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Abstract: The Spanish dehesas have been severely affected by human activities that date to the
prehistoric period and have suffered accelerated decline since the 1980s. Holm oak (Quercus ilex
subsp. ballota (Desf.) Samp.) is a key component of this system, and its acorns provide an important
food source for wildlife and domesticated livestock. Our earlier work showed structured variation
in acorn morphology and biochemistry. Here, we used chloroplast and nuclear microsatellites
to detect genetic structure among populations of Q. ilex from the major biogeographic regions of
Andalusia. We found high levels of spatial differentiation with chloroplast DNA indicating little
seed dispersal among populations. Spatial differentiation was weaker for nuclear DNA, presumably
as a result of more widespread pollen dispersal and its larger effective population size. The Baetic
Cordillera (Cádiz) population consistently appeared well separated from populations of the northern
Sierra Morena, suggesting that the Guadalquivir Valley has played an important role in determining
population divergence. This may be, in part, evolutionary, as suggested by chloroplast DNA, and,
in part, a result of human-induced population isolation, as Q. ilex has been removed from the
Guadalquivir Valley. Evolutionary gene flow rates were greater than contemporary rates, which were
limited to unidirectional gene flow from Córdoba to other populations in the Sierra Morena and,
surprisingly, to the southern population at Almería. The inconsistency between evolutionary and
recent migration rates suggests an effect of anthropogenic activity over the last few generations of
Q. ilex.
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1. Introduction

Holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) is the dominant tree species in natural
forest ecosystems over large areas of the western Mediterranean Basin and is the distinctive element
of the Spanish agrosilvopastoral ecosystem “dehesa”. Both holm oak natural forest and the dehesa
are seriously threatened by several factors, the most important of which are of anthropogenic origin:
overexploitation, poor management practices, and fire, as well as diseases and adverse environmental
conditions [1]. These have contributed to a severe decline observed since the early 1980s [2,3]. Lack of
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regeneration that has led to populations dominated by aging individuals is one of the greatest threats to
these ecosystems and is likely to become more problematic under anticipated climate change, with high
temperatures and severe drought episodes expected for southern Spain and other Mediterranean
countries [4,5].

Forest restoration and reforestation as well as sustainable management were major objectives for
the afforestation programs implemented in Spain at the end of the 20th century and the beginning of
the 21st, promoted by the European Union which established a Community aid scheme for forestry
measures in agriculture lands [6]. Q. ilex has become a priority species to achieve these objectives.
The ultimate goal requires the selection of “elite” genotypes in terms of higher germination rates,
increased acorn production, and desirable quality traits related to nutritional values, as well as
adaptation to adverse biotic and abiotic stresses. This selection should be directed by phenotypic,
physiological, and molecular analyses. Our group is carrying out a project in which variability
in a number of traits in Andalusian holm oak populations is being analyzed. At the phenotypic
level, we have shown the existence of differences in tolerance to drought stress and resistance to
Phytophthora cinnamomi Rands infection among populations from different geographical locations;
the differential response has been characterized at the physiological (water status and photosynthesis)
and proteomic levels [7–9]. In an attempt to analyze variability and differences among provenances
of holm oak from Andalusia, acorn morphometry and Near infrared reflectance spectroscopy (NIRS)
chemical analysis as well as protein profiling in pollen and acorns were performed [10–12]. We found
high levels of variability within and between populations. Although spatial grouping of populations
was evident, spatially intermediate populations clustered differently according to the analysis
employed (NIRS or proteomics), raising the question as to what extent population genetic structure
can explain spatial variations in these phenotypic traits.

Here, we use molecular data to investigate whether regional structure that might be associated
with past and contemporary gene flow can be detected. Any observed genetic structure would then
form the basis for strategies for the selection of phenotypic traits and, possibly, the selection of seed
sources for planting. High genetic diversity is expected for holm oak considering its very long life;
fecundity, allogamous, and anemophilous reproductive traits; and promiscuity and long history of
introgression with other species [4,12–14]. We hypothesize that genetic structure among populations
within Andalusia could be significant because of its importance as a glacial refugium. For many species,
the current spatial structure of genetic diversity is determined, in part, by past climatic changes that
have led to population shifts or by demographic changes [15]. The Iberian Peninsula is considered an
important glacial refugial region within Europe [16,17]. Several phylogeographic studies have shown
complex patterns of sub-refugia within the Iberian Peninsula [18], of which the Baetic Cordillera
recurs as a sub-refugium for a wide range of taxa, including tree species [19–22]. A chloroplast
phylogeography of Q. ilex revealed a unique chlorotype from southern Andalusia, suggesting an
ancient refugial location [23]. However, a multi-marker genetic study of the Iberian Peninsula suggested
widespread gene flow in Q. ilex, with relatively little differentiation [13]. Paleoclimate modeling of
southern Spain has indicated that it was likely composed of multiple upland climatic refugia within
the Baetic Cordillera and the Sierra Morena that could have been sites for species with different habitat
requirements [24].

