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ABSTRACT

The problem of the stability of the hydrogen atom when it is released from a con-
fining environment is studied. The stability is analysed in terms of excitation and
ionization probabilities of the final state for different initial states. A spherical con-
fining cavity of finite barrier height v0 with inner radius r0 and thickness ∆ with
the nuclear position at its center has been considered. The ionization probability
presents different sharply peaked, non-symmetric local maxima as a function of the
confinement size. This behaviour is related to the energy of the initial confined state
that presents several maxima and minima in a kink-like structure as a function of
the confinement size. The physical origin of these effects has been explained in terms
of tunnelling and re-tunnelling of the atomic states. The sudden approximation and
the analytic continuation method have been employed.
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1. Introduction

It is well known that the energy levels of a confined system are different from those
of the free system, hence its physical and chemical properties such as the atomic size,
electronic structure, laser induced transition and excitation probabilities or chemical
reactivity are modified when the atom is confined, see e.g. Refs. [1–10]. This has
motivated a lot of interest in these systems for applications in different areas. For
example the use of nanostructures as atomic and molecular containers [11–14], which
could be very convenient for the storage and transport of hydrogen for its use as a
clean source of energy [15], or in Medicine to get better radiopharmaceuticals [16, 17].
Other interesting applications would be the fabrication of semiconductors as quantum
dots [18], or in optoelectronics with atomic levels tuned to provide specific emission
features [19], and for the separation and diffusion of molecules through nanopores of
low-dimensional carbon materials [20] or hydrogen and deuterium for its use as energy
sources [21, 22].

In view of these kind of applications one may pose the question of the stability
of the encapsulated species when they are suddenly released from confinement. For a
possible use as nanocontainers, the encapsulated species should remain stable when
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they are removed from confinement. The stability should not be taken from granted
because the energy levels of the confined species are different from those of a free atom
or molecule. A physical picture is to consider that the cavity exerts pressure on the
confined atom, and this pressure disappears when the atom leaves the nanocapsule.
This change on the atomic conditions gives rise to instabilities (the final state without
confinement is not stationary) that may lead to ionization or dissociation in the case
of molecules. Although the change of properties of confined atoms and molecules have
been widely studied in the literature, see e.g. Ref. [23] for an extensive compilation of
results, less information is available in the literature on the stability of the atomic or
molecular species when confinement is removed [24].

Here we tackle the problem of the stability of an atom when it is extracted from
a penetrable confining environment. Stability is characterized here as the ionization
probability of a confined atom when it is released from confinement. We study a simple
confinement situation that contains relevant physical aspects of the problem. We con-
sider a confined hydrogen atom which, despite its simplicity, it can help to understand
how other more complex systems behave under confinement. A spherical confining
cavity of finite barrier height v0 with inner radius r0 and thickness ∆ with the nuclear
position at its center has been considered. This is a model of penetrable confining
environments [25–28] which will introduce new effects not described by impenetrable
walls [24]. In this work we shall study the s states of the hydrogen atom. We focus on
the effects of the confinement size on the stability of the final states when the atom is
released. We assume that the time needed to eliminate confinement can be neglected.
Under this approximation one can obtain numerically exact solutions that will allow
us to understand the time evolution of the atom when it is released. These solutions
can be employed as a starting point for more elaborate descriptions of the extraction
of confined species. Atomic units are used through out this work.

