
UNIVERSIDAD DE CÁDIZ

TESIS DOCTORAL

Prueba de Mutación Evolutiva en
Entornos Orientados a Objetos

Evolutionary Mutation Testing in
Object-Oriented Environments

Autor:

Pedro Delgado Pérez

Directores:
Dra. Inmaculada Medina Bulo

Dr. Juan José Domínguez Jiménez

Escuela Superior de Ingeniería
Programa de Doctorado en Ingeniería y Arquitectura

Fecha: 21 de abril de 2017

http://www.uca.es
https://ucase.uca.es/pedro-delgado-perez
http://esingenieria.uca.es/

Conformidad de los Directores

Da María Inmaculada Medina Bulo, profesora del Departamento de Ingeniería Infor-

mática de la Universidad de Cádiz, y D. Juan José Domínguez Jiménez, profesor del

Departamento de Ingeniería Informática de la Universidad de Cádiz, siendo Directores

de la Tesis titulada Prueba de Mutación Evolutiva en Entornos Orientados a Objetos,

realizada por D. Pedro Delgado Pérez y enmarcada en el Programa de Doctorado en

Ingeniería y Arquitectura, para proceder a los trámites conducentes a la presentación y

defensa de la tesis doctoral arriba indicada, en aplicación de la Normativa Reguladora

de Estudios de Tercer Ciclo de la Universidad de Cádiz, informan que se autoriza la

tramitación de la tesis.

Los directores de tesis

Inmaculada Medina Bulo Juan José Domínguez Jiménez

Cádiz, a 21 de abril de 2017

ii

Agradecimientos

Es casi imposible nombrar a la cantidad de personas que pusieron un granito de arena

en el desarrollo de esta tesis doctoral. Os doy las gracias a todos, en especial a:

• Inmaculada y Juanjo, mis directores de tesis: nunca imaginé que aquella primera

reunión en la sala de profesores de la antigua ESI nos llevaría hasta este punto. Ahí

quedan miles de correos (alguno que otro a horas intempestivas) y de experiencias

compartidas. Gracias por apostar por mí.

• Mis padres y hermanos, por su incomprensión. Sí, lo he dicho bien: sin comprender

lo más mínimo de lo que hacía, me apoyaron y se interesaron a sabiendas de que

no se enterarían de nada de lo que dijese por más que me esforzase. Ahí está la

grandeza de su apoyo.

• Mis amigos de siempre, por cada hora que, quedando con vosotros, me quitasteis

de avanzar en la tesis. Al día siguiente, me ayudaron a aprovechar cada hora por

dos.

• Mis amigos por el mundo que pasan horas y horas discurriendo como yo. Sí, a los

sufridores PhD, porque pensar en la próxima siempre fue un aliciente.

• Antonio García. Esta tesis apoya la hipótesis de que la paciencia es la madre de

todas las ciencias (no se pudo localizar referencia bibliográfica).

• A los miembros del grupo UCASE, por hacerme sentir como un miembro más desde

el minuto uno. La ayuda de cada uno de vosotros, en diferentes sentidos, ha sido

fundamental.

• Sergio Segura, por ser casi como un segundo co-director y por aportarme sabiduría

y pasión por la investigación.

• Louis Rose y Ibrahim Habli, por las enriquecedoras experiencias vividas en sendas

estancias.

Thank you very much to all of you!

iv

Agradecimientos Institucionales

Este trabajo fue financiado por la beca de investigación PU-EPIF-FPI-PPI-BC 2012-

037 de la Universidad de Cádiz, por el proyecto DArDOS (TIN2015-65845-C3-3-R) del

Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de

la Sociedad del Ministerio de Economía y Competitividad, y por la Red de Excelencia

SEBASENET (TIN2015-71841-REDT) del Programa Estatal de Fomento de la Investi-

gación Científica y Técnica de Excelencia del Ministerio de Economía y Competitividad.

vi

“Nosotros, los mortales, logramos la inmortalidad en las cosas que creamos en común y

que quedan después de nosotros.”

Albert Einstein

UNIVERSIDAD DE CÁDIZ

Abstract
Escuela Superior de Ingeniería

Departmento de Ingeniería Informática

por Pedro Delgado Pérez

Mutation testing is acknowledged as a powerful method to evaluate the strength of test

suites in detecting possible faults in the code. However, its application is expensive,

which has traditionally been an obstacle for a broader use in the industry. While it is

true that several techniques have shown to greatly reduce the cost without losing much

effectiveness, it is also true that those techniques have been evaluated in limited contexts,

especially in the scope of traditional operators for procedural programs. To illustrate this

fact, Evolutionary Mutation Testing has only been applied to WS-BPEL compositions,

despite the positive outcome when selecting a subset of mutants through an evolutionary

algorithm with the aim of improving a test suite. As a result, it is unknown whether the

same benefits can be extrapolated to other levels and domains.

In particular, we wonder in this thesis to what extent Evolutionary Mutation Testing is

also useful to reduce the number of mutants generated by class mutation operators in

object-oriented systems. More specifically, we focus on the C++ programming language,

since the development of mutation testing with regard to this widely-used language is

clearly immature judging from the lack of papers in the literature tackling this language.

Given that C++ has been hardly addressed in research and practice, we deal with all

the phases of mutation testing: from the definition and implementation of mutation

operators in a mutation system to the evaluation of those operators and the application

of Evolutionary Mutation Testing among other cost reduction techniques.

http://www.uca.es
http://esingenieria.uca.es/
https://ucase.uca.es/pedro-delgado-perez

We define a set of class mutation operators for C++ and implement them in MuCPP,

which allows us to perform experiments with real programs thanks to the facilities in-

corporated into this mutation tool. These mutation operators are automated following

a set of guidelines so that they produce the expected mutations. In general, class-level

operators generate far fewer mutants than traditional operators, a higher equivalence

percentage and they are applied with varying frequency depending on the features of

the tested program. Developing improvement rules in the implementation of several

mutation operators help further reduce the number of mutants, avoiding the creation

of uninteresting mutants. Another interesting finding is that the set of class mutants

and the set of traditional mutants complement each other to help the tester design more

effective test suites.

We also develop GiGAn, a new system to connect the mutation tool MuCPP and a ge-

netic algorithm to apply Evolutionary Mutation Testing to C++ object-oriented systems.

The genetic algorithm allows reducing the number of mutants that would be generated

by MuCPP as it guides to the selection of those mutants that can induce the genera-

tion of new test cases (strong mutants). The performance of this technique shows to be

better than the application of a random algorithm, both when trying to find different

percentages of strong mutants and also when simulating the refinement of the test suite

through the mutants selected by each of these techniques. The stability of EMT among

different case studies and the good results of the simulation in the programs that lead to

the largest set of mutants are additional observations.

Finally, we conduct an experiment to assess individually these mutation operators from a

double perspective: how useful they are for the evaluation of the test suite (TSE) and its

refinement (TSR). To that end, we rank the operators using two different metrics: degree

of redundancy (TSE) and quality to guide on the generation of high-quality test cases

(TSR). Based on these rankings, we perform a selective study taking into account that

the less valuable operators are at the bottom of the classification. This selective approach

reveals that an operator is not necessarily as useful for TSE as for TSR, and that these

rankings are appropriate for a selective strategy when compared to other rankings or the

selection of mutants randomly. However, favouring the generation of individual mutants

from the best-valued operators is much better than discarding operators completely be-

cause each of the operators targets a particular object-oriented feature. Altogether, these

evaluations about class operators suggest that their nature can limit the benefits of any

cost reduction technique.

UNIVERSIDAD DE CÁDIZ

Resumen
Escuela Superior de Ingeniería

Departmento de Ingeniería Informática

por Pedro Delgado Pérez

La prueba de mutaciones es reconocida como un potente método para evaluar la fortaleza

de un conjunto de casos de prueba en la detección de posibles fallos en el código. No

obstante, la aplicación de esta técnica es costosa, lo cual ha supuesto normalmente un

obstáculo para una mayor acogida de la misma por parte de la industria. Varias técnicas

han mostrado ser capaces de reducir ampliamente su coste sin mucha pérdida de efect-

ividad, pero también es cierto que estas técnicas solo han sido evaluadas en determinados

contextos, especialmente en el ámbito de los operadores de mutación tradicionales para

programas procedurales. Por ejemplo, la Prueba de Mutación Evolutiva ha sido aplicada

únicamente a composiciones WS-BPEL, a pesar de que se obtuvo un resultado positivo

al seleccionar un subconjunto de mutantes a través de un algoritmo evolutivo a fin de

mejorar el conjunto de casos de prueba. Como resultado, se desconoce a día de hoy si

los mismos beneficios pueden extrapolarse a otros niveles y dominios.

En particular, en esta tesis nos preguntamos hasta qué punto la Prueba de Mutación

Evolutiva es también útil para reducir el número de mutantes en sistemas orientados a

objetos. Más específicamente, nos enfocamos en el lenguaje de programación C++, ya

que la prueba de mutaciones casi no se ha desarrollado respecto a este popular lenguaje a

juzgar por la falta de artículos de investigación en este campo que se dirigen este lenguaje.

Dado que C++ ha sido apenas abordado en cuanto a investigación y en cuanto a la

práctica, en esta tesis nos ocupamos de todas las fases de la prueba de mutaciones: desde

la definición e implementación de operadores de mutación en un sistema de mutaciones,

hasta la evaluación de esos operadores y la aplicación de la Prueba de Mutación Evolutiva

entre otras técnicas de reducción del coste.

http://www.uca.es
http://esingenieria.uca.es/
https://ucase.uca.es/pedro-delgado-perez

En esta tesis definimos e implementamos un conjunto de operadores de mutación de

clase para C++ en MuCPP, herramienta de mutaciones que nos permite llevar a cabo

experimentos con programas reales gracias a las características incorporadas a la misma.

Estos operadores de mutación son automatizados siguiendo un conjunto de reglas para

que produzcan los mutantes que se esperan de los mismos. En términos generales, los

operadores de clase generan bastantes menos mutantes que los operadores tradicionales,

un porcentaje mayor de mutantes equivalentes y se aplican con diversa frecuencia de-

pendiendo de las características del programa analizado. El desarrollo de reglas de me-

jora en la implementación de los operadores permite reducir incluso más el número de

mutantes, evitando generar mutantes que no son interesantes para el propósito de la

prueba de mutaciones. Otro descubrimiento interesante es que el conjunto de mutantes

de clase y el de mutantes tradicionales se complementan, ayudando a diseñar un conjunto

de casos de prueba más efectivo.

También desarrollamos GiGAn, un nuevo sistema para conectar MuCPP y un algoritmo

genético para aplicar la Prueba de Mutación Evolutiva a sistemas orientados a objetos en

C++. El algoritmo genético permite reducir el número de mutantes que sería generado

por MuCPP ya que guía la búsqueda a la selección de aquellos mutantes que pueden

inducir a la generación de nuevos casos de prueba (mutantes fuertes). El rendimiento de

esta técnica se muestra mejor que el de un algoritmo aleatorio, tanto cuando se buscan

diferentes porcentajes de mutantes fuertes como cuando se simula el refinamiento del

conjunto de casos de prueba mediante los mutantes seleccionados por ambas técnicas.

La estabilidad de la Prueba de Mutación Evolutiva en los diferentes programas analizados

y los buenos resultados en aquellos programas de los que se deriva un mayor número de

mutantes son observaciones adicionales.

Finalmente, realizamos experimentos para evaluar de forma individual a estos operadores

de mutación desde una doble perspectiva: cómo de útiles son para la evaluación (TSE)

y para la mejora (TSR) de un conjunto de casos de prueba. Para ello clasificamos

a los operadores usando dos métricas distintas: el grado de redundancia (TSE) y la

calidad para guiar a la generación de casos de prueba de alta calidad (TSR). Siguiendo

estas clasificaciones, ponemos en práctica un estudio selectivo teniendo en cuenta que

los operadores menos valiosos están en las últimas posiciones. Este enfoque selectivo

revela que los operadores no son necesariamente igual de útiles para TSE y TSR, y que

estas clasificaciones son apropiadas para llevar a cabo una estrategia selectiva cuando

lo comparamos con la aplicación de otras clasificaciones de operadores o la selección

aleatoria de mutantes. Sin embargo, favorecer la generación de mutantes individuales a

partir de los operadores mejor valorados es mucha mejor opción que descartar operadores

al completo debido a que cada uno de estos operadores se centra en una característica

concreta del paradigma de orientación a objetos. En conjunto, todas estas evaluaciones

en torno a estos operadores de clase sugieren que la naturaleza de los mismos puede

limitar los beneficios de aplicar cualquier técnica de reducción del coste.

Contents

Conformidad de los Directores ii

Agradecimientos iv

Agradecimientos Institucionales vi

Abstract x

Resumen xii

List of Figures xx

List of Tables xxii

Abbreviations xxiv

1 Introduction 1
1.1 Motivation . 1
1.2 Aim . 4
1.3 Contributions . 5
1.4 Thesis Structure . 7

2 Concepts and State of the Art 9
2.1 Fundamentals of Mutation Testing . 9
2.2 Mutation Testing in the Literature . 13
2.3 Mutation Operators and Tools . 15

2.3.1 Overview . 15
2.3.2 Mutation testing at the class level 17
2.3.3 Mutation testing and C++ . 19

2.4 Cost Reduction Techniques . 21
2.4.1 Motivation . 21
2.4.2 Classification . 22
2.4.3 Selective mutation . 23
2.4.4 Quality of mutation operators . 25

xvi

Contents xvii

2.4.5 Genetic algorithms applied to mutation testing 28

3 Definition of Mutation Operators 31
3.1 Defining Mutation Operators . 31
3.2 Mutation Operators at the Class Level for C++ 34

3.2.1 Access control . 34
3.2.2 Inheritance . 34
3.2.3 Polymorphism and dynamic binding 38
3.2.4 Method overloading . 39
3.2.5 Exception handling . 40
3.2.6 Object and member replacement 41
3.2.7 Miscellany . 42

3.3 Comparison with other Languages . 44

4 Implementation of the C++ Mutation System 47
4.1 Mutation Operator Implementation . 47

4.1.1 Approach . 47
4.1.1.1 LLVM and Clang . 47
4.1.1.2 Abstract syntax tree . 48

4.1.2 Matching nodes in the AST . 50
4.1.3 Fault injection . 51
4.1.4 Expected mutants . 53

4.1.4.1 Generation of the expected mutants 53
4.1.4.2 Considerations for the implementation 55

4.1.5 Example . 57
4.1.5.1 Mutation operator . 57
4.1.5.2 Source code and mutants 61

4.2 Mutation Operator Improvement . 62
4.3 MuCPP: Mutation System Implementation 65

4.3.1 Phases . 65
4.3.2 Features . 69

5 Mutation Operator Analysis 73
5.1 Quantitative Analysis . 73

5.1.1 Evaluation of the reduction of uninteresting mutants 73
5.1.2 Distribution of mutants . 77
5.1.3 Mutation score and test suite improvement 81

5.2 Qualitative Analysis . 85
5.2.1 Class mutation operator utility . 85
5.2.2 Class mutants and traditional mutants 88

5.2.2.1 Traditional operators . 88
5.2.2.2 Experiments and metric 89
5.2.2.3 Results . 90

5.2.3 Detected coding errors with mutation testing 94

6 Evolutionary Mutation Testing 97
6.1 Description . 97

6.1.1 Individuals . 99

Contents xviii

6.1.2 Fitness function . 100
6.1.3 Genetic algorithm . 101
6.1.4 Selection and reproductive operators 102

6.2 GiGAn . 103
6.3 Experiment 1: Finding Strong Mutants 106

6.3.1 Setup . 106
6.3.2 Results . 107

6.4 Experiment 2: Improving the Test Suite 110
6.4.1 Setup . 111
6.4.2 Results . 114

7 Selective Mutation Assessment 117
7.1 Selective Approach . 117

7.1.1 Test suite evaluation and test suite refinement 117
7.1.2 Selective strategies . 118
7.1.3 Test-Quality selective mutation . 119
7.1.4 Rank-based selective mutation . 120
7.1.5 Selective assessment . 121

7.2 Selective Mutation for Test Suite Evaluation 122
7.2.1 Evaluation metric . 122
7.2.2 Example . 123
7.2.3 Ranking mutation operators . 125

7.2.3.1 Experimental procedure 125
7.2.3.2 Ranking . 126

7.2.4 Selective mutation based on the ranking 127
7.2.4.1 Experimental procedure 128
7.2.4.2 Selective mutation results 129

7.3 Selective Mutation for Test Suite Refinement 131
7.3.1 Evaluation metric . 131
7.3.2 Example . 133
7.3.3 Ranking mutation operators . 135

7.3.3.1 Experimental procedure 135
7.3.3.2 Ranking . 135

7.3.4 Test-quality selective mutation based on the ranking 137
7.3.4.1 Experimental procedure 137
7.3.4.2 Test-quality selective mutation results 138

7.4 Comparison Between Evaluations . 140
7.4.1 Comparison between rankings . 140
7.4.2 Validation of results . 141

7.4.2.1 Operator-based selective mutation 141
7.4.2.2 Rank-based selective mutation 144

7.4.3 Comparison between selective mutation strategies 147

8 Results 151
8.1 Summary of Results . 151
8.2 Threats to Validity . 157

Contents xix

9 Conclusion and Future Work 161
9.1 Conclusions . 161
9.2 Future Perspectives . 165
9.3 Publications . 168

9.3.1 Journal articles . 168
9.3.2 Book chapters . 170
9.3.3 Conferences and symposiums . 171

A Case Studies 179
A.1 Description . 179
A.2 Features . 181

B Useful Concepts 185
B.1 Execution Matrix . 185
B.2 Properties of a Test Suite . 187

Bibliography 189

List of Figures

2.1 Mutation testing levels . 16

4.1 Abstract syntax tree for the expression “a = b+ c” 49
4.2 General diagram of the search and generation of mutants in the proposed

mutation system . 51
4.3 Matcher for the operator CDC . 58
4.4 Classes in example.cpp . 60
4.5 AST fragment representing the class A in “example.cpp”. In bold, the

user-declared default constructor matched by CDC 61
4.6 Mutants generated in “example.cpp” (see Figure 4.4) 62
4.7 Generation of mutants using Git . 67
4.8 MuCPP work-flow . 68

5.1 Average mutation scores for traditional and class mutants over 30 class-
adequate and 30 test-adequate test suites 91

5.2 Method “executeMulticall” in XmlRpc++ 94

6.1 Encoding scheme . 99
6.2 Information for mutant encoding: a) original code, b) mutant (second

appearance of > replaced by <) and c) predefined positions in the list of
operators and in their attributes . 99

6.3 Mutant crossover . 103
6.4 GiGAn diagram . 104
6.5 Example of mutant mapping between MuCPP and GiGAn when one op-

erator (op1) generates mutants in several files (file1 and file2) 105
6.6 Average percentage of mutants generated with EMT in the programs to

reach the five different stopping conditions 109
6.7 Average percentage of the total of mutants generated with EMT and Ran-

dom to achieve 75% (a) and 90% (b) of the strong mutants 110
6.8 Example of execution matrix associated with a non-adequate test suite

TNA and the whole set of mutants . 112
6.9 Example of execution matrix associated with an adequate test suite TA

and the whole set of mutants (EM) . 112
6.10 Example of execution matrix associated with an adequate test suite TA

and the subset of mutants generated by EMT after two generations (EM2) 113

7.1 Execution matrix to illustrate the difference between TSE and TSR with
respect to selective mutation . 120

7.2 Execution matrix to illustrate the metric Ro 124

xx

List of Figures xxi

7.3 Execution matrix to illustrate the quality metric 134
7.4 Comparison of the mutation score when using Rank-based selective muta-

tion testing for TSE with the rankings One-round and Two-round 145
7.5 Comparison of the percentage of test cases loss when using Rank-based

selective mutation testing for TSR with the rankings One-round and Two-
round . 146

7.6 Comparison of the mutation score when using operator-based and rank-
based selective mutation for the categories 1–4 147

7.7 Comparison of the percentage of test cases loss when using operator-based
and rank-based selective mutation for the categories 1–4 148

B.1 Example of matrix execution with size 10× 5 186

List of Tables

2.1 List of class mutation operators provided by Offutt et al. [104] 19
2.2 Faults identified by Derezińska [33] for the Object and Member categories 20

3.1 Summary of categories and mutation operators at the class level 33

5.1 Reduction of mutants for improved class operators generating fewer mutants
in the analysed programs . 75

5.2 Times for the generation of mutants and test suite execution in the ana-
lysed programs with the basic and the improved version of the set of class
operators . 76

5.3 Storage resources taken by class mutants in the analysed programs 77
5.4 Distribution of class mutants generated by program and operator, divided

by the categories in Table 3.1 . 78
5.5 Quantitative statistics by program and operator 80
5.6 Mutation score in Matrix TCL Pro . 81
5.7 Mutation score in XmlRpc++ . 82
5.8 Mutation score in Tinyxml2 . 82
5.9 Mutation score in KMyMoney . 83
5.10 Mutation score in KatePart . 83
5.11 Mutation score obtained after improving the test suite for the analysed

programs with respect to surviving non-equivalent class mutants 84
5.12 Traditional mutation operators included in MuCPP 89
5.13 Distribution of traditional mutants generated by program and operator

(see Table 5.12) . 91
5.14 Calculation of Metric Td with the improved tests for the analysed programs 92
5.15 Calculation of metric QD for the set of killed class and traditional mutants

from the analysed programs and the improved test suite 93

6.1 Genetic algorithm configuration . 107
6.2 Percentage of the total of mutants generated in the programs with EMT

(a) and with Random (b) to achieve 30%, 45%, 60%, 75% and 90% of the
strong mutants (SD: standard deviation) 108

6.3 Results of the smart and Vargha and Delaney’s A12 statistical tests 110
6.4 Percentage of mutants generated with the evolutionary and the random

strategy to reach the stopping conditions (75% and 90% of the minimal
and adequate test suite) in the subjects under study 114

6.5 Average percentage of mutants generated with the evolutionary and the
random strategy to find the whole minimal and adequate test suite in the
subjects under study . 116

xxii

List of Tables xxiii

6.6 Differences in the average percentage of mutants generated between P =
75% and P = 90%, and between P = 90% and P = 100% in the subjects
under study . 116

7.1 Ranking of mutation operators based on mutant redundancy 126
7.2 Spearman’s correlation test (rho and p-value) between the number of

mutants generated by the operators and the value that the redundancy
metric assigns them for each of the programs under test 127

7.3 Categories and operators for TSE . 128
7.4 Operator-based selective mutation results (mutation score) based on the

ranking of mutant redundancy . 130
7.5 Rank-based selection results based on the ranking of mutant redundancy . 130
7.6 Reduction in the number of mutants by categories when applying operator-

based selective mutation based on the ranking of mutant redundancy . . . 130
7.7 Ranking of mutation operators based on test quality 136
7.8 Spearman’s correlation test (rho and p-value) between the number of

mutants generated by the operators and the value that the quality metric
assigns them for each of the programs under test 136

7.9 Categories and operators for TSR . 137
7.10 Percentage of test cases loss when performing operator-based selective

mutation based on the ranking of test quality 139
7.11 Rank-based selection results based on the ranking of test quality 139
7.12 Reduction in the number of mutants by categories when applying operator-

based selective mutation based on the ranking of test quality 140
7.13 Arrangement of the rankings Random, Size and Block classified into cat-

egories for TSE and TSR . 143
7.14 Comparison of the mutation score when using operator-based selective

mutation testing for TSE with the rankings Random, Size and Block . . . 143
7.15 Comparison of the percentage of test cases loss when using operator-based

selective mutation testing for TSR with the rankings Random, Size and
Block . 143

A.1 Metrics about the programs used in the experiments in Chapter 5 181
A.2 Number of classes in the analysed programs by range of lines of code . . . 181
A.3 Metrics about the programs used in the experiments in Chapter 6 182
A.4 Features of the case studies used in the experiments in Chapter 7 183
A.5 Mutants generated in each case study by operator (M: mutants; D: dead;

E: equivalent) . 183

Abbreviations

AST Abstract Sintax Tree

EMT Evolutionary Mutation Testing

FOM First Order Mutation

HOM Higher Order Mutation

TSE Test Suite Evaluation

TSR Test Suite Refinement

xxiv

Dedicado a todos aquellos que sacrifican horas de ocio, sueño y
dedicación a la familia y amigos con la convicción de que deben
emplear su tiempo y esfuerzo en otras labores no tan gratificantes

pero igual de importantes.

xxvi

Chapter 1

Introduction

In this chapter, we describe the motivation behind the preparation of this

doctoral thesis and we list the main goals and contributions derived from

the research period. Finally, we show the structure and the purpose of each

chapter in this dissertation.