In view of the possibility of divergence among populations of Q. ilex in Andalusia and the
likely partial genetic basis of our previously observed chemical composition and protein profiles [25],
we undertook a molecular genetic study of populations of Q. ilex from the major regions of Andalusia.
We performed nuclear and chloroplastic microsatellite analyses on 94 holm oak individuals from five
natural populations distributed across bioclimatic gradients in the Andalusian territory. Our objectives
in this research were to (1) determine levels of divergence among populations across Andalusia,
(2) estimate differences in migration at an evolutionary and contemporary scale as well as the role
of population bottlenecks on genetic diversity among the regions within Andalusia, and (3) assess
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whether differences in morphological and biochemical traits that we have previously reported are
associated with genetic divergence and gene flow within the region.

2. Materials and Methods

2.1. Populations, Plant Material, and DNA Extraction

The present study was performed with five populations covering the major bioclimatic regions
of Andalusia, southern Spain: Southeast (SAA: Almería), Southwest (BCA: Cádiz), Northeast (PCO:
Córdoba), and Northwest (APS: Seville, CTH Huelva) (Figure 1 and Figure S3; Table 1). Andalusia
is characterized by two west–east trending mountain ranges: the Sierra Morena in the north and the
Baetic Cordillera in the south (the latter composed of a Mediterranean coastal range, the Cordillera
Penibética, and an inner range, the Cordillera Subbética). The two major chains are separated by a
broad central depression, the Guadalquivir Basin. Today, Q. ilex occupies low to mid-elevations in the
two major mountain ranges, northern and southern populations being separated by the Guadalquivir
Basin. Geographical coordinates, altitude, climatic data, and soil characteristics of each surveyed
area are shown in Table 1. Twenty individuals were sampled from each locality; however, for two
localities, poor DNA amplifications resulted in fewer samples being analyzed (see Table 1 for sample
sizes). Trees were sampled across the landscape to minimize the likelihood of relatedness through
seed, and no trees were sampled that were less than 10 m apart.
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Figure 1. Map of Andalusia (inset showing position of Andalusia in Spain) showing the distribution of
holm oak forest and sampling locations (see Table 1 for population codes). Blue arrows indicate inferred
seed dispersal events on basis of chloroplast DNA; green arrows show significant recent directional
gene flow (see text). Black curved lines partition populations following Barrier analyses.
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Table 1. Geographical and climatic data of the population of Quercus ilex subsp. ballota included in this study.

Site Code Sample Size Latitude (◦N) Longitude (◦W) Altitude (m)
Annual

Precipitation
(mm)

Mean Winter
Precipitation (mm)

Mean Autumn
Precipitation (mm)

Mean Monthly
Maximum

Temperature (◦C)

Mean Monthly
Minimum

Temperature (◦C)

Cádiz BCA 15 36.756628 5.452958 649 1263.6 375.1 408.9 24.9 9.8
Almería SAA 20 36.858483 2.478264 1241 277.9 248.5 103.4 25.2 8.9
Huelva CTH 19 37.919931 6.475167 364 845.6 310.2 348.4 26.3 9.5

Córdoba PCO 20 38.324489 4.827869 618 612.6 211.7 229.9 26.8 8.1
Seville APS 20 37.875678 6.474586 482 722.1 78.9 307.6 26.4 9.5
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For DNA extraction, a few leaf samples were collected from young shoots from the upper part of
each tree, transported to the laboratory on ice, abundantly washed with tap water, blot dried, frozen in
liquid nitrogen, and stored at −80 ◦C. Genomic DNA was isolated following the protocol reported by
Echevarria-Zomeño [26] and diluted to 10 ng µL−1 to carry out PCR amplifications.