2. Methodology

We consider a hydrogen atom confined by a finite spherical barrier, vc(r),

Hc = H + vc(r), (1)

where H is the Hamiltonian of the free hydrogen atom

H = −
1

2
∇2 −

Z

r
, (2)

with Z the nuclear charge and vc(r) the confining potential

vc(r) =

{

v0 if r0 ≤ r ≤ r0 + ∆
0 otherwise,

(3)

where, r0, is the inner radius, v0, the height and, ∆, the width of the barrier.
We assume that the confined atom is in a stationary state, Ψc

nlm

Hc Ψc
nlm(~r) = Ec

nl Ψ
c
nlm(~r). (4)

Due to the spherical symmetry of the confinement barrier, the confined state can be
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written as

Ψc
nlm(~r) =

uc
nl

(r)

r
Ylm(Ω). (5)

As in our previous work [24], the analytic continuation method [29–31] has been used
to obtain all the radial functions involved in the calculation. The radial Schrödinger
equation is written as

d2ul

dr2
+

[

2E +
2Z

r
−

l(l + 1)

r2

]

u = 0 (6)

An uniform grid in the radial coordinate is employed. A polynomial expansion of the
radial function in each interval is carried out

u(r) =

{

rl+1
∑

N

i=0 air
i 0 ≤ r ≤ r1

∑

N

i=0 cki(r − rk)
i rk ≤ r ≤ rk+1, k = 1, 2, . . .

(7)

The coefficients ai and cki are calculated by using a three term recursion relationship
obtained by substituting Eq. 7 into the radial Schrödinger equation, Eq. 6. The values
of the radial function and its first derivative at rk+1, k = 0, 1 . . ., needed to build
the solution around that point, are obtained from the series at the previous tabular
point, while at r0 = 0, the regularity and normalization conditions are used. A step
size of 10−3 and a value of N = 20 has been employed. Bound state energies are
calculated carrying out inward and outward integrations and imposing continuity of
the logarithmic derivative at an intermediate point.

The ionization probability, PI , is calculated as

PI =

∫

∞

0

dE |Cnl(E)|2, (8)

where |Cnl(E)|2 dE represents the probability that the electron, initially in the Ψc
nlm

confined state, becomes ionized with energy between E and E +dE when confinement
is removed. Within the sudden approximation here employed, the Cnl(E) distribution
functions are obtained as

Cnl(E) =

∫

∞

0

dr uf
El(r)u

c
nl(r), (9)

where uf
El

(r) is the reduced radial function of the ionized hydrogen atom with energy
E and orbital angular momentum l, normalized in the energy scale

∫

∞

0

dr uf
El(r)u

f
E′l(r) = δ(E − E′). (10)

The ionization probability can also be obtained in terms of PB, the probability that
the atom remains in a bound state when confinement is removed, as

PI = 1 − PB, (11)
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where

PB =
∞

∑

n′=1

|Cnl

n′ |2, (12)

and

Cnl

n′ =

∫

∞

0

dr uf
n′l(r)u

c
nl(r). (13)

Finally, it is worth mentioning here the energy of the initial confined state, Ec
nl

, is
not equal to the energy of the final unconfined state, Ef , evaluated as the expectation
value of the unconfined Hamiltonian in the final state. The relation between these two
energy values is

Ec
nl = Ef +

∫

d~r Ψc
nlm(~r)∗ vc(r)Ψ

c
nlm(~r). (14)

3. Results and discussion

Here we have employed fixed values of the potential height, v0 = 2.5 and width,
∆ = 5, as in [27]. Energies and ionization probabilities are studied as a function of the
confinement size r0.

In Figure 1, we plot the energy of the confined 3s-6s states as a function of the
confinement size r0. The energy of each orbital is negative in the whole range and
presents local maxima and minima at different r0 values. This function is neither
smooth at the maxima nor at the minima. The position of the maxima of one orbital
energy coincides with the position of the minima of the following orbital, with very
similar energy values. The number of maxima is equal to the principal quantum number
of the orbitals. As it could be expected, those orbitals with a larger spatial extension
are affected by confinement at larger distances. Both, the oscillatory behaviour of the
orbital energy with the sawtooth structure shown in Figure 1, and the fact that the
energy is always negative, were not obtained for an infinite barrier [24]. This is because
for a finite barrier the orbital may extend over the entire space while for the infinite
barrier the orbital is confined between the nucleus and the barrier.