1.1 Motivation

Testing is an important activity in the verification and validation of software develop-

ment. The Guide to the Software Engineering Body of Knowledge (SWEBOK) [19],

which establishes a baseline for the current knowledge in Software Engineering, defines

Software Testing among the ten knowledge areas. According to this guide, “software

testing consists of the dynamic verification that a program provides expected behaviors

on a finite set of test cases, suitably selected from the usually infinite execution domain.”,

where:

Dynamic means that testing always implies executing the program on selected inputs.

Finite denotes that testing is conducted on a subset of all possible tests because a

complete set of tests can generally be considered infinite.

Selected refers to how the test suite is selected.

Expected indicates that it must be possible to decide whether the observed outcomes

are acceptable or not.

1

Chapter 1. Introduction 2

Mutation testing is a testing technique widely studied by researchers in the last decades

as a method to estimate the robustness of test suites [68]. According to Naik and Tri-

pathy [96], “Mutation testing is a technique that focuses on measuring the adequacy of

test data (or test cases). The original intention behind mutation testing was to expose

and locate weaknesses in test cases. Thus, mutation testing is a way to measure the

quality of test cases, and the actual testing of program units is an added benefit.”

The research studies on mutation testing have consistently produced evidence of its use-

fulness to evaluate and improve the quality of test suites, where test quality is measured

in terms of the effectiveness at finding faults in the code. This is a stricter requirement

than the one imposed by code coverage criteria, which simply validate that all parts of

the code have been exercised. In order to improve test quality by means of mutation

testing, several faulty versions of the system under test are intentionally produced fol-

lowing some predefined rules, known as mutation operators. For example, a mutation

operator replacing relational operators may transform x > 1 into x < 1. Each of these

new versions, called mutant, contains a simple syntactic change which should be detected

if sufficient testing has been performed. These mutants stress the fault detection cap-

ability of the test suite: the test suite should be able to show that there is a difference

in the outputs of the original and the mutated program. When a test case executed

against a mutant reveals its mutation, we say that the mutant has been killed or is dead.

Otherwise, the mutant remains undetected or is alive.

SWEBOK [19] states that mutation testing was “originally conceived as a technique to

evaluate test sets”, but “mutation testing is also a testing criterion in itself: either tests

are randomly generated until enough mutants have been killed, or tests are specifically

designed to kill surviving mutants.” In summary, the goals when a system undergoes a

mutation testing process are:

1. Test suite evaluation (TSE): Evaluate to what extent the test suite is able to

identify faults within the code.

2. Test suite refinement (TSR): Improve the test suite with new test cases based

on the inspection of alive mutants.

However, because of the large number of mutants that can be generated even in small-

sized programs, mutation testing represents overhead to the testing activity. From an

industrial perspective, it is not easy to justify additional expenses. As a consequence,

in spite of the efforts in this regard to facilitate the application of mutation testing, the

cost has hindered its adoption by practitioners in the past. Several techniques have been

suggested to ease the cost of applying mutation testing [100, 125]. While most of them

Chapter 1. Introduction 3

are useful for TSE, Evolutionary Mutation Testing (EMT) [43] was recently presented

with a focus on TSR.

Evolutionary Mutation Testing (EMT) aims at generating a reduced set of mutants

by means of an evolutionary algorithm. That subset should contain a high proportion

of the mutants that may provide the tester with the possibility of adding new test

cases to the set, called strong mutants. Two types of mutants are considered to be

strong mutants: potentially equivalent, which are not detected by the test suite under

evaluation, and difficult to kill mutants, detected by one test case only killing that

mutant. EMT was successfully put into practice regarding web services compositions in

WS-BPEL [43] with the aid of the GAmera system [42], which implements the genetic

algorithm. However, this technique has not been assessed in other domains after that.

As a result, its applicability to other contexts is an open question. Gaining broader

knowledge about the benefits that EMT can provide is the first motivation for this

thesis.

At the same time, most of the studies in the literature covering issues related to the

cost of mutation testing have been carried out with traditional operators. Also known

as standard operators, they were defined for procedural programs such as C or FOR-

TRAN in the early years of the technique. In general, traditional operators have been

widely assessed in comparison with other kinds of mutation operators. The definition of

class-based mutation operators (or simply class operators) started in 1999 thanks

to the increasing popularity of the object-oriented programming. Standard operators,

developed in programming environments away from the object-oriented paradigm, do

not take into account some types of faults related to object-oriented features. The eval-

uation of class-based mutation operators has experienced a growth in the last years,

but they have not been assessed to the same extent as traditional operators. There-

fore, it remains unclear whether the good performance reported when using some cost

reduction techniques also apply to operators at the class level. In fact, studies on class

operators have shown that they exhibit different features when compared to traditional

operators [88, 117]. For instance, class operators generate fewer mutants but a higher

equivalence percentage. Consequently, it is interesting to explore the reduction achieved

when applying EMT in an object-oriented environment.

On reviewing the sets of class mutation operators defined for object-oriented program-

ming languages, we found that the development of mutation testing with respect to

C++ was underrepresented when compared to other languages (such as Java or C#).

As a matter of fact, only several faults regarding object-oriented characteristics of C++

had been listed without defining a formal set of mutation operators [33]. C++ is an

industrial-strength multiparadigm language, supporting concepts from both structured

Chapter 1. Introduction 4

and object-oriented programming. It is also one of the most used programming lan-

guages all over the world in a wide range of applications, with object orientation as the

most prominent feature. Nevertheless, because of its advanced features and flexibility,

programming in this language without mastering its key concepts can be error prone;

inexperienced developers may misuse some of its characteristics due to wrong expecta-

tions. This clearly motivates the need for adequate testing, so it is puzzling to find that

not much attention has been paid to mutation testing in C++ applications.

Consequently, we set as our final goal applying EMT with class mutation oper-

ators for C++. However, since the development of mutation testing around C++ has

been postponed and not even a set of operators has been formally defined, a complete

study from the beginning is required to lay the groundwork for the application of muta-

tion testing to C++ programs. As a result, in this thesis we address the three main

categories of research regarding mutation testing:

1. Definition and implementation of mutation operators.

2. Evaluation of the utility of mutation operators.

3. Reduction of the cost of mutation testing.

1.2 Aim

The main goals to achieve during the development of this thesis are:

1. To propose a set of class mutation operators related to C++ and its

particular object-oriented features. In order to define this set of operators, the most

used and unique features in C++ will be studied. At the same time, contributions

in other object-oriented languages will be analysed, mainly in Java and C#, as this

fact will offer insight into the nature of the mistakes that programmers frequently

make.

2. To develop a mutation system for C++ in order to systematically analyse

source code files written in C++, inject class mutations into the code and execute

a test suite against those mutants. An implementation technique to automate the

set of class operators in a robust way will be required as well as suitable means to

deal with the specific challenges that this language presents.

3. To analyse the usefulness of the set of mutation operators in the evalu-

ation (TSE) and refinement (TSR) of test suites for object-oriented systems. This

assessment will comprise several aspects:

Chapter 1. Introduction 5

• Number and distribution of mutants generated.

• Test deficiencies that these operators help identify.

• Comparison with traditional operators.

4. To develop a system to put into practice Evolutionary Mutation Testing

with class mutation operators. This new system will connect the mutation

system for C++ and the genetic algorithm proposed to implement the evolutionary

approach in an object-oriented environment.

5. To evaluate the performance of Evolutionary Mutation Testing when

applied to object-oriented systems. Namely:

• To measure the reduction of mutants achieved.

• To compare this technique with the random selection of mutants.

• To analyse how the genetic algorithm helps improve the test suite.

6. To study different techniques for the reduction of the number of mutants:

• Improvement rules to discard uninteresting mutants in the implementation of

operators.

• Degree of redundancy of mutation operators in TSE.

• Quality metric of mutation operators in TSR.

• Selective mutation following an operator-based (selection of a subset of oper-

ators) and a mutant-based (selection of a subset of mutants) approach.

1.3 Contributions

The main contributions derived from this thesis are enumerated in this section.

1. A set of class mutation operators for the C++ programming language.

Despite the importance of this multiparadigm programming language, a set of oper-

ators for C++ had not been defined previously as far as we know. This set includes

both operators adapted from other languages and new C++-specific operators.

2. A mutation system for the C++ programming language. This muta-

tion system, called MuCPP, automatically analyses C++ programs, generate the

mutants according to the set of mutation operators implemented and execute the

test suite against those mutants. We also describe the main features incorporated

into the tool to facilitate mutation testing for this language. To the best of our

Chapter 1. Introduction 6

knowledge, this is the first system devoted to C++ mutation testing implementing

a set of mutation operators at the class level.

3. A method to implement mutation operators and a set of guidelines for

the generation of the appropriate mutants. We describe a robust and com-

prehensive method to inject mutations into the code through the abstract syntax

tree, which avoids practical issues in systems based on the concrete syntax of the

language. We also provide a list of requirements that testers should take into ac-

count when implementing mutation operators so that they generate the mutants

that are expected from them.

4. A qualitative and quantitative evaluation of the set of class mutation

operators. We show that object-oriented mutation testing can help detect test

deficiencies related to particular object-oriented features of C++. We calculate

the quantity and distribution of mutants generated with class operators. We also

provide a general list of improvement rules for the implementation of class operat-

ors, which reduces unproductive class mutants and has a significant impact on the

computational cost of the technique.

5. A comparison between traditional and class-based operators. Class oper-

ators are developed because they address object-oriented features, which were not

examined by research studies regarding conventional programming languages. The

results confirm that class operators can complement traditional operators and can

help testers further improve the test suite.

6. A system to apply EMT to C++ object-oriented systems. This system,

called GiGAn, connects the mutation system MuCPP and the genetic algorithm

implemented in GAmera, allowing the application of EMT to object-oriented pro-

grams.

7. An evaluation of EMT when applied to object-oriented systems. We go

beyond previous experiments by conducting an experimental procedure to assess

the improvement of the test suite when applying EMT. This study supports pre-

vious studies about EMT when compared to random mutant selection, reinforcing

its use for the goal of improving the fault detection capability of the test suite but

at a lower cost.

8. A double assessment of C++ class operators based on their influence

during the evaluation (TSE) and the refinement (TSR) of the test suite

respectively. This is the first work assessing mutation operators from this double

perspective as far as we know. We apply two different metrics to evaluate the

Chapter 1. Introduction 7

effectiveness of mutation operators for TSE and TSR, which leads to different

classifications of mutation operators associated with these two goals.

9. A comparison between operator-based and mutant-based selective muta-

tion. We compare the performance of these two selective strategies, based on the

selection of operators and mutants respectively, in the scope of object-oriented

mutation testing. The results show that selecting individual mutants from all the

operators is more convenient than discarding operators at the class level.

1.4 Thesis Structure

In this section, we briefly comment the content of the chapters that comprise this thesis.

The structure of this document is as follows:

• The current chapter, Chapter 1, presents the motivation of the work undertaken,

enumerates the goals of this thesis and summarises the main contributions achieved.

• Chapter 2 describes the fundamental aspects and concepts of mutation testing and

the state of the art in this research field. We review the works about mutation

testing in general and about mutation operators and cost reduction techniques in

particular.

• Chapter 3 addresses the first step in mutation testing: the definition of mutation

operators. In our case, we define a set of mutation operators at the class level for

C++, explaining their main purpose. We also compare this set with existing class

mutation operators for other object-oriented programming languages.

• The approach to implement the mutation operators defined in the previous chapter

is described in detail in Chapter 4. This chapter looks in depth at the requirements

that mutation operators should meet to generate appropriate mutants, defines a

list of general rules to improve their effectiveness and also contains an example of

the implementation of an operator. Finally, this chapter shows the structure and

features of the developed mutation system for C++, which implements the set of

class mutation operators.

• Chapter 5 studies class mutation operators from a double perspective: quantitative

analysis (reduction in the number of mutants through the implemented improve-

ment rules, distribution of mutants and mutation score and test suite improvement)

and qualitative analysis (utility of these operators, comparison with traditional

mutants and detection of coding errors).

Chapter 1. Introduction 8

• Chapter 6 focuses on Evolutionary Mutation Testing, where this technique is ana-

lysed in detail. The system that implements EMT for C++ object-oriented systems

is presented. This system is used to evaluate the performance of this cost reduction

technique in diverse experiments.

• Chapter 7 continues the analysis of mutation operators at the class level following

a selective mutation approach. Mutation operators are studied regarding their

contribution to TSE and TSR separately, obtaining different rankings of mutation

operators for each of these two goals pursued when using mutation testing. The

selective approach is additionally divided into operator-based selection and mutant-

based selection based on these rankings, which allows us to analyse whether it is

better to discard mutation operators or individual mutants from different operators.

The selective study measures the trade-off between the loss of effectiveness and the

reduction in the number of mutants.

• Chapter 8 summarises the main results reported (and discussion about them) in

the conducted experiments throughout this thesis. Threats to validity of the results

are also exposed.

• Chapter 9 collects the conclusions drawn from this research period, and also presents

several future research lines. This chapter ends with a list of contributions (journ-

als, book chapters and conferences).

• Appendix A shows relevant features of the case studies used in the different exper-

imental procedures in this thesis.

• Appendix B defines several useful concepts related to the execution of mutants and

test suites that are used in this dissertation.

Chapter 2

Concepts and State of the Art

The first purpose of the chapter is to present the main concepts related to

mutation testing. The second goal is to look in depth at the development

and the current state of this testing technique, mainly in relation with the

content of this thesis. We also mention and describe terms that will be used

later on in this dissertation.

2.1 Fundamentals of Mutation Testing

Mutation testing is a testing technique based on the injection of simple syntactic changes

into the code, following the rules prescribed by a set of mutation operators. These

mutation operators usually emulate real faults or promote good coding practices. The

rationale behind mutation testing is that a good test suite should be able to detect all

the changes that are introduced into the code. It is important to note that a test suite is

used to find faults within a program, whereas mutation testing is used to find deficiencies

in that test suite. There are three main stages when applying mutation testing: mutant

generation, test suite execution and mutant analysis. We will explain the fundamental

aspects of mutation testing while describing each of these phases.

Mutant generation

In this stage, the source code of the program under test is analysed with respect to the set

of mutation operators in order to determine the locations where a fault can be injected.

The original code is then modified to generate faulty versions of the program according

to these locations. The new versions of the program are called mutants.

9

Chapter 2. Concepts and State of the Art 10

As a running example, consider a program with the next statement:

Original : a = b ∗ c ;

The mutation operator “arithmetic operator replacement” could generate the following

four mutants in that statement:

Mutant 1 : a = b + c ;

Mutant 2 : a = b − c ;

Mutant 3 : a = b / c ;

Mutant 4 : a = b % c ;

Each mutant is usually a clone of the original program except for a simple syntactic

change: the injected fault. A mutant should represent a valid fault. As such, the

resulting code should comply with the language rules. However, mutation operators

sometimes generate invalid mutants, which are malformed because of the injected fault

and infringe the language rules.

Test suite execution

Once generated, the mutants are run on the test suite developed to test the program

with the aim of evaluating its fault detection capability. A test case sets the state of

the program inducing a particular execution. Consider a single test case, test case 1,

exercising the statement of our example:

Test case 1 : b = 2 , c = 1

The outputs after the execution of the mutants allow knowing whether the test suite is

able to reveal those possible faults in the code. When the outputs of the original arte-

fact and a mutant differ in at least one test case, the test suite uncovers the mutation

and the mutant is killed. On the contrary, when the outputs are the same for all the

test cases, the mutant is alive. Thus, the mutants in our example are classified as follows:

Original : a = 2 ∗ 1 ; → a = 2

Mutant 1 : a = 2 + 1 ; → a = 3 Ki l l ed (a 6= 2)

Mutant 2 : a = 2 − 1 ; → a = 1 Ki l l ed (a 6= 2)

Mutant 3 : a = 2 / 1 ; → a = 2 Alive (a = 2)

Mutant 4 : a = 2 % 1 ; → a = 0 Ki l l ed (a 6= 2)

Chapter 2. Concepts and State of the Art 11

Three mutants have been killed and one remains alive (mutant 3) because the value of

the variable “a” is different from the value of this variable in the original program (a =

2).

Mutant analysis

When some of the mutants remain alive because the current test suite is not able to

detect the fault that they model, it is the turn for the tester to manually review those

surviving mutants. Sometimes the functionality of a mutant and the original program

is exactly the same. In that case, we find an equivalent mutant and no input data can

detect the mutation. Otherwise, the test suite designed for the tested system has failed

in detecting faults within the code, that is, the analysis of the mutants reveals some

deficiencies in the test suite.

The mutation adequacy score is a well-known metric to estimate the fault-revealing power

of a test suite. The mutation score is the ratio of the number of dead mutants over the

total of non-equivalent mutants:

Mutation score(P, T) =
K

M − E × 100 (2.1)

Where:

• P is the program under test.

• T is the test suite.

• K is the number of killed mutants.

• M is the total number of mutants.

• E is the number of equivalent mutants.

We say that the test suite is mutant adequate when the mutation score is 100% (i.e.,

when it is able to kill the full set of non-equivalent mutants). The higher the mutation

score, the higher the test suite quality and therefore its ability to reveal coding errors.

Returning to our example, three out of four mutants have been killed and mutant 3 is

not equivalent. Therefore, K = 3, M = 4 and E = 0, so the mutation score associated

with the test suite is:

3

4− 0
× 100 = 75%

Chapter 2. Concepts and State of the Art 12

A new test case (test case 2) can be added to the test suite to kill mutant 3 :

Test case 1 : b = 2 , c = 1

Test case 2 : b = 2 , c = 2

The execution of test case 2 against mutant 3 effectively kills the mutant as shown below:

Original : a = 2 ∗ 2 ; → a = 4

Mutant 3 : a = 2 / 2 ; → a = 1 Ki l l ed (a 6= 4)

However, we have to note that just checking the state of a variable after the execution

of the mutation does not ensure that those mutants are actually killed. Ammann and

Offutt [5] proposed the RIP model, which establishes the three conditions that a test

case needs to meet to kill a mutant:

1. Reachability: the test case covers the mutant, that is, the mutated statement is

reached or exercised by the test case.

2. Infection: the execution of the mutation causes a difference in the internal state

of the program.

3. Propagation: the infection is not masked after the mutated statement and the

difference is also reflected in the output.

In our example, we have seen how a test case achieves the infection. The following frag-

ment illustrates a situation in which the mutated statement is not reached by any of the

test cases in our example (reachability):

i f (c > b) {

a = b ∗ c ;

}

Likewise, even when the test case is reached and infected, as in the following fragment,

the change might not be propagated to the end of the program (propagation):

i f (b > 0) {

a = b ∗ c ;

}

Chapter 2. Concepts and State of the Art 13

i f (a >= 0) {

a = 1 ;

}

As it can be seen, even though the value of “a” changes because of the mutation, the

output is 1 in the end, exactly as in the original program.

2.2 Mutation Testing in the Literature

Mutation testing research dates back to the 1970s from the ideas posed by Hamlet [54]

and DeMillo et al. in 1978 [30]. Therefore, the technique has been investigated for almost

four decades. Woodward [128] in 1993 collected all the research on mutation testing from

those first years. After that, Jia and Harman surveyed the studies related to mutation

testing, first in a technical report in 1999 [66], and second in a journal paper two years

later [68]. Finally, Offutt [63] also discussed in 2011 the past, present and future of this

testing technique.

In general terms, the research on mutation testing can be classified into the following

branches:

• Many studies have been dedicated to produce evidence of the usefulness of

mutation testing to evaluate and improve the quality of test suites, which will

be addressed in this section. This activity includes validating the rationale behind

mutation testing, its empirical evaluation in real environments and the comparison

with structural coverage targets.

• As a white-box testing technique, mutation testing must be specifically designed

according to the unique features of each domain. Thus, this technique has

been developed for different programming languages as new technologies

appeared, defining sets of mutation operators and implementing them in several

mutation tools. We will review the papers in the literature related to this activity

in Section 2.3.

• The experiments conducted applying mutation testing have shown that it can be

prohibitively expensive even for small-sized programs, which has hindered its ad-

option by the industry. Therefore, researchers in this field have proposed multiple

methods to reduce the cost of the application of mutation testing without

lessening its effectiveness significantly, and have evaluated their performance. We

will explore this topic in Section 2.4.

Chapter 2. Concepts and State of the Art 14

Mutation testing has as cornerstones two hypotheses [30]:

• The competent programmer hypothesis: Programmers tend to build software close

to the correct version. Therefore, this hypothesis explains why most software faults

have their origin in subtle defects of the code.

• Coupling effect hypothesis: Complex faults relate to simple faults, so a test suite

that detects simple faults should also detect most complex faults.

Several works have tried to validate these underlying hypotheses, like Offutt [98] who

supported experimentally the validity of the coupling effect. The study by Daran and

Thévenod-Fosse [23], addressing safety-critical software, revealed a connection between

mutations and real coding errors in a program from the civil nuclear field. In partic-

ular, 85% of the injected mutations were also produced by real faults. Just et al. [72]

provided evidence that the simple errors introduced into the mutants were related to

more complex ones, supporting the coupling effect hypothesis. Andrews et al. [7] applied

four mutant types in C to explore the link between hand-seeded and real faults. Their

results suggested that manually seeded mutations are different and harder to detect than

real faults, whereas mutation operators are more in line with real faults. Nonetheless,

the results of the experiments by Gopinath et al. [52] contradicted that hypothesis since

real faults appeared to be more complex than most of the mutant types considered in

that study.

There are also several studies comparing structural coverage targets and mutation testing

as methods to measure test sufficiency. Smith and Williams [119] found that mutation

analysis can guide on the augmentation of test suites directed by line and branch coverage

tools. Andrews et al. [8] applied mutation testing to evaluate four test coverage criteria:

block, decision, c-use and p-use. They showed that mutation testing can help predict

the effectiveness of these criteria to detect real faults and their relative cost in terms

of fault detection, test suite size and control/data flow coverage. Baker and Habli [10]

carried out an empirical evaluation in the safety-critical industry. They analysed the test

suites for two different projects in C and Ada, satisfying statement coverage and modified

condition/decision coverage (MC/DC) respectively. The experiments revealed a subset

of operators that could detect particular deficiencies in the test suites developed for both

projects. Iznometsova et al. [61] studied the correlation between coverage (statement,

decision and MC/DC), test suite size and effectiveness for large programs in Java. The

results gave evidence that test effectiveness is not strongly correlated with coverage

criteria, so coverage is not a good indicator of test quality. Yao et al. [131] defined

the term stubborn mutant: non-equivalent mutants which are not killed by a test suite

satisfying the branch coverage criterion. Using a branch-adequate test suite ensures that

Chapter 2. Concepts and State of the Art 15

all the mutants have been exercised, so stubborn mutants require non-trivial test cases

to be detected. Their experiments revealed that some mutation operators produced

many stubborn mutants, whereas other operators produce many equivalent mutants.

