of data points
and clusters. The datasets were obtained from the machine learning repository at
the University of California, Irvine. Iris is four-dimensional dataset which contains 3
classes of 50 points where each class refers to a type of iris plant: iris Versicolor, iris
Verginica and iris Setosa. Yeast dataset includes 1484 points characterized by eight
features to classify the data points into ten clusters. Our clustering approach was
compared with the SRS-k-means, the standard k-means and the clustering approach
based on Bradley refinement of initial centers (called in this paper b-k-means) previ-
ously described in section 3. The different clustering techniques were used with the
same initial centers. The data points are assigned to the cluster having the greatest
membership degree. Perfect RSS was used for our approach and the parameter α was
fixed to 0.2 for datasets 1 and 3, 0.4 for dataset 2 and 1 for Iris and Yeast datasets.
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5. Experimental results

(a) Dataset 1: left (α = 0.2) and right (α = 1)

(b) Dataset 2: left (α = 0.4) and right (α = 1)

(c) Dataset 3: left (α = 0.2) and right (α = 1)

Figure 2.12 – Variation of the obtained centers for each value of K (from 1 to 20).
The sample size n is fixed to the whole dataset size N .
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5. Experimental results

Figure 2.13 – Center positions obtained by our estimation approach in dataset 1 for
different sample sizes: n=48, n=150, and n=1500.

The obtained results of the five datasets (dataset 1, dataset 2, dataset 3, Iris
and Yeast) were statistically evaluated in terms of classification performance, centers
accuracy and clusters validity indices. The first one is commonly expressed as the
percentage measure of correctly classified samples which is calculated as follows:

Performance = N − Misclassified points
N

× 100% (2.14)

where N represents the size of the whole dataset.
The second criteria was used to confirm the relationship deduced in the equa-

tion 2.6. A good centers estimation can be obtained when the sum of the variances
of center estimators is much less as possible. The center accuracy index is then in-
versely proportional to the sum of variances and it can be calculated by the following
equation:

Accuracy = 1∑L
l=1 var(m̂l)

(2.15)

The clustering approaches were also compared by three cluster validity measures:
Dunn index, Davies-Bouldin index and Silhouette index. Then, the quality of clusters
is measured in terms of homogeneity and separation knowing that points within one
cluster are similar, while points in different clusters are dissimilar. Dunn index [43]
attempts to identify the clusters which are compact and well separated. It is calculated
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(a) Dataset 1: left (α = 0.2) and right (α = 1)

(b) Dataset 2: left (α = 0.4) and right (α = 1)

(c) Dataset 3: left (α = 0.2) and right (α = 1)

Figure 2.14 – Variation of the obtained centers for each value of the sample size n
(from 1 to N). The subpopulation number K is fixed to the center number L.
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5. Experimental results

by using the following formula:

Dunn index = min
1≤i≤L

(
min

1≤j≤L

(
δ(Ci, Cj)

max1≤k≤L Δ(Ck)

))
(2.16)

where δ(Ci, Cj) represents the inter-cluster distance between two clusters Ci and
Cj which is defined by min{d(xi, xj)|xi ∈ Ci, xj ∈ Cj} and Δ(Ck) represents the
intra-cluster distance of the cluster Ck which is defined by max{d(xi, xj)|xi, xj ∈
Ck}. d represents the Euclidian distance and L represents the number of clusters.
Large values of Dunn index indicate that clusters are compact and well-separated.
Davies-Bouldin index [39] is the second cluster validity index which also describes the
compactness and the separation of the clusters. It is calculated as follows:

Davies-Bouldin index = 1
L

L∑
i=1

max
i�=j

(
γ(mi) + γ(mj)

θ(mi, mj)

)
(2.17)

where mi is the center of the ith cluster, γ(mi) is the average distance of all points
in the ith cluster to the center mi, θ(mi, mj) is the distance between the two centers
mi and mj, and L is the number of clusters. Davies-Bouldin index has a low score if
the clusters are compact and well separated from each other. Therefore, it will has a
small value for a good clustering. Silhouette index [96] also describes the compactness
and the separation of the clusters. It is calculated as follows:

Silhouette index = 1
N

N∑
i=1

β(xi) − α(xi)
max{α(xi), β(xi)} (2.18)

where α(xi) is the average distance of the point xi to other points in the same cluster,
β(xi) is the average distance of the point xi to the points in its nearest neighbor
cluster. Silhouette index represents the average of the ratio in equation 2.18. A larger
value indicates a better quality of the clustering result.

Table 2.2, table 2.3 and table 2.4 present the statistics of the different clustering
techniques respectively on dataset 1, dataset 2 and dataset 3. In these tables, the
different measures present the average values of twenty runs with the same dataset.
In the case of ranked-k-means, K was used equal to L. The parameter α was fixed
to 0.2 for dataset 1 and dataset 3, and 0.4 for dataset 2. The Bradley approach, b-k-
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5. Experimental results

means, was used with T = 5 sub-samples, each sub-sample has a size equal to n1. The
T sub-samples constitute the sample to be used for the refinement of initial centers
for the clustering process and the sample size n is then equal to T × n1. For dataset
1, a comparison between ranked-k-means, SRS-k-means and b-k-means are done for
three different values of n (15, 150 and 1500 points). For the three values of n, the
clustering performance of the ranked-k-means is superior to the other approaches,
the accuracy of the estimated centers is also better and the cluster validity indices
show that ranked-k-means is also much better then the other approaches in terms of
homogeneity into clusters and separation between clusters. Table 2.3 and table 2.4
display also the results for n equal 50, 250 and 500 points and n equal 100, 500 and
1000 points respectively of dataset 2 and dataset 3, and confirms the efficiency of the
results of our approach.

Table 2.5 and table 2.6 show also the quantitative performances of the obtained
clusters and centers respectively on the Iris dataset and the Yeast dataset. The
obtained results show that our approach based on RSS outperforms the standard
k-means, the b-k-means and also the SRS-k-means for the different sample sizes.
Statistics of the accuracy of the centers ml,RSS show that the ranked-k-means is in-
dependent to initial centers for several runs of the algorithm. The precision of the
centers has an effective impact on the performance of the clustering approaches. The
statistics of the clustering performance and the cluster validity indices confirm the
efficiency of the ranked-k-means. It is notable that the standard fuzzy k-means and
the SRS-k-means produce approximately the same performances and accuracies for
n = N , i.e. 1500, 500, 1000, 150 and 1484 points respectively of dataset 1, dataset 2,
dataset 3, Iris data and Yeast data. It is also remarkable that b-k-means outperforms
standard k-means and SRS-k-means for the most indices of performances.

5.2 Terahertz datasets

In this section, the different clustering techniques are tested on the THz images
of a carbon fiber sample, a fruit grape and a flexure spring. Simultaneous acquisition
of visible images, see figure 2.15, allows a comparison between the two types of data.
Images in the visible light (first row of figure 2.15) present only a description of per-
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5. Experimental results

Figure 2.15 – Visible (first row) and THz (second row) images respectively of carbon
fiber (first column), flexure spring (second column) and grape (third column). THz
images are shown using the maximal amplitude feature.

Figure 2.16 – Standard k-means segmentation of the three THz images: carbon fiber
image (first column), flexure spring image (second column) and grape image (third
column). The approach was used respectively with L equal to 3, 3 and 5 clusters for
the three images. The AR(p)/PCA(q) extracted features were used with p=2 and q=1
for the carbon and the spring images and p=3 and q=1 for the grape image.

ceptible objects of the human eye, while in the THz light (second row of figure 2.15),
using the standard maximal amplitude (maxA) feature of each pulse (pixel), visible
and hidden structures are very well identified in the images. The maxA THz images
give us an insight about the structure of the objects and the distribution of the dif-
ferent pixels in the image. For the three maxA THz images, pixels corresponding to
large THz reflection are white, while black corresponds to no reflection detected. The
segmentation of the carbon fiber image (first column) consists in detecting damaged
regions, not visible to the human eye, which can be provided by a hole punch, an
end-mill tool or a piece of aluminum scrap. In the second column, the flexure spring
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5. Experimental results

Figure 2.17 – Bradley segmentation of the three THz images: carbon fiber image (first
row), grape image (second row) and flexure spring image (third row). The Bradley
approach was used respectively with L = 3, L = 3 and L = 5, and the sample size
n equal to 30 (first column), 300 (second column) and 3000 (third column). The
AR(p)/PCA(q) extracted features were used with p=2 and q=1 for the carbon and
the spring images and p=3 and q=1 for the grape image.

image with one half covered by a business card cutout is shown. In the third col-
umn, grape image was shown in both types. The different regions in the THz image
represent grape berries, stems, branches and background. Each pixel of the three
raw THz images is represented respectively by 572, 700 and 1024 observations in the
time domain and its correspondent spectral bands in the frequency domain. We have
used in this paper the AR(p)/PCA(q) feature extraction method from our previous
work in [14], where p and q represent respectively the AR and PCA feature num-
bers. The method consists to combine the two effective statistical feature extraction
models autoregressive (AR) model on the temporal data and principal component
analysis (PCA) on the spectral data. The combination AR/PCA has been used to
further consolidates the effectiveness of both techniques to extract the pertinent fea-
tures from the THz images. The pixels of the THz AR(p)/PCA(q) data represent, in
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5. Experimental results

Figure 2.18 – SRS-k-means segmentation of THz images of carbon fiber (first row),
flexure spring (second row) and grape (third row). For the three images, SRS-k-means
has used respectively L = 3, L = 3 and L = 5, and the sample size n equal to 30
(first colomn), 300 (second column) and 3000 (third column). The AR(p)/PCA(q)
extracted features were used with p=2 and q=1 for the carbon and spring images and
p=3 and q=1 for the grape image.

the RSS, the variable of interest X to be sorted. The different pixels are then sorted
according to the concomitant variable Y represented by the standard maxA feature
which is highly correlated with the main variable of interest. Ranked-k-means was
applied with a parameter α = 1. The carbon fiber and the spring images were used
with p = 2 and q = 1, while the grape image was used with p = 3 and q = 1. The
different clustering techniques, ranked-k-means, SRS-k-means, standard k-means and
b-k-means, were applied on the Terahertz images with a parameter a = 2, as that
was one of the best values found by [24]. The fuzzy segmentation of the three images
was employed respectively with 3, 5 and 3 clusters. Figure 2.16 shows the standard
k-means segmentation of the three THz images. The figure shows that the different
regions are wrongly segmented, especially for the carbon fiber and the grape images.

Figures 2.17, 2.18 and 2.19 show the segmentation of the three Terahertz images
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5. Experimental results

Figure 2.19 – Ranked-k-means segmentation of THz images of carbon fiber (first row),
flexure spring (second row) and grape (third row). For the three images, ranked-k-
means has used respectively L = 3, L = 3 and L = 5, and the sample size n equal to
30 (first colomn), 300 (second column) and 3000 (third column). The AR(p)/PCA(q)
extracted features were used with p=2 and q=1 for the carbon and spring images and
p=3 and q=1 for the grape image.

respectively for b-k-means, SRS-k-means and ranked-k-means. The segmentation was
carried out using three different values of the sample size n (30, 300, and 3000).
Figures 2.17 and 2.18 show that the different regions are not well segmented. The
obtained regions of the carbon fiber prove that this method gives bad identification of
damaged zones for all values of n. However in figure 2.19, when increasing the sample
size the different regions became well identified by the ranked-k-means segmentation
and they can be seen as dark gashes along the image. b-k-means and SRS-k-means
applications on the grape image are shown in the second row of figures 2.17 and 2.18.
The obtained regions clearly illustrate the limitations of these methods to provide
good structure of stems and berries. However, the second row of figure 2.19 presents
the regions output of our segmentation approach. White cluster represents the grape
berries; gray cluster represents the external layer of grape berries and the stems, and
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6. Conclusion

the black cluster represents background and branches. Compared to the b-k-means
and the SRS-k-means segmentations, ranked-k-means provides more relevant details
of the vine structure, including the stems and the grape berries shape. The third row
of figures 2.17, 2.18 and 2.19 show the regions output of b-k-means, SRS-k-means and
ranked-k-means clustering using the same AR(2)/PCA(1) data spring. For a small
sample size equal to 30, SRS-k-means segmentation provides a bad identification of
the white cluster, while b-k-means provides noisy pixels in the left part of the image.
However, increasing the sample size, the obtained regions become more interesting.
As well, our approach using the ranked sample, gives promising results for the three
values of n. Visible and hidden parts of the flexure spring are well segmented especially
in the low part of the spring image. The segmentation of the three Terahertz images
shows that ranked-k-means outperforms the segmentation algorithms standard k-
means, b-k-means and SRS-k-means for different values of the sample size.

Visual results of Terahertz images is supported by the statistics shown in table 2.7,
table 2.8 and table 2.9. As the ground truth of the THz images is not very precise in
our work, we study and show the performances of the clustering techniques only in
terms of centers accuracies and cluster validity indices. In the case of ranked-k-means,
K was used equal to L. The parameter α was fixed to 1 for three THz images. A
comparison between ranked-k-means, SRS-k-means and b-k-means are done for three
different values of n (30, 300 and 3000 pixels). For the three values of n, the accuracy
of the estimated centers of the ranked-k-means is better than the other approaches
and the cluster validity indices show that ranked-k-means is also much better then
the other approaches in terms of homogeneity into clusters and separation between
clusters. A good choice of the sample size must achieve a compromise between the
segmentation accuracy and the low computational cost.

6 Conclusion
A novel clustering approach, called ranked-k-means, has been proposed in this

paper. Ranked-k-means is a two-steps algorithm; the E-step consists to estimate op-
timal centers by using a new objective function based on ranked set sample, while
the C-step consists to classify the observed dataset based on the estimated centers.
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6. Conclusion

Ranked-k-means is essentially less sensitive to the initialization of the centers. The
performance of ranked-k-means is valorized regarding to standard k-means, k-means
based on SRS sample and k-means based on Bradley refinement of initial centers on
several datasets, specially in the case of the Terahertz imaging.

It is shown that suitable results can be reached with a low sample size n especially
for α about between 0.2 and 1, and a subpopulation number K superior or equal to
the cluster number L. This last inference shows that our approach can be very useful
for large-scale datasets. Note that, precise values of α, K and n, which are important
to guarantee good clustering results, haven’t been addressed in this paper.

In further work, we will deal with the feature selection and the estimation of
the parameters α, K, and n. For instance, the parameter α can be estimated by a
Bayesian interpretation to equation (2.8). Then, a prior probability to α can be added
in our work to estimate its optimal value. Similar steps to the work of Allili and Ziou
[8] can be an issue to develop this idea.
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Chapitre 3

Segmentation d’images THz
utilisant K-means basée sur la
pondération d’attributs et
l’échantillonnage aléatoire

Dans le chapitre précèdent, nous avons proposé une approche de segmentation
d’images Térahertz basée sur le K-means et l’échantillonnage ordonné. Cette ap-
proche est moins sensible aux conditions de départ, toutefois, elle est face à des défis
pour la sélection des caractéristiques pertinentes et le choix de la caractéristique
concomitante utilisée pour trier les pixels. Le deuxième chapitre aborde la sélection
des données à travers la pondération de caractéristiques et l’échantillonnage aléatoire
simple pour la classification des pixels en vue d’une segmentation des images Téra-
hertz. Une estimation automatique de la taille de l’échantillon aléatoire et du nombre
de caractéristiques sélectionnées sont également proposés.

Dans ce chapitre, nous présentons un article intitulé Terahertz image segmen-
tation using K-means clustering based on weighted feature learning and
random pixel sampling publié dans le journal international de Elsevier Neuro-
computing, 2016 [13]. J’ai réalisé, validé et rédigé ce travail sous la supervision
du professeur Djemel Ziou. Une version compacte de ce travail a été publiée dans
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la conférence internationale IEEE Computer Vision and Pattern Recognition
workshops (CVPR2015), Boston, États-Unis, 2015, intitulée Automated feature
weighting and random pixel sampling in K-means clustering for Terahertz
image segmentation [16].
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Abstract

Terahertz (THz) imaging is an innovative technology of imaging which can
supply a large amount of data unavailable through other sensors. However,
the higher dimension of THz images can be a hurdle to their display, their
analysis and their interpretation. In this study, we propose a weighted fea-
ture space and a simple random sampling in k-means clustering for THz
image segmentation. Our approach consists to estimate the expected cen-
ters, select the relevant features and their scores, and classify the observed
pixels of THz images. Automatic estimation of the random sample size and
the selected feature number are also proposed in this paper. Our approach
is more appropriate for achieving the best compactness inside clusters, the
best discrimination of features, and the best tradeoff between the clustering
accuracy and the low computational cost. Our approach of segmentation is
evaluated by measuring performances and appraised by a comparison with
some related works.
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1. Introduction

1 Introduction
Terahertz radiation (T-ray) refers to the region of electromagnetic spectrum oc-

cupying the band of frequencies from 0.1 to 10 THz and bounded by microwave and
infrared bands. Compared to X-ray, infrared, visible and microwave, Terahertz im-
age automatic analysis and interpretation are in its infancy. However, the advances
in THz acquisition technologies open the door to practical use in several areas such
as remote sensing, medical diagnosis, and security. The reader can find more about
applications in [63, 54, 82, 83, 53, 69, 70, 26, 71, 65, 112]. Terahertz radiations are
non invasive and penetrate dry and non-metallic objects such as paper, wood, cloth,
etc.

Terahertz images can be acquired by acquisition in both active or passive modes.
Terahertz imaging in the active mode is formed by measures of sequences of chrono-
logical series or signals reflected from or transmitted through a sample. Each series
can be represented by several bands or features (e.g. 1024 features) which characterise
one pixel and the combination of these series into rows and columns constitutes the
raw Terahertz data cube (e.g. the R × C × P cube in figure 3.1, where R, C and P

represent respectively the number of rows, columns and features). Beyond the acqui-
sition, the Terahertz image segmentation has been studied in [50, 101, 110, 109, 113].
The k-means based clustering is the most popular used technique [14, 15, 77, 24, 68].
However, the high dimensionality of THz images lead to some new challenges for rel-
evant feature selection. Indeed, the relevant features can be embedded only on few
bands [54, 22]. For this reason, in several related works, some measures from the whole
time series are used, such as the amplitude of the maximal pick and the time delay
of the maximal pick of the time series [54, 50, 22]. These measures remain insuffi-
cient to characterize the different objects of Terahertz images [14]. However, existing
k-means algorithms deal all features with equal weights. Moreover, making use of the
whole data into the clustering process decreases the k-means performances. It is thus
necessary to integrate data sampling designs and feature weighting methods into k-
means algorithm to extract relevant bands from the vast Terahertz data observations.
Data sampling and feature weighting techniques can improve the efficiency and the
accuracy of the analysis.
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1. Introduction

Figure 3.1 – Schematic of Terahertz imaging formation in transmission mode. (a)
shows an interaction of T-rays with a sample of carbon fiber. The THz signals are
projected to the sample, interacted with it and then detected to constitute the THz
data cube in (b). The detected T-rays form the different regions in the sample. The
obtained THz data in (b) is represented by R × C pixels and characterized by P raw
features. Two pixels are colored in blue and orange which belong respectively to a
typical region of the carbon fiber and a damaged zone. (c) contains two different THz
responses colored in blue and orange which correspond respectively to the two pixels
in the Terahertz image in (b) with the same color.