Figure 1

We focus on the 4s orbital first which is representative for the rest of cases. For
a barrier size of r0 = 70, the orbital is practically unaffected by confinement. As
one considers smaller confinement sizes, the energy of the orbital increases. This is
because the state shrinks and the electronic charge becomes more localized in space.
A kink is found at r0 = 26.2, corresponding to a local maximum of the energy for this
confinement size. For the same r0 value, a local minimum, also with a kink structure, is
found for the 5s orbital energy. The two energy values are very similar, E4s = −0.01821
and E5s = −0.01820.

In order to elucidate the physical origin of these kinks in the energy we start by
analysing the 4s orbital. In Figure 2, we plot the reduced radial function of the 4s

state for r0 = 27 and r0 = 26, i.e. before and after the kink. The unconfined reduced
radial orbital is also shown for the sake of comparison. For r0 > 26.2 we have the usual
trend: the orbital is within the confinement region and smaller confinement sizes give
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rise to orbitals less extended in space with larger energies. For a confinement size of
r0 = 26 the state has tunnelled out and the charge density is beyond the barrier. The
radial function is practically negligible inside the confinement region and it looks like
a ground state wave function outside the barrier, i.e. it is nodeless for r ≥ r0 +∆. The
nodes of the 4s reduced radial orbital for r0 = 26 are not visible in the scale of the
figure. This sudden enhancement of confined orbitals by penetrable barriers was also
obtained in Ref. [27] for the 1s, 2s and 2p states of the hydrogen atom for r0 between
1.45 and 1.59 and for some semifilled shell atoms [28].

Figure 2

As the confinement size is reduced from 26 to 15, the 4s orbital lies mostly outside
the wall and its energy decreases as r0 decreases within this range. The 3s orbital
is inside the confinement region and, as the confining size decreases, the orbital is
compressed to the nucleus and its energy increases. At r0 = 14.52, both orbitals
present very similar energies, E3s = −0.02664 and E4s = −0.02663. For r0 values
below 14.52 an abrupt change in the slopes is found in such a way that for the 4s

the energy increases as r0 decreases and the opposite holds for the 3s. This is due to
the tunnelling of both orbitals as it is shown in Figure 3, where we plot the radial
functions of the confined 3s (upper panel) and 4s (lower panel) orbitals for r0 = 14,
15 and 26. For r0 = 15 the 3s orbital behaves like a second excited state within the
confinement region (two nodes) while for r0 = 14 it looks like a ground state outside
the barrier (nodeless in that region) The nodes are imperceptible within the scale of
the figure. The opposite holds for the 4s orbital, which enters into the confinement
area for r0 < 14.52 and behaves like a second excited state there with two visible
nodes inside the confinement volume (the third node cannot be distinguished within
the scale of the figure). As r0 further decreases from 14, the energy of the 4s increases
because the orbital contracts into the inner region while the 3s, outside the barrier,
becomes more bound. This gives rise to the opposing sawtooth structure with facing
peaks shown in Figure 1.

Figure 3

This pattern of tunnelling and re-tunnelling processes is repeated for all states for
different r0 values. As r0 decreases the separation between the maxima and minima
becomes narrower and more orbital pairs become involved in a smaller r0 range. This
is illustrated in Figure 4, where we plot the reduced radial function of the 1s to 5s