As such, testers should prioritise those operators generating many stubborn mutants in

comparison with the number of equivalent mutants.

2.3 Mutation Operators and Tools

2.3.1 Overview

Mutation operators are associated with typical categories of errors arising when using a

particular programming language. Mutation operators are mainly derived from the ana-

lysis of the most frequent mistakes made by programmers, so they represent the types

of faults tackled by mutation testing. Therefore, a key aspect of mutation testing is

defining and implementing the set of mutation operators properly in order to generate

useful mutants. The choice of mutation operators depends on the programming lan-

guage. Several mutation operators are common to different languages that share part

of their syntax, but each language possesses particular features making a specific study

necessary. Thus, many works have been devoted to defining sets of operators for a vari-

ety of languages. Boubeta-Puig et al. [18] recently studied the equivalence of operators

among different languages.

In its early years, this technique was developed for a limited number of procedural lan-

guages such as C, FORTRAN or Ada. Agrawal et al. [3] defined in 1989 a set of 77

mutation operators for C, divided into four categories: statement, operator, variable and

constant mutations. Many of the sets of mutation operators for different programming

languages are based on this collection of operators. King et al. [78] developed the muta-

tion tool Mothra with 22 operators to apply mutation testing to the FORTRAN language.

Offutt et al. [103] compiled a set of 65 operators for Ada. However, the appearance of

new languages boosted the research in the late 1990s and shifted the focus to other kinds

of domains and levels of abstraction [68]. Hence, in a short period, the technique has

been applied to languages of diverse nature. Mutations has also been used at the design

level, which is known as “specification mutation” [68], such as Petri Nets [47], Finite

State Machines [46] or security policies [89].

Different mutation operators can be defined depending on the characteristics of the

program and also depending on the testing activity that the system under test undergoes.

Particularly for general purpose languages, such as Java or C++, a set of mutation

operators can be defined for each of these levels [68], [91] (see Figure 2.1):

Chapter 2. Concepts and State of the Art 16

Figure 2.1: Mutation testing levels

• Unit level [3]: This level refers to conventional mutation testing applied to a

function or method to test its functionality. These mutation operators are usually

known as standard or traditional operators.

• Class level [87]: This level deals with the faults related to object-oriented features,

such as inheritance or polymorphism. This kind of operators is known as class

mutation operators (also class-based or class-level operators). This level will be

analysed in more depth in Section 2.3.2.

• Integration level [26]: Mutations at this level test the connection or interaction

between software units, making changes from the parameters to the values returned

by the functions. These operators are called interface mutation operators.

• Multi-class level [91]: This level goes a step beyond the integration level, tackling

the problem of integration testing of multiple classes or entire software products.

Mutation operators at this level are also known as system level operators.

The number of languages that have been addressed with this technique has definitely

risen in the last years, including object-oriented languages. As a result, we can find

mutation tools automating the generation and execution of mutants for a wide range of

them [68]. We can mentionMuJava [87] for Java,MILU [65] and Proteum/IM 2.0 [27] for

C or, more recently, MutPy [36] for Python as successful tools applied in several research

studies. Delahaye and du Busquet [25] collected in a survey their experience when using

mutation tools for several programming languages, presenting the main features of the

tools and positive and negative aspects.

Different techniques have been used to introduce mutations into the code, depending

on the nature of the language and the complexity of the operators. Chevalley and

Chapter 2. Concepts and State of the Art 17

Thévenod-Fosse [21] were the first authors dealing with the implementation of class

mutation operators. They found that traditional techniques based on syntactic ana-

lysis were not sufficient to automate object-oriented mutation testing since mutation

operators developed for procedural programs languages did not modify data structure

declarations. As such, different techniques have been developed in mutation tools for

object-oriented languages, such as inserting faults directly into the bytecode [87], us-

ing compile-time reflection to access the internal structure of a program [21] or using

a parser-based approach [71]. For instance, CREAM [39] uses compilation along with

reflection mechanisms to analyse the original program and determine where in the code

the operators can inject new mutations. After that, ILMutator [37] implemented a new

approach for C#, manipulating both the meta-data and the intermediate code (Common

Intermediate Language of .NET) originated from C# code. That study concludes that

inserting mutations at that level is more efficient and faster than parsing the code as

no recompilation is needed. However, the identification of mutation locations presents

some limitations and requires arduous implementation work to comply with correctness

conditions. Finally, other mutation tools parse the abstract syntax tree (AST), like

MAJOR [71] for Java to generate traditional mutants.

2.3.2 Mutation testing at the class level

Class-based mutation operators deserve special attention because they are particularly

devised to test structures related to object-oriented features. Traditional operators may

not be sufficient to stress the test suite designed for object-oriented applications because

of the new facilities and features added with this programming paradigm; features such as

encapsulation, inheritance, and polymorphism provide a new scope for potential faults.

Therefore, the object-oriented characteristics require their own research and class muta-

tion operators were designed to cope with the possible flaws resulting from the misuse

of those features.

As an example of a class operator related to inheritance, the operator IHD (Hiding Vari-

able Deletion) deletes a member variable in a subclass which is hiding a variable in a

parent class. Given this piece of code:

class Base{

public :
. . .

int v ;

} ;

class Child : public Base{

Chapter 2. Concepts and State of the Art 18

public :
. . .

int v ;

} ;

this operator removes the variable “v” from the child class, so every reference to this

variable will refer to the variable “v” in the base class now:

class Base{

public :
. . .

int v ;

} ;

class Child : public Base{

public :
. . .

/∗IHD∗/
} ;

Although the object-oriented paradigm became widely used in the early 90s, research

regarding mutation testing started in 1999 with the definition of the first class operators

for Java [75]. The class-level mutation operators for Java were refined and extended later

in different works of several authors [21, 76, 86, 104]. The list of class-based operators

provided by Offutt et al. [104] is shown in Table 2.1. Subsequent to the definition of

Java class operators, Derezińska studied object-oriented features in C# to provide class

operators for this language [34, 35]. We can find several mutation tools to test programs

in these two languages since then, where MuJava [87] for Java and CREAM [39] for C#

are the most popular tools.

There are several empirical studies on the effectiveness of class mutation operators [77,

82, 88, 117]. One of the first analyses was made by Kim et al. [77], evaluating with muta-

tion testing the test suites developed following three object-oriented test strategies. They

found that these strategies for the creation of test suites were not effective at dealing

with some object-oriented features. Lee et al. [82] studied the orthogonality of the class

mutation operators compiled by Ma et al. for Java [86], and also the distribution of the

mutants stemming from large programs. Experimental results showed that class operat-

ors could reveal many faults while producing few mutants in comparison to traditional

operators in procedural programs. Ma et al. [88] found that the traditional operators

produced about twice as many mutants as the class operators for the same applications.

Ma et al. [88] and Segura et al. [117] observed a different behaviour when applying class

operators for Java with respect to the number of equivalent mutants: around 70% and

Chapter 2. Concepts and State of the Art 19

Table 2.1: List of class mutation operators provided by Offutt et al. [104]

Block Operator Description
Encapsulation AMC Access modifier change

Inheritance

IHI Hiding variable insertion
IHD Hiding variable deletion
IOD Overriding method deletion
IOP Overriding method calling position change
IOR Overriding method rename
ISI super keyword insertion
ISD super keyword deletion
IPC Explicit call of a parent’s constructor deletion

Polymorphism

PNC new method call with child class type
PMD Member variable declaration with parent class type
PPD Parameter variable declaration with child class type
PCI Type cast operator insertion
PCD Type cast operator deletion
PCC Cast type change
PRV Reference assignment with other comparable variable
OMR Overloading method contents replace
OMD Overloading method deletion
OAC Arguments of overloading method call change

Java-
specific
features

JTI this keyword insertion
JTD this keyword deletion
JSI static keyword deletion
JSD static keyword deletion
JID Member variable initialization deletion
JDC Java-supported default constructor creation
EOC Reference assignment and content assignment replacement
EOA Reference comparison and content comparison replacement
EAM Acessor method change
EMM Modifier method change

45% in their studies respectively. However, some operators with a high percentage of

equivalence in the study by Ma et al. did not produce any mutants in the experiments

conducted by Segura et al. Moreover, we should take into account that the application

of these class operators is rather dependent on the characteristics of the tested program

in general. There are two surveys dedicated to object-oriented mutation testing: the first

by Ahmed et al. in 2010 [4] and the second by Bashir and Nadeem in 2012 [14].

2.3.3 Mutation testing and C++

C++ [58, 122] is a powerful and multiparadigm programming language widely used in

strategical areas in the industry. This language can be considered to be an enhancement

of C, incorporating new properties such as classes, templates or exception handling. The

Chapter 2. Concepts and State of the Art 20

Table 2.2: Faults identified by Derezińska [33] for the Object and Member categories

Category Description

Object
Calls a same function member from a different object of the same class.
Calls a function from an object of a different class, but both classes have
the common base class.
Calls a function from the derived class instead of the base class.

Member

Calls a different (complementary) function member.
Calls a function inherited from the base class.
Swaps calling of function members in a class.
Swaps calling of functions inherited from one class.
Accesses the different data in the same object.

first standard for C++ appeared in 1998, being modified in the C++03 standard and,

more recently, in new standards (C++11-C++17). However, the adaptation of these

new standards is taking place gradually. Because of its advanced facilities, the size of the

grammar and the variety of alternatives provided, it is not considered an easy language

for the ordinary programmer, calling for a necessary testing process.

As advanced in the introduction, the development of mutation testing regarding C++

was still pending. This development has been postponed in favour of other languages,

mainly because of the difference in complexity. Regarding a particular set of mutation

operators for this language, the research is really scarce and we cannot find a complete

set of operators. Prior to this thesis, only two attempts had been carried out to define a

set of operators. The first work [133] formed a collection of traditional operators, based

on the operators defined for Ada [103] and FORTRAN [78]. This set categorised the

operators according to four blocks: operand replacement, operator insertion, arithmetic

operator replacement and relational operator replacement. The second work showed an

approximation regarding plausible errors related to object-oriented features in C++[33],

but no operators were formally defined. This paper proposed five categories of possible

mistakes: Inherit, Associate, Access, Object and Member. However, only Object and

Member refer to C++ coding errors (the three first blocks are applied to the Unified

Modeling Language (UML) specification). The faults within these two blocks in that

paper are summarised in Table 2.2. The research regarding both approaches was given

up as no new progress has been published since then.

In the case of mutation systems for C++, existing commercial tools include mutation

testing within a set of testing techniques (they do not focus only on mutation testing)

and do not cover mutations at the class level but only some standard operations, using

the technique in a selective way:

• Insure++ (1998) [62]: This tool uses mutation testing as one more technique to en-

hance the software quality (especially focusing on memory problems), but it only

Chapter 2. Concepts and State of the Art 21

performs some standard mutations as mentioned in [37]. Its approach is differ-

ent from classical mutation testing because it only creates functionally equivalent

mutants, which are expected to pass the tests instead of failing. Therefore, an error

in the original program is detected when a mutant is killed, revealing the ambigu-

ities that could exist. Users can choose the number of mutants to generate (the

more mutants created, the more rigorous detection), and apply mutation testing

from a single function to an entire project.

• PlexTest (2005) [112]: As mentioned in its web page, this software implements

a highly selective mutation testing to avoid the generation of equivalent mutants.

When selecting this option, the tool only performs the mutation of deletion, remov-

ing statements and sub-expressions. This tool incorporates some other features to

improve the performance, like the combination with a revision control system to

determine recently-edited code and selectively test that code.

• Certitude Functional Qualification System (2006) [55]: This tool combines muta-

tion testing and static analysis, qualifying a program functionally and revealing

faults that might not be detected otherwise. Although this product has also been

used for the analysis of software systems, it is now addressing the microelectronics

industry.

As for open-source systems, CCMutator [80] is a mutation generator for concurrency

constructs in C or C++ recently developed. This tool implements a set of operators

specifically designed to mutate multi-threaded applications.

2.4 Cost Reduction Techniques

2.4.1 Motivation

As aforementioned, mutation testing is a powerful technique hampered by its compu-

tational inefficiency. Two are the main problems when applying mutation testing: the

computational cost that generating and executing all the mutants involves

and the existence of equivalent mutants. Several advances have been proposed in

order to reduce the computational cost of mutation testing. These cost reduction tech-

niques have been reviewed by Offutt and Untch [100] and Usaola and Mateo [125] and

they will be addressed in the next sections.

Chapter 2. Concepts and State of the Art 22

The existence of mutants functionally equivalent to the artefact under test is an issue

in mutation testing. Equivalent mutants are identified when alive mutants are manu-

ally inspected, so determining which of the surviving mutants are equivalent is a time-

consuming and error-prone labour. Hence, a variety of works have tried to alleviate this

issue, but it is not possible to fully automate the analysis of equivalent mutants since this

is an undecidable problem. The first heuristics for detecting equivalence were proposed

by Baldwin and Sayward [11] based on compiler optimisations. Besides, constrained-

based test data (CBT) to automatically generate test data was also used by Offutt and

Pan [99] to identify equivalent mutants. Hierons et al. [57] addressed the detection of

equivalent mutants by means of program slicing and Adamopoulos et al. [2] used a co-

evolutionary algorithm to discard equivalent mutants through a fitness function. Several

interesting advances have been done regarding equivalence in the last years. Mutant

classification strategies analysing the coverage impact of mutations [107, 115] have been

used in studies to mitigate the effects of the equivalence. Papadakis et al. [108] also pro-

posed a novel technique to automatically detect equivalent mutants based on compiler

optimisations by comparing the executables of the original program and the mutants.

They succeeded in reducing as many as 30% of all existing equivalent mutants in large

real-world C programs.

Regarding object-oriented mutation testing, Lee at al. [82] proposed some hints for the

implementation of three class operators in order to avoid class mutants which are known

to be equivalent. Equivalence conditions were later extended by Offutt et al. [104] for

sixteen operators; almost 75% of equivalent mutants on average were identified and

their generation was prevented for sixteen operators. New rules for avoiding equivalent

mutants generated by five class-based operators were provided and analysed by Hu et

al. [59].

2.4.2 Classification

The techniques for the reduction of the computational cost in mutation testing can be

classified into two distinct categories, as stated by Jia and Harman [68]1:

1. Reduction of the mutants generated.

2. Reduction of the execution cost.

Regarding (1), several techniques for reducing the number of mutants without unaccept-

able information loss have been proposed:
1Offutt and Untch [100] summarise the approaches for the reduction of the cost into three categories:

do fewer, do smarter and do faster.

Chapter 2. Concepts and State of the Art 23

• Mutant Sampling [20] selects randomly some of the available mutants (also

known as random mutant selection).

• Selective Mutation [102] applies only a subset of the mutation operators defined

for the language.

• Mutant Clustering [60] groups the mutants according to the set of test cases

that kill them and then selects a representation of each cluster.

• Higher Order Mutation [67], unlike traditional first order mutation, generates

mutants that contain more than a single fault.

• Evolutionary Mutation Testing [43] generates a selected subset of mutants

through an evolutionary algorithm.

As for (2), there exist several techniques to reduce the execution cost that can be applied:

• Weak mutation and Firm mutation: weak mutation [49, 106] compares the

internal state of the mutant and the original program once the mutated statement

has been executed. Firm mutation [127] compares both the internal state of the

mutant and the original program just after the execution of the mutation (as done

in weak mutation) and the outputs at the end.

• Runtime optimisations: this group encompasses from a compiler-integrated

approach to enhance the performance of compiler-based techniques [31], to the

meta-mutant technique (also known as mutant schemata) representing all possible

mutants in a single program [124] to speed up the execution of mutants.

• Advanced platforms support: advanced architectures are leveraged to distrib-

ute the computational cost among several machines, such as vector processors [93]

or network computers [132].

Selective mutation and weak mutation are the most widely analysed techniques in the

literature respectively for these two categories. We will focus on selective mutation in

the next section.

2.4.3 Selective mutation

Selective mutation is one of the cost reduction techniques with greater acceptance because

it has been satisfactorily applied following different approaches. Selective mutation works

under the assumption that some mutation operators can be excluded, yet retaining a

Chapter 2. Concepts and State of the Art 24

similar fault-revealing capability. By using selective mutation, the aim is to obtain

a sufficient set of mutation operators: a reduced set of mutation operators which is

representative of the whole set of operators, that is, a subset of operators that can

accurately predict the mutation score of the full set of operators. Selective mutation was

first suggested by Mathur [92] to reduce the large computation expenses.

The approach of removing some of the mutation operators has been investigated since

then by many researchers [13, 28, 95, 97, 101, 102, 126]. In this regard, Wong and

Mathur [126] limited mutation testing to two operators in their study with FORTRAN

operators; by using these two operators, they achieved similar results than using the 22

operators included in Mothra. Offutt et al. [101] explored the information loss when

applying N-selective mutation, .i.e., when the N most commonly applied operators are

removed. Among other results, by excluding the 6 operators that engendered more

mutants (6-selective mutation), adequate test suites for the remaining mutants (around

40% of the complete set of mutants) maintained a high correlation with the full mutation

score (99.71%). Offutt et al. [102] also explored the possibility of excluding the operators

belonging to the same operator group: replacement of operand, expression modification

and statement modification. They found that 5 of the 22 mutation operators in Mothra

(those operators within the expression modification group) sufficed to implement muta-

tion testing without a meaningful decrease of the mutation score, allowing for a reduction

of 78% of mutants on average.

Removing operators of a similar syntactic category was also the approach to selective

mutation followed by Mresa and Bottaci [95]. In their experiments, they found that

selective mutation is a preferable option when compared to mutant sampling but only if a

mutation score not very close to 100% is required. They used effective and non-redundant

test cases in their empirical procedure. Barbosa et al. [13] tried to find sufficient sets of

operators for C programs by defining a set of guidelines. By applying these guidelines to

Agrawal et al.’s operators [3], the authors found that just with 10 operators the mutation

score ranged between 95.8% and 100% in 27 cases studies. Namin et al. [97] aimed at

finding a sufficient set of mutation operators by defining a statistical analysis procedure.

This procedure identified 28 operators for C as sufficient for an accurate measurement

of the mutation score for all the operators (128 operators implemented in Proteum/IM

2.0 [27]). The results of their approach to select a subset of operators did not support

the intuition that one operator from each operator group should be selected, as in the

guidelines proposed by Barbosa et al. [13]. Delamaro et al. [28] proposed a greedy

algorithm for selecting a reduced subset of C mutation operators, successively adding

the operators that increased the overall mutation score the most. They concluded that

the high redundancy among the operators makes difficult to establish a single way to

Chapter 2. Concepts and State of the Art 25

select the best operators. Recently, the study directed by Zhang et al. [134] showed that

selective mutation scales with regard to the size of the system under test.

Random mutant selection was proposed by Budd [20] and Acree [1], where they showed

that just sampling 10% of the mutants was sufficient to predict the mutation score

for all the mutants with high accuracy. Despite the particular attention received by

selective mutation in the literature, a growing number of research studies in recent

years gives evidence that selective mutation is not superior to random mutant selec-

tion [53, 135]. This conclusion was drawn by Zhang et al. [135] when comparing random

mutant selection with several of the aforementioned sufficient sets of operators in the

literature [13, 97, 102]. The experiments by Gopinath et al. [53] also suggested that

removing operators could offer limited benefit in comparison to random mutant selec-

tion. Finally, Zhang et al. [136] applied 8 different random strategies for the selection

of mutants, concluding that selective mutation and random mutant selection can be

combined to further reduce the cost.

Selective strategies applied to class mutation operators have previously been studied

for object-oriented languages. Derezińska and Rudnik [38] conducted their experiments

with C# applying 18 class operators and 8 standard operators to three applications.

The results evidenced that, even with a considerable reduction in the number of class

mutants (using 74% of the mutants) still 93% of the original mutation score could be

achieved. Ma et al. [88] explored the elimination of some unnecessary class operators in

Java that generated very few mutants. Bluemke and Kulesza [17] performed a selective

reduction of mutants generated by Java operators, including class-level operators. In

their experiments, they showed that the strategy could significantly reduce the cost

(between 40% and 60% of mutants) while preserving an acceptable mutation score and

code coverage. Hu et al. [59] recommended the omission of the operators PCI and OAC

for Java, as these operators had a low performance and were expensive.

2.4.4 Quality of mutation operators

The evaluation of the quality of mutation operators is closely related to the application

of selective mutation. Assuming that not all mutation operators are equally effective

at assessing a test suite, analysing desirable properties of the mutants generated by the

operators has become an important research field in mutation testing. As mentioned in

the previous section, the first evaluations of operator effectiveness aimed at obtaining

sufficient sets of mutation operators by removing both the most prolific operators [101]

and those of the same category [102] (based on the syntactic elements that they mutate).

If the mutation score in the reduced set of operators is the same as in the original set

Chapter 2. Concepts and State of the Art 26

after the selective strategy, the effectiveness of the technique remains high and those

operators are not actually necessary.

After that, several works have dealt with the concept of quality of a mutation operator

considering other dimensions. Mresa and Bottaci [95], in addition to calculating the

mutation score of FORTRAN operators, evaluated operators regarding two factors for a

more accurate measurement of the trade-off of including each operator: mutation score

and cost information about test data generation as well as equivalent mutant identifica-

tion. Estero-Botaro et al. [44] analysed a set of WS-BPEL operators with a focus on the

quantitative dimension, defining several terms to that end. A weak mutant is killed by

every test case in the test suite, whereas a resistant mutant is killed by a single test case.

Furthermore, the resistant mutant that is killed by a single test case only killing that

mutant is known as hard to kill. In summary, Estero-Botaro et al. [44] considered that

the quality of a mutation operator can be determined by studying the below conditions.

A mutation operator should ideally:

1. Generate no invalid mutants.

2. Generate no equivalent mutants.

3. Require very specific test cases to kill its mutants. The operator will not be useful if

an obvious “happy path” test case going through the most common paths is enough

to kill most of its mutants.

4. Produce a high percentage of resistant and hard to kill mutants, and a low per-

centage of easy to kill (those which are killed by most of the test cases) and weak

mutants.

In their study, they made use of the notion of quality that Derezińska [34] took to assess

C# class operators, which computes how effective are test cases in killing mutants (see

Equation 2.2). Derezińska also posed several questions that should be answered to judge

the usefulness of an operator:

• Does an operator can be applied in real programs to simulate faults of program-

mers?

• Are any invalid mutants generated by an operator?

• Does an operator generate many equivalent mutants?

• Is an operator effective at assessing the quality of given test cases? If a mutant is

not killed by a given test suite, is it easy to create test cases which kill it?

Chapter 2. Concepts and State of the Art 27

Effectiveness =
Killed test runs

(Totalmutants− Equivalentmutants)× Total tests × 100 (2.2)

Smith and Williams [119] went a step beyond when classifying mutants. They categorised

the mutants in four types: killed by the initial test suite, killed by a new test case, killed

by a new test case specifically defined to kill another mutant or not killed. The mutants

killed by test cases specifically designed to detect them require particular test cases which

are not easy to design through other mutants. Therefore, this kind of mutants is more

interesting than those mutants killed by the initial test suite. The quality of a mutation

operator (named as utility of a mutation operator by these authors) is calculated as a

linear combination of the percentage of each of the four types of mutants generated by

the operator. As for object orientation, Hu et al. [59] also proposed a metric, called

mutation operator strength, to estimate the quality of Java class operators. This metric

computes the minimal number of necessary test cases to kill the set of non-equivalent

mutants. An operator is regarded as strong when its mutants are detected by relatively

few test cases.