In this paper we propose the use of simple random sampling (SRS) and feature
weighting. SRS sampling has been used in the works of Ayech and Ziou [15]. They
have proposed an approach called SRS-k-means which consists to use the k-means
technique under the SRS sample to avoid the use of the whole set of pixels. In this
paper, we propose to reformulate the SRS-k-means by selecting the relevant features
using a weighting strategy. The weighting methods have been used in [64, 86, 9]
to analyze heart diseases data, Australian credit card data and other datasets from
the UCI Machine Learning Repository. They have proposed to assign weights to
features iteratively updated during the clustering process. Our main contributions
consist to integrate the feature weighting and the SRS sampling into the k-means
clustering. Our approach is called pixel sampling and feature selection in k-means
clustering (SS-k-means) and consists to learn the weights of features according to
their clustering importance and introduce the simple random sampling design into the
k-means process. Note that the SS-k-means would be more appropriate for achieving
the best compactness inside clusters, the best discrimination of features, and the best
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2. Background

tradeoff between the clustering accuracy and the low computational cost. There are
four main differences with the state of art: 1) the high dimensional data which are
the THz images (1024 bands) and the feature space used; 2) the feature weighting
formulation; 3) the combination of the feature weighting and the SRS sampling; 4)
the automatic estimation of the sample size and the selected feature number.

The paper is organized as follows: in Section 2, we present an insight about re-
lated works of various THz imaging applications. Moreover, a background of k-means
clustering algorithms has been detailed. We show its limitations and propose subse-
quently, in Section 3, a novel approach to overcome these limitations. Our approach
of segmentation is compared to k-means, SRS-k-means, KHM, GMM and W-k-means
on Terahertz images. The results are illustrated and discussed in Section 4.

2 Background

2.1 Terahertz imaging

Terahertz images are formed by capturing T-rays reflected from or transmitted
through objects. Water and moisture objects highly absorb the THz radiations, how-
ever, dry objects (such as paper, cloth, wood, and plastic) are transparent to THz
radiations and provide no significant reflected radiations. Metals are opaque to T-rays
and reflect most incoming radiations. Other interesting materials, which offer specific
THz radiations, are detailed in [54, 21]. Terahertz image is formed by several bands
(e.g. 1024 bands). The high dimensionality of Terahertz images leads to some new
challenges for relevant feature selection. The features are used for the segmentation
of Terahertz images. In the most related works, classification of features is used for
Terahertz image segmentation.

Numerous works have been proposed to segment Terahertz images. Some works
are summarized in this section in terms of feature space used and classification or
clustering techniques. The basic feature space is the raw time series of THz images
[21]. Other feature spaces are obtained by using Fourier or Wavelet transforms [101,
110, 109]. The feature space can be used with only one band or with several bands.
In the first case, the choice of the band can be priori fixed either from the time or
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2. Background

the spectral spaces of the THz image [50]. Some measures from the shape of the
entire time series or other spectral transform are used, such as the amplitude and
the time delay of the maximal pick of time series [50, 22]. In the second case, several
bands are used, such as the full time series of THz image, the full spectral amplitude,
and a collection of some bands from time series [50, 110, 22, 21]. Some authors are
proposed to reduce the feature space by using AR, ARMA, PCA, and decision tree
[50, 109, 113, 14, 31, 85]. THz image segmentation is generally performed in terms of
classification, such as Mahalanobis classifier, SVM and neural networks [50, 110, 109,
113], and clustering, such as k-means, ISODATA, hierarchical chameleon, and KHM
[101, 14, 15, 22, 21, 31, 85].

In the most related works, k-means clustering has been shown efficient for the
Terahertz image segmentation [15, 22, 21, 31, 85]. However, k-means techniques deal
all the features with equal weights. Besides, making use of the whole data into the
clustering process may decrease the k-means performances. We show in this paper the
effect of both random sampling of the pixels and weighting method of the features in
the k-means clustering accuracy. Our approach is compared with some related works
presented in section 2.2.

2.2 Clustering based k-means algorithms

Let X = {x1, · · · , xN} constitutes a set of N data points. Each data point xj =
(xj1, xj2, · · · , xjP ) represents a feature vector in P -dimensional space. In this paper,
we are interested in classifying the dataset X into homogeneous clusters. One of
the well known clustering techniques, k-means [68, 77, 24], is largely used to regroup
datasets into a pre-defined number L of clusters. The k-means type algorithms consist
to assign each data point to the cluster having the closest center using either hard or
soft decision rule [77, 24]. Tables 3.1 and 3.2 present a summary of some related works
on k-means algorithms where each one is characterized by the size of the sample used,
the objective function formula, the membership degrees ujl of data points to clusters,
the centers mlp of clusters, and the weights wp of features (or wpl of feature/cluster
relationships). From this table, we deduce three important remarks. The first one
concerns the sample size used into the clustering techniques. For k-means, KHM (k-
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Table 3.1 – Summary of some related works on k-means clustering techniques in terms
of sample size and objective function. d(xjp, mlp) is the Euclidian distance between
xjp and mlp. ujl is the membership degree of the jth data point to the lth cluster. mlp

is the lth center for the pth feature. wp is the pth feature weight.
Methods Sample size Objective functions

k-means [24] N
∑P

p=1
∑L

l=1
∑N

j=1 ua
jld(xjp, mlp)

KHM [111] N
∑P

p=1
∑N

j=1
L∑L

l=1
1

d(xjp,mlp)q

SRS-k-means [15] n (Given)
∑P

p=1
∑L

l=1
∑n

j=1 ua
jld(xjp, mlp)

Ranked-k-means [15] n (Given)
∑P

p=1
∑L

l=1
∑K

k=1
∑n/K

r=1 ua
rkl × (d(xrkp, mlp) + αd(vkp, mlp))

EW-k-means [75] N
∑P

p=1
∑N

j=1 ujlwpld(xjp, mlp) + δwpllog(wpl)

SCAD [56] N
∑P

p=1
∑N

j=1 ua
jlwpld(xjp, mlp) + δlw

2
pl

HW-k-means [64] N
∑P

p=1
∑L

l=1
∑N

j=1 ujlw
b
pd(xjp, mlp)

SW-k-means [86] N
∑P

p=1
∑L

l=1
∑N

j=1 ua
jlw

b
pd(xjp, mlp)

MW-k-means [9] N
∑P

p=1
∑L

l=1
∑N

j=1 ujlw
b
p|xjp − mlp|b

Our approach n (Computed)
∑P

p=1 wb
p

∑L

l=1

∑n

j=1
ua

jl
d(xjp,mlp)

(
∑n

j=1
d(xjp,mp))c

harmonic means), EW-k-means (entropy weighting k-means), SCAD (simultaneous
clustering and attribute discrimination), HW-k-means (hard weighting k-means), SW-
k-means (soft weighting k-means) and MW-k-means (Minkowsky weighting k-means)
techniques, the whole population (N points) is used into the clustering process, while
only a small sample of n points (n � N) from the observed population is used
into SRS-k-means and ranked-k-means techniques. The choice of the sample size n

is given by the authors. The second remark concerns the objective function. The
standard k-means objective function consists to minimize the arithmetic mean of
distances from data points to cluster centers. The KHM is an extended approach
of k-means where its objective function consists to minimize the harmonic mean of
distances from data points to cluster centers. The SRS-k-means objective function is
the same of the standard k-means using n (the sample size) instead of N (the whole
population size). In the case of ranked-k-means, the objective function incorporates
a rank constraint and aims at keeping the closeness of the cluster centers around the
nearest subpopulation means computed from the ranked set sample. The parameter α

in the second term controls the effect of the order statistic of data points. EW-k-means
objective function is constituted by two terms, the first one is similar to the standard
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2. Background

k-means and the second one correspond to the negative weight entropy. The parameter
δ controls the effect of the second term. The SCAD objective function has also two
terms. The first one is also similar to the standard k-means, while the second one is the
squared feature/cluster weights. The minimization of this term is achieved to promote
the effect of the feature/cluster weights into the clustering process, specially when the
features are equally weighted. The parameter δl controls the effect of the second term.
HW-k-means, SW-k-means and MW-k-means objective functions correspond to a
weighted sum of within-cluster dispersions. HW-k-means and SW-k-means algorithms
use the Euclidian distance, while the MW-k-means algorithm uses the Minkowsky
distance. The third remark concerns the parameters estimated from these objective
functions. The k-means, KHM, SRS-k-means and ranked-k-means algorithms deal
all the features with equal weights. While, EW-k-means, SCAD, HW-k-means, SW-
k-means and MW-k-means affect to each feature (or feature/cluster relationship) a
weight iteratively adjusted during the clustering process. We note that standard k-
means, SW-k-means and SRS-k-means are particular cases of the SS-k-means. Indeed,
the SRS-k-means can be obtained from SS-k-means when b = c = 0, the W-k-means
when n = N and c = 0, and the k-means when n = N and b = c = 0. There
are four main differences of our approach with the state of art: 1) a small random
sample is used into the clustering. Its size n is automatically estimated and accurately
representative of the whole population; 2) the objective function use a new term∑n

j=1 d(xjp, mp) incorporating the effect of the dispersion of the global data into the
clustering; 3) the feature weights and the membership degrees depend on the global
data dispersions; 4) the combination of the feature weighting and the SRS sampling.
For the rest of our paper, SW-k-means approach will be denoted W-k-means for more
writing simplicity. In the following subsections, we detail the SRS-k-means and the
W-k-means algorithms which constitute the baseline of our approach.

SRS-k-means algorithm

SRS-k-means [15] consists to combine the simple random sampling (SRS) [38, 104]
and the k-means clustering technique [77, 24, 68]. A representative sample XSRS of
n points from the observed population X of N points is then randomly selected and
regrouped into homogeneous clusters in order to get conclusions about the centers.
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2. Background

The main steps necessary to select a SRS data are summarized as follows:

SRS(X, n) algorithm
1. Develop a population list of all the elements of the studied population and
assign each element a number to be able to access to the population.
2. Generate a list of n random numbers.
3. Select the elements {x1, ..., xn} that have numbers corresponding to the
generated random number list and save them in a dataset denoted XSRS.
4. Return XSRS.

Figure 3.2 shows an example of a dataset X (on the left) and a small sample XSRS

(on the right) distributed into two clusters. We show that only 1% of the population
can represent the data under study and allows providing inferential statistics for the
whole data clustering. SRS-k-means is a two-step algorithm. The E-step (estimation
step) consists to classify the XSRS into L clusters; each one is represented by its own
estimated center ml. The C-step (clustering step) consists then to affect each point
from the observed data X to the nearest cluster represented by its estimated center.

The SRS-k-means technique appears faster than the traditional k-means; however,
all the features are dealt with equal importance into the clustering process in spite of
some features can be noisy or uninformative.

W-k-means algorithm

W-k-means [86] consists to assign weights to features into k-means process. Let X

be a set of N data points where each one represents a feature vector in P -dimensional
space and w is a vector of P feature weights. W-k-means consists to minimize a
weighted sum of within-cluster dispersions, reformulated as follows:

J(Φ, w) =
P∑

p=1
wb

pϕp, (3.1)

where Φ = (ϕ1, · · · , ϕP ) and w = (w1, · · · , wP ) represent two vectors of P variables,
ϕp = ∑L

l=1
∑N

j=1 ua
jld(xjp, mlp) correspond to the within-cluster dispersion of the pth

feature, wp represents the weight of the pth feature, and b is a control parameter of
these weights. The membership function ujl must verify the constraints {ujl | ujl ∈
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2. Background

(a) (b)

Figure 3.2 – Example of data point observations distributed in bi-dimensional sub-
space: (a) the full dataset X (N = 4000) versus (b) a small simple random sample
points XSRS (n = 40).

(a) (b)

Figure 3.3 – (a) The within-cluster dispersion ϕp and (b) the final feature weights
wp obtained as output of W-k-means clustering on the dataset X shown in figure 3.2
(a). The ϕp and the wp are shown inversely proportional for the two features of the
dataset X.

[0, 1] and ∑L
l=1 ujl = 1} and the feature weight wp must verify the constraints {wp|wp ∈

[0, 1] and ∑P
p=1 wp = 1}. Then, the first order condition allows writing the membership

degrees, the centers and the feature weights as presented in table 3.2. Figure 3.2 (a)
represents an example of dataset X to be regrouped into two clusters. The dispersion
of each cluster is large for the feature 1 and small for the feature 2. W-k-means
clustering of the dataset X produces as output the within-cluster dispersion ϕp and
the corresponding feature weights wp shown respectively in figures 3.3 (a) and (b).
The figures show that the two parameters ϕp and wp are inversely proportional. Thus,
it is shown that w2 � w1 (i.e. ϕ2 � ϕ1) which implies that W-k-means promotes
feature 2 than feature 1. However, figure 3.2 (a) shows visually that feature 1 is clearly
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3. The proposed approach

more discriminative than feature 2. Therefore, minimizing only the within-cluster
dispersion criteria does not necessary correspond to discriminative features. The W-
k-means does not incorporate the global-data aspect into the clustering process and
seems only insufficient to identify the relevant features from the dataset. Our approach
consists to overcome the limitations of W-k-means by introducing a second criteria
into the objective function called global-data dispersion.

3 The proposed approach

3.1 SS-k-means clustering

In data clustering, there is no reason to consider that features with equal im-
portance which it will lead a more significant clustering results. Traditional k-means
clustering techniques deal with all features equally in deciding the cluster member-
ships of data points. However, this is not desirable in THz imaging where pixels
often contains a huge number of diverse features. The structure of the clusters in
a given THz image is often restricted to a subset of features rather than the whole
set of features. This leads us to ask the following questions: Is there a useful way
to reduce the features space related to the structure of the clusters? Is it possible
to identify the relevant features for a given pixel? In this section, we start by pre-
senting our feature weighting formulation into the clustering process to overcome the
limitations of traditional k-means techniques. Our approach is called pixel sampling
and feature selection in k-means clustering (SS-k-means) and consists to combine
the feature weighting and the simple random sampling into k-means clustering to
provide the best tradeoff between the clustering accuracy and the low computational
cost. The main idea of SS-k-means is to find a feature space in which the clusters
are better separated. In other words, each cluster must possess a minimal dispersion,
while the global data must be characterized by maximal dispersion. More formally,
the dispersion within the clusters is defined by:

ϕp =
L∑

l=1

n∑
j=1

ua
jld(xjp, mlp), (3.2)
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3. The proposed approach

where n represents the size of the SRS sample; mlp is the center of the lth cluster for the
pth feature; ujl is the membership degree of the jth point in the lth cluster; d(xjp, mlp) =
(xjp − mlp)2 is the distance metric that measures the similarity between a data point
and a cluster center for the pth feature, and a > 1 is the fuzzification degree. This
criterion must be minimized to promote features having the best compactness inside
clusters. The second criterion is called global-data dispersion criterion, represented by
ψp and defined as follows:

ψp =
n∑

j=1
d(xjp, mp) (3.3)

where mp is the arithmetic mean of the SRS sample for the pth feature. This criterion
must be maximized to identify discriminative features which encourage the centers
to be separated as much as possible.

Let us consider w = (w1, ..., wP ) be the weights for the P features and b a control
parameter of these weights (b must be different to 1). A compromise between min-
imizing ϕp and maximizing ψp leads to propose minimizing the following objective
function:

J(Φ, Ψ, w) =
P∑

p=1
wb

p

ϕp

ψc
p

, (3.4)

where Φ = (ϕ1, · · · , ϕP ) and Ψ = (ψ1, · · · , ψP ) are two vectors of P variables. The
parameter c is a real which consists to control the effect of ψp regarding to ϕp. By an
optimization way, the objective function J(Φ, Ψ, w) can be minimized with respect to
ujl, mlp and wp. The values of the membership function ujl must verify the constraints
{ujl | ujl ∈ [0, 1] and ∑L

l=1 ujl = 1}. While the values of the feature weight wp must
verify the constraints {wp|wp ∈ [0, 1] and ∑P

p=1 wp = 1}. Then, the first order condition
allows writing the membership degrees, the centers and the feature weights as follows:

ujl =

⎛
⎜⎜⎝

L∑
h=1

⎛
⎜⎝

∑P
p=1

wb
p

ψc
p
d(xjp, mlp)

∑P
p=1

wb
p

ψc
p
d(xjp, mhp)

⎞
⎟⎠

1
a−1

⎞
⎟⎟⎠

−1

, (3.5)
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mlp =
∑n

j=1 ua
jlxjp∑n

j=1 ua
jl

(3.6)

and

wp =

(
ψc

p

ϕp

)1/(b−1)

∑P
t=1

(
ψc

t

ϕt

)1/(b−1) · (3.7)

A representative sample set from the observed population is then randomly se-
lected in order to learn the cluster centers and the feature weights. We assume that
the number L of clusters is known. The L-step (learning step) of SS-k-means consists
to classify the XSRS into L clusters of pixels; each cluster is represented by one center
ml and each pixel is characterized by P features and their weights w. The learning
process is then done by iterating between three steps, updating the centers of the
clusters, the membership of objects and the weights of features, until convergence,
i.e. when the value of the objective function is minimized. Let us consider a parameter
Q inferior or equal to P . The Q highest scores w∗ are identified, the corresponding fea-
tures are selected, and the dimensionality of the whole set of pixels are then reduced.
The L-step algorithm of SS-k-means can be summarized as follows:

L-step algorithm
1. Data: XSRS = SRS(X,n) algorithm

Initialize ml by random points from XSRS

2. Do
Update centers mlq using Eq. (3.6)
Update membership degrees ujl using Eq. (3.5)
Update feature weights wq using Eq. (3.7)

Until |J t − J t−1| <threshold
3. Identify the Q highest weights wp and select the corresponding features. Let
us denote w∗, the vector of the selected feature weights.

The C-step (clustering step) of SS-k-means consists therefore to assign each data
point from the whole observed population, described in the space of the selected
features, to the nearest cluster, represented by its estimated center m∗

l . For that
reason, we propose to estimate the membership degree of data points by minimizing
the objective function J(Φ∗, Ψ∗, w∗) in equation 3.4 where w∗ is a parameter estimated
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3. The proposed approach

(a) (b) (c)

(d) (e) (f) (g)

Figure 3.4 – (a) SRS sample (XSRS) of n = 40 points. The SS-k-means clustering of
XSRS gives the within-cluster dispersion ϕp and the global-data dispersion ψp shown
respectively in (b) and (c). (d), (e), (f) and (g) represent the final feature weights for
c equal to 0, 0.5, 1 and 2.

in the L-step. The functions Φ∗ and Ψ∗ are described in the space of the selected
features associated to the whole observed population. The membership degrees of the
observed data to the clusters are given by equation 3.5 using Q, w∗, ψ∗

q and m∗ instead
of P , w, ψq and m. The resulted clusters are defined by the obtained membership
degrees of data points.