2.2. Nuclear and Chloroplast Microsatellite Analysis

Ten nuclear microsatellites (SSR) and 10 chloroplast SSR markers (Table S1) previously
developed from other species, including Q. macrocarpa Michx., Q. robur L., Q. petraea (Matt.) Lieb.,
and Castanea sativa Mill., were screened in the populations collected in this study. PCR was performed
in a 20 µL volume, with the reaction mixture containing 1× PCR buffer (Biotools, Madrid, Spain),
2 mM MgCl2, 0.2 mM dNTPs, 0.5 µM of each primer, 0.5 units Taq DNA polymerase (Biotools, Madrid,
Spain), and 30 ng of DNA. Amplifications were conducted as follows: 1 cycle of 3 min at 95 ◦C,
followed by 35 cycles of 1 min at 94 ◦C, 45 s at the annealing temperature indicated in Table S1 for each
primer, and 1 min at 72 ◦C, followed by a final incubation of 7 min at 72 ◦C. The PCR reactions were
carried out in a 96-well block thermal cycler (Applied Biosystems, Madrid, Spain). PCR products were
detected using an ABI PRISM 3130xl Genetic Analyzer and GeneMapper analysis software (Applied
Biosystems, CA, USA). For capillary electrophoresis detection, forward SSR primers were labeled with
the 5′ fluorescence dyes PET, NED, VIC, and 6-FAM, and the size standard used in the sequencer was
Gene Scan 500 Liz (Applied Biosystems, CA, USA). Because of irregular amplification, the nuclear
microsatellite locus, QpZAG9, was dropped from the analyses.

2.3. Data Analysis

2.3.1. Chloroplast DNA

Chloroplasts are inherited maternally without recombination in oaks; thus microsatellite variants
were combined into haplotypes, whereby each haplotype was considered to be inherited as a single
allele. We estimated within-population haplotype diversity (cpHS), overall haplotype diversity (cpHT),
global among-population differentiation by allele identity (cpGST), and global among-population
differentiation considering the allele size (cpRST) using PERMUT software (Petit et al., 2002 [21]).
We also used PERMUT to test if the observed cpRST value was significantly different from cpGST.
This test is used to detect phylogeographic patterns (i.e., whether mutation has contributed significantly
to population differentiation).

To explore divergence among haplotypes and their sharing among populations that would
indicate evolutionary levels of successful seed migration, we constructed a haplotype network
using the median-joining (MJ) network algorithm [27]. MJ networks were post-processed with a
maximum-parsimony (MP) algorithm [28] to remove unnecessary linkages and median vectors.
Network construction was performed in NETWORK 5.0.0.1 (available as freeware from http://www.
fluxus-engineering.com/sharenet.htm).

2.3.2. Nuclear DNA

We tested for null alleles using MICRODROP [29]. MICRODROP uses an expectation-
maximization algorithm to obtain joint estimates of allele frequencies, drop-out rates caused by
sample factors, and locus factors and inbreeding coefficients to correct for deficits in heterozygosity.
The software can provide imputed datasets by drawing genotypes according to the posterior
distribution of the model and replacing false homozygotes by heterozygotes. We performed
MICRODROP imputations separately by population. We tested for deviations from Hardy–Weinberg
(HW) equilibrium within each population by the inbreeding fixation index FIS with the software
FSTAT, version 2.9.3.2 [30]. We estimated allelic richness with the rarefaction method (Rt) and expected
heterozygosity (He) with FSTAT to analyze the level of within-population genetic diversity.

http://www.fluxus-engineering.com/sharenet.htm
http://www.fluxus-engineering.com/sharenet.htm
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Population bottlenecks result in a transient disequilibrium by reducing allelic diversity through
preferential loss of rare alleles, before having an effect on heterozygosity. We used BOTTLENECK
5.1 [31] to test for a signal of a bottleneck in all sampled oak populations under the two-phase model
(TPM) with the default 70% single-step mutations and 30% multiple-step mutations. The TPM is an
intermediate between the infinite allele model and the stepwise mutation model and is likely closer
to the true mutation model of most microsatellites [31]. Statistical significance was tested with the
one-tailed Wilcoxon signed-rank test to determine whether observed heterozygosity deviated from
expectations at mutation-drift equilibrium. Estimations were based on 10,000 replications. Reductions
in population size were also tested using the “mode-shift” indicator of the distortion of allele
frequency classes’ distributions. In non-bottlenecked populations, the mode-shift distribution should
be approximately L-shaped with the greatest number of alleles being detected at low frequencies [31].

To infer population structure, we used a Bayesian model based approach performed in the
program STRUCTURE, version 2.3.4 [32] and a model-free multivariate approach, discriminant
analysis of principal components (DAPC) [33]. For STRUCTURE, an admixture model with correlated
frequencies was used without prior population information. Preliminary runs revealed a complex
hierarchical structure. We inferred population division (number of K populations) by performing
20 independent runs of each K (K = 1 to K = 5) with a burn-in of 100,000 iterations and 1 million
iterations of the Gibbs sampler. Log-likelihood of the data was recorded for each run, and the ad hoc
statistic ∆K was calculated following Evanno et al. [34]. Output from STRUCTURE was post-processed
to obtain ∆K and plots for publication using the online program CLUMPAK [35].