Estero-Botaro et al. [45] defined a novel notion of quality of a mutant (Qm), which

considers the number of test cases killing a mutant and the number of mutants killed

by those test cases. By way of explanation of the metric, an equivalent mutant will

be punished with the minimum value (0), whilst each dead mutant will be assigned a

different value in the range 0-1 depending on how difficult is to produce test cases to kill

it (the higher the value, the better is that mutant).

Consequently, the quality of a mutation operator can be defined as the mean of the

quality metric of the mutants generated with that mutation operator. Similarly, the

quality of a set of dead mutants (D) can be defined as the mean of the quality metric of

the dead mutants generated:

QD =
1

|D|
∑
m∈D

Qm (2.3)

In the study by Estero-Botaro et al. [45], they first calculated the number of equivalent,

weak and resistant mutants generated by each operator. Then, they computed the quality

of each mutation operator trying to establish a threshold that allowed discarding some

operators with a low quality. They also analysed in depth the connection between their

quality metric and the formulas of effectiveness by Derezińska [34], utility of operators

by Smith and Williams [119] and mutation operator strength by Hu et al [59]. While

Derezińska [34] and Smith and Williams [119] did not impose any restriction to the

Chapter 2. Concepts and State of the Art 28

test suite when computing their respective metrics, Mresa and Bottaci [95] and Hu et

al. [59] assessed operators with adequate and non-redundant test suites. Estero-Botaro

et al. [45] went further by establishing the condition of minimality to the test suite (see

Appendix B).

2.4.5 Genetic algorithms applied to mutation testing

Search-based techniques have also been used in software testing [129] (and more spe-

cifically to mutation testing as well) in order to reduce the cost. This section focuses on

those works using genetic algorithms to this purpose [51]. This thesis aims at analysing

the technique known as Evolutionary Mutation Testing (EMT), which was proposed by

Domínguez-Jiménez et al. [43] in 2011 to reduce the number of mutants generated for

TSR by using an evolutionary algorithm. The algorithm favours the generation of strong

mutants: potentially equivalent mutants, which are not detected by the initial test suite,

and difficult to kill mutants, which are detected by one test case which only kills this

mutant and no other.

Each of the mutants receives a fitness, which decreases as:

1. The number of test cases detecting the mutant increases.

2. The number of mutants killed by those test cases increases.

A genetic algorithm is implemented in GAmera [42], a mutation system for WS-BPEL

compositions developed to apply and evaluate EMT. This system was later extended to

use the genetic algorithm with Higher Order Mutants or HOMs [16].

As raised by these authors, genetic algorithms had been widely applied previously, but

most of the studies had limited to test case generation [110], and only a few to mutant

generation (where EMT is classified). Mutation testing has been applied in conjunction

with evolutionary algorithms to generate test cases also for object-oriented software [15,

48]. Bashir and Nadeem [15] made use of the same term, Evolutionary Mutation Testing,

when proposing a novel fitness function to help search effective test cases for object-

oriented programs. Only Adamopoulos et al. [2] used a genetic algorithm for the co-

evolution of mutant and test suite population, where difficult to kill mutants are favoured

and equivalent mutants are penalised. Banzi et al. [12] also applied a genetic algorithm

for the selection of mutation operators. They used a multi-objective approach: maximise

the mutation score and minimise the number of mutants generated.

Nevertheless, there is an increasing body of research in the last years applying genetic

programming to select a subset of mutants. Silva et al. [118] collected the studies applying

Chapter 2. Concepts and State of the Art 29

search-based techniques in the context of mutation testing, including a section dedicated

to the application of search-based techniques for mutant generation.

Oliveira et al. [24] studied the evolution in parallel of the population of mutants and test

cases, as done by Adamopoulos et al. [2]. However, they explored this approach describing

a new representation with new genetic operators: Effective Son crossover and Muta Genes

mutation (instead of the crossover and mutation operators used by Adamopoulos et al.).

Schwarz et al. [116] leveraged a genetic algorithm to find mutations not detected by the

test suite, which have a high impact and are also spread throughout the tested code.

Most of the studies in this context have focused on genetic programming to generate

interesting HOMs [56, 64, 81, 105]. Jia and Harman [64] defined the concept of subsuming

HOM as a HOM which is hard to kill when compared to the difficulty of killing the

First Order Mutants (FOMs) from which it is constructed. The authors applied several

search-based techniques in order to find subsuming HOMs, concluding that the genetic

algorithm yielded the best results of all them thanks to its ability to generate subsuming

HOMs from one generation to the next. Later, Harman et al. [56] provided a more

restrictive fitness function to find strongly subsuming high order mutants (SSHOMs).

Langdon et al. [81] also tried to find hard to kill HOMs as similar as possible to the

original program, showing that these HOMs could simulate complex faults beyond those

modelled with FOMs. Omar et al. [105] have explored in several papers the performance

of search-based techniques (including genetic programming) to find subtle HOMs for Java

and AspectJ programs, where guided local search obtained the best results in general.

As a final remark, Lima et al. [83] have recently compared both traditional strategies

(such as random mutant selection, selective mutation and search-based mutation by using

a genetic algorithm) and HOM-based strategies. This comparison was based on the num-

ber of mutants, the number of test cases and the mutation score. Randomly selecting

20% of mutants (random mutant selection) and removing the 5 most prolific operat-

ors (selective mutation) were the best strategies overall, though most of the strategies

presented a similar behaviour.

Chapter 3

Definition of Mutation Operators

This chapter defines a set of mutation operators at the class level for C++

and groups them into different categories. We complete the chapter providing

references about operators in other object-oriented languages and remarking

differences and similarities between them and the operators defined for C++.

3.1 Defining Mutation Operators

The first step in mutation testing is the definition of mutation operators, where the set

of operators has to be defined for each particular language. In our case, we seek to define

a set of mutation operators for C++ at the class level (see Section 2.3).

With regard to class mutation operators, the research related to other object-oriented

languages has been analysed, in particular, Java [76, 86, 104] and C# [34]. These lan-

guages are very similar, taking Java much of the C++ syntax but removing many of the

low-level facilities (the main differences between these two languages are listed in [58]).

For its part, the basic syntax of C# is influenced by C/C++ as well as Java in its object

model.

Thus, we followed this process for the definition of operators:

1. Check whether it is possible to adapt each of the operators defined for Java/C#,

and whether the features of C++ alter their definition. In that case, perform

sufficient changes to make them suitable for C++.

2. Design new mutation operators according to the language peculiarities and add

them to the set of operators generated in the previous step.

31

Chapter 3. Definition of Mutation Operators 32

C++ continues to preserve low-level facilities like pointers, omitted in other languages.

Thus, it is important to differentiate between a pointer to an object (object reference)

and the object it actually points to. This aspect often causes mistakes when referring

objects, especially if using dynamic allocation. In this sense, dynamic binding is not

as simple as in other languages to induce a polymorphic behaviour. When a method

is declared with the virtual keyword, the method is dispatched based on the runtime

type of the invoking pointer to object (the compiler uses a virtual method table or v-

table to this end). The polymorphic behaviour is created through both pointers and

references. Construction and destruction of objects are also sources of several known

faults [58] because of the complex memory management. Construction entails memory

allocation and initialization of every member variable, since references and primitive

types are not automatically initialized. Besides, the existence of special methods, such

as the destructor and the copy constructor, are distinguishing features of this language.

The inheritance mechanism in C++ has a particular syntax because of the possibility of

using multiple inheritance. Because of this, the scope resolution is necessary to access

the members of a base class, especially in presence of hiding and overriding members

in the class hierarchy. The protection level of the members of a base class can also

be specified in the inheritance. In addition to the above commented, there are many

other characteristics that may confuse a programmer when moving from a mainstream

language to C++, like method overloading, exception handling, default arguments or

operator overloading.

Having said this, mutation operators have been classified into several categories according

to the main characteristics of object-oriented programming. Furthermore, the aforemen-

tioned main sources of error have been taken into account to define these categories and

their mutation operators. Each category is identified by an uppercase letter. At this

level, mutation operators have been subdivided into seven categories, which are listed

below with the letter that identifies each of them:

1. Access control: A

2. Inheritance: I

3. Polymorphism and dynamic binding: P

4. Method overloading: O

5. Exception handling: E

6. Object and member replacement: M

7. Miscellany: C

Chapter 3. Definition of Mutation Operators 33

Table 3.1: Summary of categories and mutation operators at the class level

Block Operator Description

Access control
AMC * Access modifier change
AAC * Inheritance access modifier change

Inheritance

IHD Hiding variable deletion
IHI Hiding variable insertion
ISI * Base keyword insertion
ISD * Base keyword deletion
IPC * Explicit call of a parent’s constructor deletion
IOD Overriding method deletion
IOP * Overriding method calling position change
IOR * Overriding method rename
IMR * Multiple inheritance replacement

Method
overloading

OMR Overloading method contents replace
OMD Overloading method deletion
OAN * Argument number change
OAO Argument order change
OPO Method parameter order change

Polymorphism
and dynamic
binding

PCI * Type cast operator insertion
PCD * Type cast operator deletion
PCC * Cast type change
PRV * Reference assignment with other comparable variable
PNC * new method call with child class type
PMD * Member variable declaration with parent class type
PPD * Parameter variable declaration with child class type
PVI * virtual modifier insertion

Exception
handling

EHR Exception handler removal
EHC * Exception handling change
EXS Exception swallowing

Object and
member
replacement

MCO * Member call from another object
MCI * Member call from another inherited class
MNC Method name change
MBC * Member changed

Miscellany

CTD this keyword deletion
CTI this keyword insertion
CID * Member variable initialisation deletion
CDC Default constructor creation
CCA * Copy constructor and assignment operator

overloading deletion
CDD * Destructor method deletion

Legend: Operators marked with * are original or have been changed with respect to their
original definition or implementation in other languages.

Mutation operators are identified with a code comprised of three uppercase letters: the

first letter denotes the category, while the two other letters identify the operator within

the category. Categories and their mutation operators are summarised in Table 3.1.

Chapter 3. Definition of Mutation Operators 34

3.2 Mutation Operators at the Class Level for C++

In this section, we describe the purpose of each mutation operator, remarking those

details related to C++ features. An example of different mutation operators from each

category is also shown, allowing us to observe the nature of the mutations represented

with this set of class mutation operators.

3.2.1 Access control

Mutation operators in this group intend to confirm that the accessibility is correct.

• AMC or Access modifier change: AMC checks the correct access control to

members of a class. In C++, access levels are determined by sections (public,

protected, private) and as many sections of each level as desired can be added.

This operator transfers the member to another block with a different access level.

In the absence of a section with a specific modifier, a new block with that access

level is included to add the member. On the contrary, if the block has a single

item, it is deleted after running out of members.

Example AMC: Mutant 1: Mutant 2: . . .

pub l i c : i n t a ; pub l i c : i n t a ; p ro tec ted : int a;
pr i va t e : f l o a t b ; string c; pr i va t e : f l o a t b ;

s t r i n g c ; p r i va t e : f l o a t b ; s t r i n g c ;

• AAC or Inheritance access modifier change: When a class inherits from

another one, it is possible to determine the access privileges by specifying an access

modifier: public, protected or private. This operator changes the access modifier

when inheriting to ensure the assigned access is correct.

Example AAC: Mutant 1:
c l a s s A{ c l a s s B: protected A{

.

} ; } ;

Mutant 2:
c l a s s B: pub l i c A{ c l a s s B: private A{

.

} ; } ;

3.2.2 Inheritance

Mutation operators related to inheritance relationships, mainly with respect to the pres-

ence of overridden members, are included in this group.

Chapter 3. Definition of Mutation Operators 35

• IHD or Hiding variable deletion: When a member variable hides the variable

of a parent class (both share the same name), this operator removes the hiding

variable. As a result, the references to this variable access to the variable of the

same name in the parent class.

• IHI or Hiding variable insertion: IHI, instead of removing the hiding variable

as IHD does, creates a member variable in the subclass that hides the variable

defined in a parent class.

Example IHI: Mutant:
c l a s s A{ c l a s s A{

.

i n t n ; i n t n ;

} ; } ;

c l a s s B: pub l i c A{ c l a s s B: pub l i c A{

.

int n;
} ; } ;

• ISI or Base keyword insertion: This operator ensures that the correct member

is being referenced when a member in the subclass hides a variable or overrides a

method of one of its ancestors. In the example below, it can be observed how the

scope resolution operator (::) is used to refer to the base class.

Example ISI: Mutant:
c l a s s A{ c l a s s A{

.

i n t n ; i n t n ;

} ; } ;

c l a s s B: pub l i c A{ c l a s s B: pub l i c A{

.

i n t n ; i n t n ;

.

i n t m () { i n t m () {

.

r e turn n ∗ 2 ; re turn A::n ∗ 2 ;

} }

} ; } ;

• ISD or Base keyword deletion: This operator is the opposite case of ISI.

Chapter 3. Definition of Mutation Operators 36

• IPC or Explicit call of a parent’s constructor deletion: This operator re-

moves the explicit call to a constructor of a parent class so that the default con-

structor is used. The constructor of a parent class is invoked within the initializa-

tion list of a constructor (see the operator CID).

• IOD or Overriding method deletion: The operator IOD deletes an overriding

method (the parent’s version is called instead) intending to ensure that the desired

method is called.

Example IOD:
c l a s s A { c l a s s B: pub l i c A{

.

i n t method () { } ; i n t method () { } ;

} ; } ;

Mutant:
c l a s s A { c l a s s B: pub l i c A{

.

i n t method () { } ; /*IOD*/
} ; } ;

• IOP or Overriding method calling position change: This operator simu-

lates the error that often occurs when calling a method of a base class, which is

overridden in the child class, at the wrong time, producing an undesired state.

Example IOP: Mutant:
c l a s s A{ c l a s s A{

.

i n t a ; i n t a ;

void method () { void method () {

a = 0 ; a = 0 ;

} }

} ; } ;

c l a s s B: pub l i c A{ c l a s s B: pub l i c A{

.

void method () { void method () {

A : : method () ; a = 1;
a = 1 ; A::method();

} }

} ; } ;

• IOR or Overridden method rename: This operator acts when an overriding

method interacts with a parent’s version (see example below). This situation only

arise when that method is declared virtual. In this way, the overriding method can

Chapter 3. Definition of Mutation Operators 37

be called from a method in its parent class when the binding is dynamic. IOR

renames the method being overridden in the parent class.

Example IOR: Mutant:
c l a s s A{ c l a s s A{

.

v i r t u a l void m1() { } v i r t u a l void m3() { }

void m2() { . . . m1() ; . . . } void m2() { . . . m3(); . . . }

} ; } ;

c l a s s B: pub l i c A{ c l a s s B: pub l i c A{

.

void m1() { } void m1() { }

} ; } ;

• IMR or Multiple inheritance replacement: C++ supports multiple inher-

itance enabling a derived class to inherit from more than a single class. When a

derived class inherits from two or more classes, it may occur that those base classes

have member variables with the same name or methods with the same signature.

Thus, the programmer can be mistaken when referencing a certain inherited mem-

ber by the scope resolution operator. That is the fault modelled by this operator.

IMR can be applied when multiple inheritance is present and there is a conflict

among members of the inherited classes.

Example IMR: Mutant:
c l a s s A{ c l a s s A{

.

i n t a ; i n t a ;

} ; } ;

c l a s s B{ c l a s s B{

.

i n t a ; i n t a ;

} ; } ;

c l a s s C: pub l i c A, c l a s s C: pub l i c A,

pub l i c B { pub l i c B {

.

void m () { void m () {

.

b = A: : a + 1 ; b = B::a + 1 ;

} }

} ; } ;

Chapter 3. Definition of Mutation Operators 38

3.2.3 Polymorphism and dynamic binding

Mutation operators that belong to this block check that the polymorphic mechanism is

properly used.

• PCI or Type cast operator insertion: The purpose of this operator is to

cast an object reference, turning its actual type into the parent or child of the

original declared type. The dynamic_cast conversion includes, in a safe way, the

downcasting of pointers/references as well as the upcasting.

Example PCI: Invocation: Mutant:
c l a s s A{

void m() { . . . } B b ; B b ;

. A ∗pa = &b ; A ∗pa = &b ;

} pa−>m() ; (∗) (dynamic_cast<B*>(pa))−>m() ; (∗∗)

c l a s s B: pub l i c A{

void m() { . . . } (∗) A : :m() i s invoked

. (∗∗) B : :m() i s invoked

}

• PCD or Type cast operator deletion: This operator represents the contrary

case of PCI.

• PCC or Cast type change: PCC changes the cast type of an object reference

to another of its class hierarchy.

Example PCC:
C c ;

A ∗pa = &c ;

(dynamic_cast<A∗>(pa))−>m() ;

Mutant:
C c ;

A ∗pa = &c ;

(dynamic_cast<B*>(pa))−>m() ;

Where C i s d i r e c t l y der ived from B and i n d i r e c t l y der ived from A.

• PRV or Reference assignment with other comparable variable: An object

of a subclass can be assigned to an object reference of one of its ancestors. PRV

changes that object, referred in a reference assignment, to an object of another

subclass.

Example PRV: Mutant:
A ∗a ; A ∗a ;
A1 a1 ; A1 a1 ;

Chapter 3. Definition of Mutation Operators 39

A2 a2 ; A2 a2 ;

a = &a1 ; a = &a2 ;

Where A1 and A2 are s ub c l a s s e s o f A

• PNC or new method call with child class type: PNC assigns a derived-class

pointer to a base-class pointer instead of the instantiated type.

Example PNC:
A ∗a = new A() ;

Mutant:
A ∗a = new B() ;

Where B i s a der ived c l a s s o f A

• PMD or Member variable declaration with parent class type: This oper-

ator changes the declared type of an object reference to a parent class type.

• PPD or Parameter variable declaration with child class type: PPD per-

forms the same function as PMD, but it targets the parameters of a method.

• PVI or virtual modifier insertion: Whenever a method in a class is intended

to have a polymorphic behaviour, the programmer must indicate it by adding the

virtual modifier. Forgetting to insert the virtual keyword is contemplated with this

operator. To kill their mutants, there has to be at least one method overriding the

behaviour of the virtual method in a derived class and a method invocation whose

binding is dynamic.

Example PVI: Mutant:
c l a s s A{ c l a s s A{

.

i n t m() { } virtual i n t m() { }

} ; } ;

c l a s s B: pub l i c A{ c l a s s B: pub l i c A{

.

i n t m() { } i n t m() { }

} ; } ;

3.2.4 Method overloading

Mutation operators in this group ensure that a method calling invokes the correct method

when a class uses method overloading. C++ not only counts with method overloading,

but with operator overloading (operators can be redefined, giving them different se-

mantics depending on the operand types). These two concepts should not be confused,

Chapter 3. Definition of Mutation Operators 40

although the mutation operators in this group can be applied to both kinds of overloading

when applicable.

• OMR or Overloading method contents replace: The aim of this operator

is to check that a method invokes the correct overloaded method, replacing the

content of a method for the content of another with the same name.

• OMD or Overloading method deletion: The operator OMD removes one of

the overloaded methods in each of the mutants generated. The wrong method is

being called or an incorrect parameter type conversion is taking place if the mutant

still runs.

• OAN or Argument number change: This operator focuses on the arguments

in method invocations, changing the number of arguments. This operator should

take into account the possibility of using default parameters. If a method has just

another overloaded method, then only one mutant can be generated; but if the

overloaded method has a default parameter, a further one can be created.

Example OAN: (us ing d e f au l t parameters)

c l a s s A{

.

void m (i n t a = 2) { }

void m (i n t a , f l o a t b) { }

} ;

Invocation: Mutant 1:
a .m(0 , 0) ; a .m(0) ;

Mutant 2:
a .m() ; → a .m(2) i s invoked .

• OAO or Argument order change: This operator is similar to OAN, but it

changes the order instead of the number of arguments in a method calling.

• OPO or Method parameter order change: OPO changes the order of the

parameters in a method declaration. This operator allows us to model the pos-

sibility that the programmer has invoked the wrong overloaded method because of

implicit type conversions.

3.2.5 Exception handling

This block addresses the improper handling of exceptions1.
1Although exceptions are not unique to this paradigm, they are closely related to it.

Chapter 3. Definition of Mutation Operators 41

• EHR or Exception handler removal: EHR deletes one of the catch clauses in

an exception block in each mutant generated, delaying the capture of the exception.

In this sense, this operator tests the order of the handlers in an exception block.

• EHC or Exception handling change: EHC removes the exception handling

statement. The exception will not be caught within the method, but it will be

propagated to the nearest handler. This situation is applied through a relaunch of

the exception so that it is caught and handled, hopefully, at a higher level.

Example EHC: Mutant:
i n t f () { i n t f () {

t ry { try {

.

} catch (Handler1) { } catch (Handler1) {

. throw;
} ; } ;

} }

• EXS or Exception swallowing: This operator adds a general catch clause at

the end of a try block (provided it does not exist). When an exception is caught

in this general clause, the operator EXS detects that the exception handling is not

properly implemented.

3.2.6 Object and member replacement

Operators in this category are dedicated to the replacement of the object invoking a

member or to the change of the member invoked, by a compatible object or member

respectively.

• MCO or Member call from another object: When an object is referenced

and calls a method, MCO replaces that object by another one of the same class

(the invoked method is not changed).

Example MCO: Mutant:
a1 . method () ; a2 . method () ;

Where a1 and a2 are ob j e c t s o f c l a s s A and they are member

v a r i a b l e s o f a c l a s s .

• MCI or Member call from another inherited class: This operator is similar

to MCO in the sense that it is applied to an object when it is invoking a method,

but the object is now replaced by another object of a different class, both objects

having the same base class.

Chapter 3. Definition of Mutation Operators 42

Example MCI:
c l a s s A{

.

Child1 a1 ;

Child2 a2 ;

void m() { . . . a1 . method () ; . . . }

} ;

Mutant:
c l a s s A{

.

Child1 a1 ;

Child2 a2 ;

void m() { . . . a2 . method () ; . . . }

} ;

Where Child1 and Child2 have a common base c l a s s

• MNC or Method name changed: MNC models the error produced when, in

a method invocation, another method name is used instead of the desired one.

This situation may happen if the class of the method invoked has another method

which is compatible with the method calling. In this operator, standard methods

and overloaded operators are dealt with separately.

Example MNC:
c l a s s A{

.

void method1 (i n t a) { }

void method2 (i n t a) { }

void method3 () { . . . method1 (1) ; . . . }

} ;

Mutant:
c l a s s A{

.

void method1 (i n t a) { }

void method2 (i n t a) { }

void method3 () { . . . method2 (1) ; . . . }

} ;

• MBC or Member changed: This operator accesses a different instance variable

of the same object when a member variable is referred.

3.2.7 Miscellany

This block contains a blend of operators related to particular C++ characteristics that

do not fit with the rest of categories.

Chapter 3. Definition of Mutation Operators 43

• CTD or this keyword deletion: The operator CTD deletes occurrences of

the keyword this, which is used to reference the current object, when a method

parameter hides a member variable (when both have the same name).

• CTI or this keyword insertion: This operator simulates the contrary case of

CTD.

• CID or Member variable initialization deletion: This operator removes the

initial value given to member variables, checking that the proposed initialization is

correct. Initial values are assigned using initialization lists, so an item initializing

a member variable is removed from the list in each mutant.

Example CID: A: :A() : a (0) , b (1) {}

Mutant 1: A: :A() : a (0) {}

Mutant 2: A: :A() : b (1) {}

• CDC or Default constructor creation: This operator removes the user-defined

default constructor (when it is the only constructor) so that the compiler creates

a default version. In this way, CDC checks initializations within this constructor.