Figure 3.4 (a) shows an example of XSRS sample distributed in two clusters and
randomly drown from the population X. The XSRS sample represents only 1% of the
observed population X in figure 3.2. We propose to cluster the population X by using
the SS-k-means clustering. Figures 3.4 (b) and (c) show respectively the resulted ϕp

and ψp associated to XSRS. These figures show that ϕ1 > ϕ2 and ψ1 � ψ2. SS-k-
means consists to promote features having a compromise between minimal values of
within-cluster dispersion which corresponds to ϕ2 and maximal values of global-data
dispersion which corresponds to ψ1. Figure 3.4 from (d) to (g) show the final feature
weights (w1 for feature 1 and w2 for feature 2) respectively for c equal to 0, 0.2, 1 and 2.
For c equal to 0, w2 > w1, while for 0.2, 1 and 2, w1 > w2 and w1 grow when c increase.
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3. The proposed approach

When c > 0, SS-k-means promotes then feature 1 than feature 2 which well explains
the visual repartition of data. The example shows the interest of assigning weights to
features by using a compromise between within-cluster and global-data dispersions
associated only to a small number of data points. The computational complexity of
SS-k-means algorithm is O(PnL2 + P 2) for one iteration, where n is the sample size,
P the number of features and L the number of clusters. This complexity is linear
for parameter n and quadratic for parameters L and P . Let us recall that k-means
[24, 77], W-k-means [64, 86] and SRS-k-means [15] are particular cases of the SS-k-
means. The SRS-k-means can be obtained from equation 3.4 when b = c = 0, the
W-k-means when n = N and c = 0, and the k-means when n = N and b = c = 0.

3.2 Sample size and feature number estimation

This section deals with the estimation of two fundamental parameters for our
approach, the size n of the SRS sample and the number Q of the selected features.
Sample size estimation is an important step in statistical sampling in which the
goal is to achieve the best tradeoff between the clustering accuracy and the low
computational cost. In statistics, a random sample is considered valid if it is precise.
Related to reproducibility and repeatability, the SRS sample precision is the degree
to which repeated sampling under unchanged conditions show the same results [104].
Let XSRS = {x1, x2, · · · , xn} is a random sample constituted by n data points. We
propose to randomly draw T different random samples and calculate therefore their
averages. Let ct represents the average or the center of the tth sample defined as
follows:

ct = 1
n

n∑
j=1

x
(t)
j (3.8)

where x
(t)
j represents a data point from the tth sample. The dispersion of the T ob-

tained centers ct around the mean value gives us an indicator about the precision of
the random sample size. The precision can be interpreted as the closeness of agreement
between independent center measurements. It is inversely proportional to a measure
of the dispersion of the centers, i.e. when the precision estimator is high then the
dispersion of centers is low, and inversely. The precision estimator is then defined as
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follows:
precision = − 1

T

T∑
t=1

(ct − ĉ)2 (3.9)

where ĉ is the mean estimator of the T centers defined by ĉ = 1
T

∑T
t=1 ct. The precision

is largely affected by random error. Increasing the sample size allows deceasing the
random error and therefore increasing the sampling precision. Otherwise, we start
by a minimal sample size n = nmin units and then compute the precision estimator.
We propose to increase the sample size n by 1 unit and repeat these steps until the
random sample size precision exceed the confidence limit CL (generally CL is equal
to 95% of precisions). The corresponding algorithm can be described as follows:

SampleSize(X, nmin, T ) algorithm
1. n ← nmin − 1
2. repeat

n ← n + 1
for t ← 1 to T do

X
(t)
SRS ← SRS(X,n)

Compute the center ct of X
(t)
SRS using Eq. (3.8)

end
Compute the sample size precision using Eq. (3.9)

until precision > CL
3. return n.

The choice of the relevant feature number Q is also an important step for our
approach in which the goal is to achieve the best tradeoff between the clustering
accuracy and the low computational cost. In this paper, we consider that a feature
number Q is valid if it is sufficient to characterize the set of pixels of a given Terahertz
image. The weights of the selected features must have a sum superior to a given
threshold. Let w = (w1, w2, · · · , wP ) represents the vector of feature weights obtained
by the learning step of SS-k-means, wp is the weight of the pth feature and ∑P

p=1 wp =
1. Therefore, a significant number Q can be computed by ranking in descending order
the elements of the vector w and then summing the Q highest weights having 85%
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.5 – The final feature weights of SS-k-means on the synthetic dataset 1 for c
equal to (a) 0, (b) 0.5, (c) 1, (d) 1.5, (e) 2, (f) 2.5, and (g) 3.

of the total feature weights, defined as follows:

Q∑
q=1

wq × 100 ≥ 85% (3.10)

4 Experimental results
In order to study with more details the performance of our approach, synthetic

datasets are used firstly to validate the clustering algorithms. Afterward, real Ter-
ahertz images are used to investigate the different approaches. Since the clustering
accuracy depends on the importance of the features, we experimentally and empir-
ically show that our approach outperforms other approaches such as traditional k-
means, SRS-k-means, k-harmonic-means (KHM), Gaussian mixture model (GMM),
and W-k-means.

4.1 Experiments on synthetic datasets

Synthetic datasets are often used to validate the clustering approaches. In this
experiment, we used three synthetic datasets with different cluster number to ver-
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.6 – The final feature weights of SS-k-means on the synthetic dataset 2 for c
equal to (a) 0, (b) 0.5, (c) 1, (d) 1.5, (e) 2, (f) 2.5, and (g) 3.

ify the performances of the clustering algorithms. The three datasets are constituted
by 90000 data points and characterized by three features. Dataset 1 was generated
respectively by two Gaussian distributions having means (0,0,-6) and (6,0,-6), and
3-by-3 covariance matrices containing (0.7,0.2,0.4) along the diagonal and zero off
the diagonal for the two distributions. Dataset 2 was also generated respectively by
two Gaussian distributions having means (0,2,0) and (0,0,2), and 3-by-3 covariance
matrices containing (3,0.1,1.5) along the diagonal and zero off the diagonal for the
two distributions. Dataset 3 was generated respectively by four Gaussian distribu-
tions having means (0,0,1), (-10,3,1), (10,3,1), and (20,0,-1), and 3-by-3 covariance
matrices containing (0.7,0.2,0.4) along the diagonal and zero off the diagonal for the
four distributions. The two parameters a and b were fixed to 2. The different clus-
tering techniques were statistically compared in terms of clustering performance and
silhouette cluster validity index. The clustering performance is commonly expressed
as the percentage measure of the correctly clustered samples which is calculated as
follows:

Performance = N − Misclassified points
N

× 100% (3.11)

where N represents the size of the whole pixels of the Terahertz image. The clustering
approaches were also compared by the silhouette cluster validity measure [96]. The
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.7 – The final feature weights of SS-k-means on the synthetic dataset 3 for c
equal to (a) 0, (b) 0.5, (c) 1, (d) 1.5, (e) 2, (f) 2.5, and (g) 3.

quality of clusters is measured in terms of homogeneity and separation knowing that
points within one cluster are similar, while points in different clusters are dissimilar.
Silhouette index is calculated as follows:

Silhouette index = 1
N

N∑
i=1

β(xi) − α(xi)
max{α(xi), β(xi)} (3.12)

where α(xi) is the average distance of the point xi to other points in the same cluster,
β(xi) is the average distance of the point xi to the points in its nearest neighbor
cluster. Silhouette index represents the average of the ratio in equation 3.12. A larger
value indicates a better quality of the clustering result.

This section consists to evaluate the performances of the SS-k-means algorithm
for seven values of the parameter c. The corresponding final feature weights obtained
from the SS-k-means are shown in figures 3.5, 3.6 and 3.7 from (a) to (g) for the seven
values of c. Figures 3.8 and 3.9 comprise three curves (for the three synthetic datasets)
which represent the variation of the clustering performances and the silhouette index
of the SS-k-means algorithm for different values of c. It is shown that both figures
have the same variations for the three datasets.

For dataset 1, SS-k-means for c = 0 (W-k-means) and c = 0.5 promotes the second
feature with a final weight near to 0.8, while the first feature has a low weight value
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(a) (b) (c)

Figure 3.8 – Variation of the clustering performance provided by SS-k-means for
different values of c on (a) synthetic dataset 1, (b) synthetic dataset 2 and (c) synthetic
dataset 3.

(a) (b) (c)

Figure 3.9 – Variation of the Silhouette cluster validity index provided by SS-k-means
for different values of c on (a) synthetic dataset 1, (b) synthetic dataset 2 and (c)
synthetic dataset 3.

near to 0. For both cases, the clustering performances are less than 75% (figure 3.8
(a)) and the silhouette measures are near to 0 (figure 3.9 (a)). Increasing the value
of c to 1, the importance of the second feature decreases and its weight is sightly
inferior to 0.4, while the weights of the first and the third features increase around
the value 0.3 (figure 3.5 (c)). The corresponding clustering performance in figure 3.8
(a) and the silhouette measure in figure 3.9 (a) increase respectively to 83% and 0.25.
Surpassing the value 1 of c, the corresponding feature weights are shown in figure 3.5
from (d) to (g). In that case, the first feature is promoted with a final weight near to
1, while the second and the third features have very low weight values near to 0. The
clustering performances and the silhouette measures for c > 1 are respectively near to
100% and 1. As illustrated in figures 3.8 (a) and 3.9 (a), low values of c correspond to
the low performances of the SS-k-means clustering, while high values of c correspond
to the high performances.
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Figure 3.10 – An image of four chemical compounds acquired in visible spectrum in the
left and the ground truth of the Terahertz image in the right. The false colors red, blue,
green and yellow correspond respectively to the chemical compounds L-Tryptophan
(0.200g), L-Tryptophan (0.100g), L-Valine (0.200g) and Proline (0.200g).

Figure 3.11 – An image of a moth acquired in visible spectrum in the left and the
570th band of the THz image in the right.

In the case of synthetic dataset 2, the clustering performances and the silhouette
measures of the SS-k-means are very high (respectively near to 100% and 0.44) for
low values of c, i.e. for c ≤ 2, (figures 3.8 (b) and 3.9 (b)). The corresponding feature
weights are shown in figure 3.6 from (a) to (e). The second feature is promoted with
a weight between 0.6 and 0.9, while the first and the third features have low scores
which do not surpass 0.25. However, the clustering performances and the silhouette
measures are low, which do not surpass the 75% and 0.13, for high values of c, i.e.
for c > 2 (figures 3.8 (b) and 3.9 (b)). The resulted feature weights are shown in
figures 3.6 (f) and (g). The first feature is promoted in that case with weight values
around 0.75, the third feature has weight values around 0.2, while the second feature
has very low weights which do not surpass 0.05.

For dataset 3, the variation of the SS-k-means clustering performances and silhou-
ette measures for different values of c are shown in the curve (c) of figures 3.8 and 3.9.
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Figure 3.12 – An aluminum substrate with different thickness is acquired in the visible
light. The image contains a letter "H" primed in the left and painted in the middle.
The 680th band of the paint THz image is shown in the right.

Figure 3.13 – Three curves of the silhouette index measurements of SS-k-means on
the chemical THz image. The first curve is a function of a (b = 2 and c = 1.2), the
second curve is a function of b (a = 2 and c = 1.2), and the third curve is a function
of c (a = 2 and b = 2).

On the contrary to the first two examples (dataset 1 and dataset 2), SS-k-means per-
formances and silhouette measures of the synthetic dataset 3 are high (respectively
near to 100% and 1) for medium values of c, while these measures are low (respec-
tively inferior to 85% and 0.22) for c < 1 and c > 2.5. For c between 1 and 2.5, the
first feature is promoted with weight values between 0.8 and 0.9, and the second and
the third features have low weight values which do not surpass 0.2 (figure 3.7 from
(c) to (f)). However, for c equal to 0 and 0.5, the SS-k-means promotes the second
feature with weight values between 0.8 and 0.9, the third feature has scores inferior to
0.2, and the first feature has low scores near to 0 (figures 3.7 (a) and (b)). In the case
of c > 2.5, the weights of the three features are approximately equals (figure 3.7 (g)).
For the three datasets, we observed that suitable clustering results of SS-k-means can
be reached with values of c between 1 and 2.
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(a) n = 50 (b) n = 100 (c) n = 500 (d) n = 1500

Figure 3.14 – SRS-k-means segmentation of the chemical THz image for different
values of the sample size n.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.15 – Chemical THz image segmentation for k-means (a), KHM (b), GMM
(c), W-k-means (d) and SS-k-means for c equal to 0.5 (e), 1 (f), 1.2 (g), 1.5 (h), 2 (i),
and 2.5 (j).

4.2 Experiments on Terahertz images segmentation

In this section, SS-k-means, W-k-means, KHM, GMM, SRS-k-means and k-means
are tested on chemical, moth and paint THz images. Since the THz images cannot be
displayed (hundreds of bands), we present in figures 3.10, 3.11 and 3.12 the objects
which were acquired in THz spectrum and used for the validation. The ground truth
of the chemical THz image, the 570th THz band of the moth image and the 680th

THz band of the paint image are shown in the right of the same figures. The chemical
THz image is constituted by four compounds, L-Tryptophan (0.200g), L-Tryptophan
(0.100g), L-Valine (0.200g) and Proline (0.200g), extracted and distributed into four
false colored regions, the moth image is essentially constituted by two wings, and

91



4. Experimental results

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.16 – (a) Initial random feature weights. Final feature weights of W-k-means
(b) and SS-k-means on the chemical THz image for c equal to 0.5 (c), 1 (d), 1.2 (e),
1.5 (f), 2 (g), and 2.5 (h).

the paint image is constituted by an aluminum substrate with different thickness
which contains a letter ”H” primed and painted respectively in the left and in the
middle of figure 3.12. Each pixel of chemical, moth and paint THz images are formed
respectively by 1052, 894 and 1308 bands in the time domain. The feature weights and
the cluster centers were randomly initialized by the same values for the different tests.
The initial feature weights for chemical, moth and paint images are shown respectively
in figure 3.16 (a), figure 3.22 (a) and figure 3.27 (a). The segmentation of the three
images was employed respectively with 4, 5 and 3 clusters. Figure 3.13 presents the
silhouette measures of SS-k-means on the chemical image as functions of parameters
a, b and c. Figure 3.13 (a) shows that a good choice of the parameter a is around
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(a) Clustering approaches (b) SRS-k-means

(c) SS-k-means (for each value of c) (d) SS-k-means (for each value of n)

Figure 3.17 – Clustering performances on the chemical THz image for (a) k-means,
KHM, GMM, W-k-means, (b) SRS-k-means, (c) SS-k-means for c = 0.5, 1, 1.2, 1.5,
2, and 2.5 (n = N and Q = P ) and (d) SS-k-means for n = 50, 100, 500, 1000 and
1500 (c = 1.2 and Q = 30).
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(a) Clustering approaches (b) SRS-k-means

(c) SS-k-means (for each value of c) (d) SS-k-means (for each value of n)

Figure 3.18 – Silhouette index of the chemical THz image segmentation obtained by
(a) k-means, KHM, GMM, W-k-means, (b) SRS-k-means, (c) SS-k-means for c = 0.5,
1, 1.2, 1.5, 2, and 2.5 (n = N and Q = P ) and (d) SS-k-means for n = 50, 100, 500,
1000 and 1500 (c = 1.2 and Q = 30).
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(a) Clustering approaches (b) SRS-k-means

(c) SS-k-means (for each value of c) (d) SS-k-means (for each value of n)

Figure 3.19 – Running time of the chemical THz image segmentation using (a) k-
means, KHM, GMM, W-k-means, (b) SRS-k-means, (c) SS-k-means for c = 0.5, 1,
1.2, 1.5, 2, and 2.5 (n = N and Q = P ) and (d) SS-k-means for n = 50, 100, 500,
1000 and 1500 (c = 1.2 and Q = 30).
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(a) n = 50 (b) n = 500 (c) n = 1500

Figure 3.20 – SRS-k-means segmentation of the moth THz image for different values
of the sample size n.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.21 – Moth THz image segmentation for k-means (a), KHM (b), GMM (c),
W-k-means (d) and SS-k-means for c equal to 1 (e), 1.5 (f), 2 (g), and 2.5 (h).
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(a) (b) (c)

(d) (e) (f)

Figure 3.22 – (a) Initial random feature weights. Final feature weights of W-k-means
(b) and SS-k-means on the moth THz image for c equal to 1 (c), 1.5 (d), 2 (e), and
2.5 (f).

2, figure 3.13 (b) shows low effect of the values of b on the clustering performances
and figure 3.13 (c) shows that values between 1 and 2 of the parameter c produce
the highest silhouette measures. For our work, we propose to fixe the parameters a

and b to the value 2 and study with more details the effect of the parameter c on the
SS-k-means clustering.

Figures 3.14 and 3.15 show the chemical THz image segmentation for different
techniques. The SRS-k-means was carried out for different values of the sample size n

(50, 100, 500 and 1500 pixels), while the SS-k-means was used for n = N (10000 pixels)
using different values of c. For chemical compounds, SRS-k-means, k-means, KHM,
GMM and W-k-means produce as output an over-segmented images (figures 3.14 (a),
(b), (c) and (d) and figures 3.15 (a), (b), (c) and (d)). In the case of SRS-k-means
(for different values of n), k-means, KHM and GMM, L-Tryptophan (0.200g) and L-
Tryptophan (0.100g) clusters are fused together which clearly show their limitations
using equal feature weights. However, W-k-means produces the final feature weights
represented by the curve in figure 3.16 (b). The W-k-means promotes features in
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(a) Clustering approaches (b) SRS-k-means

(c) SS-k-means (for each value of c) (d) SS-k-means (for each value of n)

Figure 3.23 – Silhouette index of the moth THz image segmentation obtained by (a)
k-means, KHM, GMM, W-k-means, (b) SRS-k-means, (c) SS-k-means for c = 1, 1.5,
1.8, 2, 2.2 and 2.5 (n = N and Q = P ) and (d) SS-k-means for n = 50, 100, 500,
1000 and 1500 (c = 2 and Q = 5).
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(a) Clustering approaches (b) SRS-k-means

(c) SS-k-means (for each value of c) (d) SS-k-means (for each value of n)

Figure 3.24 – Running time of the moth THz image segmentation using (a) k-means,
KHM, GMM, W-k-means, (b) SRS-k-means, (c) SS-k-means for c = 1, 1.5, 1.8, 2,
2.2 and 2.5 (n = N and Q = P ) and (d) SS-k-means for n = 50, 100, 500, 1000 and
1500 (c = 2 and Q = 5).
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(a) n = 50 (b) n = 100 (c) n = 500 (d) n = 1000

Figure 3.25 – SRS-k-means segmentation of the paint THz image for different values
of the sample size n.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.26 – The paint THz image segmentation for k-means (a), KHM (b), GMM
(c), W-k-means (d) and SS-k-means for c equal to 0.5 (e), 1 (f), 1.5 (g) and 2 (h).

the interval [1,200] which are not discriminative and lead to over-segmented regions.
Figure 3.15 from (e) to (j) display the obtained regions of SS-k-means for c equal to
0.5, 1, 1.2, 1.5, 2 and 2.5. For c = 0.5, the red region is ameliorated compared to W-
k-means and begins to be clearly formed. The final feature weights are represented
in figure 3.16 (c) and the highest scores are in the intervals [1,200], [490,680], and
[910,1052]. Among them, some features are not yet discriminative to improve the
clustering. The best chemical image segmentations are obtained when c surpasses 0.5
in figures 3.15 (f), (g), (h) and (i), the four compounds become very well identified,
except some points of L-Valine (0.200g) are misclassified. The corresponding feature
weights are shown in figures 3.16 (d), (e), (f) and (g) and the pertinent bands are
around 250, 425, 610 and 720. However, when c ≥ 2.5, SS-k-means segmentation
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(a) (b) (c)

(d) (e) (f)

Figure 3.27 – (a) Initial random feature weights. Final feature weights of W-k-means
(b) and SS-k-means on the paint THz image for c equal to 0.5 (c), 1 (d), 1.5 (e) and
2 (f).

of the chemical THz image produces under-segmented regions and the red and the
green regions which represent respectively the L-Tryptophan (0.200g) and the L-
Valine (0.200g) are fused together. The clustering techniques (k-means, KHM, GMM,
W-k-means, SRS-k-means and SS-k-means) were also statistically compared in terms
of clustering performance, silhouette cluster validity index and running time. The
statistics of the different approaches are shown in figures 3.17, 3.18 and 3.19. The
clustering performances have not surpassed the 70% for k-means, KHM, GMM, and
SRS-k-means, 80% for W-k-means, 93% for SS-k-means with c = 0.5, 75% for SS-k-
means with c = 2.5, and near to 100% for SS-k-means with parameter c from 1 to
2 (n = N). The performances of SS-k-means are also near to 100% for low sample
size n � N (c = 1.2). The silhouette validity indices are around the value 0.36 for
k-means, KHM, GMM, and SRS-k-means techniques, 0.42 for W-k-means, 0.55 for
SS-k-means with c = 0.5, 0.41 for SS-k-means with c = 2.5, 0.61 for SS-k-means
with parameter c from 1 to 2 and around 0.61 for SS-k-means for low values of n

(c = 1.2). The running time is lower for SS-k-means and SRS-k-means with small
sample size n (n � N) and higher for k-means, KHM, GMM, W-k-means, and SS-
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(a) Clustering approaches (b) SRS-k-means

(c) SS-k-means (for each value of c) (d) SS-k-means (for each value of n)

Figure 3.28 – Silhouette index of the paint THz image segmentation obtained by (a)
k-means, KHM, GMM, W-k-means, (b) SRS-k-means, (c) SS-k-means for c = 0.5, 1,
1.5 and 2 (n = N and Q = P ) and (d) SS-k-means for n = 50, 100, 500 and 1000
(c = 1.5 and Q = 100).
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(a) Clustering approaches (b) SRS-k-means

(c) SS-k-means (for each value of c) (d) SS-k-means (for each value of n)

Figure 3.29 – Running time of the paint THz image segmentation using (a) k-means,
KHM, GMM, W-k-means, (b) SRS-k-means, (c) SS-k-means for c = 0.5, 1, 1.5 and 2
(n = N and Q = P ) and (d) SS-k-means for n = 50, 100, 500 and 1000 (c = 1.5 and
Q = 100).
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n = 50 n = 100 n = 500 n = 1500

Figure 3.30 – The chemical THz image segmentation of SS-k-means for different values
of n and Q.

k-means (n = N) because the use of the whole pixels and features into the clustering
process occupies high time and memory consuming. The obtained statistics confirm
the results previously illustrated and show the high performances of our approach for
low sample size.