For DAPC, discriminant analysis (DA) was used to identify clusters on the basis of data that were
transformed using principal component analysis (PCA). The number of PCA axes that were retained
for DA was determined by 30 replicates of cross-validation. DAPC was performed in R, using the
Adegenet package [33].

We used Barrier 2.2 [36] to test for the most prominent breaks in nuclear microsatellite data.
Barrier detects geographic barriers by testing the correlation between the geographic distance and
genetic distance among sampling locations using the Monmonier algorithm. We performed the Barrier
analysis with 100 distance matrices (shared alleles) from bootstrapped data obtained by MSA 4.05 [37].

2.3.3. Inferring Migration

We used BayesAss [38] to estimate contemporary migration among the five sampled populations.
BayesAss uses a Bayesian multilocus approach in which populations are not constrained by stationary
conditions, so that individual populations may be out of HW equilibrium. Bidirectional migration
rates among all populations are inferred over the last generations by detecting transient disequilibrium
among multilocus genotypes of migrants or recent descendants of migrants. In preliminary runs,
we adjusted mixing parameters to obtain acceptance rates in the range 0.2–0.6 (∆a = 0.5, ∆m = 0.5,
and ∆f = 0.7). Final runs (five runs) were performed with different starting seeds, run for 10,000,000
iterations with 1,000,000 burn-in, and averaged to provide estimates of migration rates. Convergence
of the runs was assessed by examining plots of total log-likelihood versus iteration to verify that there
were no peaks or troughs using TRACER 1.5 [39].

Because contemporary and evolutionary migration rates can provide complementary information
on population demography, we also estimated evolutionary bidirectional migration among populations
using Migrate-N. We evaluated three population models that took into account the biogeography
of Andalusia and the clustering of our earlier results from morphometrics and acorn chemistry:
Model 1: Full model with 5 population sizes and 20 bidirectional migration rates. Model 2a:
Two-population model that followed our population groupings based on acorn morphometrics and
fatty acid composition that showed separation between Sierra Morena populations (Huelva, Córdoba,
and Seville) from Baetic populations (Cádiz and Almería) [11]. This model included two population
sizes and two migration rates. Model 2b: Two-population model that followed our groupings based
on acorn protein profiles that indicated separation of western Sierra Morena (Huelva and Seville)
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and central and eastern populations (Córdoba, Cádiz, and Almería) [10]. Model 2c: Two-population
model inferred by STRUCTURE and Barrier results that suggested divergence of Cádiz from all other
populations. Model 3: Three-population model. This model was based on biogeographic separation of
the Sierra Morena populations (Huelva, Córdoba, and Seville) from Cordillera Penibética (Almería)
and Cordillera Subbética (Cádiz) and included three population sizes and six migration rates. We used
Bayesian inference (BI) to infer population θs (4Neµ, where Ne is effective population size and µ is
the mutation rate) and mutation-scaled migration rates (M = m/µ, where m is the migration rate per
generation). The Brownian motion model was used to approximate a stepwise mutation model for
microsatellites. Initial runs were performed to determine appropriate priors that were set for final runs
as uniform (θ of 0.00–10.00, δ = 1.0 and M of 0.00–1000.00, δ = 100.00). Each run comprised a single
long chain for which 1 × 106 genealogies were sampled with a burn-in of 1 × 104 and static heating
with default temperatures. Initial parameter values were obtained from estimates of FST. We estimated
probabilities for each model by dividing its marginal likelihood by the sum of the marginal likelihoods
of all models using the Bézier approximation.

3. Results

3.1. Chloroplast DNA

We detected a total of 30 distinct haplotypes among the five regional populations (Figure 2).
The total number of mutational steps among the haplotypes inferred from the shortest trees was
61, with most individuals from the same population clustering together with few mutational steps,
with the exception of Córdoba. The greatest number of haplotypes [9] was found at Córdoba, whereas
we detected only five haplotypes each at Seville and Huelva, three of which were shared in the two
populations (Figure 2). Other than the sharing between Seville and Huelva, the remaining populations
comprised unique sets of haplotypes. The shared haplotypes at Seville and Huelva suggest recent
seed dispersal between the two populations that could be bidirectional. However, interestingly,
two individuals (one each from Cádiz and Córdoba) clustered with the Huelva/Seville group (one
mutational step for the Cádiz individual and five mutational steps for the Córdoba individual),
suggesting unidirectional historical seed dispersal from Huelva/Seville. The number of inferred
mutational steps among individuals within populations averaged 7 each at Cádiz (excluding the one
individual that clustered with Huelva/Seville) and Almería, 14 in the combined Huelva/Seville cluster,
and 21 at Córdoba. Seven mutated positions were inferred between the Huelva/Seville cluster and
the closest Córdoba chlorotype (excluding the one individual that clustered with Huelva/Seville),
whereas three and four mutated positions were inferred between Córdoba and the nearest haplotypes
from Almería and Seville, respectively.