orbitals for r0 = 5.9, 6.0 and 6.1 in the upper, medium and lower panels respectively.
The potential is also shown in the figures with arbitrary units in the y axes. For
r0 = 5.9 one can find in the inner region the 1s state with zero nodes and the 5s with
one visible node. These states present a typical ground and first excited state structure
in this region and are negligible outside the confinement region. The 2s, 3s and 4s
orbitals present the typical ground and excited states behaviour outside the wall with
zero, one and two nodes beyond the barrier. The other nodes of these orbitals cannot
be distinguished within the scale employed. These orbitals are practically negligible
inside the confinement region. For r0 = 6.0 the scheme is the same with a change of
roles between the 4s and 5s orbitals, the former has tunnelled in while the later has
tunnelled out. Finally, for r0 = 6.1 the change of roles is between the 3s and 4s states.
This behaviour has an effect on the energy of the orbitals that presents a sawtooth
structure. Within this r0 range the 1s orbital is inside while the 2s orbital is outside
the confinement region. The energy of the 3s has a peak at r0 = 6.1 that is a minimum,
and another peak at r0 = 6.0 that is a maximum. The peak at r0 = 6.0 of 4s orbital
is a minimum and the maximum is located at r0 = 5.9, the same position where one
minimum of the 5s orbital energy is located.
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Figure 4

In general, as the barrier approaches the nucleus from the unconfined situation, and
the charge becomes compressed through the nucleus, the orbital energy increases. At
a given r0 value, a ns orbital tunnels through the barrier to the outermost region and
the (n+1)s orbital, that was outside, comes into the confinement area. The first time
this ns orbital tunnels out, it will be nodeless in the outermost region. As r0 further
decreases, the ns state will tunnel back in and the (n − 1)s will tunnel out. The first
time the ns orbital tunnels back inside the confinement region it will have n−2 nodes
in that region. When the charge density is inside the barrier, the energy increases as
r0 decreases and the opposite holds when the charge density is outside. The change
on the slope is given by tunnelling, which takes place for a particular r0 value, giving
rise to kinks in the energy as a function of r0. For successive tunnellings the number
of nodes outside the confinement region will increase by one and the number of nodes
inside will decrease by one. This gives a limitation on the number of tunnellings of a
given orbital and therefore in the number of maxima and minima of the energy versus
r0. As it should be the case, the global energy ordering the orbitals depends on the
total number of nodes distributed according to Sturm’s theorem.

The abrupt changes on the electronic charge distributions for different confinement
sizes will have an impact on the ionization probability, PI . In Figure 5 we plot the
ionization probability of the different states here studied as a function of the inner
radius of the barrier. In the inset, we show the ionization probability only for the 4s,
5s and 6s orbitals for r0 between 20 and 32. For r0 values different from those where
tunnelling takes place, the ionization probability shows an oscillatory behaviour, as it
was the case of the infinite barrier [24]. A significant rise in the ionization probability
of the 4s state is observed as r0 is reduced from r0 = 35 to r0 = 26.2. For these values
the orbital lies inside the confinement region. The tunnelling of the 4s orbital gives
rise to a steep drop of the ionization probability. The 5s orbital tunnels in at this r0

value causing an abrupt rise in its ionization probability. The ionization probability
of this orbital is further increased as r0 is diminished and it drops abruptly when the
5s orbital tunnels out again at r0 = 24.39, where the 6s tunnels in and its ionization
probability increases. This scheme is repeated as successive orbitals tunnel inside and
outside the barrier for different confinement sizes. Thus, when the charge density is
outside the cage, the electron is more likely to remain bound when confinement is
removed, and when it is inside the cage, the ionization probability increases. If one
characterizes the stability of a confined state as the probability of not being ionized
when confinement is removed, we find that some more stable initial states can be
obtained by reducing the size of the confining box. In the neighbourhood of the critical
radii where orbitals tunnel, the energies of the tunnelling orbitals are very similar
but the charge distribution is very different. Thus, the ionization probability of these
two near degenerate orbitals is very different. Therefore, for these confining barriers
the energy of the initial confined states is not an indication of the stability after
confinement removal.