Figures 3.20 and 3.21 show the segmentation outputs of the six clustering algo-
rithms on the moth THz image. The k-means, SRS-k-means, KHM, GMM and W-k-
means produce poor segmented regions in figure 3.20 and figure 3.21 from (a) to (d).
The obtained regions clearly illustrate the limitations of these techniques to provide
good structure of wings. Figure 3.22 (b) shows that the feature weights estimated by
using W-k-means in the intervals [1,100] and [220,380] are not relevant, which leads
to the under-segmentation. Figure 3.21 from (e) to (h) display the obtained regions of
SS-k-means for c equal to 1, 1.5, 2, and 2.5. The structure of the moth wings is again
unfavorably segmented for c equal to 1 and 1.5. The corresponding highest feature
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(a) Performances (b) Silhouette index

(c) Running time

Figure 3.31 – Clustering performances, Silhouette index, and running time of SS-k-
means on the chemical THz image for different values of n and Q.

weights in figures 3.22 (c) and (d) are around 150, 400, and 680. Among them, some
features are not relevant which explain the decrease of the clustering performances.
The best regions are obtained when c surpass 1.5 in figures 3.21 (g) and (h). The
structure of the moth wings are preserved. The corresponding feature weights are
shown in figures 3.22 (e) and (f) and the pertinent bands are around 580. Visual
results of the moth Terahertz image is supported by the statistics shown in figures
3.23 and 3.24. As the ground truth of the moth THz image is not very precise in
our work, we study and show the performances of the clustering techniques only in
terms of silhouette cluster validity index and running time. The silhouette validity
indices are around the value 0.12 for the k-means and the SRS-k-means, 0.03 for the
W-k-means, around 0.4 for the KHM and the GMM, 0.17 for SS-k-means with c = 1,

105



4. Experimental results

n = 50 n = 500 n = 1500

Figure 3.32 – The moth THz image segmentation of SS-k-means for different values
of n and Q.

(a) Silhouette index (b) Running time

Figure 3.33 – Silhouette index and running time of SS-k-means on the moth THz
image for different values of n and Q.
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n = 50 n = 100 n = 500 n = 1000

Figure 3.34 – The paint THz image segmentation of SS-k-means for different values
of n and Q.

0.37 for SS-k-means with c = 1.5, 0.56 for SS-k-means with parameter c > 1.5, and
around 0.56 for SS-k-means for low sample size n � N (c = 2). The running time
is again lower for SS-k-means and SRS-k-means with small sample size n and higher
for k-means, KHM, GMM, W-k-means, and SS-k-means for each value of c and for
n = N . The obtained statistics confirm the results previously illustrated especially
for low sample size.

Figures 3.25 and 3.26 show the segmentation outputs of the different algorithms
on the paint THz image. The k-means, SRS-k-means, KHM, GMM and W-k-means
produce poor segmented regions in figure 3.25 and figure 3.26 from (a) to (d). The
obtained regions clearly illustrate the limitations of these techniques to discover the
true shape of the letter H. Figure 3.27 (b) shows that the feature weights estimated
by using W-k-means are in the interval [1,630]. The features having the high scores
are not relevant and leads to the poor segmentation results. Figure 3.26 from (e)
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(a) Silhouette index (b) Running time

Figure 3.35 – Silhouette index and running time of SS-k-means on the paint THz
image for different values of n and Q.

to (h) display the obtained regions of SS-k-means for c equal to 0.5, 1, 1.5 and 2.
The structure of the image is favorably segmented for c equal to 0.5, 1 and 1.5. The
pertinent bands (figures 3.27 (c), (d) and (e)) are around 580. Visual results of the
paint Terahertz image is supported by the statistics shown in figures 3.28 and 3.29.
As the ground truth of the paint THz image is not available in our work, we study
and show the performances of the clustering techniques only in terms of silhouette
cluster validity index and running time. The silhouette validity indices are around
the value 0.52 for the k-means, the SRS-k-means, the KHM and the GMM, 0.02 for
W-k-means, around 0.6 for SS-k-means with c equal to 0.5, 1 and 1.5, near to 0.53 for
SS-k-means with parameter c = 2, and around 0.6 for SS-k-means for low sample size
n � N (c = 1.5). The running time is again lower for SS-k-means and SRS-k-means
with small sample size n and higher for k-means, KHM, GMM, W-k-means, and SS-
k-means for each value of c and n = N . The obtained statistics confirm the results
previously illustrated and show that our approach is accurately more rapid when it
is used with a small sample size.

In figure 3.30, the output regions of SS-k-means segmentation (for c = 1.2) of
the chemical THz image is shown for different values of n and Q. Note that when Q

surpassing 20 and for small sample size n, the results are very interesting. Figures
3.31 (a), (b) and (c) present the statistics of SS-k-means in terms of clustering per-
formances, silhouette measures and time running. The obtained statistics confirm the
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(a) Chemical THz image (b) Moth THz image

(c) Paint THz image

Figure 3.36 – Variation of the precision of different sample sizes for chemical, moth
and paint Terahertz images.

efficiency of SS-k-means segmentation for low values of n and Q and show its rapidity
compared with the other approaches. As detailed in section 3.2, the parameters n and
Q can be estimated respectively for high sample size precision and highest weights of
relevant features. Figures 3.36 (a) shows a curve representing the precision variations
for different values of n. The optimal sample size n are found equal to 148 pixels for
CL = −5.60 (represented by the red disk in figure 3.36 (a)). While, the significant
number Q of relevant features are found equal to 53. Therefore, a small random sam-
ple of pixels, around 1%, and a minimal number of features, around 5%, are sufficient
to produce favorable segmentation using SS-k-means.
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In figure 3.32, the SS-k-means segmentation (for c = 2) of the moth THz image is
shown for different values of n and Q. The regions output outperform those obtained
by the other clustering approaches. Figures 3.33 (a) and (b) show the statistics of the
SS-k-means in terms of silhouette index and time running. The obtained statistics
confirm the efficiency of SS-k-means and show its rapidity compared to k-means,
KHM, GMM and W-k-means techniques. Figure 3.36 (b) shows a curve representing
the variations of precisions for different values of n. The optimal sample size n are
found equal to 194 pixels for CL = −5.88 (represented by the red disk in figure 3.36
(b)). While the number Q of relevant features are found equal to 21 features.

In figure 3.34, the SS-k-means segmentation (for c = 1.5) of the paint THz image is
shown for different values of n and Q. The regions output outperform those obtained
by the other clustering approaches. Figures 3.35 (a) and (b) show the statistics of the
SS-k-means in terms of silhouette index and time running. The obtained statistics
confirm the efficiency of SS-k-means and show its rapidity compared to k-means,
KHM, GMM and W-k-means techniques. Figure 3.36 (c) shows a curve representing
the variations of precisions for different values of n. The optimal sample size n are
found equal to 254 pixels for CL = −1.9 (represented by the red disk in figure 3.36
(c)). While the number Q of relevant features are found equal to 78 features. Note
that only around 2% of pixels and 5% of features are sufficient to segment accurately
the three THz images.

5 Conclusion
In this paper, we have proposed a novel clustering approach, called SS-k-means,

to segment THz images. Feature weighting is used in order to reduce the number of
features required for carrying out the segmentation. In addition to the computational
time, irrelevant features decreases the clustering accuracy. The SRS scheme allows to
use around 1% of pixels. Automatic estimation of the sample size n and the selected
feature number Q are also proposed in this paper. Our approach is more appropriate
for achieving the best compactness inside clusters and the best discrimination of
features. It is evaluated and compared favorably with some related works.

SS-k-means is shown so attractive to achieve the best clustering accuracy and the
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low computational cost by using only low sample size n and low features number Q,
especially for c between 1 and 2. Note that precise choice of c remains very interesting
for the clustering performances. Furthermore, the sensitivity to initial starting centers
and feature weights decreases the clustering accuracy. These problems haven’t been
addressed in this paper and require further studies.

In further work, we will deal with the estimation of the parameter c. For instance,
the parameter c can be estimated by writing equation 3.4 in the form of probability
and adding a prior on c. Similar steps to the work of Allili and Ziou [8] about the
variational calculus, one can obtain a value about the parameter c.
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Chapitre 4

Classification K-Autorégressive
pour la segmentation d’images THz

Dans les deux chapitres précédents, la propriété de corrélation entre les bandes
de l’image Térahertz n’est pas utilisée dans le processus de classification. Dans ce
chapitre, nous introduisons une nouvelle famille de techniques de classification basées
sur la régression et qui sont adaptées aux séries chronologiques. Nous supposons que
les valeurs associées à chaque pixel d’une image Térahertz sont échantillonnées à
partir d’un modèle autorégressif. La segmentation de l’image est alors vue comme
un problème de classification de séries chronologiques. La classification est formulée
comme un problème d’optimisation non-linéaire. L’ordre du modèle et le nombre de
classes sont automatiquement estimés en utilisant un critère de sélection de modèle.

Dans ce chapitre, nous présentons un article intitulé K-Autoregres-sive clus-
tering for Terahertz image segmentation soumis au journal international de
Elsevier Pattern Recognition. Le problème a été posé par le professeur Djemel
Ziou. J’ai réalisé, validé et rédigé ce travail sous sa supervision. Une version compacte
de ce travail a été publiée dans la conférence internationale de Springer Interna-
tional Conference Image Analysis and Recognition (ICIAR2017), Montréal,
Canada, 2017, intitulée K-Autoregressive Clustering : Application on Tera-
hertz Image Analysis [12].
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Abstract

Terahertz (THz) imaging provides a large amount of specific information
considered as time series behind every pixel of the image. In this paper, we
propose to segment THz images and introduce a new family of clustering
suitable to time series. In particular, we propose a novel approach called
K-Autoregressive (K-AR) model in which we assume that the time series
depicting the pixels were generated by univariate AR models. K-AR ap-
proach consists to classify these AR models and minimize a new objective
function for recovering the original K autoregressive models describing each
cluster of time series. The corresponding pixels are then assigned to the
clusters having the best AR model fitting. The order and cluster number of
K-AR are automatically estimated using a model selection criterion. K-AR
is tested on various artificial datasets and Terahertz images. Experimental
results show that K-AR is more efficient than other approaches from the
literature.
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1. Introduction

1 Introduction
Recently, clustering of time series has attracted a lot of interest in many scientific

studies [73, 45, 44, 46]. It is often essential to find solutions for real problems deriving
from several application domains such as bioinformatics, environmetrics, genetics,
multimedia and finance [2]. In environmetrics, for instance, time series clustering has
been used to group a set of air pollutant emissions gathered at different times for
inspecting the efficiency of an environmental monitoring network [48, 46]. In genetics,
time series clustering has been used to group genes taking into account profiles of
temporal expression from cDNA microarrays experiments [84]. In biomedicine, the
study of EEG biological signals requires to discriminate between signals caused by
sick or healthy people [87]. Several other applications of time series clustering are
detailed in [2].

In statistics, a time series is a sequence of observations related in chronological
order. It is considered as a vector represented by high number of bands or features.
Several works of time series clustering are based on different kind of distance mea-
sures [73]. Among these distances, short time series (STS) distance [84], dynamic
time warping (DTW) distance [73], autocorrelation based distance [48], cepstrum
based distance [79] and wavelets decomposition based distance [44]. Other works use
Euclidian distance based autoregressive (AR) models [48]. The clustering of the set
of time series is realized in the AR parameters space. The principal advantage of this
method is that the clustering process is realized in low dimensional feature space.
However, the estimation of these parameters is based on the resolution of system of
equation for each time series, independently. They are estimated without using infor-
mation about the structure of the time series clusters. Moreover, the interpretation of
these parameters and the space which constitute is not easy. For example, what is the
mean of the first coefficients of the AR model? Beside, standard clustering techniques
of the set of time series are based on similarity measurements (e.g. Euclidean dis-
tance) between the abstract parameters. Instead, we believe to model each cluster of
time series by a single univariate AR model. The AR parameters must be estimated
by using the correlation property between time series variables and also the structure
of the time series clusters. We look forward an iterative algorithm which alternate
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between autoregressive modeling and time series clustering until reaching a high time
series fitting.

In this paper, we introduce a novel clustering approach called K-Autoregressive
(K-AR) model which consists to classify the set of time series into a fixed number of
clusters, each one is represented by its predictive prototype. The proposed approach
consists to analyse Terahertz (THz) images constituted by several pixels, each one
represents an univariate time series constituted by several temporal bands (e.g. 1000
bands). We assume that each time series is stationary and generated from an univari-
ate autoregressive (AR) model where the order is unknown. A new objective function
is proposed for recovering the original autoregressive models describing each cluster of
time series and then assigns the corresponding pixels to the clusters according to their
predictive prototypes. The order and the number of clusters of the K-AR approach
are automatically estimated using a modified generalized information criterion. There
are five main differences between our work and the state of art of Terahertz image
analysis. First, our work constitutes a new family of clustering based autoregressive
model which is suitable to univariate time series. Second, a single AR model is a
representative of a class which can be used in subsequent steps THz image processing
such as the object recognition. Third, K-AR approach is more adapted to univariate
time series and not excessively affected by outliers. Fourth, our approach is based
on AR feature space suitable for high dimensional THz image segmentation. Fifth,
our approach is completely unsupervised, the order and the number of clusters of K-
AR model are automatically estimated by using a modified generalized information
criterion.

The rest of the paper is organized as follows: in section 2, we present an insight
about related works of various applications of Terahertz imaging based time series.
Moreover, a background of AR modeling for univariate time series has been detailed.
In section 3, we formulate the segmentation of Terahertz images by using the cluster-
ing of AR models. The selection of the order and the number of clusters of the K-AR
model is proposed in section 4. The results are illustrated and discussed in section 5.
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2 Background

2.1 Terahertz imaging

Terahertz imaging is an innovative technology of imaging which is exploited in
several applications, such as medical diagnosis, quality control, security, and biologi-
cal and chemical identification [63, 83, 82, 54, 112, 85, 113, 101, 6, 4, 5, 3]. Terahertz
images can be measured by acquisition of sequences of Terahertz pulses, called time
series or signals, reflected from or transmitted through a sample. Each time series
is assumed univariate and can be represented by several temporal bands (e.g. 1000
bands) behind every pixel. The huge amount of raw bands can be a hurdle to analyze
this type of data. Moreover, some bands can be noisy, redundant or uninformative for
further processing. The bands, called features, are used for the segmentation of Tera-
hertz images. In the most related works, classification of bands is used for Terahertz
image segmentation.

In the state of the art, Terahertz image processing can be used with a feature space
constituted by all the bands or only a single band. The selection of a single band can be
fixed priori from the Terahertz image and its processing does not lead to satisfactory
results. The reader can find more about details in [14, 22]. For multiband space, the
pixels of the THz image are considered as vectors and the processing is equivalent
to implement classification algorithms [109, 14, 13]. The vectors can be represented
by many bands, such as the entire univariate time series of the Terahertz image, the
entire spectral amplitude, and a set of some selected bands [21, 110, 50, 22, 13]. In [15],
authors have proposed a modified K-means clustering approach based on ranked set
sampling. This approach uses vectors constituted by both univariate time series and
its spectral transformation to analyze Terahertz images. It is essentially less sensitive
to the initialization of the centers. Some authors have proposed to automatically
reduce the feature space into the clustering process. Recent research is proposed in [13]
which presents a feature selection strategy and a random sampling design in K-means
clustering for THz image segmentation. Automatic estimation of the random sample
size and the selected feature number are also proposed. Other authors found useful
to extract lower dimensional features before classifying the univariate time series.
Some useful features are extracted by using principal component analysis (PCA) [85,
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113, 14, 31], decision tree [50], autoregressive (AR) model and autoregressive moving
average model (ARMA) [109, 14]. In [109], the parameters of AR and ARMA models
have been combined together as a small feature space. Then, Mahalanobis distance
classifier has been used to assist biomedical diagnosis and mail/packaging inspection.
In [14], both AR parameters and PCA features form a vector characterizing each
pixel of THz image. K-harmonic-means clustering technique was then used on the
extracted features to segment THz images.

Among these techniques, AR models are well adapted to characterize THz time
series before the clustering process. In the following section, we will present how to
model the time series by using univariate AR models and then reformulate it to
segment the Terahertz images.