Global among-population differentiation considering the allele size (cpRST = 0.57; SE = 0.05) was
significantly greater than among-population differentiation by allele identity (cpGST = 0.24; SE = 0.05),
indicating that mutation had contributed significantly to population differentiation.
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Figure 2. Haplotype network based on 10 chloroplast microsatellite loci produced in NETWORK
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3.2. Nuclear DNA

Significant allelic dropout was detected by Microdrop for genotypes at Almería, Córdoba, and
Seville. Of these, the Pearson correlation coefficient was significant across individuals at Córdoba and
Seville and across loci at Almería. We imputed missing alleles for each population using the option in
Microdrop in which both locus- and individual-specific factors are taken into account for imputed data
sets. Inbreeding coefficients estimated for each population from the original data and the imputed
data returned similar results; thus for the analyses reported here, we used the imputed dataset.

We detected a total of 101 alleles across populations at the nine microsatellite loci in Q. ilex. Allelic
richness, on the basis of a minimum population size of 15, was least in Córdoba (5.5 alleles) and
greatest in Huelva (7.3) (Table 2). Over all populations, we found negligible heterozygote excess (HO =
0.77; HE = 0.71); among populations, expected heterozygosity ranged from 0.68 to 0.72 but did not
vary significantly (Table 2).

Table 2. Parameter estimates for chloroplast and nuclear microsatellite diversity in populations of
Q. ilex from Andalusia, Spain. He—expected heterozygosity; AR15—number of alleles on basis of a
minimum population size of 15; FIS—inbreeding coefficient. Numbers in parentheses indicate standard
errors of the estimates.

Population
Chloroplast Nuclear

No. Haplotypes He Mean No. Alleles per Locus AR15 per Locus FIS

Cádiz 7 0.71 (0.07) 6.2 (0.9) 6.2 (0.9) −0.11 (0.10)
Almería 7 0.71 (0.07) 6.8 (1.1) 6.4 (1.0) −0.11 (0.12)
Huelva 5 0.72 (0.07) 7.8 (1.5) 7.3 (1.4) −0.03 (0.05)

Córdoba 9 0.68 (0.07) 5.8 (1.0) 5.5 (0.9) −0.05 (0.09)
Seville 5 0.72 (0.07) 7.4 (1.1) 7.0 (1.0) −0.05 (0.08)
Total 30 0.74 (0.07) 11.2 (1.6) 7.8 (1.2) −0.02 (0.07)

3.3. Past Demographic Change

BOTTLENECK detected significant values of heterozygote excess, consistent with a recent
bottleneck using the Cornuet and Luikart [40] test, in the population at Córdoba (probability of
the one-tailed test of heterozygote excess of <0.001). Inspection of the mode-shift distributions showed
weak signs of bottleneck effects in all populations but most evidently at Cádiz and Córdoba (Figure S1).
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3.4. Population Structure

The ad hoc statistic ∆K, which summarizes our results from 10 independent runs per K (from K = 1
to K = 5) in STRUCTURE, suggested that the microsatellite data on Q. ilex could be assigned to three
clusters, as shown in Figure 3. Although the three clusters were admixed in individuals from the five
populations, some population differentiation was clear. Cádiz and Almería were well differentiated
from each other, whereas Huelva, Seville, and Córdoba were intermediately differentiated.
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Seville 5 0.72 (0.07) 7.4 (1.1) 7.0 (1.0) −0.05 (0.08) 
Total 30 0.74 (0.07) 11.2 (1.6) 7.8 (1.2) −0.02 (0.07) 
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BOTTLENECK detected significant values of heterozygote excess, consistent with a recent bottleneck 
using the Cornuet and Luikart [40] test, in the population at Córdoba (probability of the one-tailed test of 
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K = 5) in STRUCTURE, suggested that the microsatellite data on Q. ilex could be assigned to three clusters, 
as shown in Figure 3. Although the three clusters were admixed in individuals from the five populations, 
some population differentiation was clear. Cádiz and Almería were well differentiated from each other, 
whereas Huelva, Seville, and Córdoba were intermediately differentiated.  
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For the DAPC analyses, cross-validation indicated that 30 principal component (PC) axes and
4 DA axes were optimal. In the space of the first two DA axes, Cádiz and Almería populations were
divergent from one another and from the remaining populations that grouped together as partially
overlapping clusters (Figure 4).
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Figure 4. Discriminant analysis of principal components (DAPC) plot of five populations of Q. ilex
from Andalusia (1—Cádiz; 2—Almería; 3—Huelva; 4—Córdoba; 5—Seville) on basis of 30 principal
component analysis (PCA) components and 4 discriminant analysis (DA) axes.