• CCA or Copy constructor and assignment operator overloading deletion:

In object-oriented programming, copying objects is frequently needed: a function

receives or returns an object by value, or an object is initialized using another

instance. This task is accomplished through the definition of a copy constructor

and, usually, the assignment operator overloading too (when they are not defined,

the compiler provides them automatically). CCA deletes the copy constructor or

the assignment operator overloading, checking that they are correctly implemented.

Example CCA:
c l a s s A{

.

A(const A& copy) { }

A& operator =(const A& copy) { }

} ;

Mutant 1:
c l a s s A{

.

// A(const A& copy){... ...}
A& operator =(const A& copy) { }

} ;

Mutant 2:
c l a s s A{

.

A(const A& copy) { }

// A& operator =(const A& copy){... ...}
} ;

Chapter 3. Definition of Mutation Operators 44

• CDD or Destructor method deletion: C++ allows the programmer to define

not only how the objects are constructed, but also how they are destroyed. If a

destructor is not specified, the compiler automatically provides one to destroy the

objects. CDD deletes the destructor method checking its correct implementation.

Example CDD: Mutant:
c l a s s A{ c l a s s A{

.

~A() { } ; // ˜A(){... ...};
} ; } ;

3.3 Comparison with other Languages

A set of 37 mutation operators has been defined and classified into seven categories. The

size of this set of mutation operators is higher than the size of the set for Java [104]

(29 operators) and the same as the one for C# [34] (37 operators without counting the

invalid ones). In the next paragraphs, we compare the operators defined for C++ and

Java/C# by categories:

• Access control: The operator AMC [21, 76, 104] is different in C++ because

the access level is specified by sections and not individually, as in Java. Therefore,

this operator will not change the access modifier of a member, but it will move the

member to a block with a different access level.

• Inheritance: Most operators in the inheritance category have been defined for

Java [21, 76, 104] and taken in C# [34]. However, ISI, ISD, IPC and IOP change

with respect to Java as shown in the example for the operator IOP ; they are

related to the super keyword, which does not exist in C++ because of the multiple

inheritance. Likewise, ISI (and analogously ISD) has the super keyword in its

name, so it is called base keyword insertion instead, as shown in [34] for ISK. The

scoping in C++ allows referencing members of classes which are deeper in the

hierarchy. For instance, ISI can generate different mutants when a variable with

the same name is declared in several classes of the hierarchy.

• Polymorphism and dynamic binding: All operators from [104] in the poly-

morphism group, PNC, PMD, PRV, PCC, PCI, PCD and PPD, have been con-

sidered for this language with the same meaning. Nevertheless, their implementa-

tion is completely different as polymorphism and dynamic binding are handled in

a different manner in C++. As commented in Section 3.1, the use of pointers/ref-

erences to dynamically bind the objects is necessary. With respect to the type

Chapter 3. Definition of Mutation Operators 45

casting of objects, C++ provides specific casting operators apart from the generic

form.

• Method overloading: Regarding method overloading, OMR, OMD, OAO and

OAN have been based on [86] and OPO is based on POC from [76]. This latter one

has a different name in our set, adapting it to the established naming convention.

As it was mentioned earlier, operator overloading is also addressed in this category.

• Exception handling: Attending to the exception handling category, a definition

of EHR and EHC can be found in [76] and EXS in [34] for C#. The function

of the operator EHC is achieved in Java using a throws declaration instead of the

try-catch statement. This is different from C++, where this option is not available.

Besides, Java uses a singly-rooted hierarchy, so the exception will be caught in the

Object class ultimately. In C++, the finally clause is not used and the exception

could be captured in the main function instead.

• Object and member replacement: MNC,MCO,MCI andMBC are all named

in [34] and the fault simulated by them is shown in [33] (in Object and Member

blocks). For this category, only an explicit definition for MNC can be found in

[21].

• Miscellany: Some operators in this block take as reference the Java-specific group

in [104]. Those operators are not exclusively available to Java and similar operators

have been created for C++, except JSI and JSD : static members must be declared

inside the class and also initialized outside the class; inserting or deleting this

keyword would suppose more than a simple change. Regarding CID, an initial

value cannot be assigned directly to members (like in Java) but in the constructors.

The common programming mistakes block included in [86], containing operators

related to typical mistakes and misuse of the language, has not been considered to

create analogous operators. There is no a convention in C++ with respect to the

methods that they mutate, so they do not fit this language.

Chapter 4

Implementation of the C++

Mutation System

This chapter collects all the information on our approach when implementing

mutation operators and the mutation system, called MuCPP. The operator

implementation encompasses the method to inject the faults into the code,

the requirements for the generation of the mutants that are expected from

each mutation operator, and also the improvement rules that can be set to

avoid uninteresting mutants. Regarding the implementation of the mutation

system, we describe the overall system architecture and functionalities.

4.1 Mutation Operator Implementation

This section focuses on the implementation of mutation operators through the analysis

of the abstract syntax tree generated by Clang. After setting several requirements for

the proper operator implementation, this section ends with an example to illustrate this

process.

4.1.1 Approach

4.1.1.1 LLVM and Clang

LLVM [84] is a project intending to provide the necessary infrastructure for the devel-

opment of new compilers for any programming language (the target was originally the

compilation of C and C++). The development of the LLVM project is completely open

source, comprising a number of subprojects that have drawn a great interest, many of

47

Chapter 4. Implementation of the C++ Mutation System 48

them used in other commercial and open-source projects. LLVM supplies the middle

layers of a complete compilation system, taking the intermediate form generated by a

compiler for a certain programming language. One of its aims is to achieve a compile-

time, link-time, run-time, and idle-time optimisation. Thus, LLVM can be configured to

be used with GCC in order to obtain a compiler frontend for every programming lan-

guage addressed by GCC. However, several projects are being developed to create new

frontends for some languages to work specifically on top of LLVM, such as FORTRAN,

Haskell or Phyton.

Clang [22] is the most outstanding frontend implemented for the LLVM project. It is

devoted to the C family languages: C, C++, Objective-C and Objective-C++. This

frontend was built as a native part of the LLVM system (indeed, it is part of the LLVM

releases). Therefore, Clang is a compiler frontend for these programming languages,

using LLVM as its backend.

This linkage of both LLVM and Clang constitutes a complete and functional toolchain.

As a matter of fact, they can be used to create new tools based on them, thanks to the

library-based design followed by these two projects. This fact allows us to reuse the Clang

libraries to parse C/C++ code for a particular purpose. Embedding other compilers into

our applications is not as easy as with LLVM/Clang (for example GCC because of its

structure design). Therefore, we can conclude that these projects were created, since their

inception, to design new tools at a source code level, such as refactoring, static analysis

or code generation tools. The design as an API, instead of as a monolithic structure,

is the main characteristic that allows us to develop a mutation framework, since in

mutation testing we actually need to analyse and change the source code according to

a set of mutation operators. Advantages that the Clang project claims are achieving

fast compiles and low memory use, a greater compliance with the C family languages

standards than other compilers and an easy integration with IDEs.

4.1.1.2 Abstract syntax tree

In order to apply mutation testing, we need to find a robust method to insert the faults

into the code. Parsing the high-level code might be insufficient in the cases when it is

necessary to analyse the context of the elements involved in the mutation. Thus, making

use of the internal representation generated by compilers is a more appropriate option

to this end.

The aforementioned intermediate form internally generated by compilers is actually the

Abstract Syntax Tree or AST. We say abstract syntax because, unlike a concrete syntax

tree, it does not contain every token in the source code explicitly, but the structure of

Chapter 4. Implementation of the C++ Mutation System 49

Figure 4.1: Abstract syntax tree for the expression “a = b+ c”

an expression through branches of the tree. In this way, the tree gives us a simplified

and clear structure of the code with only the essential aspects, facilitating to go through

the tree to process the nodes. The abstract syntax tree in Figure 4.1 represents the

expression “a = a + b”, the concrete syntax in C++. However, for instance, the sum is

represented as “(+ a b)” in Lisp, but that concrete syntax is the same in structure as

“a+ b” in C++.

The search using the AST makes the task of analysing the code regarding the set of

mutation operators easier, which is supported by the following features of Clang:

• The AST generated by Clang is easily understandable and can be even

serialised (it has the form of an XML file). This shows us how the compiler works

internally, providing a better understanding of the cases when a mutation operator

can be used.

• Clang maintains the same code that was passed to the compiler at all

times, i.e, it does not implicitly simplify the code. As an illustration, a compiler

could delete in the AST the parentheses that were not necessary in order to simplify

the code. This would not serve our interests since each mutant is expected to

contain the same code as the original program except for a single change modelled

by the mutation operator.

• Clang saves information about every token in the code. This information

allows us to retrieve the token or tokens in the code to make the appropriate

modification according to the mutation operator.

Chapter 4. Implementation of the C++ Mutation System 50

4.1.2 Matching nodes in the AST

Mutation operators need to be automated to create the appropriate source-to-source

transformations. In certain languages, as in specification ones, the target of a mutation

operator is relatively easy to identify as the options are usually limited. In contrast, a

general purpose language like C++ provides a wide range of design alternatives. Hence,

we should consider multiple factors before determining mutation locations.

In this sense, the representation of the code as AST allows us to omit the specific and more

intricate details of each particular situation. Each element in the language is uniformly

represented with a type of node in the tree. Each type of node is modelled with a class in

the Clang API, providing members to handle the nodes and the relations among them.

For instance, member methods are represented with the class CXXMethodDecl, so every

method in our code will be bound to an object of that class (saving information of each

method).

The AST generated can be traversed in two different ways:

1. Using the visitor pattern, which enables us to process each kind of node in a

different manner. For instance, if we need to process only the member methods, we

can use this technique to visit every CXXMethodDecl node. Then, we can impose

as many restrictions as necessary on this kind of nodes.

2. Using matchers [90]: This compiler supplies a domain-specific language or DSL

(based on the classes of the libraries) for the combination of rules, allowing us

to traverse the tree and search for the desired nodes through pattern matching.

These patterns, called matchers, use the visitor pattern internally to find the nodes

complying with a set of conditions.

The latter option has been chosen to traverse the AST because matchers fit better with

the sense and purpose of mutation operators; moreover, the number of bound nodes is

lower using matchers than using the visitor pattern as different conditions can be set in

the search to process a reduced number of nodes. A list of useful and frequently used

matchers has been already included in Clang [90]. Besides, new simple matchers can be

defined to invoke the members of the API classes. Our proposal implies coordinating

various matchers to build a new one (or several) for each mutation operator (an example

of the construction of a matcher is exposed later on in the document). Therefore, each

operator is automated with the development of a pattern using this DSL.

As a high-level example, if we wanted to find every member variable marked with the

private access modifier, the pattern would follow the next structure:

Chapter 4. Implementation of the C++ Mutation System 51

AST

Search

Post-processing

and

insertion of faults

 Mutant

 or

mutants

Source File

. . .

ASTMatcher 1

ASTMatcher 2

ASTMatcher n

Detection

 Mutation

operators

Figure 4.2: General diagram of the search and generation of mutants in the proposed
mutation system

for each class x belonging to program P do

for each variable y belonging to class x do

if variable y is private

retrieve variable y
end if

end for each

end for each

4.1.3 Fault injection

Before explaining how mutations are inserted into the code, we should distinguish three

elements that we use to identify a mutant:

• Mutation operator: As it was explained earlier, each mutation operator is fo-

cused on different elements in the code and performs a different modification.

• Mutation location: A mutation operator can be applied several times for the

same source file. The mutation locations for each mutation operator represent the

positions in which that mutation operator can be applied.

• Attribute or variant: The attribute represents the different mutants that can

be generated for each mutation location. The number of variants depends on the

mutation operator. For instance, an arithmetic operator can be replaced by four

other arithmetic operators (see Section 2.1 for an example). This means that four

different mutants can be produced per detection of an arithmetic operator in the

code.

For the injection of faults, matchers are first used to detect convenient nodes in the tree

with regard to the mutation operator description. When a mutation location is found,

the matched nodes can be mapped to their location in the source code thanks to the

information saved in the AST by Clang (see advantages of Clang in Section 4.1.1.2).

Chapter 4. Implementation of the C++ Mutation System 52

Depending on the nature of the operator, we can insert an element into the code, replace

an element or delete the involved code range. Sometimes, not only a single fault can

be injected, but several variants can be applied as in the example of the replacement of

arithmetic operators. Once a simple fault has been introduced, the mutated source code

can be saved in a new file, generating a mutant.

The process to inject the faults into the code is depicted in Figure 4.2 and can be

summarised in the following steps:

1. A pattern (or several patterns) for each mutation operator is created using match-

ers.

2. The source code is converted to the form of AST.

3. The AST is traversed searching for every mutation target according to the language

elements modified by the set of mutation operators. As a result, a set of nodes is

obtained, which represents potential mutation locations.

4. The retrieved nodes are post-processed to ensure that the injection of a fault is
possible at that point. Moreover, we should analyse other aspects in order to
produce the expected mutation (see Section 4.1.4). For instance, in the operator
CID1 it is essential to know the position of the initializer within the initialization
list to know whether a comma (1) or the colon preceding the list (2) has to be
deleted:

(1) A : :A() : a (0) , b (0)

− Mutant d e l e t i n g a (0) and the f o l l ow i n g ’ , ’

− Mutant d e l e t i n g b (0) and the preced ing ’ , ’

(2) A : :A() : a (0)

− Mutant d e l e t i n g a (0) and the preced ing ’ : ’

5. Depending on the nature of the operator, one or more variants can be introduced

to each mutation location. Therefore, the different mutations that can be inserted

into a location are collected in this step. Each mutation operator has to consider

each of the possible variants in its implementation.

6. The corresponding mutations are inserted into the set of mutation locations detec-

ted.

7. The mutants with the form of source code are generated, containing the introduced

faults.

In some cases, the attribute is known in advance (fixed attribute), but in other cases, this

number is variable (variable attribute). The case of the mutation operator “arithmetic
1Recall that CID deletes the initialization of member variables in the initialization list

Chapter 4. Implementation of the C++ Mutation System 53

operator replacement” is an example of fixed attribute (attribute = 4). Also, an operator

deleting an element of the code can only produce a mutant at that point (the removal

of the element, attribute = 1). However, there are mutation operators whose number

of mutants entirely depends on the location within the code. As an example of variable

attribute, the application of the operator OAN 2 depends on the overloaded methods

defined in each class and the parameters of those methods, so the mutation operator

requires a study of each particular situation in order to know how many mutants can be

generated.

4.1.4 Expected mutants

4.1.4.1 Generation of the expected mutants

The definition and the implementation of mutation operators are aspects that go hand in

hand, but they should be addressed from different perspectives. The definition describes

the purpose of each operator and when they should act, but it does not reflect low-

level details in general. In contrast, the implementation should consider a more fine-

grained control for the generation of appropriate mutants. A mutation system generating

undesired mutants can lead to a significant increase in the computational cost and also

to overlook interesting mutants if they are malformed.

Thus, four requirements have been identified in the operator implementation to generate

the expected mutants. These requirements should be studied in each operator to match as

closely as possible the implementation with the expected behaviour. The requirements

are listed below and are illustrated with the operator IOD. The aim of this operator is

to delete an overriding method (the parent’s version is called instead) with the intention

of ensuring that the desired method is invoked:

• Requirement 1: Insert mutations into locations under appropriate con-

ditions. We should analyse the conditions posed in the operator definition to

determine whether the mutation makes sense in that context.

IOD operator : This operator should only be applied if there is an overridden

method in a base class. This implies, among other aspects, comparing the methods

between both classes.

• Requirement 2: Ensure that the mutant is well formed, that is, prevent

the generation of mutants that do not compile because of an error in the operator
2Recall that OAN changes the number of arguments in method invocations when there are overloaded

methods.

Chapter 4. Implementation of the C++ Mutation System 54

implementation.

IOD operator : If the method to be deleted is not defined at the time of the decla-

ration, both the definition and the declaration of the method have to be removed

in the mutant:

Example: Mutant:
c l a s s A{ c l a s s A{

.

i n t method () ; /∗IOD∗/
} ; } ;

i n t A : : method () { . . . } /∗IOD∗/

We should note that inserting a further change cannot be considered to be a high

order mutation (when more than a single fault is inserted into a mutant); both

mutations (declaration and definition removal) are applied to serve the same pur-

pose.

• Requirement 3: Generate the exact number of mutants that can be

expected from an operator, producing neither a lower nor a higher number of

mutants. In other words, do not miss any mutant that should be generated and,

at the same time, do not generate more mutants than the expected ones. Spinel-

lis [120] uses the terms silence and noise for the missed and extraneous matches

respectively.

IOD operator : This operator could create the same mutant in a class as many

times as a similar method was found in its base classes. IOD checks if the method

to be deleted is hiding another one in a base class. When implementing this oper-

ator, the base classes are explored and the same method could be found in several

of them. Hence, the same method could be deleted more than once if this fact is not

contemplated, leading to different mutants that would contain the same mutation:

Example: Mutant:
c l a s s A{ c l a s s C: pub l i c B{

.

i n t method () { . . . } /∗IOD, method found in c l a s s B∗/
} ; } ;

c l a s s B: pub l i c A{ Duplicate mutant to avoid:
. . . c l a s s C: pub l i c B{

i n t method () { . . . } . . .

} ; /∗IOD, method found in c l a s s A∗/
} ;

Chapter 4. Implementation of the C++ Mutation System 55

c l a s s C: pub l i c B{

. . .

i n t method () { . . . }

} ;

• Requirement 4: Avoid the generation of uninteresting mutants for the

assessment of the test suite. Given that the computational cost of the technique is

a major concern, we should impose some conditions on the operators to avoid the

creation of uninteresting mutants, i. e., mutants which do not help us assess the

adequacy level of a test suite despite meeting the other three requirements. The

three kinds of mutants that should be prevented as much as possible are:

– Invalid mutants: The mutated code cannot be compiled to generate an

executable program.

– Equivalent mutants: Any input is able to detect a difference between the

original program and the mutant.

– Trivial mutants: The difference between the original and the mutant is

detected by every input covering the mutation [103].

IOD operator : A method is labelled as pure virtual when it is not defined in a class

and forces inheriting classes to supply a definition for this method. If the parent’s

version of the method is marked as pure virtual, deleting the method in the child

class will always produce an invalid mutant. This situation can be contemplated

in the operator implementation:

Example: Mutant to avoid:
c l a s s A{ c l a s s B: pub l i c A{

.

v i r t u a l i n t method () =0; /∗IOD∗/
} ; } ;

c l a s s B: pub l i c A{

. . .

i n t method () { . . . }

} ;

4.1.4.2 Considerations for the implementation

As aforementioned, there exist several aspects that should be considered in order to per-

form the expected mutations when automating mutation operators. Undesired situations

can be caused by several reasons:

Chapter 4. Implementation of the C++ Mutation System 56

• The specifics of the language.

• The characteristics of the AST.

• Different peculiarities of each operator.

As a result, after studying the application of the operators to several C++ programs,

diverse situations generating unexpected mutants could be detected. In this section, we

address those situations that should be considered in the operator implementation at

a low level to comply with the first three requirements in the previous section. The

fourth requirement (avoiding the generation of uninteresting mutants) will be examined

in depth later on in Section 4.2.

The following general considerations were tackled in the basic implementation of every

operator to create the expected mutants:

1. Duplicate mutants: Some of the operators could create two or more identical

mutants. The generation of duplicate mutants was mainly detected in various

operators related to inheritance when a class inherits from several classes. This is

the case of IOD, as explained in the third requirement in the previous section.

In addition, it is necessary to take care of templates. A template specialization

of a class is explicitly contained in the AST as a further class. When mutating a

declaration, we would produce the same mutant for each one of the specializations

if they are not excluded from the process.

2. Declarations and definitions: Several elements in C++, as functions and meth-

ods, can be declared at the moment of its declaration, but also in redeclarations

outside the class definition. Both the declaration and the definition (in a redeclar-

ation) should be modified if a mutation operator changes the signature or the value

returned by a function or method. Also, sometimes a method is never defined but

the programmer provides the declaration for documentation. The mutation of such

declarations is pointless and should be avoided.

3. Implicit elements: The AST also contains implicit elements, i.e., language con-

structs not written in the code but automatically added by the compiler. As an

example, special methods like destructors or invocations for the construction of base

classes can be mentioned. Thus, implicit elements should be taken into account so

that they:

(a) Are not mutated.

(b) Are not used as candidates for a replacement.

Chapter 4. Implementation of the C++ Mutation System 57

(c) Do not intervene in the proper mutant formation.

4. Unchanged mutants: This situation is produced in operators replacing elements

by other similar elements in the code. In this instance, the operator seeks for

candidates in the code, but the element to be mutated has to be discarded from

the set of candidates.

5. Types and namespaces: Some mutation operators need to know the type of

the elements prior to the injection of mutations. For instance, when a mutation

operator replaces variables of the same type. However, evaluating the types is

required in the first place: the keyword typedef can be used in C++ to rename

a particular type. Therefore, if we do not take this feature into account, some

mutants may be overlooked.

Likewise, several declarations can be grouped together in a namespace. We can

declare similar elements in the code provided that they are in different namespaces.

This fact should be considered in the operator implementation when:

(a) Replacing elements: we need to properly qualify the references to declarations

in namespaces.

(b) Checking some conditions for the mutation: if invocations to members are

qualified (for instance, to refer to the member of a particular base class), the

qualifier should be analysed.

4.1.5 Example

In this section, we show an example to clarify how the AST helps us find mutation

locations. The goal of the example is to show the implementation of a mutation operator

and its application to a fragment of source code.

4.1.5.1 Mutation operator

As starting point, the mutation operator CDC or C++ default constructor creation (see

Section 3.2 for a definition) has been chosen to illustrate how we can combine different

matchers satisfying the rules defined in each operator. Recall that a default constructor

is provided by the compiler in C++ when a class does not contain other user-defined

constructors. This operator deletes the constructor without parameters supplied by

the user (so that the compiler provides the default version) in order to ensure that

this constructor is correctly implemented. The following two conditions should be

considered in this operator:

Chapter 4. Implementation of the C++ Mutation System 58

1 Declarat ionMatcher CDC_Matcher =
2 cons t ruc to rDec l (
3 parameterCountIs (0) ,
4 i sD e f i n i t i o n () ,
5 anyOf (
6 ha sAnyCons t ru c t o r In i t i a l i z e r (
7 i sWr i t ten ()) ,
8 has (
9 compoundStmt (

10 has (
11 stmt ())))) ,
12 o fC l a s s (
13 recordDec l (
14 un l e s s (
15 hasMethod (
16 cons t ruc to rDec l (
17 a l lO f (
18 hasAnyParameter (
19 anything ()) ,
20 un l e s s (
21 i s Imp l i c i t ())))))))
22) . bind ("CDC") ;

Figure 4.3: Matcher for the operator CDC

• Condition 1: In C++, a constructor with parameters can be invoked without

arguments if default parameters were provided for that constructor, for instance,

A::A(int a = 0). In this way, that constructor is also considered an user-declared

default constructor. However, we do not have to take this fact into account as

deleting that constructor would remove a non-default constructor too (maintaining

that constructor and deleting the default value of the parameter is not an option

as the compiler would not provide the default constructor in that case).

• Condition 2: We are looking for a non-trivial constructor, i.e., we should not

delete the constructor if it has no statements in its definition. In C++, that

definition implies not only the body but the initialization list. This aspect can be

classified into the fourth requirement for the generation of the expected mutants

(see Section 4.1.4.1), given that this situation would lead to an equivalent mutant.

Thus, the matcher in Figure 4.3 has been defined to search for the user-declared default

constructor with the combination of the next simple matchers:

• To find the default constructor:

– constructorDecl (line 2): This pattern retrieves every constructor declara-

tion.