2.2 Autoregressive Modeling

Autoregressive (AR) models have been largely used in several pattern recognition
applications [40, 105]. Univariate AR models consist to model the current value of
the time series variable as a weighted linear sum of its previous values plus an error,
considered as a centered Gaussian random variable of variance σ2

t . Because the time
series is stationary, the σ does not depend on t. The order of the model is the number of
preceding observations used, and the weights (also called coefficients) characterize the
time series. We consider an ergodic discrete-time random process X = {X1, . . . , XT },
its realizations noted in vector form x = (x1, . . . , xT )′ , and a model order P . The
AR(P ) model predicts the next value xt in the time series as a linear combination of
the P previous values. The AR coefficients w = (w1, . . . , wP )′ will be determined by
fitting the model to the training time series data. This can be done by minimizing
an error function that measures the misfitting between the predicted model, for any
given values of w, and the training time series data points. Let us consider φt =
(xt−1, xt−2, . . . , xt−P )′ which represents a vector of the P previous realizations of xt.
The most used error function is given by the sum of the squares of the errors between
the target values xt and the corresponding predicted values φ

′
tw, so that we minimize

JAR =
T∑

t=P +1
(xt − φ

′
tw)2 (4.1)
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This fitting problem is solved by choosing the value of w for which the error function
is as small as possible. Because the error function is a quadratic function of the
coefficients w, its derivatives with respect to the coefficients will be linear in the
elements of w, and so the minimization of the error function with respect to w has
an unique solution which can be found in closed form. We can deduce then the least
squares solution for the autoregressive coefficients as follows

w =
⎛
⎝ T∑

t=P +1
φtφ

′
t

⎞
⎠

−1 ⎛
⎝ T∑

t=P +1
φtxt

⎞
⎠ (4.2)

By using the estimated autoregressive coefficients w, the noise variance σ2 is given
by

σ2 = 1
T − P

JAR (4.3)

In fact, each univariate time series x was assumed originally generated by an AR
model. In this section, we have seen how to recover the original model by estimating
their coefficients w. The reader can find more about details in [29]. Let us recall that
each pixel of the Terahertz image is generated from an autoregressive model. In the
next section, we will formulate the segmentation of Terahertz images by using the
clustering of AR models.

3 K-Autoregressive Clustering
Standard clustering algorithms, such as K-means techniques [77, 67, 73, 57, 35],

were largely used for Terahertz image analysis [85, 21, 22, 13, 15]. These techniques
were generally involved with clusters defined by measures of the central tendency,
called arithmetic means or centers, and pixels described by the whole feature space.
These pixels are depicted by univariate time series generated by serial correlated vari-
ables and generally classified by using Euclidian distance measure. However, these are
not desirable in Terahertz imaging where pixels are represented by a huge number
of raw bands. The relevance problem of these bands can be a hurdle to analyze this
type of images and the correlation between variables was not used in the foremost
time series clustering techniques which decreases its performances. Moreover, arith-
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metic means are not suitable to represent time series clusters and other statistical
methods more adapted to time series can improve the clustering process [96]. The
regions in THz images are shown as clusters of time series [13, 108]. We believe
that autoregressive modeling leads to model each cluster of univariate time series.
In this section, we propose a novel clustering approach called K-Autoregressive (K-
AR) model which consists to classify the set of THz time series into a fixed num-
ber of clusters, each one is represented by its predictive prototype. We assume that
each pixel of the Terahertz image is a stationary time series generated from an AR
model where the order is unknown. The K-AR approach consists to classify the
AR models and minimize a suitable objective function for recovering the original
K autoregressive models describing each cluster of time series. Let us consider N

discrete-time random process X = {X1, . . . , XN}. Since each Xn = {Xn1, . . . , XnT }
is an ergodic process, its realizations correspond to the nth pixel and noted in vec-
tor form xn = (xn1, . . . , xnT )′ . T is the number of realizations, P is the AR or-
der, the weights wk = (wk1, . . . , wkP )′ are the AR coefficients which characterize
the kth time series cluster and φnt = (xn(t−1), xn(t−2), . . . , xn(t−P ))

′ is a vector of the
P previous realizations of xnt. For each cluster, the fitting error of an AR(P ) is∑

xn∈Ck

∑T
t=P +1(xnt −φ

′
ntwk)2, where Ck is the set of time series of the kth cluster. For

all clusters, this error is equal to the sum of K AR(P ) fitting errors. We need to find
coefficients W = (w1, ..., wK), which minimize the above error, for all pixels:

JKAR =
K∑

k=1

N∑
n=1

T∑
t=P +1

unk

(
xnt − φ

′
ntwk

)2
(4.4)

Equation (4.4) is solved by choosing the values of wk for which JKAR is as small as
possible. Because the objective function is a quadratic function of the coefficients wk,
its derivatives with respect to the coefficients will be linear in the elements of wk, and
so the minimization of the objective function JKAR in equation (4.4) with respect to
wk gives the following expression

N∑
n=1

T∑
t=P +1

unkφntxnt −
N∑

n=1

T∑
t=P +1

unkφntφ
′
ntwk = 0 (4.5)

119



3. K-Autoregressive Clustering

Then, we can deduce the expression of the AR weights as following

wk =
⎛
⎝ N∑

n=1

T∑
t=P +1

unkφntφ
′
nt

⎞
⎠

−1 ⎛
⎝ N∑

n=1

T∑
t=P +1

unkφntxnt

⎞
⎠ · (4.6)

This equation shows that AR weights are estimated by using the structure of time
series clusters represented by unk and the empirical correlated variables represented by
both terms φntφ

′
nt and φntxnt. The time series are assigned to their closest cluster by

computing the membership degrees unk. The values of the membership degrees must
verify the constraints {unk | unk ∈ {0, 1} and ∑K

k=1 unk = 1}. The necessary condition
for minimizing the objective function JKAR gives the following expression

unk =
{ 1, if k = arg minl{Dnl}

0, otherwise (4.7)

where Dnk = ∑T
t=P +1(xnt − φ

′
ntwk)2 represents the sum of the squares of the errors

between the target values xnt and the corresponding predicted values φ
′
ntwk. We

assume that the number K of clusters is known. For clustering, an AR model is
assigned with the cluster k if unk = 1. The K-AR consists to classify the set of
time series data into K clusters; each cluster is represented by one AR weights wk,
where k = 1, . . . , K. Our approach integrates correlated variables information into
the clustering process. The learning process is then done by iterating between two
steps, updating the AR weights of the clusters and the membership of the time series,
until convergence, i.e. when the value of the objective function is minimal. Let us
consider a parameter P much less than T . The K-AR algorithm can be summarized
as follows:

K-AR algorithm
1. Initialize wk by random values
2. Do

Update membership degrees unk using Eq. (4.7)
Update AR weights wk using Eq. (4.6)

Until |J (t)
KAR − J

(t−1)
KAR | <threshold

3. Return U .
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The pixels represented by the time series are then assigned to the clusters having
the best AR model fitting. The resulted clusters are defined by the obtained member-
ship degrees of the time series. The computational complexity of K-AR algorithm is
O(KNTP 2) for one iteration, where N is the number of time series, T is the number
of observations in the time series, K is the number of clusters and P is the AR model
order. This complexity is linear for parameters K, N , T and quadratic for parameter
P .

4 Parameter Selection
This section deals with the selection of two fundamental parameters for our ap-

proach, the number K of clusters and the order P of AR models. AR model order is
generally selected using information criteria in which the goal is to achieve the best
tradeoff between model fitting and model complexity [7, 98, 49, 30]. Considering one
stationary time series, the parameter σ2, as defined in equation (4.3), is considered as
the residual variance of the error function between the time series observations and
the corresponding predicted values. Among different AR model orders, the best mod-
els fitting are that which have the minimal error variances. Generalized information
criterion (GIC) [30] is an objective measure largely used for model selection.

Considering N stationary univariate time series xn = (xn1, . . . , xnT )′ , where n =
1, . . . , N , the objective function JKAR defined in equation 4.4 is considered as the sum
of errors of T realizations for the N time series regrouped into K clusters. By analogy
with one univariate time series case (see equation 4.3), the global error variance
corresponding to N time series is given by

Σ2
K,P = 1

N(T − P )JKAR (4.8)

In this section, we propose a modified generalized information criterion (MGIC)
well adapted to a set of time series which balances between model fitting and model
complexity. MGIC introduces a penalty term for the number of parameters in the
model. The proposed criterion consists to estimate the best K-AR model parameters,
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i.e. the model order P and the clusters number K. It is defined as follows:

MGIC(P, K, α) = − log Σ2
P,K − α

(
P × K + 1

T + N

)
, (4.9)

where P × K + 1 represents the number of parameters to be estimated, N + T

represents the sum of data points number in X and the features number in each
Xn, and α is a positive real penalty factor. This parameter is set by trial and error
procedure. Maximizing MGIC criterion return to minimizing the error of the noise
and the number of the used parameters. To select a model order and a cluster number,
MGIC(P ,K,α) criterion is determined for all P between 1 and a maximum candidate
order Pmax and for all K between 2 and a maximum candidate number Kmax. The
order and the clusters number with the maximal value of the criterion are selected.

5 Experimental results
In order to better understand the properties of our approach, artificial data sets are

used firstly to validate the clustering algorithms. Afterward, THz images are used to
examine the different algorithms. In this section, we experimentally and empirically
show that our clustering algorithm outperforms other algorithms such as standard
K-means [77], Gaussian mixture model (GMM) [41], W-K-means [64], K-harmonic-
means (KHM) [111], SS-K-means [13], K-means based autocorrelation functions
(AC+K-means) [48] and K-means based autoregressive coefficients (AR+K-means)
[48]. AC+K-means and AR+K-means are used in these experiments with hard de-
cision rule. The details about K-AR algorithm implementation are presented in our
website 1.

5.1 Experiments on artificial data sets

Artificial data sets are often used to validate the clustering algorithms. In this
experiment, we used three artificial data sets with various cluster number to verify the
performances of the clustering algorithms. The three data sets DP were constituted by

1. https://ayechwalid.wixsite.com/ayechwalid
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(a) Clustering approaches (b) AC+K-Means

(c) AR+K-Means (d) K-AR

Figure 4.1 – Accuracy of clustering algorithms on dataset D2. The parameter K is
fixed to 2.

(a) Clustering approaches (b) AC+K-Means

(c) AR+K-Means (d) K-AR

Figure 4.2 – Precision of clustering algorithms on dataset D2. The parameter K is
fixed to 2.

K clusters of time series originated from univariate AR(P ) process using the following
equation

xnt = φ
′
ntwn + εnt (4.10)

where xnt is the tth observation of the nth time series, wn is a column vector of P AR
weights for the nth time series, φnt = (xn(t−1), xn(t−2), . . . , xn(t−P ))

′ are the P previous
time series observations of xnt and εnt is additive Gaussian noise with zero mean
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(a) Clustering approaches (b) AC+K-Means

(c) AR+K-Means (d) K-AR

Figure 4.3 – Recall of clustering algorithms on dataset D2. The parameter K is fixed
to 2.

(a) Clustering approaches (b) AC+K-Means

(c) AR+K-Means (d) K-AR

Figure 4.4 – Accuracy of clustering algorithms on dataset D3. The parameter K is
fixed to 5.

and σ2
n variance. For the different time series, the variances of the Gaussian noise are

randomly chosen between 0.001 and 0.1.
In these experiments, data set D2 was constituted by 400 stationary univariate

time series distributed into two clusters originated from univariate AR(2) process.
Each time series is characterized by 500 bands. The AR weights wn are equal to
(1.8, −.9)′ and (.5, −.3)′ respectively for time series of cluster 1 and cluster 2. Data
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(a) Clustering approaches (b) AC+K-Means

(c) AR+K-Means (d) K-AR

Figure 4.5 – Precision of clustering algorithms on dataset D3. The parameter K is
fixed to 5.

(a) Clustering approaches (b) AC+K-Means

(c) AR+K-Means (d) K-AR

Figure 4.6 – Recall of clustering algorithms on dataset D3. The parameter K is fixed
to 5.

set D3 was constituted by 300 stationary univariate time series distributed into five
clusters originated from univariate AR(3) process. Each time series is characterized
by 1000 bands. The AR weights wn are equal to (−.6, −.1, −.1)′ , (.005, 0, −.001)′ ,
(.1, −.5, .5)′ , (.5, .2, .2)′ and (1, −.6, .2)′ respectively for cluster 1, cluster 2, cluster
3, cluster 4 and cluster 5. Data set D5 was constituted by 500 stationary univariate
time series distributed into three clusters originated from AR(5) process. Each uni-
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(a) Clustering approaches (b) AC+K-Means

(c) AR+K-Means (d) K-AR

Figure 4.7 – Accuracy of clustering algorithms on dataset D5. The parameter K is
fixed to 3.

(a) Clustering approaches (b) AC+K-Means

(c) AR+K-Means (d) K-AR

Figure 4.8 – Precision of clustering algorithms on dataset D5. The parameter K is
fixed to 3.

variate time series is characterized by 500 bands. The AR weights wn are equal to
(−.3, −.1, −.1, .1, −.1)′ , (.005, 0, −.001, −.005, .005)′ and (.3, .1, .2, −.2, −.2)′ respec-
tively for cluster 1, cluster 2 and cluster 3. The different clustering techniques were
statistically compared in terms of clustering performance. We used accuracy, preci-
sion and recall to evaluate the results [93]. The accuracy is the proportion of time
series correctly classified. The precision is computed as the fraction of classified time
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(a) Clustering approaches (b) AC+K-Means

(c) AR+K-Means (d) K-AR

Figure 4.9 – Recall of clustering algorithms on dataset D5. The parameter K is fixed
to 3.

series which belong to the relevant class. The recall is computed as the fraction of the
relevant time series which are correctly classified.

This section consists to evaluate the performances of the clustering techniques K-
means, KHM, GMM, W-K-means, SS-K-means, AC+K-means for different values
of the time lag parameter L, AR+K-means and K-AR for different values of the AR
parameter P . SS-K-means was used with parameters a = 2, b = 2 and c = 1. Figures
from 4.1 to 4.9 comprise the average evaluation measures of five different runs of the
three artificial data sets. For data set D2, the clustering accuracy is less than 0.6
for K-means, GMM and KHM and around 0.75 for W-K-means and SS-K-means.
While, it is equal to 1.0 for AC+K-means with L from 1 to 10, AR+K-means and
K-AR clustering with P from 1 to 10. The precision measure is between 0.7 and
0.78 for K-means, GMM and KHM, around 0.82 for W-K-means and SS-K-means,
and equal to 1.0 for AC+K-means, AR+K-means and K-AR clustering for different
values of L and P . Also, recall measure does not surpass 0.6 for K-means and KHM,
around 0.5 for GMM, 0.75 for W-K-means and SS-K-means and equal 1.0 for AC+K-
means, AR+K-means and K-AR clustering for different values of L and P . In figures
4.4, 4.5 and 4.6, clustering accuracy, precision and recall of artificial data set D3 are
0.3 for K-means, around 0.23 for GMM and KHM, and does not surpass 0.76 for
W-K-means and SS-K-means. For AC+K-means, these measures are between 0.65
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(a)

(b)

(c)

Figure 4.10 – The variation of clustering accuracy in terms of error variance σ2
n for

data sets D2 (a), D3 (b) and D5 (c). Each data set was generated for different values
of σ2

n from 10−4 to 1.2. The parameter K is fixed to 2, 5 and 3 for data sets D2, D3
and D5.

and 0.75 for L from 1 to 9, and decrease to 0.1 when L = 10. For AR+K-means,
performance measures are around 0.8 for P between 4 and 7, and does not surpass
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(a) K = 2 (b) K = 3 (c) K = 4

(d) K = 5 (e) K = 6 (f) K = 7

(g) K = 8 (h) K = 9 (i) K = 10

Figure 4.11 – MGIC criterion for data set D2. MGIC(P ,K,α) is presented for different
values of K from 2 to 10 (from the left to the right and from the top to the bottom)
and P from 1 to 10. The parameter α is fixed to 2.

0.75 for P < 4 and P > 7. While, they are around to 0.93 for K-AR with P = 1 and
0.97 for K-AR with P > 1. In figures 4.7, 4.8 and 4.9, clustering accuracy, precision
and recall of artificial data set D5 are between 0.24 and 0.36 for K-means, GMM,
KHM, W-K-means and SS-K-means, around 0.85 for AC+K-means and around 0.9
for AR+K-means with P between 1 and 5 and around 0.77 when P > 5. These
measures are around 0.9 for K-AR with P = 1 and P = 2 and become 1.0 for
K-AR when P > 3. The obtained statistics show the high performances of K-AR
compared to the other approaches. Figures 4.10 (a), (b) and (c) present the variation
of clustering accuracy in terms of σ2

n for data sets D2, D3 and D5. Each data set
was generated for different values of σ2

n (from 10−4 to 1.2) and then classified using
different clustering techniques. These figures show that K-AR approach outperforms
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(a) K = 2 (b) K = 3 (c) K = 4

(d) K = 5 (e) K = 6 (f) K = 7

(g) K = 8 (h) K = 9 (i) K = 10

Figure 4.12 – MGIC criterion for data set D2. MGIC(P ,K,α) is presented for different
values of K from 2 to 10 (from the left to the right and from the top to the bottom)
and P from 1 to 10. The parameter α is fixed to 2(log(log(T + N))).

the other approaches especially when the error variance is inferior to 1. However, as
foremost clustering techniques, K-AR is sensitive to initial starting parameters. For
twenty different runs, the K-AR performances can change after each run. For dataset
D3, the accuracy measure of K-AR clustering with P = 3 are equal to 1.0 for 60%
of tests and between 0.7 and 0.75 for the rest of tests. For dataset D5, the accuracy
of K-AR with P = 5 are equal to 1.0 for 90% of tests and near to 0.55 for the rest
of tests. While for dataset D2, K-AR with P = 2 produces a high accuracy measure
equal to 1.0 for 100% of tests. These statistics show the sensitivity of K-AR to initial
values of AR weights and this degree of sensitivity can depend on the structure of the
tested datasets.

Clusters number K and AR model order P are selected by using MGIC(P ,K,α)
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(a) K = 2 (b) K = 3 (c) K = 4

(d) K = 5 (e) K = 6 (f) K = 7

(g) K = 8 (h) K = 9 (i) K = 10

Figure 4.13 – MGIC criterion for data set D3. MGIC(P ,K,α) is presented for different
values of K from 2 to 10 (from the left to the right and from the top to the bottom)
and P from 1 to 10. The parameter α is fixed to 2.

criterion. In this paper, we study the parameter selection of our clustering approach
for two different values of α (α = 2 and α = 2(log(log(T + N)))). MGIC with both
values of α can be considered as modified versions of Akaike information criterion [7]
and Hannan-Quinn information criterion [49], respectively. Figures 4.11, 4.12, 4.13,
4.14, 4.15, and 4.16 show the corresponding MGIC measures of K-AR(P ) as functions
of P for nine different values of K. These figures show that MGIC values give a correct
AR model order estimation for different cluster number. The highest MGIC measure
corresponds to K equal to 2, 5 and 3 and P equal to 2, 3 and 5, respectively for
data sets D2, D3 and D5. These figures show that P and K are well estimated by
MGIC criterion and confirm the results found previously in figures from 4.1 to 4.9.
The estimated values of P and K confirm the best tradeoff between the clustering
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(a) K = 2 (b) K = 3 (c) K = 4

(d) K = 5 (e) K = 6 (f) K = 7

(g) K = 8 (h) K = 9 (i) K = 10

Figure 4.14 – MGIC criterion for data set D3. MGIC(P ,K,α) is presented for different
values of K from 2 to 10 (from the left to the right and from the top to the bottom)
and P from 1 to 10. The parameter α is fixed to 2(log(log(T + N))).

performances and the low computational cost.