A barrier of decreasing strength was detected by Barrier extending between Cádiz and
Seville/Huelva, Cádiz and Córdoba, and Cádiz and Almería (Figure 1 and Figure S2).
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3.5. Migration

Significant contemporary migration rates estimated by BayesAss were detected from Córdoba to
Almería (95% CI: 0.19–0.33), Córdoba to Huelva (95% CI: 0.18–0.32), and Córdoba to Seville (95% CI:
0.06–0.18), for which mean rates are shown in bold in Table 3. All other population pairwise rates were
not significantly different from zero, including the reciprocal rates into Córdoba, suggesting recent
unidirectional gene flow.

Table 3. Migration rates estimated as proportion of migrants in population from BayesAss (BA) and
estimated as number of migrants per generation (Nm) from Migrate-N (M) with estimated migration
rate in parentheses. Rates in bold significant at p = 0.05. Pairwise FST shown in lower diagonal.

In
From Cádiz Almería Huelva Córdoba Seville

Cádiz
BA 0.91 0.02 0.02 0.02 0.03
M — 27.2 (0.14) 26.1 (0.13) 21.9 (0.11) 18.7 (0.09)

Almería
BA 0.03 0.68 0.02 0.26 0.02
M 23.9 (0.12) — 22.5 (0.11) 23.9 (0.12) 34.8 (0.17)

FST 0.07 — — — —

Huelva
BA 0.02 0.02 0.68 0.26 0.02
M 26.5 (0.13) 26.5 (0.13) — 20.4 (0.10) 105.5 (0.53)

FST 0.06 0.05 — — —

Córdoba
BA 0.05 0.02 0.02 0.89 0.02
M 1.2 (0.01) 1.0 (0.01) 4.2 (0.02) — 4.8 (0.02)

FST 0.07 0.06 0.04 — —

Seville
BA 0.06 0.02 0.02 0.12 0.79
M 37.2 (0.19) 30.2 (0.15) 29.7 (0.15) 23.0 (0.12) —

FST 0.07 0.06 0.04 0.04 —

Estimates of evolutionary among-population migration rates (number of migrants per generation
Nm) were calculated from Migrate-N estimates of θ and M as Nm = (θ ×M)/4 (Table 3). The highest
rate (Nm = 105.5) was from Seville to Huelva, approximately 3 times greater than the next highest
rates from Cádiz to Seville (Nm = 37.2) and Seville to Almería (Nm = 34.8). Migration rates were
asymmetrical for several population pairs; notably, Córdoba was much more important as a source
than as a sink population.

Comparisons of Bayes factors from Migrate-N for the different phylogeographic breaks supported
a two-group model (Cádiz and (Almería, Huelva, Seville, Córdoba)).