Figure 5

When the ionization probability drops sharply for a given initial state, the probabil-
ity that the atom remains in a excited bound state increases, see Eq. 11. For an initial
4s confined orbital, we plot in Figure 6 the transition probabilities to each possible
final unconfined bound state, P4s→ns. Results for confining sizes of r0 = 26 and r0 = 27
are shown. The general trend is similar, but there quantitative differences are found.
For r0 = 27 the final unconfined state with the largest probability is the 4s, while for
r0 = 26 is the 5s with a substantially higher value of the probability.
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Figure 6

In Figure 7, we plot in the upper panel the free 4s orbital and the confined 4s orbital
for r0 = 27. These two orbitals are similar within the confinement region which leads
to an important overlap between them. In the lower panel of Figure 7 we plot the
confined 4s orbital for r0 = 26 and the free 5s orbital. For this confinement situation,
the 4s orbital has tunnelled out and the charge distribution is negligible within the
confinement region. Outside the barrier, this orbital is similar to the free 5s orbital.
The overlap with the free 4s is strongly hindered while the overlap with the free 5s is
increased, giving rise to a higher probability for the later.

Figure 7

The effect of the barrier height and width has been investigated by carrying out
calculations for different v0 and ∆ values. The same qualitative behaviour of the ion-
ization probability of the states shown in Figure 5 is obtained for v0 values between
1 and 20 and ∆ values between 1 and 10. For fixed ∆, as v0 increases the position of
the peaks is shifted to larger r0 values. For example, for ∆ = 5, the local maximum
of the ionization probability of the 3s orbital located at r0 = 6.04 for v0 = 2.5, is at
r0 = 5.85 for v0 = 1 and at r0 = 6.30 for v0 = 10. The height of the peaks increases as
v0 does. Thus the value of this local maximum is 0.24 for v0 = 1, 0.27 for v0 = 2.5 and
0.28 for v0 = 10. At fixed v0, lower values of ∆ leads to lower peaks shifted towards
larger r0 values. For example, the local maximum of the 3s orbital located at r0 = 6.04
for v0 = 2.5 and ∆ = 5, is shifted to r0 = 6.17 and r0 = 6.30 for ∆ = 2 and ∆ = 1
respectively for the same v0. The height is reduced from 0.27 for ∆ = 5 to 0.26 and
0.21 for ∆ = 2 and ∆ = 1 respectively. Higher barriers lead to wider peaks of the
ionization probability because the state tunnels out (reducing abruptly its ionization
probability) at smaller r0 values. Narrower barriers give rise to wider ionization prob-
ability peaks because for smaller ∆ values the the state tunnels in at larger r0 values.
In both cases, the effect is not very significant in the range considered.

4. Conclusions

The stability of a hydrogen atom after leaving confinement is studied in terms of the
ionization probability of its different confined levels. A model of penetrable spherical
barrier is considered for the confinement. It has been assumed that the time needed to
extract the atom is small. Only s states have been considered in this study. The ion-
ization probability of a given state presents different sharply peaked, non-symmetric
maxima as a function of r0. This behaviour has been interpreted in terms of the tun-
nelling outside and inside the barrier of confined levels for different confinement sizes.
This also leads to a sawtooth structure of the energy when it is plotted as a func-
tion of the confinement radius. When a state tunnels out through the barrier, another
state tunnels inside the confinement region and both present very similar energies,
but the balance between the kinetic energy and the potential energy is different when
the orbital is inside or outside the barrier. The position of the nodes is modified in
such a way that, the first time the ns orbital tunnels outside the confinement region
it is nodeless in that domain. In successive tunnelings the number of nodes outside
the barrier is increased by one while the opposite holds when the orbital tunnels back
inside the confining region. This leads to a limitation of the number of tunnelings of
a given orbital and therefore in the number of peaks of the ionization probability as
a function of r0. When the state leaves the confinement region, the ionization prob-
ability decreases abruptly and the probability that the atom is in a excited bound
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state increases. The opposite holds when the orbitals tunnels back in the confinement
region.

Acknowledgements

AS would like to thank Dra. Ma Pilar de Lara Castells for many fruitful discussions
and encouraging conversations during the realization of this and other works.