5.2 Experiments on Terahertz images segmentation

In this section, K-AR, K-means, W-K-means, KHM, GMM, SS-K-means, AC+K-
means and AR+K-means are tested on cork, chemical and moth THz images. The
cork image is acquired from the department of physics, New Jersey Institute of Tech-
nology, while the chemical and the moth images are acquired from the company
Zomega Terahertz Corporation. Pixels of THz images are formed respectively by
1024, 1052 and 894 bands in the time domain. Since Terahertz images cannot be
visualized (hundreds or thousands of bands), we present in figure 4.17 (a), figures
4.18 (a) and (b) and figure 4.19 (a) the objects acquired in the visible light for the
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(a) K = 2 (b) K = 3 (c) K = 4

(d) K = 5 (e) K = 6 (f) K = 7

(g) K = 8 (h) K = 9 (i) K = 10

Figure 4.15 – MGIC criterion for data set D5. MGIC(P ,K,α) is presented for different
values of K from 2 to 10 (from the left to the right and from the top to the bottom)
and P from 1 to 10. The parameter α is fixed to 2.

validation. The ground truth of the chemical image, the 195th band of the cork THz
image and the 570th band of the moth THz image are shown in the right of the
same figures. The chemical image comprises four compounds, L-Valine (0.200g), L-
Tryptophan (0.100g), L-Tryptophan (0.200g) and Proline (0.200g), distributed into
four false colored regions, whereas, the second THz image shows cork matter with
some cork grains as well as some voids, defects and cracks, and the moth THz im-
age mainly comprises a body and two wings. The weights of K-AR approach and
the centers of W-K-means, SS-K-means, K-means, KHM, GMM, AC+K-means and
AR+K-means were initialized by random values. SS-K-means was used with param-
eters a = 2, b = 2 and three different values of parameter c. The segmentation of
chemical, cork and moth images was employed respectively with 4, 5 and 5 clusters.
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(a) K = 2 (b) K = 3 (c) K = 4

(d) K = 5 (e) K = 6 (f) K = 7

(g) K = 8 (h) K = 9 (i) K = 10

Figure 4.16 – MGIC criterion for data set D5. MGIC(P ,K,α) is presented for different
values of K from 2 to 10 (from the left to the right and from the top to the bottom)
and P from 1 to 10. The parameter α is fixed to 2(log(log(T + N))).

As well as artificial data sets, Terahertz images segmentation are evaluated by
using accuracy, precision and recall indices which need external references. Figure 4.20
shows the chemical Terahertz image segmentation for the eight clustering algorithms.
In figures 4.20 (a), (b), (c), (d), (e), (g), (h), (i), (j) and (k), K-means, KHM, GMM,
W-K-means, SS-K-means for c = 0.5 and c = 2.5, AC+K-means for time lags L = 5
and L = 10, and AR+K-means for P = 5 and P = 10 produce as output over-
segmented images. L-Tryptophan (0.100g) and L-Tryptophan (0.200g) clusters are
combined together in the case of K-means, KHM and GMM which clearly show
their segmentation shortcomings. Also, L-Valine (0.200g) and L-Tryptophan (0.200g)
clusters are combined together in the case of SS-K-means for c = 2.5 and AC+K-
means for L = 5 and L = 10. L-Tryptophan (0.200g) cluster is largely affected by noisy
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(a) (b)

Figure 4.17 – In the left, an image of four chemical compounds acquired in visible
spectrum. In the right, the ground truth of the THz image. The false colors green,
blue, red and yellow correspond respectively to the chemical compounds L-Valine
(0.200g), L-Tryptophan (0.100g), L-Tryptophan (0.200g) and Proline (0.200g).

(a) (b) (c)

Figure 4.18 – In the left and the middle, an image of a cork acquired in visible
spectrum. In the right, the 195th band of the THz image.

(a) (b)

Figure 4.19 – In the left, an image of a moth acquired in visible spectrum. In the
right, the 570th band of the THz image.

points in the case of W-K-means and SS-K-means for c = 0.5. For P = 5 and P = 10,
AR+K-means produces as output over-segmented regions, the four compounds are
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.20 – Chemical THz image segmentation for K-means (a), KHM (b), GMM
(c), W-K-means (d), SS-K-means for c = 0.5 (e), c = 1 (f) and c = 2.5 (g), AC+K-
Means for L = 5 (h), L = 10 (i), AR+K-Means for P = 5 (j), P = 10 (k), and K-AR
for P = 2 (l), P = 5 (m), P = 10 (n), P = 13 (o) and P = 15 (p).

largely affected by noisy points. In figure 4.20 (f), SS-K-means for c = 1 shows a
good segmented regions except some points of the three compounds L-Valine (0.200
g), L-Tryptophan (0.100 g) and Proline (0.200g) are misclassified. Figure 4.20 from
(l) to (p) displays the output regions of K-AR for different values of P (2, 5, 10,
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(a) Clustering approaches (b) SS-K-Means (c) AC+K-Means

(d) AR+K-Means (e) K-AR

Figure 4.21 – Accuracy of the clustering algorithms on chemical THz image.

(a) Clustering approaches (b) SS-K-Means (c) AC+K-Means

(d) AR+K-Means (e) K-AR

Figure 4.22 – Precision of the clustering algorithms on chemical THz image.

13 and 15). For P = 2, the K-AR produces as output over-segmented images. The
best image segmentations are obtained when P surpasses 2 which appears in figures
4.20 (m), (n), (o) and (p), the four compounds become very well identified, except
some points of L-Valine (0.200g) and L-Tryptophan (0.100g) are misclassified. The
statistics of the different approaches are shown in figures 4.21, 4.22 and 4.23. The
clustering accuracies have not surpassed the 0.4 for K-means and GMM, around 0.55
for KHM, 0.76 for W-K-means, 0.7 for SS-K-Means with c = 2.5, surpassed 0.9 for
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(a) Clustering approaches (b) SS-K-Means (c) AC+K-Means

(d) AR+K-Means (e) K-AR

Figure 4.23 – Recall of the clustering algorithms on chemical THz image.

SS-K-Means with c = 0.5 and c = 1, and between 0.6 and 0.7 for AC+K-Means with
all values of L. For AR+K-Means, accuracy measures are between 0.66 and 0.78 for
P equal 1, 2, 3 and 4, around 0.9 when P surpass 5 and decrease slightly for P ≥ 17.
While, these measures are around 0.72 for K-AR with P = 1 and P = 2 and increase
near to 1.0 when P > 3. The precision measures are around 0.37 for K-means and
GMM, around 0.62 for KHM, around 0.86 for W-K-means, surpassed 0.9 for SS-K-
Means with c = 0.5 and c = 1, around 0.6 for SS-K-Means with c = 2.5. Precision
measures are around 0.67 for AC+K-Means with L = 1 and L = 2 and around 0.6
for AC+K-Means for L ≥ 3. For AR+K-Means, precision measures are between 0.76
and 0.8 for P equal 1, 2, 3 and 4, around 0.9 when P surpass 5 and decrease slightly
for P ≥ 17. However, these measures are around 0.75 for K-AR with P equal 1 and
2 and increase and become near to 1.0 when P surpass 3. The recall measures are
around 0.4 for K-means and GMM, around 0.56 for KHM, between 0.77 and 0.85 for
W-K-means, surpassed 0.9 for SS-K-Means with c = 0.5 and c = 1, around 0.6 for
SS-K-Means with c = 2.5. Recall measures are between 0.6 and 0.7 for AC+K-Means
with all values of L. For AR+K-Means, recall measures are between 0.68 and 0.78
for P equal 1, 2, 3 and 4, around 0.88 when P surpass 5 and decrease slightly for
P ≥ 17. However, these measures are around 0.78 for K-AR with P equal 1 and 2
and become near to 1.0 when P surpass 3. The obtained measures confirm the results
previously illustrated and show the high performances of our approach.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.24 – Cork THz image segmentation for K-means (a), KHM (b), GMM (c),
W-K-means (d), SS-K-means for c = 0.5 (e), c = 1 (f) and c = 2 (g), AC+K-Means
for L = 8 (h), L = 10 (i), AR+K-Means for P = 8 (j), P = 10 (k), and K-AR for
P = 1 (l), P = 4 (m), P = 8 (n), P = 10 (o) and P = 12 (p).

Figure 4.24 shows the segmentation outputs of the different clustering algorithms
on the cork images. K-means, KHM, GMM, W-K-means and SS-K-means produce
a wrongly segmented regions in figures 4.24 (a), (b), (c), (d), (e), (f) and (g). These
techniques have not extracted the details inside the cork and clearly illustrate the
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.25 – Moth THz image segmentation for K-means (a), KHM (b), GMM (c),
W-K-means (d), SS-K-means for c = 1 (e), c = 1.5 (f) and c = 2 (g), AC+K-Means
for L = 3 (h), L = 6 (i), AR+K-Means for P = 3 (j), P = 6 (k), and K-AR for
P = 2 (l), P = 3 (m), P = 4 (n), P = 6 (o) and P = 10 (p).

limitations of the five algorithms to identify defected and cracked regions. In figures
4.24 (h), (i), (j) and (k), AC+K-means and AR+K-means produce better segmented
regions. The main defected regions are better identified for two different values of L

and P , while some cracks and details are not well extracted inside the cork. Figures
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(a) K=2 (b) K=4

(c) K=6 (d) K=8

Figure 4.26 – Modified generalized information criterion (MGIC) computed after the
chemical THz image segmentation for different values of parameters P and K.

(a) K=3 (b) K=5

(c) K=7 (d) K=9

Figure 4.27 – Modified generalized information criterion (MGIC) computed after the
cork THz image segmentation for different values of parameters P and K.

4.24 from (l) to (p) display the obtained regions of K-AR for P equal to 1, 4, 8, 10,
and 12. The cork grains, the voids, the defects and the cracks are well segmented for
different values of P , mainly for P > 4 and P < 12.

Figure 4.25 shows the segmentation outputs of K-means, KHM, GMM, W-K-
means, SS-K-means, AC+K-means, AR+K-means and K-AR clustering algorithms
on the moth Terahertz images. K-means, KHM, GMM, W-K-means and SS-K-means
with c < 2 produce wrongly segmented regions in figures 4.25 (a), (b), (c), (d), (e)
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(a) K=3 (b) K=5

(c) K=7 (d) K=9

Figure 4.28 – Modified generalized information criterion (MGIC) computed after the
moth THz image segmentation for different values of parameters P and K.

and (f). SS-K-means with c ≥ 2 produce better segmented regions in figure 4.25 (g).
However, moth body structure are not yet identified. The obtained regions clearly
illustrate the limitations of the five techniques to provide good inner structure of
the body and the wings. In figures 4.25 (h) and (i), AC+K-means produce better
segmented regions. The moth wings are well identified with AC+K-means for L = 3
and L = 6, while the moth body is not well segmented. In figures 4.25 (j) and (k),
AR+K-means produces noisy segmented regions. The moth wings and the body are
not well segmented. Figures 4.25 from (l) to (p) display the obtained regions of K-AR
for P equal to 2, 3, 4, 6, and 10. The structure of the moth wings is well segmented
for different values of P and the moth wings and the body are preserved.

Figures 4.26, 4.27 and 4.28 show plots of the MGIC criterion for divers orders of K-
AR approach on the three THz images. The parameter α is fixed to 2(log(log(T +N))).
In figure 4.26, MGIC values are high for P > 8 and the highest one corresponds to the
P = 13. As previously shown in figures 4.20, 4.24 and 4.25, accuracy, precision and
recall measures are high for P > 4 and the highest is for P = 13 which corresponds to
the value of parameter P selected by MGIC criterion. As already seen in section 2, the
computational complexity of K-AR algorithm is quadratic for parameter P . So, high
values of P are not preferable and a suitable interval between 5 and 12 can be also
interesting. With a such value of α, the MGIC criterion allows to select the AR order
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having the highest clustering performance with moderate and reasonable AR order.
In addition, the selection of the cluster number corresponds to the maximal value of
MGIC with respect to K. So, K = 4 corresponds to the correct number of chemical
components. Figure 4.27 show that the maximal values of MGIC correspond to K = 5.
Also, the values of P between 5 to 12 correspond to the highest values of MGIC and in
the same time to the best segmentation of the cork THz image (see figures 4.24 from
(l) to (p)). The estimated values of parameters P and K show the best compromise
between high performances and simplicity (low number of parameters). The maximal
value of MGIC corresponds to P = 9 which corresponds to the best detection of the
defects and the cracks inside the cork. Figure 4.28 shows that the maximal values
of MGIC correspond to K = 5. Also, the values of P between 2 to 6 correspond to
the highest values of MGIC and in the same time to the best segmentation of the
moth THz image (see figures 4.25 from (l) to (p)). The estimated values of parameters
P and K show the best compromise between high clustering performances and low
number of parameters. The maximal value of MGIC corresponds to P = 2 which
corresponds to the best moth wings and the body identification.

6 Conclusion
In this paper, we have proposed a novel clustering approach, called K-AR model

and suitable to THz images based time series. The K-AR approach consists to regroup
a set of THz time series into clusters represented by their prediction prototypes. The
K-AR assumes that the time series depicting the pixels were generated by AR models
and consists to recover the original K autoregressive models describing each cluster
of time series. The corresponding pixels are then assigned to the clusters having
the best AR model fitting. The order and the number of clusters of K-AR model
are automatically estimated using a modified information criterion. Our approach is
tested on various artificial and real THz images. Experimental results show that K-AR
approach produces more accurate segmentation than other clustering techniques such
as K-means, GMM, KHM, W-K-means, SS-K-means, AC+K-means and AR+K-
means.

Our approach is shown so attractive to achieve the best clustering performances.
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6. Conclusion

Note that the sensitivity to initial starting conditions decreases the clustering accu-
racy. Furthermore, our clustering approach use hard decision to compute the mem-
bership of pixels and deal all the features with equal importance. Soft decision rule
and feature weighting techniques can improve the accuracy of the analysis. These
problems haven’t been addressed in this paper and require further studies.

In further work, we will deal with the initialization of the weights of AR models
and the weights of the features. Also, we will extend our approach to classify non-
stationary time series which cannot be fitted by AR linear models; also, partition the
set of time series in the frequency domain. Similar steps to the work of Maharaj and
D’Urso [79] about the time series clustering in the frequency domain, one can improve
the Terahertz image analysis.
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Chapitre 5

Mélange fini de modèles
autorégressifs et ses applications
pour la classification des séries
chronologiques

Dans ce chapitre, nous proposons une généralisation de l’approche présentée dans
le chapitre précèdent. Au lieu de considérer un problème de moindres carrés, nous
proposons une approche de classification probabiliste basée sur le mélange de modèles
autorégressifs. L’approche proposée consiste à récupérer les modèles autorégressifs
originaux décrivant chaque distribution de séries chronologiques. L’estimation par la
méthode de maximum de vraisemblance est utilisée pour apprendre les paramètres de
l’approche proposée. L’ordre du modèle autorégressif et le nombre de composants du
mélange sont automatiquement estimés en utilisant un critère de sélection du modèle.

Dans ce chapitre, nous présentons un article intitulé Finite mixture of autore-
gressive models and its applications in time series clustering soumis dans le
journal international de Elsevier Engineering Applications of Artificial Intelli-
gence. Le problème a été posé par le professeur Djemel Ziou. J’ai réalisé, validé et
rédigé ce travail sous sa supervision.
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Abstract

We propose in this paper a new clustering approach based on autoregres-
sive techniques. The proposed approach is called mixture of autoregressive
(MoAR) models and assumes that the time series were generated by au-
toregressive models. MoAR approach consists to recover the original autore-
gressive models describing each cluster of time series. The parameters of
MoAR model are automatically estimated by using a model selection crite-
rion. Our approach is tested on various synthetic datasets, robotic datasets,
transit events and Terahertz images. Experimental results show that MoAR
approach is more efficient than other clustering approaches from the litera-
ture.
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1. Introduction

1 Introduction
In the last years, time series clustering has attracted a lot of interest in the scientific

community [2, 46, 73]. It is essential to find solutions for real problems deriving
from several domains of applications such as pharmaceutics, finance, environmetrics,
genetics and bioinformatics [2]. For instance, in finance, time series clustering has been
used to group companies listed in the market exchange by examining their time series
of returns [47]. In pharmaceutics, it is used to classify temporal responses of drugs
provided from patients after taking it [48]. In genetics, time series clustering has been
used to group genes taking into account profiles of temporal expression from cDNA
microarrays experiments [84]. In astronomy, it has been used to classify time series of
star brightness in huge data and to estimate prototype stars [47]. In biomedicine, the
study of EEG biological signals requires to discriminate between signals caused by
sick or healthy people [87]. In image processing, it has been used for texture analysis
[62]. Several other applications of time series clustering are detailed in [2].

In general, a time series is a sequence of observations related in chronological
order. Some authors consider it as a vector represented by high number of bands or
features. They found useful to extract lower dimensional features before classifying the
time series. Some useful features are extracted by using autocorrelation functions [48],
spectral transformations [79], wavelets coefficients [44, 74] and reconstructed phase
spaces [92]. Other authors assume that the values associated with each time series
are sampled from an autoregressive (AR) models [48, 14] or autoregressive moving
average (ARMA) models [18, 109]. The clustering of the set of time series is realized
in the extracted parameter spaces. The advantages of these methods are that the
clustering is realized in low dimensional feature space and the correlation property
is incorporated into the process of time series clustering. However, there are several
challenges in analyzing time series. The choice of the distribution of residues (e.g.
Gaussian distribution [27], mixture of Gaussians [91] or Beta distribution [32]) must
be well identified. The time series must be stationarity before the analysis process.
The choice of the model (e.g. AR, MA, ARMA or ARIMA) and the order of the model
must be suitably selected before estimating the parameters of the model. Moreover,
the methods of parameter estimation are numerous (e.g. least squares estimator, Yule-
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Walker estimator, maximum likelihood estimator and Bayesian estimator). What is
the best method suitable for time series fitting? The model parameters are estimated
from each time series, independently, and the interpretation of these parameters and
the space which constitute is not easy [1]. For example, what is the mean of the first
coefficients of the AR model?

Several clustering methods are proposed in the literature. Among them, K-means
[48], K-medoids [18], K-harmonic-means [14] and agglomerative hierarchical [78].
Other works use Gaussian mixture models (GMM) to discriminate between the time
series [74, 92]. In GMM, each component is modeled by the multivariate Normal dis-
tribution and it is characterized by its mean vector and its covariance matrix. The
covariance matrix allows to determine the geometric features (volume, shape and ori-
entation) of each component of time series. However, the time series are characterized
by a dynamic behaviour in their evolution over time [48]. This dynamic behaviour
can be defined by the correlation property into the time series and it is not incorpo-
rated into the process of standard GMM clustering. Instead, we believe to model each
cluster of time series by a single univariate AR model. The AR parameters must be
estimated by using both the correlation property between time series variables and
the structure of the time series clusters. We look forward an iterative algorithm which
alternate between autoregressive modeling and time series clustering until reaching a
high time series fitting. In this paper, we introduce a novel clustering approach called
mixture of autoregressive (MoAR) models which consists to classify the set of time
series into a fixed number of clusters. We assume that each time series is stationary
and generated from an univariate autoregressive (AR) model where the order is un-
known. A model-based method is proposed for recovering the original autoregressive
models describing each cluster of time series. These time series are then assigned to
the clusters having the best AR model fitting. The parameters of the MoAR model are
automatically estimated by using a modified generalized information criterion. The
proposed approach is tested to discriminate transient events for a safe monitoring
process, detect the surface nature of a mobile robot, and segment various Terahertz
images. There are three main differences between our work and the state of art. First,
our work constitutes a new clustering method based on autoregressive techniques
which is more adapted to time series and not excessively affected by outliers. Second,
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the time series components take into account the dynamic behaviour of the time se-
ries. Third, our approach is completely unsupervised, the parameters of MoAR model
are automatically estimated by using a modified generalized information criterion.