4. Discussion

4.1. Population Structure

Chloroplast DNA showed relatively strong spatial structure; only populations at Seville and
Huelva shared haplotypes. Because chloroplast DNA is maternally inherited in oaks, it is dispersed
only by seed; thus our results were consistent with the bulk of seed dispersal being limited locally
or to adjacent habitat for Q. ilex [41–45], for other oak species [46–48], and for the acorn-bearing
tanoak [49]. We found no evidence of shared haplotypes among other population pairs, but we
could infer at least two examples of probable long-distance dispersal that would have occurred for
generations in the past. In these instances, one individual from each of Cádiz and Córdoba had
haplotypes that clustered with the Huelva/Seville group, which would suggest past seed dispersal
from Seville/Huelva to Córdoba and to Cádiz. Our data, using a suite of chloroplast microsatellite
markers, detected fine-scale haplotype variation that had not been detected in earlier studies using
less variable markers. For example, Lumaret et al. [23] reported only 25 haplotypes (on the basis of
PCR-RFLP markers) throughout the entire range of Q. ilex and 3 within southeastern Spain, compared
with the 30 that we detected in Andalusia. Our nuclear DNA showed a much weaker spatial structure
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(differentiation among populations) than the chloroplast DNA. This was expected because of the
smaller effective population size of chloroplast DNA and because of wind pollination leading to
much more widespread gene dispersal. Nevertheless, we found evidence of nuclear genetic structure
among populations of Q. ilex in Andalusia. We used several approaches to investigate potential
breaks. The STRUCTURE and DAPC analyses suggested weak genetic structure partitioned into three
groups; Cádiz, Almería, and Sierra Morena populations (Seville, Huelva, and Córdoba). However, this
partition was not supported by inferred contemporary (BayesAss) or evolutionary-scale migration
rates (Migrate-N). The most consistent break suggested by the migration rate analyses was between
Cádiz and the more northern populations of Huelva, Seville, and Córdoba. This suggests that the
Guadalquivir Basin, where Q. ilex is absent, has presented a “recent” barrier to gene flow between
the southern Cordillera Subbética and the Sierra Morena. The Guadalquivir Valley likely served
as a refugium during the full glacial period, but early human deforestation of the valley may have
broken continuity between the northern and southern populations [50,51]. Divergence among plant
populations of the southern Iberian mountains likely has diverse origins. Fortuna et al. [52], using a
comparative network approach to study genetic variation among four woody species from southern
Spain, found that each species had responded to ancient landscape processes rather than more recent
events and in unique ways. For all species, divergence across the Guadalquivir Valley was significant,
although Q. coccifera L. showed least population structure, likely related to unique life history traits.
In some instances, the Gudalquivir divergence may be associated with closer affinities of Baetic
populations to those of North Africa, as is the case for Erophaca baetica (L.) Boiss. [53] and the aster
Hypochaeris radicata L. [54].

We found no consistent break within the Baetic Cordillera, despite the population in Almería
being in the Mediterranean coastal range and the population of Cádiz being in the inner mountain
range of the Cordillera Subbética. This could reflect connectivity through a low–medium mountain
corridor until very recent times [55–59]. Our Barrier analyses also found the strongest break to be
between Cádiz and the Sierra Morena, with a second break that was non-significant between Cádiz
and Almería.

4.2. Gene Flow

Fragmentation of populations in the recent past due to human activity may result in reduced
levels of gene flow. The long-term effects of limited gene flow will be reduced genetic variability
that is commonly assumed to lead to reduced population viability [60]. BayesAss estimates recent
migration rates (<5 generations) that would be in the time-frame of human activity in the Spanish
dehesas [61,62]. On the other hand, Migrate-N uses a coalescence approach that infers migration rates
over the last 4Ne generations [63], which, in Q. ilex, would likely cover the last tens of thousands
of years and so would be affected mostly by events not associated with human activity. However,
prehistoric human activities could have played a role in vegetation changes in the Guadalquivir Valley
associated with fire, change of species, and scrubbing [64]. To compare the two estimates of migration,
we converted the mutation-scaled migration rate (M = m/µ) from Migrate-N by multiplying M by
an estimated mutation rate µ of 5 × 10−4 [65], following the approach described by Chiucchi and
Gibbs [66]. Our estimates of recent migration from BayesAss indicate low levels of migration among
population pairs, except for unidirectional immigration from Córdoba to Almería, Huelva, and Seville.
After transformation, evolutionary migration rates were about an order of magnitude greater than
recent migration rates. Although this would be consistent with reduced gene flow among populations
since human activity began in the dehesas, the results should be treated with caution. A change in the
mutation rate has an important effect on the estimates of migration rates based on mutation-scaled
migration rates. Assuming a mutation rate of 1 × 10−4 would bring many of the evolutionary rates
close to the contemporary rates. However, reduced contemporary migration may reflect, in part,
the management regime of the dehesas that has been based on the existing forest and not on the
establishment of new forests [67].
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Contemporary patterns of migration among populations showed some similarities and some
contrasts with patterns of evolutionary rates. Notably, we found a strong asymmetry between
immigration rates into Córdoba and immigration into other populations from Córdoba for both
contemporary and evolutionary migration. Flowering phenology could explain some of this asymmetry.
In Q. ilex, most inflorescences are protandrous, and flowering phenology is earlier at warmer lower
elevations [68]. The Córdoba population has the most continental climate of all populations studied,
and thus its winters are significantly colder [5,69]. The Córdoba population would likely be more
successful at pollinating receptive female flowers from lower elevations, such as Huelva and Seville,
because of the overlapping of male and female phenology, whereas the reverse direction would lead
to a greater dispersion between male and female flowering times. The most pronounced difference
between contemporary and evolutionary migration rates was between Seville and Huelva. As expected,
evolutionary rates were highest between this closest population pair, but contemporary rates were
low in both directions. Without a doubt, these populations have been the most disturbed by human
activity in historical times [70,71].