Chapter 4. Implementation of the C++ Mutation System 59

– parameterCountIs(0) (line 3): This pattern excludes constructors with

parameters (this pattern also avoids the case shown in the first condition

above).

• To meet the second condition (looking for a non-trivial constructor), we can add

the following matcher :

– isDefinition (line 4): To ensure that a constructor is non trivial, we need to

check its definition. This pattern will retrieve only constructor declarations

with a definition.

– anyOf (line 5): It is the ‘||’ or logic operator OR. We need to find a con-

structor with, at least, either one constructor initializer in the initialization

list (hasAnyConstructorInitializer (line 6)) or one statement in the body

(has(compoundStmt(has(stmt()))) (lines 8-11)). The pattern isWritten

(line 7) is used to ensure that the constructor initializer is explicitly written in

the code. For instance, the compiler implicitly invokes the default constructor

of a base class (see “implicit elements” in Section 4.1.4.2).

• We have to ensure that this is the only constructor of the class:

– ofClass (line 12): The nested code in this pattern is used to ensure that the

class does not contain any other constructors. Namely, this matcher means

that the constructor declaration belongs to a class with the features described

in parentheses.

– recordDecl (line 13): This pattern retrieves every class, struct and union

declaration.

– unless (line 14): Is the ‘ !’ or logic operator NOT. We need to look for every

method that is a constructor (hasMethod(constructorDecl()) (lines 15

and 16)) to check the condition commented in the matcher ofClass.

– allOf (line 17): Is the ‘&&’ or logic operator AND. If that constructor has

at least one parameter (hasAnyParameter(anything()) (lines 18 and 19))

and the constructor has not been implicitly added by the compiler (unless

(isImplicit()) (lines 20 and 21)), the user-declared default constructor cannot

be deleted; the default constructor is not provided by the compiler if the class

has another constructor. The allOf matcher can be omitted, as it is implicitly

added if no other logical pattern is supplied (indeed, this pattern is implicit

within constructorDecl (line 2), matching every condition given).

The string “CDC ” inside the matcher bind (line 22) is a unique identifier to retrieve

the nodes associated with this pattern afterwards in an operator handler to post-process

Chapter 4. Implementation of the C++ Mutation System 60

1 #inc lude <iostream>
2
3 using namespace std ;
4
5 class A{
6 public :
7 A() {a = 1 ;}
8 int a ;
9 int get_a () {return a ; }

10 } ;
11
12 class B: public A{
13 public :
14 B() : A() , b (1) {}
15 f loat b ;
16 f loat get_b () {return b ; }
17 } ;
18
19 class C{
20 public :
21 C() {}
22 s t r i n g c ;
23 s t r i n g get_c () {return c ; }
24 } ;
25
26 class D{
27 public :
28 D() {d = fa l se ; }
29 D(bool _d) {d = _d;}
30 bool d ;
31 bool get_d () {return d ; }
32 } ;
33
34 class E: public D{
35 public :
36 E() ;
37 int e ;
38 int get_e () {return e ; }
39 } ;
40
41 E : : E() {
42 D(true) ;
43 }

Figure 4.4: Classes in example.cpp

the nodes. Then, if desired, the operator can be refined through the methods offered in

the Clang API to better comply with the operator purpose. Even though new matchers

can be defined using the members of the API, some conditions are difficult to represent

with this DSL. Hence, a post-processing in the operator handler is also helpful in some

situations to collect useful information for the injection of the mutations.

Chapter 4. Implementation of the C++ Mutation System 61

| −CXXRecordDecl 0 x68f7450 <l i n e : 5 : 2 , l i n e :10:2 > c l a s s A
| | −CXXRecordDecl 0 x68f7560 <l i n e : 5 : 2 , c o l :8> c l a s s A
| | −AccessSpecDecl 0 x68 f75 f0 <l i n e : 6 : 3 , c o l :9> pub l i c
| | −CXXConstructorDecl 0x68f7660 <line:7:4, col:15> A ’void (void)’
| | ‘−CompoundStmt 0x68f78f8 <col:8, col:15>
| | ‘−BinaryOperator 0x68f78d0 <col:9, col:13> ’int’ lvalue ’=’
| | | −MemberExpr 0x68f7880 <col:9> ’int’ lvalue ->a 0x68f7730
| | | ‘−CXXThisExpr 0x68f7868 <col:9> ’class A *’ this
| | ‘−IntegerLiteral 0x68f78b0 <col:13> ’int’ 1
| | −Fie ldDec l 0 x68f7730 <l i n e : 8 : 4 , c o l :8> a ’ int ’
| | −CXXMethodDecl 0 x68f77a0 <l i n e : 9 : 4 , c o l :26> get_a ’ i n t (void) ’
| | ‘−CompoundStmt 0 x68f7998 <co l : 1 6 , c o l :26>
| | ‘−ReturnStmt 0 x68f7978 <co l : 1 7 , c o l :24>
| | ‘− Impl ic i tCastExpr 0 x68f7960 <co l :24> ’ int ’ <LValueToRValue>
| | ‘−MemberExpr 0 x68f7930 <co l :24> ’ int ’ l v a l u e −>a 0x68f7730
| | ‘−CXXThisExpr 0 x68f7918 <co l :24> ’ c l a s s A ∗ ’ t h i s
| ‘−CXXConstructorDecl 0 x68f7eb0 <l i n e :5:8 > A ’ void
| (const c l a s s A &) ’ i n l i n e noexcept−unevaluated 0 x68f7eb0
| ‘−ParmVarDecl 0 x 6 8 f 7 f f 0 <co l :8> ’ const c l a s s A &’

Figure 4.5: AST fragment representing the class A in “example.cpp”. In bold, the
user-declared default constructor matched by CDC

4.1.5.2 Source code and mutants

In order to check how the operator CDC works, a source file called “example.cpp” with

five simple classes has been designed (Figure 4.4). The default constructors in those

classes contemplate different possible situations.

The default constructor of the classes A (line 7), B (line 14) and E (lines 36, 41-43)

should be retrieved by CDC to be removed. In the Figure 4.5, the node matched in the

AST for the class A is shown. On the contrary, the default constructor of class C (line

21) should not be bound as it is trivial (second condition); besides, class D does not fit

the proposed mutation operator because the class defines another constructor (line 29).

In the case of the class E, unlike the rest of constructors in the code, its default constructor

definition is located outside the class declaration (lines 41-43). The example shown in

the requirement 2 for the operator IOD (see Section 4.1.4.1) also takes place in CDC ;

the definition of the constructor is analysed in the pattern, but the declaration has to

be also deleted so that the operator has the intended effect (this can be performed in

the operator handler using the methods provided by Clang to this end). The resulting

mutants are depicted in Figure 4.6.

Chapter 4. Implementation of the C++ Mutation System 62

5 class A{
6 public :
7 // CDC: A() {a = 1 ;}
8 int a ;
9 int get_a () {return a ; }

10 } ;

12 class B: public A{
13 public :
14 // CDC: B() : A() , b (1) {}
15 f loat b ;
16 f loat get_b () {return b ; }
17 } ;

34 class E: public D{
35 public :
36 // CDC: E() ;
37 int e ;
38 int get_e () {return e ; }
39 } ;
40
41 // CDC: E : : E() {
42 // D(true) ;
43 // }

Figure 4.6: Mutants generated in “example.cpp” (see Figure 4.4)

4.2 Mutation Operator Improvement

The study of the mutants produced in each operator can lead to the identification of

different situations always producing unnecessary mutants. As it was mentioned earlier,

avoiding uninteresting mutants could allow for a reduction of the computational cost of

the technique, which is a major concern when using mutation testing. Specific rules for

several operators to cut out equivalent mutants have been proposed for Java [59, 82, 104]

(see Section 2.4). However, in general, it is not possible to avoid the creation of every

invalid, equivalent or trivial mutant.

The aforementioned studies identifying mutants to be prevented locate different situ-

ations in each particular mutation operator. In this work, these situations are described

in general instead of for each operator. Every case detected in this regard followed a

systematic process:

1. Some unproductive mutants were detected in a particular mutation operator when

reviewing its mutants.

2. This situation was then thoroughly analysed to determine whether it was a one-

time situation or it always led to the generation of uninteresting mutants.

Chapter 4. Implementation of the C++ Mutation System 63

3. The detected case was studied in order to know whether it could be generalised in

terms of implementation.

4. Finally, every operator was processed to establish whether the situation could be

extrapolated to other operators, creating an improvement rule for the reduction

of mutants, or it was an isolated occurrence. In the former case, the steps 2 and 3

were performed again in each of the respective operators.

In addition to some particular cases implemented in specific operators, nine general

improvement rules were identified. They assisted us in developing an improved imple-

mentation of the corresponding operators:

1. Check for triviality: In the operators related to constructors and destructors,

deleting these methods would be useless if the compiler provides the method by

itself exactly with the same functionality. This happens when the method is trivial:

it has no initializers or the default constructors are used to initialize the base classes,

or the method has an empty definition.

2. Explicit invocation of constructors: If a non-default constructor of a base class

is invoked, this call cannot be removed if that base class does not have an user-

declared constructor without parameters. In this case, the class has to be always

initialized explicitly as the compiler does not provide the default constructor.

We can illustrate this rule with an example with IPC :

Original:
c l a s s A{ c l a s s B: pub l i c A{

.

A(i n t p1 , i n t p2) { } B() : A(1, 1) { }

A(i n t p1) { }

} ; } ;

Mutant:
c l a s s B: pub l i c A{

.

B() : /*IPC*/ { }

} ;

IPC would delete the base class initialization marked in bold, but the base class

does not have a default constructor and the mutant would be invalid.

3. Member access control: When an operator replaces a reference to a member,

if the member selected for the replacement belongs to the same class where it is

referenced from, the access level is irrelevant. However, when the member belongs

Chapter 4. Implementation of the C++ Mutation System 64

to another class, the access to this candidate needs to be checked to know whether

that reference is allowed within that class.

4. Declaration scopes: Several operators replace a mention of a class to another

class, but the class selected for the replacement may not have been declared yet at

that point. Therefore, it is necessary to check if the new class is available in each

mutation location.

5. Check the member invoked: Equivalent mutants are generated in those cases

when the member referenced is still the same after the mutation. For instance, if a

method of a base class is referenced with the resolution operator (Base::member)

but the member has not been overridden in the child class, ISD would not affect

the behaviour of the program when deleting the qualifier (Base::).

6. Member variables marked as const : Constant member variables require an

explicit initialization. Thus, the operator CDC for instance should not remove the

default constructor if the class contains a constant variable. Also, the operator IHI

will generate invalid mutants when inserting member variables marked as const into

a child class since those variables would need to be initialized in the constructors.

This also applies to reference type variables.

7. Default arguments: The use of default arguments should be taken into account

in some cases when a method call is changed to invoke another method. The list

of parameters needs to accept the arguments provided in the invocation.

8. Infinite recursion: Sometimes, the mutation can make a method calls itself infin-

itely, as in ISD when deleting the base class qualifier within the overriding method.

This state leads to trivial mutants that would be killed by any test case covering

the mutation, as in the following example:

Original:
c l a s s A{ c l a s s B: pub l i c A{

.

i n t m() { } i n t m () { . . . A : :m() ; . . . }

} ; } ;

Mutant:
c l a s s B: pub l i c A{

.

i n t m () { . . . m(); . . . }

} ;

9. Pure virtual methods: In various operators, the mutation results in a pure

virtual method being called. This leads to an invalid mutant as these methods have

Chapter 4. Implementation of the C++ Mutation System 65

no definition. This case was illustrated with IOD to explain the fourth requirement

in Section 4.1.4.1.

Apart from these rules, some particular situations were considered in each of the operat-

ors. As an example, in the case of IOP, if the method invocation to move up and down

is within a method with a return statement at the end, the method call should not be

placed at the bottom of the method as it will be never reached: the resultant mutant

would have the same effect as removing the method call.

As a final remark, taking into account that mutation testing is a white-box technique,

many of these improvement rules are closely related to C++ because they have been

directly derived from this language. Still, some of these rules may apply to other object-

oriented programming languages.

4.3 MuCPP: Mutation System Implementation

MuCPP is the mutation system developed to apply mutation testing to C++ programs.

This mutation system allows the tester to analyse C++ code with regard to the set

of mutation operators implemented, and generate the mutants according to the results

of that analysis. Moreover, this system is prepared to execute the test suite against

the mutants. MuCPP, as most of the existing mutation systems, works in three distinct

phases, which will be described in the next subsection. Subsequently, we will also explain

the main features incorporated into the system.

4.3.1 Phases

Analysis of the source code

MuCPP traverses the AST to analyse the code and determine where mutation operators

can be applied through the procedure explained in Section 4.1.3. In this step, the tester

can provide one or more C++ files to the tool, as a C++ project usually comprises several

source files. The respective ASTs are created and then sequentially visited for each one

of the operators in the same execution. In this stage, the tester receives information on

the number of mutants that can be produced per mutation operator. Note that all the

operators are executed at the same time, so each AST is only traversed once. This fact

avoids introducing system overhead if the entire tree had to be visited as many times as

operators were enabled.

Chapter 4. Implementation of the C++ Mutation System 66

Currently, the system integrates the class-level operators shown in Section 3.2 and also

a selective set of traditional mutation operators (this set will be used in our experiments

later on in the document in order to compare both types of mutation operators). How-

ever, we should also note that some of the operators defined for C++ were not included

in the mutation system after performing a review of the class operators assessed in the

literature as well as those available in other mature mutation tools like MuJava [87] or

CREAM [39]. In the experiments conducted by Offutt et al. using FORTRAN [101], the

operator SVR (similar to MBC) generated a very high number of mutants. However, the

mutation scores obtained when removing this operator were still 100% in almost all cases.

As a result, most other mutation tools have traditionally excluded similar operators. The

construction of MuCPP allowed us to analyse larger programs, and then we found out

that the number of mutants that MBC and MNC generated sharply increased the cost

of the technique and was more in line with the number of mutants generated by similar

traditional operators. On the basis of the aforementioned results reported by Offutt et

al., we decided to remove these two operators from our mutation tool as well. The fact

that MBC and MNC generate many mutants would produce an undesirable effect on the

evaluations about class-based mutants; the contribution of the rest of operators in the

set would be secondary when compared to MNC and MBC due to the large difference

in the mutants generated. Likewise, AAC and AMC did not prove useful and EXS is

difficult to analyse because killing mutants from this operator requires that exceptions

not considered in the program are thrown (that is, it is unknown if some exceptions are

missing).

It is worth noting that another set of operators could be added at any moment: the

mutation tool can be easily extended with new operators. The system also allows the

tester to enable/disable mutation operators to apply selective mutation.

Generation of mutants

Mutants are generated in this step, each one only representing a single modification (first

order mutation) in one AST. Each mutant is a clone of the original program except for the

file modified. As it was shown in the example of the second requirement in Section 4.1.4.1,

we may need to insert a change into several parts of the code to create a single mutant.

Those locations could be in different source files (for instance, the declaration could be

in a header file). In that case, several files are modified in the mutant.

The files remaining unchanged are also stored in the clone. However, mutants are not

created as new directories: each mutant is generated as a branch with a unique name in

Chapter 4. Implementation of the C++ Mutation System 67

Figure 4.7: Generation of mutants using Git

the Git version control system3. Thus, only the changes with respect to the original

version occupy space on disk, allowing for a huge reduction in the storage resources (see

Section 4.3.2 for further details). This mechanism allows testing each mutant as a stand-

alone program because the mutant contains all the necessary files to build the program

separately. This process is graphically shown in Figure 4.7.

MuCPP does not actually generate every available mutant in the code: the system

implements the collection of improvement rules to avoid some uninteresting mutants

(see Section 4.2).

Execution of tests

The mutants, once physically generated, are supplied to the execution module together

with the test suite defined by the tester for the system under test. The test cases are

applied to the mutants, reporting preset values when the mutant fails (1) or pass (0) a

test case. Then, these results can be examined to determine whether mutants are dead

or still alive after the test suite execution.

MuCPP has been implemented in such a way that the tester is not subject to a specific

testing framework. This is possible provided that the results of the test suite execution

meet the output format that is expected by the tool. Given that there is no a prevailing

testing framework for C++ (unlike Java, for instance, where JUnit is widely used),

this approach avoids having to translate a test suite already implemented to apply this

mutation tool.

We have also developed a library to deal with this stage. This library measures the time

and it also implements a timeout, which can be configured depending on the tests run;

the injected mutation can lead to an unexpected behaviour, so the timeout will stop the

execution of the test when exceeding a reasonable time. Moreover, a test scenario may

fail at any moment because of a runtime error; this library can be configured either to

stop the execution of the mutant or to continue with the rest of test cases.
3http://git-scm.com

http://git-scm.com

Chapter 4. Implementation of the C++ Mutation System 68

Analyze
the program

Generate
the mutants

Execute the
test suite

Original
C++ program

Class mutation
operators

Test suite

 Dead
mutant

 Invalid
mutant

 Alive
 mutant

Mutant
directories

Figure 4.8: MuCPP work-flow

Summary of the process

The entire process from the analysis of mutants to the execution of the test suite can be

seen in Figure 4.8. The application of mutation testing with MuCPP can be outlined as

follows:

1. In the analysis of the source code, potential nodes to be mutated can be retrieved

through pattern matching on the AST according to the mutation operators added

to the system. The potential mutation locations are studied in depth in the operator

handler to ensure that the bound nodes meet the conditions for the application of

the mutation operator.

2. Mutations are injected into the mutation locations taking care of the correctness

conditions in the formation of the mutant. Mutants are then produced containing

the corresponding mutations, generating as many Git branches as mutants.

3. The generated mutants can be executed on the developed test suite to produce

the output. Under this scheme of mutants as Git branches, each mutant can be

compiled and run independently.

Chapter 4. Implementation of the C++ Mutation System 69

4. Finally, results can be analysed to determine the classification of mutants: surviv-

ing, killed or invalid.

4.3.2 Features

In this section, we describe the main features of MuCPP, which enable and facilitate the

practical application of mutation testing:

Dependency analysis:

MuCPP, as a source code analysis system, needs to know the information handled by the

build system used for the program to correctly parse its source files. For instance, the tool

should be aware of the paths to header files. This information and other configuration

options can be found in the commands used to compile each source file in a project. In

this regard, MuCPP enables two options:

1. We can provide this information directly to Clang on the command line when

executing MuCPP, using the available options in the compiler.

2. We can provide this information through a JSON compilation database file to

Clang [69]. This file, which contains the full compilation command of each source

file, can be automatically generated with CMake4. MuCPP will be able to find

the commands to parse the different source files, their dependencies, the involved

libraries... without providing any additional information to the tool.

The second option is especially convenient when we analyse several source files in the

same execution. Using JSON files allows the tester to forget about these details.

Header files:

The AST contains the code of the headers included in the supplied files. MuCPP is able

to distinguish user header files from the ones marked as system headers, only considering

the former kind of headers for the insertion of faults. Thus, if the user does not want a

particular header file being mutated, the tester can inform the tool of this fact using the

appropriate option of the compiler (for instance, -isystem in Clang). This is particularly

useful when working with third-party “lite libraries” provided by a single header placed

within the project directory.
4https://cmake.org/

https://cmake.org/

Chapter 4. Implementation of the C++ Mutation System 70

Git version control system:

This is the first use of Git branches in a mutation tool as far as we know. Previously, the

SVN version control system had been used to reduce space when storing mutants [40].

However, Git features make this version system control more efficient for mutation testing

than SVN; Git saves time when switching between branches and when committing the

changes, given that Git can be informed about the modified files.

To illustrate this fact, the time was measured when using both Git5 and SVN6 (local

repositories) with the Kig application7, which occupies 91M. One hundred branches were

created in an automated manner, inserting the same simple modification into one of the

files for every branch. Git took 4.65 seconds to generate the branches, while SVN needed

32,40 seconds. In other words, SVN took almost seven times longer than Git for the

same task. This result supports that Git is suitable for saving not only space but also

much time when compared to SVN.

Although this usage of Git is unusual, generating mutants as Git branches has been

especially helpful to simplify implementation and save space without impacting scalabil-

ity. The system does not experience performance issues when handling a large number of

mutants. As an example, when applying mutation testing to KatePart (see Appendix A),

two sets of 2,127 and 54,984 mutants were generated: Git spent the same average time

per mutant for both sets (0.174 seconds on a non-SSD hard disk). This shows that Git

can scale to large sets of mutants without problems.

Duplicate mutants:

MuCPP has been designed to avoid the creation of duplicate mutants. As commented in

the analysis stage, the system enables parsing several source files in the same execution,

which are analysed sequentially. Because of header files being contained in the AST and

the same headers being included in different source files, a class could be analysed more

than once, leading to the creation of the same mutants. Segura et al. [117] distinguishes

the terms “generated” and “executed” mutants when carrying out a mutation testing

process in Java because of the existence of reusable classes. Thus, when a mutation

operator finds a location to insert a mutation, MuCPP saves a list of the locations in the

code mutated by each operator, ensuring that every mutant represents a different fault.

Thanks to this fact, we do not need to post-process the mutants to remove duplicate

ones.
5Version 1.9.1
6Version 1.8.8
7http://edu.kde.org/kig, version 1.0

http://edu.kde.org/kig

Chapter 4. Implementation of the C++ Mutation System 71

Statistical data:

Finally, MuCPP has also been instrumented to yield some statistical data about the

number of mutated classes and the mean of faults inserted into each class, in general and

per operator. This feature has been useful to obtain experimental results in this thesis.

Chapter 5

Mutation Operator Analysis

This chapter performs a comprehensive analysis of class mutation operators.

To that end, this chapter is divided into two main sections: quantitative

analysis and qualitative analysis. In the former, we study the reduction in

the number of mutants in those operators implementing improvement rules,

the distribution of mutants, the mutation score and the improvement of the

test suite. In the latter, we explore the utility of some class operators, the

performance of class operators when compared to traditional operators and

their ability to detect coding errors.

5.1 Quantitative Analysis

This section looks in depth at the quantitative aspect when using the set of class oper-

ators. The computational resources are very important when applying mutation testing,

so we evaluate the reduction achieved thanks to the implementation of the improvement

rules in the corresponding operators. We also compute different statistics related to

the generation of mutants in object-oriented systems. Finally, we measure the mutation

score and improve the test suite through surviving mutants.

5.1.1 Evaluation of the reduction of uninteresting mutants

For the experiments in this section, we prepared two versions of the mutation operators:

• Basic version: operator implementation to comply with the first three requirements

in Section 4.1.4.1

73

Chapter 5. Mutation Operator Analysis 74

• Improved version: operator implementation to comply also with the fourth require-

ment, automating the improvement rules in Section 4.2.

The mutants generated in both versions were compared to check the extent to which the

improved version is able to avoid uninteresting mutants. In order to observe the impact

on the number of mutants, we calculated the generation and execution times as well as

the storage requirements in both cases to measure the enhancement in the efficiency of

the mutation system. It is worth mentioning that:

• A tailored timeout for each program was set to stop a test scenario when it did not

respond after a reasonable time (see “Execution of tests” in Section 4.3.1).

• These experiments were carried out on a server equipped with an Intel Xeon 2.60

GHz CPU and 16GB RAM running Ubuntu 14.04.

• The total execution time was measured using the standard Unix utility time, while

the execution, compilation and Git times were measured using the C++ standard

library chrono.

The reduction achieved by the improvement rules has been computed for every applica-

tion analysed in the experiments in this chapter (see Appendix A). Table 5.1 shows, in

different columns, how many mutants are produced with the basic and improved versions,

for those operators that produce fewer mutants after their improvement. The difference

between the basic and the improved version (Reduction) and the percentage of reduction

in the number of mutants (Red.%) are also presented in this table.