The rest of the paper is organized as follows: in section 2 we introduce the AR
for univariate signal. Section 3 presents an original approach, called MoAR models,
for time series clustering. The selection of the MoAR model is proposed in section 4.
The results are illustrated and discussed in section 5.

2 Autoregressive modeling
Let us consider a discrete-time random process X = {X1, . . . , XT }. We assume

that X is a stationary and ergodic process and a data x = (x1, . . . , xT )′ is generated
from this process. Moreover, a random variable Xt can be defined by a linear combi-
nation of Xt−1, . . . , Xt−P plus a random variable representing the bias often assumed
a centered Normal. In this case, the process is autoregressive (AR) known as time
series of order P . The complexity of time series is equal to P + 1, where one accounts
for the variance of the bias. More formally, AR model predicts the next value xt in
the time series as following

xt = φ
′
tw + εt, (5.1)

where φt = (xt−1, xt−2, . . . , xt−P )′ represents a vector of the P previous realizations of
xt, w = (w1, . . . , wP )′ is a column vector of AR weights and εt is Gaussian noise with
zero mean and σ2 variance. Given a set of parameters θ = {w, σ2}, the likelihood of
the sequence of residuals is given by

p(ε|θ) =
( 1

2πσ2

) T −P
2

exp

⎛
⎝− 1

2σ2

T∑
t=P +1

(
xt − φ

′
tw

)2
⎞
⎠ · (5.2)

The AR weights w and the noise variance σ2 will be determined by fitting the model
to the training time series data. This problem can be solved by a large variety of
techniques such as the least squares method, the Yule-Walker method, the method
of moments and the maximum likelihood method. The parameters w and σ2 are
estimated in our work by using a maximum likelihood (ML) solution which consists
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to maximize the logarithm of the likelihood function in equation (5.2). We have

log p(ε|θ) = −T − P

2 log σ2 − T − P

2 log(2π) − E(w)
σ2 · (5.3)

Consider first the maximization with respect to w, the gradient of the log-likelihood
function written in equation (5.3) takes the form

∂

∂w
log p(ε|θ) = 1

σ2

T∑
t=P +1

(xt − φ
′
tw)φt = 0· (5.4)

We can deduce the maximum likelihood solution for the AR coefficients as follows

w = (φ′
φ)−1φ

′
x, (5.5)

where φ is a (T −P )×P matrix containing the row vectors φt. By using the estimated
autoregressive weights w, the maximum likelihood noise variance σ2 can be estimated
from

σ2 = 1
T − P

T∑
t=P +1

(xt − φ
′
tw)2· (5.6)

In the next section, we will formulate the time series clustering by using a mixture
of AR models.

3 The proposed MoAR models
The error εt is often considered as a Gaussian random variable [27]. Some authors

considered it as Beta random variable [32]. These hypotheses are especially justified
by the simplicity of the design of a parameter estimator. Motivated by the simplicity
of the estimators, one can also think of considering the error as a mixture of pdfs.
This idea has been implemented in the state of the art in [91]. Indeed, the mixture
of Gaussians was used to classify time series [74, 92, 2]. It was generally described by
the raw feature space and used without considering the correlation property between
the time series variables [41, 81]. We believe that autoregressive (AR) modeling leads
to model each cluster of time series. In this section, we propose a novel clustering
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approach called mixture of autoregressive (MoAR) models, which consists to classify
the set of time series into a fixed number of clusters. We assume that each time series
is stationary and generated from an AR model, and the set of time series are arisen
from a mixture of components in different proportions. The model order and the
number of components are initially specified. MoAR approach consists to classify the
AR models and recovers the original K autoregressive models describing each cluster
of time series.

Let us consider N discrete-time random process X = {X1, . . . , XN}. Since each
Xn = {Xn1, . . . , XnT } is an ergodic process, its realizations correspond to the nth time
series xn = (xn1, . . . , xnT )′ where T is the number of realizations. Each cluster of time
series is depicted by an AR model characterized by its weights wk = (wk1, . . . , wkP )′ ,
where P is the order of the model. φnt = (xn(t−1), xn(t−2), . . . , xn(t−P ))

′ is a vector of
the P previous realizations of xnt. As described in Section 2, the current value xnt

of each time series xn can be written as a weighted linear sum of its previous values
and given by φ

′
ntwk + εnt, where εnt is additive Gaussian noise with zero mean and

σ2
k variance.

The process of clustering consists to assign each time series xn to the clusters
having the best AR model fitting. Let us define the multinomial random vector
Zn = {Zn1, . . . , ZnK} associated with xn, where its realizations zn = (zn1, . . . , znK)′

indicate the index of the class assigned to it. Each znk ∈ {0, 1}, ∑K
k=1 znk = 1,

and znk = 1 if the time series xn belong to cluster k and 0, otherwise. We defined
the pdf p(xn, zn|θ, π) = p(zn|π)p(xn|zn, θ), where p(zn|π) = πk and p(xn|zn, θ) =
N (xn|φnwk, σk). N (xn|φnwk, σk) represents the Normal distribution of the compo-
nent k, φn is a (T − P ) × P matrix containing the row vectors φnt, θ represents
the set of parameters {w1, · · · , wK , σ1, · · · , σK} and π = {π1, · · · , πK} represents the
mixing coefficients. For all time series, the conditional distribution of the random
vector Z = {Z1, . . . , ZN}, given the mixing coefficients π, can be then specified in
the following form

p(Z|π) =
N∏

n=1

K∏
k=1

πznk
k (5.7)

and the conditional distribution of X given the random vector Z and the set of
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parameters θ is

p(X |Z, θ) =
N∏

n=1

K∏
k=1

p(xn|zn, θk)znk . (5.8)

The joint distribution p(X , Z|θ, π) is then given by

p(X , Z|θ, π) =
N∏

n=1

K∏
k=1

(πkp(xn|θk))znk . (5.9)

The associated mixture of pdfs is given by

L(Θ) =
N∏

n=1

(
K∑

k=1
πkN (xn|φnwk, σ2

k)
)

. (5.10)

The proposed model is specified by the set of parameters Θ = {θ, π}, K and P .
The best model must be selected in which the goal is to achieve the best tradeoff
between model fitting and model complexity. In the following section, we present how
different parameters are estimated via a model selection criterion.

4 Model selection
In this section, we propose to reformulate the time series clustering as a model

selection problem. The selection of the model is generally realized by using information
criteria in which the goal is to achieve the best tradeoff between model fitting and
model complexity [7, 98, 49, 30]. A comparison between some model selection criteria
is detailed in [25]. Generalized information criterion (GIC) [30] is an objective measure
largely used for model selection. In our work, we propose a modified generalized
information criterion (MGIC) which is well adapted to a set of time series. The
proposed criterion consists to estimate the best MoAR model. It is defined as follows:

MGIC(P, K, α) = 2 ln L(Θ) − α(P + 2)K (5.11)

where Θ = {π, w, σ} represents the set of parameters of MoAR, (P + 2)K represents
the number of parameters to be estimated, α is a positive real penalty factor and
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ln L(Θ) represents the log-likelihood function which is given as following

ln L(Θ) =
N∑

n=1
ln

(
K∑

k=1
πkN (xn|φnwk, σ2

k)
)

· (5.12)

Maximizing MGIC criterion return to maximizing the log-likelihood of the model
and minimizing the number of the used parameters. To select a model order and a
mixture component number, MGIC(P ,K,α) criterion is determined for all P between
one and a maximum candidate order Pmax and for all K between two and a maximum
candidate number Kmax. Pmax and Kmax are fixed beforehand. The order and the
component number with the maximal value of the criterion are selected. To select
the parameters Θ = {π, w, σ}, the log-likelihood function given by equation (5.12) is
maximized by using the maximum likelihood (ML) estimate associated with a sample
of time series [94, 41, 81, 10]. The expectation maximization (EM) is an iterative
algorithm which has been suggested as alternative way to find maximum likelihood
solutions for models having latent variables [41]. EM algorithm for a mixture of AR
models is applied on the given data set X . In the E-step, the posterior distribution of
Z is called R = {r1, . . . , rN}, where each rn = (rn1, . . . , rnK)′ and each rnk represents
the responsibilities or the assignments of the nth time series to the kth component.
This posterior distribution is computed by using the current values of the parameters
Θ and it is given by

rnk = πkN (xn|φ′
nwk, σk)∑K

j=1 πjN (xn|φ′
nwj, σj)

· (5.13)

In the M-step, the log-likelihood is maximized with respect to the parameters Θ.
Taking the corresponding partial derivatives ∂L(Θ)/∂wk equal to zero, we find the
following relationship as a function of wk

N∑
n=1

((
φ

′
nxn − wkφ

′
nφn

)
× πkN (xn|φnwk, σk)∑K

j=1 πjN (xn|φnwj, σj)

)
· (5.14)

By using equation (5.13), we can then derive the AR weights as following

wk =
(

N∑
n=1

rnkφ
′
nφn

)−1 (
N∑

n=1
rnkφ

′
nxn

)
, (5.15)
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where φn is a (T − P ) × P matrix containing the row vectors φnt. Note that the
estimated weights is a multiplication of two terms. Equation (5.15) shows that AR
weights are estimated by using the structure of time series classes represented by
rnk and the empirical correlated variables represented by both terms φ

′
nφn and φ

′
nxn.

The log-likelihood is also maximized with respect to π. Taking the corresponding
partial derivatives equal to zero and using the Lagrange multipliers for the constraint∑K

k=1 πk = 1, we can derive the mixing coefficients as following

πk = Nk

N
, (5.16)

where Nk = ∑N
n=1 rnk and represents the number of time series in the kth component.

In similar way, the noise variance σ2
k can be updated by using the following equation

σ2
k = 1

Nk(T − P )

N∑
n=1

T∑
t=P +1

rnk(xnt − φ
′
ntwk)2. (5.17)

The learning process is then done by iterating between E and M steps, i.e. updating
the responsibilities rnk of the time series, the AR weights wk, the mixing coefficients
πk and the noise variance σ2

k until the value of likelihood L(Θ) of the data will be
minimal.

5 Experimental results
In this section, various synthetic and real datasets are used to investigate the

performance of the clustering approaches. We consider four case studies in different
domains. We experimentally and empirically show that MoAR outperforms other
approaches such as Gaussian mixture model (GMM) [41], standard K-means [77],
K-harmonic-means (KHM) [111], W-K-means [64] and SS-K-means [13].

5.1 Experiments on synthetic datasets

In this experiment, we used three artificial datasets with various cluster number
to verify the performances of the clustering algorithms. The three datasets DP were
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(a) Accuracy

(b) Precision

(c) Recall

Figure 5.1 – Clustering performances on dataset D2 for K-means, KHM, GMM, W-
K-means and SS-K-means (in the left) and MoAR for P from 1 to 10 (in the right).
The parameter K is fixed to 2.

constituted by K clusters of time series originated from univariate AR(P ) process
using the following equation

xnt = φ
′
ntwn + ent (5.18)

where xnt is the tth observation of the nth time series, wn is a column vector of P AR
weights for the nth time series, φnt = (xn(t−1), xn(t−2), . . . , xn(t−P ))

′ are the P previous
time series observations of xnt and ent is additive Gaussian noise with zero mean
and σ2

n variance. For the different time series, the variances of the Gaussian noise are
randomly chosen between 0.001 and 0.1.

In these experiments, data set D2 was constituted by 400 stationary time series
distributed into two clusters originated from univariate AR(2) process. Each time
series is characterized by 500 features. The AR weights wn are equal to (1.8, −.9)′
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(a) Accuracy

(b) Precision

(c) Recall

Figure 5.2 – Clustering performances on dataset D3 for K-means, KHM, GMM, W-
K-means and SS-K-means (in the left) and MoAR for P from 1 to 10 (in the right).
The parameter K is fixed to 5.

and (.5, −.3)′ respectively for time series of cluster 1 and cluster 2. Data set D3 was
constituted by 300 stationary time series distributed into five clusters originated from
univariate AR(3) process. Each time series is characterized by 1000 features. The
AR weights wn are equal to (−.6, −.1, −.1)′ , (.005, 0, −.001)′ , (.1, −.5, .5)′ , (.5, .2, .2)′

and (1, −.6, .2)′ respectively for cluster 1, cluster 2, cluster 3, cluster 4 and clus-
ter 5. Data set D5 was constituted by 500 stationary time series distributed into
three clusters originated from univariate AR(5) process. Each time series is char-
acterized by 500 features. The AR weights wn are equal to (−.3, −.1, −.1, .1, −.1)′ ,
(.005, 0, −.001, −.005, .005)′ and (.3, .1, .2, −.2, −.2)′ respectively for cluster 1, cluster
2 and cluster 3. The different clustering techniques were statistically compared in
terms of clustering performance. We used accuracy, precision and recall to evaluate
the results [93]. The accuracy is the proportion of time series correctly classified. The

156



5. Experimental results

(a) Accuracy

(b) Precision

(c) Recall

Figure 5.3 – Clustering performances on dataset D5 for K-means, KHM, GMM, W-
K-means and SS-K-means (in the left) and MoAR for P from 1 to 10 (in the right).
The parameter K is fixed to 3.

precision is computed as the fraction of classified time series which belong to the
relevant class. The recall is computed as the fraction of the relevant time series which
are correctly classified.

This section consists to evaluate the performances of the clustering techniques
(K-means, KHM, GMM, W-K-means and SS-K-means) and the MoAR for different
values of the parameter P . SS-K-means was used with parameters a = 2, b = 2 and
c = 1. Figures 5.1, 5.2 and 5.3 comprise the evaluation measures for the three artificial
datasets. For data set D2, the clustering accuracy is less than 0.6 for K-means, GMM
and KHM and around 0.75 for W-K-means and SS-K-means. While, it is equal to
1.0 for MoAR clustering for P from 1 to 10. The precision measure is around 0.75 for
K-means, GMM and KHM, around 0.8 for W-K-means and SS-K-means, and equal
to 1.0 for MoAR for different values of P . Also, recall measure does not surpass 0.65
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(a) K = 2 (b) K = 4

(c) K = 6 (d) K = 8

Figure 5.4 – MGIC criterion for dataset D2. MGIC(P ,K,α) is presented for different
values of K and P . The parameter α is fixed to 2.

(a) K = 2 (b) K = 4

(c) K = 6 (d) K = 8

Figure 5.5 – MGIC criterion for dataset D2. MGIC(P ,K,α) is presented for different
values of K and P . The parameter α is fixed to 2 ln ln(TN).

for K-means, GMM and KHM, around 0.75 for W-K-means and SS-K-means and
equal 1.0 for MoAR clustering for different values of P . In figures 5.2 (a), (b) and
(c), clustering accuracy, precision and recall of artificial dataset D3 are around 0.2
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(a) K = 3 (b) K = 5

(c) K = 7 (d) K = 9

Figure 5.6 – MGIC criterion for dataset D3. MGIC(P ,K,α) is presented for different
values of K and P . The parameter α is fixed to 2.

(a) K = 3 (b) K = 5

(c) K = 7 (d) K = 9

Figure 5.7 – MGIC criterion for dataset D3. MGIC(P ,K,α) is presented for different
values of K and P . The parameter α is fixed to 2 ln ln(TN).

for K-means, GMM and KHM and does not surpass 0.75 for W-K-means and SS-K-
means. While, they are between 0.4 and 0.6 for MoAR with P = 1 and 1.0 for MoAR
with P > 1. In figures 5.3 (a), (b) and (c), clustering accuracy, precision and recall
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(a) K = 3 (b) K = 5

(c) K = 7 (d) K = 9

Figure 5.8 – MGIC criterion for dataset D5. MGIC(P ,K,α) is presented for different
values of K and P . The parameter α is fixed to 2.

(a) K = 3 (b) K = 5

(c) K = 7 (d) K = 9

Figure 5.9 – MGIC criterion for dataset D5. MGIC(P ,K,α) is presented for different
values of K and P . The parameter α is fixed to 2 ln ln(TN).

of artificial dataset D5 are between 0.25 and 0.35 for K-means, GMM, KHM, W-K-
means and SS-K-means. These measures are around 0.85 for MoAR with P = 1, 0.9
for MoAR with P = 2 and become 1.0 for MoAR when P > 2. The obtained statistics
show the high performances of MoAR compared to the other approaches.
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Mixture component number K and AR model order P are selected by using
MGIC(P ,K,α) criterion. In this paper, we study the parameter selection of our clus-
tering approach for two different values of α (α = 2 and α = 2 ln ln(TN)). MGIC
with both values of α can be considered as modified versions of Akaike information
criterion [7] and Hannan-Quinn information criterion [49], respectively. Figures from
5.4 to 5.9 show the corresponding MGIC measures of MoAR(P ) as functions of P

for four different values of K. These figures show that MGIC values give a correct
AR model order estimation for different cluster number. The highest MGIC measure
corresponds to K equal to 2, 5 and 3 and P equal to 2, 3 and 5, respectively for
datasets D2, D3 and D5. These figures show that P and K are well estimated by
MGIC criterion and confirm the results found previously in figures 5.1, 5.2 and 5.3.

5.2 Recognition of transient events

Several industrial processes are carried out in long periods of steady-state running.
These states are usually interspersed with shorter periods with a nature more dynamic
corresponding to abnormal events, called transient events. TRACE dataset is a sample
of transient events classification Benchmark [36]. It is obtained from EDF (Electricité
de France, of the PWR 900 MW nuclear power plant), designed to simulate different
classes of transit events (transitions to different operation states, major disturbances,
actuator failures and instrumentation failures) in a nuclear power plant, produced
in the form of time series data and reported by Davide Roverso [97]. Recognition of
transient events is a challenge for the safe and economical operation of the monitored
process.

TRACE dataset contains 200 instances distributed into 4 classes, 50 for each class.
All instances are linearly interpolated and normalized to have the same length of 275
data points. TRACE dataset is tested by the different clustering techniques which
are statistically compared in terms of clustering accuracy, precision and recall. Figure
5.10 shows the quantitative performances of the obtained clusters on the TRACE
dataset. The obtained results show that MoAR outperforms KHM, GMM, K-means,
W-K-means and SS-K-means. In figures 5.10 (a), (b) and (c), clustering accuracy,
precision and recall of TRACE dataset are around 0.6 for K-means, GMM, KHM and
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(a) Accuracy

(b) Precision

(c) Recall

Figure 5.10 – Clustering performances on the TRACE dataset for K-means, KHM,
GMM, W-K-means and SS-K-means (in the left) and MoAR for P from 1 to 10 (in
the right). The parameter K is fixed to 4.

W-K-means and around 0.7 for SS-K-means. While, they are around 0.87 for MoAR
with P = 1 and near to 1.0 for MoAR with P > 1. The obtained statistics of the
clustering confirm the high performances of MoAR compared to the other approaches.

Mixture component number and AR order are selected by using MGIC(P ,K,α)
criterion. We study the parameter selection of our clustering approach for α = 2 and
α = 2 ln ln(TN). Figures 5.11 and 5.12 show the corresponding MGIC measures of
MoAR(P ) as functions of P for four different values of K. These figures show that
MGIC values give a correct AR model order estimation for different cluster number.
The highest MGIC measure corresponds to K equal to 4 and P between 2 and 5.
These figures show that P and K are well estimated by MGIC criterion and confirm
the results found previously in figure 5.10.
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(a) K = 3 (b) K = 4

(c) K = 5 (d) K = 6

Figure 5.11 – MGIC criterion for TRACE dataset. MGIC(P ,K,α) is presented for
different values of K and P . The parameter α is fixed to 2.