Funding

This work was partially supported by the Spanish Dirección General de Investigación
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[5] J. Sabin, E. Brändas and S. Cruz, editors, Theory of Confined Quantum Systems (Elsevier,

Oxford, UK, 2009).
[6] J.P. Connerade, Journal of Physics: Conference Series 438, 012001 (2013).
[7] K.D. Sen, editor, Electronic Structure of Quantum Confined Atoms and Molecules

(Springer-Verlag, Switzerland, 2014).
[8] S. Lumb, S. Lumb and V. Prasad, Phys. Rev. A 90, 032505 (2014).
[9] R. Cabrera-Trujillo, R. Méndez-Fragoso and S.A. Cruz, Journal of Physics B: Atomic,

Molecular and Optical Physics 49, 015005 (2015).
[10] S. Lumb, S. Lumb and V. Prasad, Phys. Lett. A 379, 1263 (2015).
[11] C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng and M.S. Dresselhaus, Science 286,

1127–1128 (1999).
[12] P. Moriarty, Reports on Progress in Physics 64, 297–381 (2001).
[13] A.J. Horsewill, K.S. Panesar, S. Rols, M.R. Johnson, Y. Murata, K. Komatsu, S. Ma-

mone, A. Danquigny, F. Cuda, S. Maltsev, M.C. Grossel, M. Carravetta and M.H. Levitt,
Physical Review Letters 102, 013001 (2009).

[14] A. Krachmalnicoff, R. Bounds, S. Mamone, S. Alom, M. Concistre, B. Meier, K. Kouril,
M.E. Light, M.R. Johnson, S. Rols, A.J. Horsewill, A. Shugai, U. Nagel, T. Room, M.
Carravetta, M.H. Levitt and R.J. Whitby, Nature Chemistry 8, 953 (2016).

[15] K. Ayub, International Journal Of Hydrogen Energy 42, 11439 (2017).
[16] D.W. Cagle, S.J. Kennel, S. Mirzadeh, J.M. Alford and L.J. Wilson, Proceedings of the

National Academy of Sciences 96, 5182–5187 (1999).
[17] T. Li and H.C. Dorn, Small 13, 1603152 (2017).
[18] L. Jacak, O. Hawrylak and A. Wojs, Quantum Dots (Springer-Verlag, Berlin-Heidelberg,

1998).
[19] M. Anaya, A. Rubino, T.C. Rojas, J.F. Galisteo-López, M.E. Calvo and H. Mı́guez,
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Figure captions

Figure 1. Energy of the confined 3s to 6s states as a function of the confinement
size, r0.

Figure 2. Reduced radial functions, u(r), of the confined 4s for confinement sizes of
r0 = 26 and r0 = 27. The radial orbital of the unconfined atom is also shown.

Figure 3. Upper panel: For the 3s orbital, reduced radial functions, u(r), for
r0 = 26, 15 and 14. Lower panel: The same for the 4s orbital.

Figure 4. Upper panel: Reduced radial functions, u(r), of the 1s to 5s orbitals for a
confinement size of r0 = 5.9. The potential is also shown in arbitrary units in the y

axes. Medium panel: The same orbitals for r0 = 6.0. Lower panel: The same orbitals
for r0 = 6.1.

Figure 5. Ionization probability of the 1s-6s states as a function of r0. In the inset
the ionization probability in a reduced r0 range is shown for the 4s, 5s and 6s
orbitals.

Figure 6. Transition probability to bound s states of the unconfined atom for an
inital 4s confined state for confinement sizes of r0 = 26 and r0 = 27. The solid lines
are for guiding the eye.

Figure 7. Upper panel: Reduced radial function, u(r), for a confined 4s orbital for
r0 = 27 as compared with the free 4s orbital. The potential in arbitrary units in the
y axes is also plotted. Lower panel: Reduced radial function, u(r), for a confined 4s
orbital for r0 = 26 as compared with the free 5s orbital. The potential in arbitrary
units in the y axes is also ploted.
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