4.3. Association between Phenotypic Traits and Population Divergence

Does the phenotypic variability and the population grouping derived from this variability reflect
the genetic structure of the Andalusian Q. ilex as determined by n- and cp-SSR? In a previous study
on seed morphometry and fatty acid composition, 13 populations from 3 main geographical areas
(southern, northeastern, and northwestern provenances) were grouped into 2 main clusters, with the
Guadalquivir as a hypothetical frontier separating them [11]. The first cluster corresponded to northern,
mesic, low-altitude provenances, while the second corresponded to southern, xeric, high-altitude
provenances. Protein profiles from seed and pollen, as determined by NIRS and one-dimensional gel
electrophoresis, reinforced relationships among populations being related to geographic location and
climatic zone [10]. Geographically extreme provenances were clearly included in the northern (Sierra
Morena) or southern (Baetic Cordillera) clusters, independently of the method employed [10–12].
However, interestingly, depending on the methodology employed, some provenances were grouped in
different clusters. This was the case for those provenances that were closest to the Guadalquivir Valley
(southern margins of the Sierra Morena and northern margins of the Baetic range). It would therefore
appear that the morphological and biochemical structuring are in fairly good agreement with the
structuring obtained using our neutral genetic markers. This does not imply any causality, for which
we would need to prove a genetic basis of the phenotypic traits and look for variation in functional
genes that might explain any potential environmental adaptations. The phenotypic variation that we
observed could be related to environmental variation, such as xeric stress, that is presumably only
indirectly related to variability in microsatellite markers. Nevertheless, it is interesting that the genetic
and phenotypic partitioning of populations showed some concordance that justifies more rigorous
tests, such as comparative tests across aridity gradients in each of the major regions.

Our genetic data suggest moderately important variation that should be taken into consideration
in any reforestation of Q. ilex in Andalusia. Reforestation north of the Guadalquivir Valley should be
from seed sources of that region, particularly as there may be growth-related adaptive traits for the
more mesic conditions that we have not yet tested. In the south, we consider that it would be prudent
to use local sources for eastern and western reforestation as the genetic data suggests some divergence
in this region.

5. Conclusions

We used genetic markers (chloroplast and nuclear microsatellites) to detect structure among
populations of Q. ilex from the major biogeographic regions of Andalusia. Our results show
surprisingly important levels of genetic structure, with chloroplast DNA indicating little gene exchange
as a result of seed dispersal among populations. Our nuclear DNA analyses showed a weaker but
significant genetic structure among populations, presumably as a result of more widespread pollen
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dispersal and the larger effective population size of nuclear DNA. We used several approaches to
identify the most consistent breaks among populations and to infer recent and evolutionary migrations
rates. The population from the Baetic Cordillera (Cádiz) consistently appeared well separated from
populations of the northern Sierra Morena, suggesting that the Guadalquivir Valley has played an
important role in determining population divergence. This may be, in part, evolutionary, as suggested
by chloroplast DNA, and, in part, a result of human-induced population isolation, as Q. ilex has been
removed from the Guadlaquivir Valley. Whereas the relatively isolated population from Almería was
well separated from Cádiz, it appeared to show some connectivity with Córdoba, the easternmost
population of the Sierra Morena. Our gene flow estimates suggest that evolutionary rates were greater
than contemporary rates of migration. Furthermore, contemporary rates were limited to unidirectional
gene flow from Córdoba to other populations in the Sierra Morena and, surprisingly, to the southern
population at Almería. The inconsistency between evolutionary and recent migrations rates suggests
an effect of anthropogenic activity over the last few generations of Q. ilex. Our population structure
from genetic data was more or less consistent with our earlier partitioning of populations on the basis
of phenotypic and biochemical variability, but this association may simply reflect environmentally
induced phenotypic variation. We will need to continue this work to look at the genetic basis of the
phenotypic traits and the role of functional genes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/9/6/337/s1,
Figure S1: Mode-shift distributions of numbers of alleles at different allele frequencies in the five populations
studied in this work, Figure S2: BARRIER plot of 5 populations of Q. ilex from Andalusia showing the first 3
significant barriers. Thickness of line indicates strength of barrier: 1—Cádiz, 2—Almería, 3—Huelva, 4—Córdoba,
5—Seville, Figure S3: Andalusia map showing the location of the populations studied in this work and geographic
information (A: altitude, B: annual rainfall and C: dryness index), Table S1: Names and characteristics of the
nuclear nSSR and chloroplast cpSSR microsatellite markers used for genotyping [72–76].
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