(a) K = 3 (b) K = 4

(c) K = 5 (d) K = 6

Figure 5.12 – MGIC criterion for TRACE dataset. MGIC(P ,K,α) is presented for
different values of K and P . The parameter α is fixed to 2 ln ln(TN).

5.3 Surface detection of AIBO robot

AIBO (Artificial Intelligence roBOt) robot is a dog-shaped robot with four legs
manufactured by Sony. It comprises several sensors, including an accelerometer with
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Figure 5.13 – Two time series from the RobotSurface dataset. Solid and dashed lines
correspond to the robot walking respectively on carpet and cemented surfaces.

three-axis. We consider a dataset created by Vail et al. [106] and collected by an
accelerometer with only the X-axis readings. In the experimental framework, AIBO
robot walked on two surfaces with different nature: cement and carpet. Each instance
of the dataset is a time series of 70 observations which represents one walk cycle.
The dataset contains two classes of time series describing the nature of the walking
surface of the robot (cement or carpet). Figure 5.13 shows an example of two time
series data corresponding to the robot walking respectively on carpet and cemented
surfaces. The cemented surface is considered rigid and produces more reactive forces
than the carpet surface.

The robot dataset is tested by the different clustering techniques. These techniques
were statistically compared in terms of clustering accuracy, precision and recall. Fig-
ure 5.14 shows the quantitative performances of the obtained clusters on the robot
datasets. The obtained results show that MoAR outperforms KHM, GMM, K-means,
W-K-means and SS-K-means. In figures 5.14 (a), (b) and (c), clustering accuracy,
precision and recall of the dataset are between 0.4 and 0.5 for K-means and W-K-
means, between 0.5 and 0.6 for GMM and KHM, and around 0.7 for SS-K-means.
These measures are between 0.8 and 0.91 for MoAR with P = 1 and P > 3 and
equal 1.0 for MoAR with P = 2 and P = 3. The obtained statistics of the clustering
confirm the high performances of MoAR compared to the other approaches.

Parameters K and P are selected by using MGIC criterion for two different values
of α. Figures 5.15 and 5.16 show the corresponding MGIC measures of MoAR(P ) as
functions of P for four different values of K. These figures show that MGIC values
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(a) Accuracy

(b) Precision

(c) Recall

Figure 5.14 – Clustering performances on RobotSurface dataset for K-means, KHM,
GMM, W-K-means and SS-K-means (in the left) and MoAR for P from 1 to 10 (in
the right). The parameter K is fixed to 2.

give a correct AR model order estimation for different cluster number. The highest
MGIC measure corresponds to K equal to 2 and P between 2 and 3. The highest
MGIC measure corresponds to K equal to 2 and P between 2 and 3. These figures
show that P and K are well estimated by MGIC criterion and confirm the results
found previously in figure 5.14.

5.4 Experiments on Terahertz images segmentation

Terahertz imaging is an innovative technology of imaging [63, 112, 6, 4, 3, 42, 90].
Terahertz images can be measured by acquisition of sequences of Terahertz pulses,
called time series, reflected from or transmitted through a sample. Each time series is
assumed univariate and can be represented by several temporal bands behind every
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(a) K = 2 (b) K = 3

(c) K = 4 (d) K = 6

Figure 5.15 – MGIC criterion for RobotSurface dataset. MGIC(P ,K,α) is presented
for different values of K and P . The parameter α is fixed to 2.

(a) K = 2 (b) K = 3

(c) K = 4 (d) K = 6

Figure 5.16 – MGIC criterion for RobotSurface dataset. MGIC(P ,K,α) is presented
for different values of K and P . The parameter α is fixed to 2 ln ln(TN).

pixel. In this section, MoAR, K-means, W-K-means, KHM, GMM and SS-K-means
are tested on four THz images of chemical components and cork samples. Pixels
of THz images are formed respectively by 1052, 1052, 1024 and 1024 bands in the
time domain. Since Terahertz images cannot be visualized (hundreds or thousands of
bands), we present in figure 5.17 (a), figure 5.18 (a), figures 5.19 (a) and (b) the objects
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(a) (b)

Figure 5.17 – In the left, an image of four chemical compounds acquired in visible
spectrum. In the right, the ground truth of the THz image. The false colors green,
blue, red and yellow correspond respectively to the chemical compounds L-Valine
(0.200g), L-Tryptophan (0.100g), L-Tryptophan (0.200g) and Proline (0.200g).

(a) (b)

Figure 5.18 – In the left, an image of four chemical compounds acquired in visible
spectrum. In the right, the ground truth of the THz image. The false colors blue, or-
ange, purple and grey correspond respectively to the chemical compounds L-Lystine
(0.200g), DL-Asperic Acid (0.200g) + PE Powder (0.100g), BSA (0.075g)+ PE Pow-
der (0.125g) and BSA (0.155g).

acquired in the visible light for the validation. The ground truth of the chemical
images, the 195th band and the 285th band of the two cork THz images are shown
in figures 5.17 (b), figure 5.18 (b), figure 5.19 (c) and (d). The first chemical image
comprises four compounds, L-Valine (0.200g), L-Tryptophan (0.100g), L-Tryptophan
(0.200g) and Proline (0.200g), distributed into four false colored regions. The second
one comprises the compounds L-Lystine (0.200g), DL-Asperic Acid (0.200g) + PE
Powder (0.100g), BSA (0.075g)+ PE Powder (0.125g) and BSA (0.155g). Whereas,
the third THz image shows cork matter with some cork grains as well as some voids,
defects and cracks. The fourth image represents a small portion of the same cork
sample with higher resolution (outlined by red frame in figure 5.19 (c)). The weights

167



5. Experimental results

(a) (b)

(c) (d)

Figure 5.19 – (a) Front and (b) back images of a cork acquired in visible spectrum.
(c) The 195th band of the THz image. (d) The 195th band of a higher resolution THz
image of the portion outlined in red.

of MoAR approach and the centers of W-K-means, SS-K-means, K-means, KHM
and GMM were initialized by random values. SS-K-means was used with parameters
a = 2, b = 2 and three different values of parameter c. The segmentation of chemical
and cork images was employed respectively with 4, 4, 5 and 4 clusters.

As the ground truth of the cork Terahertz images is not very precise in our work,
the clustering techniques were statistically evaluated only for the chemical images.
So, we have used accuracy, precision and recall measures to evaluate the results. In
the case of THz images, the accuracy is the proportion of pixels correctly classified,
the precision is the percentage of classified pixels which belong to the relevant class
and the recall is the percentage of the relevant pixels which are correctly classified.
Figure 5.20 shows the first chemical Terahertz image segmentation for the six clus-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.20 – Chemical THz image 1 segmentation for K-means (a), KHM (b), GMM
(c), W-K-means (d), SS-K-means for c = 0.5 (e), c = 1 (f) and c = 2.5 (g), and
MoAR for P = 5 (h), P = 8 (i), P = 10 (j), P = 16 (k) and P = 20 (l).

tering algorithms. In figures 5.20 (a), (b), (c), (d), (e) and (g), K-means, KHM,
GMM, W-K-means and SS-K-means for c = 0.5 and c = 2.5 produce as output
over-segmented images. L-Tryptophan (0.100g) and L-Tryptophan (0.200g) clusters
are combined together in the case of K-means, KHM and GMM which clearly shows
their segmentation shortcomings. Also, L-Valine (0.200g) and L-Tryptophan (0.200g)
clusters are combined together in the case of SS-K-means for c = 2.5. L-Tryptophan
(0.200g) cluster is largely affected by noisy points in the case of W-K-means and SS-
K-means for c = 0.5. In figure 5.20 (f), SS-K-means for c = 1 shows a good segmented
regions except some points of the three compounds L-Valine (0.200 g), L-Tryptophan
(0.100 g) and Proline (0.200g) are misclassified. Figure 5.20 from (h) to (l) display
the output regions of MoAR for different values of P (5, 8, 10, 16 and 20). For P = 5,
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5. Experimental results

(a) Accuracy

(b) Precision

(c) Recall

Figure 5.21 – Clustering performances on chemical THz image 1 for K-means, KHM,
GMM and W-K-means (in the left), SS-K-means for different values of c (in the
middle), and MoAR for divers values of P (in the right).

the MoAR produces as output over-segmented images. The best image segmentations
are obtained when P surpasses 5 which appears in figures 5.20 (i), (j), (k) and (l), the
four compounds become very well identified, except some points of L-Valine (0.200g),
L-Tryptophan (0.100g) and L-Tryptophan (0.200g) are misclassified. The statistics of
the different approaches are shown in figure 5.21. The clustering accuracies have not
surpassed the 0.4 for K-means and GMM, around 0.55 for KHM, 0.76 for W-k-means,
0.7 for SS-K-Means with c = 2.5 and surpassed 0.9 for SS-K-Means with c = 0.5
and c = 1. While, these measures are around 0.5 for MoAR with P between 1 and 3
and increase near to 1.0 when P surpass 5. The precision and the recall measures are
around 0.4 for K-means and GMM, around 0.6 for KHM and between 0.77 and 0.85
for W-K-means. However, these measures are around 0.5 for MoAR with P between
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5. Experimental results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.22 – Chemical THz image 2 segmentation for K-means (a), KHM (b), GMM
(c), W-K-means (d), SS-K-means for c = 0.5 (e), c = 1 (f) and c = 1.5 (g), and
MoAR for P = 3 (h), P = 5 (i), P = 7 (j), P = 8 (k) and P = 10 (l).

1 and 3 and become near to 1.0 when P surpass 5. The obtained measures confirm
the results previously illustrated and show the high performances of our approach.

Figure 5.22 shows the second chemical Terahertz image segmentation for different
algorithms. In figures 5.22 (a), (b), (c), (d), (e) and (g), K-means, KHM, GMM, W-
K-means and SS-K-means for c = 0.5 and c = 1.5 produce as output over-segmented
images. BSA (0.075g)+ PE Powder (0.125g) and BSA (0.155g) clusters are combined
together in the case of K-means, KHM and GMM which clearly shows their seg-
mentation shortcomings. L-Tryptophan (0.200g) cluster is largely affected by noisy
points in the case of W-K-means and SS-K-means for c = 0.5. In figure 5.22 (f),
SS-K-means for c = 1 shows a good segmented regions except some points of the
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5. Experimental results

(a) Accuracy

(b) Precision

(c) Recall

Figure 5.23 – Clustering performances on chemical THz image 2 for K-means, KHM,
GMM and W-K-means (in the left), SS-K-means for different values of c (in the
middle), and MoAR for divers values of P (in the right).

three compounds L-Valine (0.200 g), L-Tryptophan (0.100 g) and Proline (0.200g)
are misclassified. Figure 5.22 from (h) to (l) display the output regions of MoAR for
different values of P (2, 5, 10, 13 and 15). For P = 2, the MoAR produces as output
over-segmented images. The best image segmentations are obtained when P between
3 and 9 which appears in figures 5.22 (i), (j) and (k), the four compounds become very
well identified, except some points of L-Valine (0.200g) and L-Tryptophan (0.100g)
are misclassified. The statistics of the different approaches are shown in figure 5.23.
The clustering accuracies have not surpassed the 0.7 for K-means, GMM, KHM and
W-k-means, between 0.5 and 0.7 for SS-K-Means with c = 0.5 and c = 1.5 and
around 0.85 for SS-K-Means with c = 1. While, these measures do not surpass 0.7
for MoAR with P between 1 and 3 and P ≥ 3, and increase near to 1.0 when P
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5. Experimental results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.24 – Cork THz image 1 segmentation for K-means (a), KHM (b), GMM (c),
W-K-means (d), SS-K-means for c = 0.5 (e), c = 1 (f) and c = 2 (g), and MoAR for
P = 1 (h), 3 (i), 7 (j), 11 (k) and 15 (l).

between 4 and 9. The precision and the recall measures are between 0.5 and 0.7 for
K-means, GMM, KHM and W-K-means. However, these measures are around 0.68
for MoAR with P ≤ 3 and P ≥ 10, and become near to 1.0 when P between 4 and 9.
The obtained measures confirm the results previously illustrated and show the high
performances of our approach.

Figure 5.24 shows the segmentation outputs of the different clustering algorithms
on the cork image 1. K-means, KHM, GMM, W-K-means and SS-K-means produce
a wrongly segmented regions in figures 5.24 (a), (b), (c), (d), (e), (f) and (g). These
techniques have not extract the details inside the cork and clearly illustrate the lim-
itations of the five algorithms to identify defected and cracked regions. Figure 5.24
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5. Experimental results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.25 – Cork THz image 2 segmentation for K-means (a), KHM (b), GMM (c),
W-K-means (d), SS-K-means for c = 0.5 (e), c = 1 (f) and c = 2 (g), and MoAR for
P = 1 (h), 5 (i), 10 (j), 12 (k) and 15 (l).

from (h) to (l) display the obtained regions of MoAR for P equal to 1, 3, 7, 11, and 15.
The cork grains, the voids, the defects and the cracks are well segmented for different
values of P .

Figure 5.25 shows the segmentation outputs of the different clustering algorithms
on the cork image 2. The segmentation by K-means, KHM, GMM, W-K-means and
SS-K-means produce a wrongly regions in figures 5.25 (a), (b), (c), (d), (e), (f) and
(g). These techniques have not identify the defects and the cracks inside the cork
portion and clearly illustrate their limitations compared to MoAR approach for P

equal to 1, 4, 8, 10, and 12.
Figures 5.26, 5.27, 5.28 and 5.29 show plots of the MGIC criterion for divers
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(a) K=2 (b) K=4

(c) K=6 (d) K=8

Figure 5.26 – Modified generalized information criterion (MGIC) computed after the
chemical THz image 1 segmentation for different values of parameters P and K.

(a) K=2 (b) K=4

(c) K=6 (d) K=8

Figure 5.27 – Modified generalized information criterion (MGIC) computed after the
chemical THz image 2 segmentation for different values of parameters P and K.

orders of MoAR approach on the four THz images. The parameter α is fixed to
2(ln(ln(TN))). The best orders are around 8, 7, 6 and 5 respectively in the case
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5. Experimental results

(a) K=2 (b) K=5

(c) K=10 (d) K=15

Figure 5.28 – Modified generalized information criterion (MGIC) computed after the
cork THz image 1 segmentation for different values of parameters P and K.

(a) K=2 (b) K=4

(c) K=8 (d) K=12

Figure 5.29 – Modified generalized information criterion (MGIC) computed after the
cork THz image 2 segmentation for different values of parameters P and K.

of the chemical image, the cork image and the moth image. The obtained statistics
confirm the results previously illustrated in figures 5.20, 5.22, 5.24 and 5.25.
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6. Conclusion

6 Conclusion
In this paper, we have proposed a new time series clustering approach. The MoAR

approach assumes that the time series were generated by AR models and consists
to recover the original autoregressive models describing each cluster of time series.
The parameters of MoAR model are automatically estimated by using a modified
information criterion. Our approach is tested on various artificial, transit, robotic
and Terahertz datasets. Experimental results show that MoAR approach allows for
interesting transient events discrimination for a safe monitoring process, successful
detection of the surface nature of a mobile robot, and more accurate Terahertz image
segmentation than other clustering techniques such as K-means, KHM, W-K-means,
GMM and SS-K-means.

Our approach is shown so attractive to achieve the best clustering performances.
Note that the sensitivity to initial starting conditions decreases the clustering accu-
racy. Furthermore, our approach deal all the features with equal importance. Fea-
ture weighting techniques can improve the accuracy of the analysis. These problems
haven’t been addressed in this paper and require further studies. In further work, we
will deal with the initialization of the weights of AR models and the scores of the
features.
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Conclusion

Dans cette thèse, nous nous sommes intéressés au problème d’analyse d’images
Térahertz, en proposant plusieurs approches de classification non supervisées. En ré-
sumé, trois limites ont été identifiées dans les approches de classification existantes, et
pour lesquelles nous avons proposé des solutions. En premier lieu, nous avons abordé
le problème d’initialisation des centres de la technique de classification K-means. En
deuxième lieu, nous avons abordé la sélection des données à travers la pondération
de caractéristiques et l’échantillonnage aléatoire statistique pour la classification des
pixels. En dernier lieu, nous avons intégré la propriété de corrélation des séries chrono-
logiques pour améliorer le processus de classification. Nos réalisations et contributions
peuvent être résumées comme suit.

Dans le premier chapitre, nous avons proposé une nouvelle approche de segmen-
tation basée sur la classification et l’échantillonnage statistique. L’approche proposée
est une reformulation de la technique K-means dans le cadre de l’échantillon d’en-
sembles ordonnés pour surmonter le problème d’initialisation des centres. Des tests
réalisés sur différents ensembles de données de synthèse et d’images Térahertz ont
permis d’évaluer la performance de la méthode proposée par rapport à l’état de l’art.
Toutefois, cette approche est face à des défis pour la sélection des caractéristiques
pertinentes et le choix de la caractéristique concomitante utilisée pour trier les pixels.
Dans le deuxième chapitre, nous avons abordé une stratégie de pondération de ca-
ractéristiques et une procédure d’échantillonnage aléatoire simple dans le processus
de classification pour la segmentation d’images Térahertz. L’estimation automatique
de la taille de l’échantillon aléatoire et le nombre de caractéristiques sélectionnées est
également proposée.

Dans les deux premiers chapitres, la propriété de corrélation entre les caractéris-
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Conclusion

tiques de l’image Térahertz n’est pas utilisée dans le processus de classification. Dans
les deux chapitres suivants, nous avons introduit une nouvelle famille de techniques
de classification des séries chronologiques basées sur la régression et qui sont adap-
tées aux séries chronologiques. Nous avons supposé que les valeurs associées à chaque
pixel d’une image Térahertz sont échantillonnées à partir d’un modèle autorégressif.
La segmentation de l’image est alors vue comme un problème de classification de
séries chronologiques. Ainsi, dans le troisième chapitre, la classification est formulée
comme un problème d’optimisation non-linéaire. L’ordre du modèle et le nombre de
classes sont automatiquement estimés en utilisant un critère de sélection de modèle.
Dans le quatrième chapitre, nous avons présenté finalement une généralisation des
résultats obtenus dans le troisième chapitre. Au lieu de considérer un problème de
moindres carrés, nous avons proposé une approche de classification probabiliste basée
sur le mélange de modèles autorégressifs. Les paramètres de l’approche proposée sont
automatiquement estimés en utilisant un critère de sélection de modèle. Les résultats
expérimentaux ont montré que cette approche permet de segmenter des images Téra-
hertz avec plus de précision que d’autres approches de l’état de l’art. Cette approche
est utilisée aussi pour détecter la nature de la surface d’un robot mobile et discrimi-
ner des événements transitoires pour assurer un fonctionnement sûr et économique
du processus de surveillance.

Dans cette thèse, la classification des séries chronologiques a suscité un vif intérêt
pour la segmentation d’images Térahertz. Comme déjà décrit dans les deux derniers
chapitres, les contributions réalisées pourraient trouver des solutions à d’autres pro-
blèmes réels relevant de plusieurs domaines d’application. En effet, elles peuvent être
utilisées en finance pour regrouper les sociétés cotées en bourse en examinant leurs
séries chronologiques de rendements. Nous planifions l’orientation des contributions
dans le domaine de la biomédecine pour étudier les signaux biologiques EEG et dis-
tinguer les séries chronologiques causées par des personnes malades ou sains.
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