The total percentage of mutants excluded by the improvement rules across 16 muta-

tion operators is 46.6%. However, we should note that several operators produce few

mutants and that there are varying reductions among the operators. When considering

the complete set of class operators, the reduction represents 32.1% of the total number

of mutants. When studying the operators individually, we can remark the removal of all

the mutants from IMR and PCC. In contrast, the number of mutants is not reduced for

other operators with improvement rules implemented and generating mutants due to the

characteristics of the subjects.

Table 5.2 shows a complete list of times measured when applying mutation testing to each

application. Again, results have been calculated and divided according to the basic and

the improved version of the mutation operators. The time for each version has been in

turn divided according to the two last phases of mutation testing shown in Section 4.3.1:

Chapter 5. Mutation Operator Analysis 75

Table 5.1: Reduction of mutants for improved class operators generating fewer
mutants in the analysed programs

Operator Basic Improved Reduction Red.%

IHI 223 152 71 31.8
ISD 16 2 14 87.5
ISI 98 8 90 91.8
IOD 201 43 158 78.6
IPC 67 35 32 47.8
IMR 3 0 3 100.0
PCD 38 13 25 65.8
PCI 2,324 901 1,423 61.2
PCC 5 0 5 100.0
PMD 458 453 5 1.1
PPD 334 261 73 21.9
OMD 340 199 141 41.5
OAN 33 27 6 18.2
CID 323 300 23 7.1
CDC 23 15 8 34.8
CDD 74 28 46 62.2

Total 4,560 2,437 2,123 46.6

• Mutant generation: Total measures the time needed to analyse the source files

and produce the mutants. The time used by Git has been calculated separately,

including the creation of new branches and changes in the corresponding files.

• Test suite execution: The compilation and the execution times have been measured.

The time taken by Git has also been computed, encompassing switches between

branches and storage of the execution results.

We can observe from the results of this table that the test execution phase is the crit-

ical operation when compared with the mutant generation phase. The compilation and

the execution times are almost entirely dependent on the compilation system and the

duration of the tests respectively (see Table A.1 in Appendix A). Git performs the least

time-consuming tasks in the execution phase. On the contrary, Git takes most of the

time in the mutant generation phase. However, this result is not unexpected, taking into

account that Git performs output operations which imply writing files. We should also

note that the difference in the percentage of the total time spent in the generation of

mutants among the applications is motivated by the number of processed source files:

the more files, the more ASTs are created and analysed.

When comparing the times of the basic and the improved version, we can see from

Table 5.2 that the highest reduction is achieved in the compilation time. Many of the

avoided mutants are invalid, which only increase the compilation time but not the ex-

ecution time as the test suite cannot be applied to them. Moreover, the rest of the

Chapter 5. Mutation Operator Analysis 76

T
a
bl

e
5.

2:
T
im

es
fo
r
th
e
ge
ne
ra
ti
on

of
m
ut
an

ts
an

d
te
st

su
it
e
ex
ec
ut
io
n
in

th
e
an

al
ys
ed

pr
og
ra
m
s

w
it
h
th
e
ba

si
c
an

d
th
e
im

pr
ov
ed

ve
rs
io
n
of

th
e
se
t
of

cl
as
s
op

er
at
or
s

B
a
si
c
v
e
rs
io
n

Im
p
ro

v
e
d

v
e
rs
io
n

G
e
n
e
ra

ti
o
n

T
e
st

su
it
e
e
x
e
c
u
ti
o
n

G
e
n
e
ra

ti
o
n

T
e
st

su
it
e
e
x
e
c
u
ti
o
n

P
ro
gr
am

|M
|

G
it

T
ot
al

G
it

C
om

p
.

E
x
ec
.

T
ot
a
l

—
|M

|
G
it

T
ot
a
l

G
it

C
om

p
.

E
x
ec
.

T
o
ta
l

T
C
L

17
2

5
.7

11
.2

0.
00

0.
13

0
.0
2

0
.1
7

13
7

4.
7

9
.3

0.
0
0

0
.1
1

0
.0
2

0
.1
3

R
P
C

24
4

7.
5

23
.2

0.
01

0.
32

0
.0
6

0
.3
9

19
1

5.
7

1
9
.0

0.
0
1

0
.2
7

0
.0
6

0
.3
5

T
X
M

1
,1
40

37
.6

39
.5

0.
01

0.
22

0
.1
7

0
.4
1

61
4

20
.2

2
2
.2

0.
0
1

0
.1
0

0
.1
2

0
.2
3

K
M

Y
2
,2
89

10
0.
6

16
3.
8

0.
14

9.
86

0
.8
4

10
.8
4

1,
4
21

6
2
.5

12
3
.5

0.
09

7
.1
7

0
.7
5

8
.0
1

K
A
P

2
,7
68

48
1
.6

52
6.
1

0.
82

24
.8
7

47
.1
0

7
2
.8
0

2,
12
7

37
1
.3

4
13

.5
0.
6
8

20
.5
0

4
4
.2
8

6
5
.4
6

G
en
er
at
io
n
ti
m
es

m
ea
su
re
d
in

se
co
nd

s;
T
es
t
su
it
e
ex
ec
ut
io
n
ti
m
es

m
ea
su
re
d
in

ho
ur
s.

Chapter 5. Mutation Operator Analysis 77

Table 5.3: Storage resources taken by class mutants in the analysed programs

Program |M | Original Git Mean

TCL 137 0.3 6.9 0.05
RPC 191 2.5 12.0 0.05
TXM 614 0.9 24.0 0.04
KMY 1,421 96.0 167.0 0.05
KAP 2,127 520.0 754.0 0.11

Disk space measured in MB.

discarded mutants help reduce compilation time further. Test suite execution times are

lowered thanks to the improvement rules. We have to note that, while these rules may

also require spending more time when detecting mutation locations, the final time is

nonetheless lower than generating all the mutants in the basic version.

Regarding the storage requirements, Table 5.3 shows:

• Original : the size of the original program.

• |M |: size of the set of mutants generated with the improved version of the operators.

• Git : disk space occupied after generating the mutants (M).

• Mean: average of storage resources needed by each mutant (Git / |M |).

As it can be seen, that Mean is similar in every case study. This means that the size

of the Git repository (Git) barely depends on the size of the program (Original), but

mainly on the number of mutants (|M |). In other words, the size of the repository

increases proportionally to the number of mutants and not to the size of the program.

This fact supports that Git just needs to save the mutation when generating a mutant,

as commented in Section 4.3.1. Because of Git, the difference between the basic and

the improved version of the operators with regard to the storage needed is not such an

important matter as the time expenses.

5.1.2 Distribution of mutants

Several absolute and relative counts were computed to study the distribution of the

generated mutants across class operators on the analysed programs to better understand

the quantitative dimension when using this type of operators.

Table 5.4 depicts the number of mutants generated per operator in these programs. The

total number of mutants created by this set of operators and the average number of

Chapter 5. Mutation Operator Analysis 78

Table 5.4: Distribution of class mutants generated by program and operator, divided
by the categories in Table 3.1

Operator TCL RPC TXM KMY KAP Total

IHD 0 0 0 1 1 2
IHI 0 4 48 42 762 856
ISD 0 1 0 2 2 5
ISI 0 3 0 6 18 27
IOD 0 3 25 48 98 174
IOP 0 0 8 6 15 29
IOR 0 15 11 31 347 404
IPC 0 1 0 37 78 116
IMR 0 0 0 0 0 0

PVI 0 0 0 3 1 4
PCD 0 0 0 12 116 128
PCI 0 8 324 493 3,988 4,813
PCC 0 0 0 0 32 32
PMD 0 2 11 62 1,269 1,344
PPD 0 4 21 361 370 756
PNC 0 0 0 0 2 2
PRV 0 0 0 0 0 0

OMD 46 19 61 92 77 295
OMR 36 15 0 75 65 191
OAN 0 0 0 14 75 89
OAO 0 0 0 0 0 0

MCO 3 88 19 677 7,369 8,156
MCI 0 0 39 0 108 147

EHC 0 2 0 27 0 29
EHR 0 0 0 0 0 0

CTD 0 0 0 0 0 0
CTI 0 0 0 0 15 15
CID 40 17 34 152 832 1,075
CDC 0 2 3 7 29 41
CDD 2 5 6 8 84 105
CCA 10 2 4 4 10 30

Total 137 191 614 2,160 15,763 18,865

Mean 15.2 14.7 30.7 31.8 43.2 39.7

mutants produced by class are shown at the end of the table. We should note that the

mean only considers the operators producing at least one mutant.

Table 5.5 includes, for each program and operator1:

• C : The number of classes that are mutated.

• C% : The percentage of the whole set of classes that are mutated.

• M : The average number of mutants that are generated per class.
1Note that the operators that do not produce any mutants in these programs are not shown in this

table.

Chapter 5. Mutation Operator Analysis 79

As an example of the meaning of M, the operator PCI produces 324 mutants in Tinyxml2

(see Table 5.4); the number of classes in this program is 20 (see Table A.1 in Appendix A),

so the value of M in Table 5.5 is 16.2 (324/20).

PCI and MCO produce a considerable number of mutants, so they may increase the

cost of the technique. These two operators have a great influence in the data shown in

Table 5.4 because they produce almost 69% of the total number of mutants. In order to

keep the cost of mutation testing manageable, testers could decide to manually disable

MCO based on their knowledge about the program (for instance, when a tester knows

after a previous inspection that the members of the analysed classes do not belong to

the same semantic field and therefore are not prone to cause confusion). However, the

decision of excluding some operators could introduce a bias in the testing process. One

option would be investigating if this decision could be automated in some form by the tool

(e.g. by comparing member names according to a heuristic): this would merit additional

studies.

While PCI and MCO are also the operators injecting the highest number of mutations

per class (7.0 and 7.6 respectively), CID (47.4%), OMD (38.7%) and OMR (34.5%) are

the operators mutating more classes as a percentage. This is partially explained by the

fact that they mutate constructors (it is common that a class has several constructors).

On the contrary, other operators do not generate any mutants or only introduce few

mutations. This is the case of IMR, PRV, OAO, EHR and CTD. This is mainly due to a

low frequency of appearance of the characteristics addressed by these operators. In other

cases, the implemented improvement rules prevent several mutants from appearing. For

instance, the basic version of IMR generates various invalid mutants in KMyMoney (see

Table 5.1) because the rule about pure virtual methods (see improvement rule number 9

in Section 4.2) is disabled. Despite not generating any mutants for the subjects in these

experiments, these operators can be valuable because the features that they address may

receive less attention due to their rare use. Therefore, we do not recommend discarding

them.

There is not a clear link between the percentage of large classes and the number of

mutants generated within a class. As it can be observed in Table A.2 in Appendix A,

KMyMoney is the program with the highest percentage of classes with more than 500

lines of code (17.6%), but is in the fourth position according to M (average number of

mutants generated per class) in Table 5.5 (M = 1.4). Nevertheless, this is not surprising

since many class operators are related to structural elements, and thereby do not depend

on the length of the methods of the class.

A key factor in the generation of class mutants is the existence of inheritance relation-

ships among classes. Beyond the impact on the “inheritance” category, the operators in

Chapter 5. Mutation Operator Analysis 80

T
a
bl

e
5.

5:
Q
ua

nt
it
at
iv
e
st
at
is
ti
cs

by
pr
og
ra
m

an
d
op

er
at
or

T
C
L

R
P
C

T
X
M

K
M

Y
K
A
P

M
e
a
n

O
p
er
at
or

C
C
%

M
C

C
%

M
C

C
%

M
C

C
%

M
C

C
%

M
C
%

M

IH
D

0
0
.0

0
.0

0
0.
0

0
.0

0
0.
0

0
.0

1
1.
5

0.
0

1
0.
3

0
.0

0.
4

0.
0

IH
I

0
0.
0

0
.0

2
15
.4

0
.3

6
30
.0

2
.4

9
13
.2

0.
6

70
1
9.
2

2
.1

1
5.
6

1.
1

IS
D

0
0
.0

0
.0

1
7.
7

0
.1

0
0.
0

0
.0

1
1.
5

0.
0

1
0.
3

0
.0

1.
9

0.
0

IS
I

0
0.
0

0
.0

1
7.
7

0
.2

0
0.
0

0
.0

2
2.
9

0.
1

6
1.
6

0
.0

2.
4

0.
1

IO
D

0
0
.0

0
.0

3
23
.1

0
.2

7
35
.0

1
.3

18
2
6.
5

0.
7

34
9.
3

0
.3

1
8.
8

0.
5

IO
P

0
0.
0

0
.0

0
0.
0

0
.0

1
5.
0

0
.4

2
2.
9

0.
1

4
1.
1

0
.0

1.
8

0.
1

IO
R

0
0
.0

0
.0

3
23
.1

1
.2

2
10
.0

0
.6

1
1.
5

0.
5

29
7.
9

1
.0

8.
5

0.
7

IP
C

0
0.
0

0
.0

1
7.
7

0
.1

0
0.
0

0
.0

22
3
2.
4

0.
5

76
2
0.
8

0
.2

1
2.
2

0.
2

P
V
I

0
0.
0

0
.0

0
0.
0

0
.0

0
0.
0

0
.0

1
1.
5

0.
0

1
0.
3

0
.0

0.
4

0.
0

P
C
D

0
0
.0

0
.0

0
0.
0

0
.0

0
0.
0

0
.0

2
2.
9

0.
2

46
1
2.
6

0
.3

3.
1

0.
1

P
C
I

0
0.
0

0
.0

6
46
.2

0
.6

9
45
.0

16
.2

20
2
9.
4

7.
3

12
8

35
.1

1
0
.9

3
1.
1

7.
0

P
C
C

0
0
.0

0
.0

0
0.
0

0
.0

0
0.
0

0
.0

0
0.
0

0.
0

5
1.
4

0
.1

0.
3

0.
0

P
M
D

0
0
.0

0
.0

2
15
.4

0
.2

7
35
.0

0
.6

7
1
0.
3

0.
9

8
6

23
.6

3
.5

16
.9

1.
0

P
P
D

0
0
.0

0
.0

4
30
.8

0
.3

8
40
.0

1
.0

27
3
9.
7

5.
3

42
1
1.
5

1
.0

2
4.
4

1.
5

P
N
C

0
0
.0

0
.0

0
0.
0

0
.0

0
0.
0

0
.0

0
0.
0

0.
0

2
0.
5

0
.0

0.
1

0.
0

O
M
D

7
77
.8

5
.1

2
15
.4

1
.5

13
6
5.
0

3
.1

1
8

26
.5

1.
4

3
2

8.
8

0
.2

38
.7

2.
3

O
M
R

9
10
0
.0

4
.0

3
23
.1

1
.2

0
0.
0

0
.0

2
7

39
.7

1.
1

3
6

9.
9

0
.2

34
.5

1.
3

O
A
N

0
0.
0

0
.0

0
0.
0

0
.0

0
0.
0

0
.0

7
10
.3

0.
2

14
3.
8

0
.2

2.
8

0.
1

M
C
O

1
11

.1
0
.3

2
15
.4

6
.8

3
15
.0

0
.9

16
2
3.
5

10
.0

87
2
3.
8

2
0
.2

1
7.
8

7.
6

M
C
I

0
0.
0

0
.0

0
0.
0

0
.0

2
1
0.
0

1
.9

0
0.
0

0.
0

3
0.
8

0
.3

2.
2

0.
4

E
H
C

0
0
.0

0
.0

1
7.
7

0
.2

0
0.
0

0
.0

7
10
.3

0.
4

0
0.
0

0
.0

3.
6

0.
1

C
T
I

0
0.
0

0
.0

0
0.
0

0
.0

0
0.
0

0
.0

0
0.
0

0.
0

4
1.
1

0
.0

0.
2

0.
0

C
ID

8
88

.8
4
.4

4
30
.8

1
.3

8
40
.0

1
.7

2
4

35
.3

2.
2

1
53

4
1.
9

2
.3

47
.4

2.
4

C
D
C

0
0.
0

0
.0

2
15
.4

0
.2

3
15
.0

0
.1

7
1
0.
3

0.
1

2
9

7.
9

0
.1

9.
7

0.
1

C
D
D

2
22
.2

0
.2

5
38
.5

0
.4

6
30
.0

0
.3

8
11
.8

0.
1

84
2
3.
0

0
.2

2
5.
1

0.
2

C
C
A

8
88
.8

1
.1

1
7.
7

0
.2

2
10
.0

0
.2

3
4.
4

0.
1

6
1.
6

0
.0

2
2.
5

0.
3

M
e
a
n

5.
8

64
.8

2
.5

2
.5

19
.5

0
.9

5.
5

2
7.
5

2
.0

10
.5

15
.3

1.
4

3
9.
2

1
0.
7

1
.7

27
.6

1
.7

C
:
N
um

be
r
of

m
ut
at
ed

cl
as
se
s
–
C
%
:
P
er
ce
nt
ag
e
of

m
ut
at
ed

cl
as
se
s
–
M
:
A
ve
ra
ge

m
ut
an

ts
pe
r
cl
as
s

Chapter 5. Mutation Operator Analysis 81

the “polymorphism and dynamic binding” group will also be affected. This is also the

case of MCI, including over half of the class-level operators. This fact has been purposely

explored with the inclusion of Matrix TCL Pro, encompassing nine classes with no inher-

itance relations among them. In this program, two operators belonging to the “method

overloading” category generates 82 out of 137 mutants because these classes contemplate

the use of operations with different types.

The more constructors in a class, the more mutants CID is likely to generate. For

instance, there are 40 mutants in the nine classes of Matrix TCL Pro with a mean of 3

constructors. The same fact happens with IPC when a class is inheriting; 37 mutants

emerge in KMyMonyey with 27 inheriting classes and almost 2 constructors per class.

On the contrary, CDC is not likely to apply many times when the average of constructors

in the classes is high: the compiler only provides a default constructor when a class does

not contain other user-declared constructors, as it was commented in Section 4.1.5.

5.1.3 Mutation score and test suite improvement

This section shows the calculation of the mutation score in the subjects under study

when using the set of class operators. The surviving mutants are then analysed, adding

new test cases to kill surviving non-equivalent mutants.

Tables 5.6–5.10 present the mutation score in each program, for each mutation operator

and in general. These tables include the mutants produced by operator (Mutants), how

many are killed (Dead), how many remain alive (Alive), how many are found to be

equivalent (Equivalent), and the mutation score (MS).

Table 5.6: Mutation score in Matrix TCL Pro

Operator Mutants Dead Alive Equivalent MS

OMD 46 31 15 8 0.82
OMR 34 25 9 1 0.76
MCO 3 0 3 0 0.00
CID 40 31 9 2 0.82
CDD 2 0 2 2 -
CCA 10 3 7 7 1.00

Total 135 90 45 20 0.78

MuCPP discards several mutants because of the improvement rules (see results of Sec-

tion 5.1.1), and class operators produce fewer mutants than traditional operators in

general (see results of Section 5.1.2). Therefore, the low number of mutants when com-

pared to similar evaluations regarding traditional operators in the literature corresponds

to these facts. In the case of KMyMoney and KatePart, we selected a subset of the

program to enable the manual reviewing of surviving mutants.

Chapter 5. Mutation Operator Analysis 82

Table 5.7: Mutation score in XmlRpc++

Operator Mutants Dead Alive Equivalent MS

IHI 4 2 2 2 1.00
ISD 1 0 1 0 0.00
ISI 3 0 3 1 0.00
IOD 3 0 3 2 0.00
IOR 15 0 15 15 -
IPC 1 1 0 0 1.00
PCI 3 2 1 1 1.00
PPD 1 0 1 1 -
OMD 10 7 3 1 0.78
OMR 10 7 3 0 0.70
MCO 48 19 29 10 0.50
EHC 2 0 2 1 0.00
CID 17 10 7 3 0.71
CDC 2 0 2 0 0.00
CDD 5 1 4 3 0.50
CCA 2 2 0 0 1.00

Total 127 51 76 40 0.59

Table 5.8: Mutation score in Tinyxml2

Operator Mutants Dead Alive Equivalent MS

IHI 47 30 17 6 0.73
IOD 25 21 4 1 0.87
IOP 8 8 0 - 1.00
IOR 11 8 3 1 0.80
PCI 190 133 57 20 0.78
PMD 3 0 3 3 -
PPD 7 4 3 3 1.00
OMD 37 15 22 14 0.65
MCO 19 17 2 1 0.94
MCI 39 11 28 26 0.85
CID 34 21 13 10 0.87
CDC 3 3 0 - 1.00
CDD 6 3 3 3 1.00
CCA 4 0 4 4 -

Total 433 274 159 92 0.80

Despite the reduction of equivalent mutants thanks to the improvement rules, 27.9%

of the valid class mutants (considering the programs altogether) are still found to be

equivalent (357 out of 1,279). We have to note that some mutants are classified into the

set of equivalent mutants because we could not find a way to reach the mutation. For

instance, in the case of EHC in KMyMoney, we were unable to throw an exception that

reached the catch block. Also, there are some mutants which might be only killable under

certain memory restrictions (we comment this fact in Section 5.2.1). All the mutants

generated by PMD turned out to be equivalent. PMD is the only operator that does not

produce any useful mutants among those class operators creating at least one mutant in

Chapter 5. Mutation Operator Analysis 83

Table 5.9: Mutation score in KMyMoney

Operator Mutants Dead Alive Equivalent MS

IHD 1 1 0 - 1.00
IHI 23 6 17 15 0.75
ISI 3 0 3 3 -
IOD 1 0 1 0 0.00
IPC 18 9 9 6 0.75
PCI 15 14 1 1 1.00
PMD 1 0 1 1 -
PPD 18 4 14 14 1.00
OMD 13 4 9 4 0.44
OMR 32 28 4 0 0.87
OAN 7 3 4 4 1.00
MCO 87 31 56 7 0.39
EHC 6 1 5 5 1.00
CID 48 15 33 22 0.58
CDC 5 4 1 1 1.00
CDD 4 2 2 2 1.00
CCA 2 0 2 2 -

Total 284 122 162 87 0.62

Table 5.10: Mutation score in KatePart

Operator Mutants Dead Alive Equivalent MS

IHI 51 4 47 28 0.17
ISI 2 0 2 2 -
IOD 4 1 3 2 0.50
IOR 5 0 5 5 -
IPC 5 0 5 0 0.00
PCD 1 0 1 0 0.00
PCI 53 12 41 29 0.50
PMD 1 0 1 1 -
PPD 11 0 11 11 -
OMD 5 1 4 1 0.25
OMR 8 4 4 3 0.75
OAN 16 2 14 0 0.12
MCO 46 0 46 0 0.00
MCI 15 0 15 0 0.00
CTI 2 2 0 - 1.00
CID 54 21 33 26 0.75
CDC 5 1 4 2 0.33
CDD 10 8 2 2 1.00
CCA 6 2 4 4 1.00

Total 300 58 242 116 0.32

these programs.

The mutation score is far from 100% in all the programs, especially in XmlRpc++ (51%)

and KatePart (32%). Therefore, we can say that these test suites are not able to detect

the different faults simulated by these class operators in the code of these programs.

As a consequence, the current test suites do not ensure a minimum coverage of class

Chapter 5. Mutation Operator Analysis 84

Table 5.11: Mutation score obtained after improving the test suite for the analysed
programs with respect to surviving non-equivalent class mutants

Original Added Augmented
Program |S| |A| |M | |S| |A| |S| |A| MS

TCL 17 87 3 7 35 24 122 1.00
RPC 26 61 5 8 36 34 97 1.00
TXM 57 111 3 5 32 62 143 0.91
KMY 241 2,281 10 7 67 248 2,348 0.98
KAP 158 1,843 1 16 56 174 1,899 0.57

mutations, that is, they were designed without taking into account common mistakes

when handling object-oriented features. Therefore, the mutation scores in these tables

show that we can take advantage of the application of mutation testing to improve the

adequacy level of test suites. As a result, we have analysed the surviving non-equivalent

mutants and refined the test suite accordingly. The testing process for the mutants

derived from class mutation operators requires a test suite where objects belonging to

the mutated classes are exercised. Thus, we have to differentiate assertions from test

cases or test scenarios:

• Assertion: It checks the current state of one or more objects at any given moment.

An assertion is used to confirm that the state after performing a sequence of actions

is correct.

• Test case or test scenario: A scenario describes a particular logic where some

objects work together, testing functionalities of the program. A test case may

encompass different assertions.

The tester creates several test cases to check the correct operation of a set of classes and

their members, including different assertions. Still, not only the assertions determine

whether a mutant is killed or not, but a different behaviour can be exhibited at any

moment during the execution of the test scenario because of a runtime error or a timeout

(see Section 4.3.1). Therefore, a test scenario may fail at any moment, even satisfying

all the assertions.

Each test scenario is usually designed with a particular goal according to the system

under test. In this way, the augmentation of the test suite to kill the surviving mutants

has been performed as follows:

• Modify an existing scenario when the assertion needed to kill a mutant is closely

related to the logic of that scenario.

Chapter 5. Mutation Operator Analysis 85

• Add a new scenario when, in our view, there are no test scenarios checking a

particular use of the program. This test case may include some assertions at the

same time. In order to complete the new test case and make it as general as possible,

several assertions are inserted apart from those needed to detect the mutation that

induced the scenario.

Table 5.11 shows the original size of the test suite, the additions made, and the size of

the final augmented test suite, where:

• |S| is the number of test scenarios.

• |A| is the number of assertions.

• |M | is the number of modified scenarios.

This table also shows the mutation score (MS) computed with the augmented test suite.

We have achieved a class-adequate test suite for the programs Matrix TCL Pro and

XmlRpc++. The design of new test cases driven to kill surviving mutants by hand is

a complex and laborious task, especially when testing third-party libraries, so we have

added new tests within our possibilities in the rest of the programs. After inspecting the

surviving mutants, we have created new tests to form better test suites, which will be

used later on to compare class and traditional operators (see Section 5.2.2).

5.2 Qualitative Analysis

This section analyses class-based mutants from a qualitative perspective. In particular,

it studies in which cases these class mutants can be useful, their contribution to the test

assessment when compared to traditional mutants and the detection of coding errors

thanks to these mutants.

5.2.1 Class mutation operator utility

To start with the qualitative analysis, we analyse in this section the kind of mutants

produced with a subset of class operators. The goal is to illustrate, with particular

cases, different situations where these operators can be useful to assess or improve a test

suite with respect to object-oriented features in our set of case studies (see Section A.1

in Appendix A).

Chapter 5. Mutation Operator Analysis 86

The operators studied are: CDD, CCA, CID, PVI and IHI. CDD, CCA and CID are

related with the construction and destruction of objects; they refer to language elements

that have some distinguishing features when compared to the rest of methods and they

are always invoked whenever an object is built or destroyed respectively. Additionally,

CDD, CCA and PVI were specifically defined for C++, so they have never been studied

before. On the contrary, IHI was adapted from other object-oriented languages without

change.

• CDD operator: CDD mutants are mostly “potentially” equivalent because the

destructor is usually invoked just to release memory. The word “potentially” is

used because an anomalous behaviour concerning the memory can only be detec-

ted when memory is a limited resource. As a result, some mutations could be

detected when the memory is not released properly. The combination of the muta-

tion system with a tool for memory debugging like valgrind could help detect those

situations. Nonetheless, this experiment shows that a destructor also performs

other operations that should be tested with specific test cases. We detected two

interesting situations:

– In Tinyxml2, two mutants were killed because the destructor is used to unlink

a pointer; as the pointer is not handled in the destructor of the mutant, the

change can be detected by a test case checking the pointer.

– In Xmlrpc++, the deletion of a destructor in a mutant also affects the execu-

tion of the program because a pointer to a boolean is not given the appropriate

value.

• CCA operator: As in the case of CDD, CCA mutants are usually equivalent

because copy constructors are often similar to the default copy constructor provided

by the compiler. Still, this operator can suggest the inclusion of new scenarios

performing a copy of objects when this constructor is somewhat different, as in the

following case:

– In family, a mutant from CCA was killed when the destructor was invoked in

a specific scenario copying an object of the class Parent. The original version

reserves a new block of memory for the copied object. In the mutant, both

objects involved in the copy pointed to the same address, producing an error

when trying to free the same block of memory twice.

• CID operator: This operator tends to create many mutants and some mutants

are easily killed when a member pointer is not initialised in the constructor. How-

ever, after studying the mutants from this operator, we can highlight the following

facts:

Chapter 5. Mutation Operator Analysis 87

– In Tinyxml2, all the mutants generated by CID were executed on the test

suite and three of them were killed by a single test case, which was different

for each of these three mutants. This information gives evidence that some

faults can be difficult to locate and shows the need for a test suite as complete

as possible.

– In garage, we detected a case where the application of a timeout was useful.

When the variable maxVehicles of the class Garage is not initialised, the for

loop below takes a different time depending on the value assigned to that

variable by the compiler; a timeout will stop the test case when the execution

takes longer than normal:

Garage : : Garage (i n t max) {

// CID initialisation deletion: maxVehicles = max;
parked = new Vehic l e ∗ [maxVehicles] ;

f o r (i n t bay = 0 ; bay < maxVehicles ; ++bay)

parked [bay] = NULL;

}

• PVI operator: This operator focuses on non-virtual methods in a base class

which are overridden in derived classes. These methods should be declared with

the virtual keyword when we want that they are dispatched based on the runtime

type of the objects. A non-virtual method overridden in a derived class led to the

generation of a mutant in the following case:

– In simul, a mutant was generated marking as virtual the method move() in

the class cursor_controller. Then, a new test case was created to kill the

mutant by producing a runtime overriding: the method move() in the class

screen_controller was dynamically invoked instead of basing this action on

the static type of the object.

• IHI operator: Inheritance is the most notable and used feature of the object-

oriented paradigm. Mutation operators classified into the “inheritance” category

like IHI check whether a test suite properly addresses inheritance relationships

among classes. We found several mutants which are representative of the utility of

this operator:

– In garage, in addition to the member variable plate in the class Vehicle,

this operator inserts the same variable into the derived class Car. When the

number plate of an object of class Car is printed, the plate in this derived class

is accessed instead of the same member in the base class, with the consequent

change in the output.

Chapter 5. Mutation Operator Analysis 88

– In Tinyxml2, a test case is required to kill a concrete mutant inserting the

member variable _value into XMLComment. In the original version, when an

XML document is parsed, the values are saved in the member variable as-

sociated with the generic base-class XMLNode; in the mutant, the value was

assigned to the new member in the particular derived-class XMLComment in-

stead.

5.2.2 Class mutants and traditional mutants

In this section, we analyse a set of traditional operators and the set of class operators

defined in this thesis to perform a quantitative comparison between both sets. To that

end, we first present the set of traditional operators selected for the study. Then, we

explain the experimental procedure, including the definition of a new metric that gives

us an estimation of the extent to which using class operators can help refine the test suite

with respect to traditional mutants. Finally, we show the results of these experiments.

5.2.2.1 Traditional operators

Our set of class mutation operators has been compared with a set of traditional operators.

Table 5.12 lists the traditional operators included in MuCPP. We have adapted a set of

operators for structured languages (e.g., C or FORTRAN) that have been thoroughly

studied in the literature [13, 95, 102]. Offutt et al. [102] found that focusing on replacing

primitive operators sufficed to efficiently implement mutation testing for these languages.

When implementing some of these operators, we can opt for:

1. Generating all possible mutations per mutation location.

2. Producing a sufficient set of non-redundant mutations. Recently, some authors

have shown that some variants of an operator can subsume the rest [70, 73].

3. Introducing just one mutation in order to further reduce the cost.

MuCPP implements option (1) for most of its operators, except for ARB, ROR, LOR

and ASR, in which option (3) is implemented. For those operators, the tool performs

one replacement (for instance, ROR replaces each appearance of the relational operator

>= only with >), following a similar approach to PITest [111].

Chapter 5. Mutation Operator Analysis 89

Table 5.12: Traditional mutation operators included in MuCPP

Operator Description

ARB Arithmetic Operator Replacement (Binary:+,−,∗,/,%)
ARU Arithmetic Operator Replacement (Unary:+,−)
ARS Arithmetic Operator Replacement (Short-cut:++,−−)
AIU Arithmetic Operator Insertion (Unary:−)
AIS Arithmetic Operator Insertion (Short-cut:++,−−)
ADS Arithmetic Operator Deletion (Short-cut:++,−−)
ROR Relational Operator Replacement (<,<=,>,>=,==,!=,not eq)
COR Conditional Operator Replacement (&&,and,||,or)
COD Conditional Operator Deletion (!,not)
COI Conditional Operator Insertion (!,not)
LOR Logical Operator Replacement (&,|,ˆ)
ASR Short-Cut Assignment Operator Replacement (−=,+=,∗=,/=,%=)

5.2.2.2 Experiments and metric

Firstly, traditional mutants were generated to compare the number of mutants created

with both types of operators. Secondly, two different experiments using the execution

results of traditional and class mutants were prepared:

• First experiment: For each case study, we generated 30 adequate test suites

derived from the augmented test suite with regard to the set of class mutants (see

results in Section 5.1.3). Then, we applied those test suites to the set of traditional

mutants and calculated an average mutation score. We also prepared the reverse

experiment by computing the mutation score of class mutants with adequate test

suites for the set of traditional mutants.

• Second experiment: We defined a metric (Td) to know the extent to which the

set of class mutants could help us add new test cases with respect to traditional

mutants. Let T be the test suite used, Mt the results of running each traditional

mutant on each test scenario in T , and Mc the analogue of Mt for class mutants.

The following procedure was carried out for each program under study:

1. Obtain Mt, Mc, and also Mt∪c as the combination of the results of Mt and

Mc.

2. Minimise the test suite with regard to Mt, Mc and Mt∪c. This minimisation

generates the minimal suites TM(Mt), TM(Mc) and TM(Mt∪c) respectively

(see Section B.2 in Appendix B for further information on minimal test suites).

3. Compare the sets TM(Mt) and TM(Mt∪c). There are two possible results:

– |TM(Mt∪c)| = |TM(Mt)|, that is, the size of the minimal test suite for

the set of traditional mutants is not affected when adding the mutants at

the class level.

Chapter 5. Mutation Operator Analysis 90

– |TM(Mt∪c)| > |TM(Mt)|, that is, the size of the minimal test suite for

the set of traditional mutants increases when analysing the set of class

mutants.

4. Compute the metric Td, defined as:

Td =
|TM(Mt∪c)| − |TM(Mt)|

|TM(Mt∪c)|
(5.1)

This metric will allow us to know the proportion of test cases in the min-

imal test suite TM(Mt∪c) that appears when considering the class mutants in

addition to the traditional ones. Note the following properties of this metric:

– If |TM(Mt)| = |TM(Mt∪c)|, then Td = 0;

– If TM(Mt) = ∅, then Td = 1;

– Therefore, 0 ≤ Td ≤ 1.

We should note that Td depends on T , as Mt and Mt∪c have been derived

from the complete test suite T .

We also compared the metric QD (see Equation 2.3 in Section 2.4.4) for the set of

traditional and class mutants to analyse whether the value of Td is affected by the fact

that the test suite was improved only inspecting the surviving class mutants.

5.2.2.3 Results

Table 5.13 presents the number of traditional mutants generated in these programs di-

vided by mutation operator and in total. As it can be seen from this table, the number

of traditional mutants from only 12 operators is far higher than their class-level counter-

parts: over four times as many when considering the total number of mutants generated

by class (18,865) and traditional operators (84,639). We should note however that over

55,000 of the traditional mutants are spawned by two operators (AIU and AIS). There

are many more traditional mutants than class mutants for all the programs, especially

in the case of Matrix TCL Pro, where arithmetic operations are widely used (137 class

mutants and 18,734 traditional mutants). Traditional operators have also undergone a

process of analysis to avoid the generation of uninteresting mutants through their im-

plementation. However, most class mutation operators usually entail less computation

expense than traditional operators.

Figure 5.1 is the result of the first experiment analysing the execution of the mutants,

which intends to answer if class mutants or traditional mutants can subsume the other

in some way. On the one hand, Class-Adequate Traditional MS contains, for each pro-

gram, the average mutation score associated with traditional mutants when applying

Chapter 5. Mutation Operator Analysis 91

Table 5.13: Distribution of traditional mutants generated by program and operator
(see Table 5.12)

Operator TCL RPC TXM KMY KAP Total

ARB 1,252 64 58 232 2,068 3,674
ARU 12 14 5 162 747 940
ARS 896 40 104 348 1,680 3,068
AIU 3,841 348 288 1,475 10,649 16,601
AIS 11,304 828 620 2,096 23,668 38,516
ADS 63 12 44 141 412 672
ROR 612 155 97 589 3,593 5,046
COR 28 53 88 425 2,023 2,617
COI 533 277 229 1,442 8,172 10,653
COD 20 48 74 482 1,501 2,125
LOR 1 4 17 10 170 202
ASR 172 12 18 22 301 525

Total 18,734 1,855 1,642 7,424 54,984 84,639

Figure 5.1: Average mutation scores for traditional and class mutants
over 30 class-adequate and 30 test-adequate test suites

30 adequate test suites for the set of class mutants. On the other hand, Traditional-

Adequate Class MS shows the average scores for class mutants using 30 adequate test

suites with respect to traditional ones. In all cases, the class-adequate traditional muta-

tion score is lower than the traditional-adequate class score. However, while the gap is

quite significant in KMyMoney (0.38), the difference is small in Tinyxml2 (0.01).

Overall, the results suggest that class mutants are easier to detect than traditional

mutants and that class mutants do not cover traditional mutants (mean score of 80% in

the programs). However, traditional operators are not able to completely subsume class

mutants either (mean score of 93%). Moreover, even though these results suggest that

only few class mutants cannot be killed through traditional mutants, we should bear

Chapter 5. Mutation Operator Analysis 92

in mind that there are far fewer class mutants than traditional ones, as we have just

discussed in this section.

As for the second experiment, the calculation of the metric Td for each program is

shown in Table 5.14, where:

• |TM(Mt)| is the size of the minimal test suite to kill the set of traditional mutants.

• |TM(Mc)| is the size of the minimal test suite to kill the set of class mutants.

• |TM(Mt∪c)| is the size of the minimal test suite to kill both the set of traditional

and class mutants.

• D is the result of calculating |TM(Mt∪c)| − |TM(Mt)|.

• N is the number of test cases in TM(Mt∪c)\TM(Mt) that were modified or added

to improve the test suite in Section 5.1.3.

Table 5.14: Calculation of Metric Td with the improved tests for
the analysed programs

Program |TM(Mc)| |TM(Mt)| |TM(Mt∪c)| D N Td

TCL 15 21 24 3 3 0.12
RPC 15 22 23 1 1 0.04
TXM 15 31 37 6 4 0.16
KMY 36 77 90 13 7 0.14
KAP 24 49 56 7 6 0.12

Analysing these results, it is interesting to observe in first place that D > 0 in all the

programs; this means that the set of class-level mutants provides at least a test case

to TM(Mt∪c) which is not included in TM(Mt). However, |TM(Mt)| is greater than

|TM(Mc)| in all cases, which means that the set of traditional operators contributes with

more test cases to TM(Mt∪c) than the set of class operators. In the case of Matrix TCL

Pro, TM(Mt∪c) aligns with the augmented test suite (24 test scenarios, as it can be seen

in Table 5.11), whereas |TM(Mt)| = 21 and |TM(Mc)| = 15 when both sets of mutants

are evaluated separately. This fact illustrates that the two types of mutation operators

complement each other when improving a test suite.

The value of Td is quite similar in all the analysed programs except for XmlRpc++,

ranging from 0.04 to 0.16. Recall that Td reflects the proportion of test cases that

appears in the minimal test suite exclusively when considering the mutants at the class

level. That means that the rest of the test cases in TM(Mc) are already included

in TM(Mt∪c) because of the execution results of the traditional mutants, so it is not

unexpected that the values of Td are low.

Chapter 5. Mutation Operator Analysis 93

As commented in Section 5.1.3, when improving the test suite, we designed test scenarios

which were as general as possible instead of specific scenarios to kill a particular class

mutant. The new test scenarios appearing in TM(Mt) reflect this fact: several new

tests are included in the minimal test suite for the traditional mutants. For instance, we

created 8 scenarios for XmlRpc++ (see Table 5.11), but 7 of them are also in TM(Mt).

We calculated the column N because we wanted to know how many of the test cases

in TM(Mt∪c) \ TM(Mt) belonged to the original test suite and to the subset of new

test cases added. There are three programs in which there are some test cases from the

original test suite in TM(Mt∪c) \ TM(Mt), most notably in KMyMoney, with 6 original

test scenarios out of 13. This means that the test suite TM(Mt∪c) is not only augmented

with respect to TM(Mt) because of the specificity of the new or modified test cases.

Table 5.15: Calculation of metric QD for the set of killed class and traditional mutants
from the analysed programs and the improved test suite

Program |Kc| |Kt| QDC QDT Difference

TCL 115 10,402 0.95 0.96 −0.01
RPC 87 1,064 0.94 0.90 0.04
TXM 310 1,017 0.88 0.91 −0.03
KMY 193 1,744 0.99 0.99 0.00
KAP 104 1,595 0.99 0.97 0.02

Table 5.15 shows the calculation of:

• |Kc|: number of killed class mutants.

• |Kt|: number of killed traditional mutants.

• QDC : the metric QD with respect to Kc.

• QDT : the metric QD with respect to Kt.

• Difference: the result of QDC −QDT .

QD should be calculated with an adequate test suite, but when the test suite does not

meet this requirement, this metric gives us an approximation to the quality of the dead

mutants with that test suite.

In order to appropriately interpret these results, we have to know that:

• When Difference > 0, the results for Kc are of higher quality than Kt.

• When Difference < 0, then the results for Kt are of higher quality.

Chapter 5. Mutation Operator Analysis 94

By calculating Difference, we have checked that there is not a significant difference in

any case study after improving the test suite through surviving class mutants. In fact,

QDT is even higher than QDC in Matrix TCL Pro and Tinyxml2. Again, this shows that

the values obtained for the metric Td are not due to the design of new test cases and

assertions only with regard to the surviving class mutants.

5.2.3 Detected coding errors with mutation testing

Class operators have shown to be useful in suggesting key missing test scenarios in the

previous sections. Nevertheless, in addition to accomplishing the main goal of mutation

testing, we found some defects in the analysed code thanks to these operators. That

is, we detected some coding errors while reviewing these mutants. In this section, we

describe two cases in which some class mutants helped us find defects in the analysed

programs:

• Tinyxml2 : By removing the SetAttribute(float) method implemented in the

XMLAttribute class, we detected that this method was not reachable by objects

of the XMLElement class. XMLElement only has a double variant for its list of

methods of the type SetAttribute(const char*, type), so only the method

XMLAttribute::SetAttribute(double) is reachable from it. This is also a prob-

lem when performing shallow clones in XMLElement, since it reuses the 2-argument

SetAttribute methods. In short, this forces all floating-point attributes to use

double values.

1 bool XmlRpcServerConnection::executeMulticall(
2 const std:: string& methodName, XmlRpcValue& params,
3 XmlRpcValue& result){
4 ...
5 try{
6 if (!executeMethod(methodName, methodParams, resultValue[0])
7 && !executeMulticall(methodName, params, resultValue[0])){
8 ...
9 }

10 }catch(const XmlRpcException& fault){
11 ...
12 }
13 }

Figure 5.2: Method “executeMulticall” in XmlRpc++

• XmlRpc++: While trying to design a test case that threw an exception in line 7

of Figure 5.2 so that it was caught in the exception handler in line 10, we detected

a case of infinite recursion. The code seems to have been designed to allow the

execution of multiple invocations by iterating through a data structure, but it is

Chapter 5. Mutation Operator Analysis 95

not correctly implemented. The method calls itself without changing the value of

params (marked in bold), resulting in infinite recursion and eventually a segment-

ation fault.

Chapter 6

Evolutionary Mutation Testing

This chapter is about the Evolutionary Mutation Testing technique. Firstly,

we look in depth at how this technique operates. Secondly, we presentGiGAn,

the system implemented to apply EMT to C++ object-oriented software.

Finally, we show the results of two different experiments. They are conducted

to evaluate the usefulness of this technique to improve a test suite generating

a reduced set of mutants.

6.1 Description

This section describes the fundamental aspects of EMT: we provide a definition of the

technique, explain the fitness function, how individuals are represented and the under-

lying genetic algorithm.

As it has been mentioned throughout this document, it is desirable to reduce the number

of mutants required in mutation testing as much as possible. As such, several techniques

have been proposed to select a subset of mutants with almost the same ability to evaluate

a test suite as the whole set of mutants (see Section 2.4.2). In the case of Evolutionary

Mutation Testing [43], it proposes the use of an evolutionary algorithm to produce that

subset of the full set of mutants. This algorithm assumes that there are some mutants

with greater potential than others to guide the tester to the design of new test cases

(TSR). These mutants are called strong mutants and the evolutionary search favours

their generation because those mutants are useful to improve the quality of the test

suite. Therefore, the number of mutants is reduced while preserving the power to refine

the test suite.

There are two kinds of mutants considered to be strong:

97

Chapter 6. Evolutionary Mutation Testing 98

• Potentially equivalent : mutants not detected by the test suite under evaluation.

Potentially equivalent mutants either lead to the generation of new test cases or

result in equivalent mutants once they are manually reviewed. Ideally, all poten-

tially equivalent mutants help improve the current test suite with new test cases:

the test suite does not cover the mutation or the test cases covering the mutation

are not able to reveal it. However, some of those mutants may turn out to be

equivalent as this is an undecidable problem and they cannot be automatically

discarded in general.

• Difficult to kill : mutants killed by only one test case that kills no other mutants.

These mutants represent subtle faults which require of specific test cases to be

killed. Following a similar approach as the quality metric by Estero-Botaro et

al [45] (see Section 2.4.4), we value that the test case detecting a difficult to kill

mutant does not kill other mutants; that means that this test case might only be

created by reviewing this mutant.

The rest of the mutants are regarded as weak mutants. In general terms, these are the

steps to apply EMT:

1. Produce a subset of mutants in the first generation.

2. Execute the test suite against the subset of mutants.

3. Compute the fitness of each mutant.

4. Apply the evolutionary algorithm to produce a new generation of mutants based

on the calculated mutant fitnesses.

5. Stop the algorithm if the stopping condition is reached. Otherwise, repeat the

process from step 2.

As it was previously mentioned in Section 2.4.5, GAmera was implemented to apply

EMT to WS-BPEL compositions [42]. This system is based on a genetic algorithm [51],

so we will look in detail at the above process in the following sections focused on this

type of algorithms. The time spent by this genetic algorithm is marginal when compared

to the total time required to generate and execute the mutants, especially in non-trivial

programs [43].

Chapter 6. Evolutionary Mutation Testing 99

6.1.1 Individuals

In a genetic algorithm, each individual in a population represents a solution to the

problem. The genetic algorithm tries to find the best individuals based on their fitness

function.

Figure 6.1: Encoding scheme

The individuals in EMT are the mutants and, therefore, we need to set an encoding

scheme to represent them. In Section 4.1.3 we exposed that each mutant can by identified

by three elements: operator (identifier of the mutation operator), location (order in the

code of the mutants of an operator) and attribute (variant inserted into a location).

These elements become important in EMT: a mutant is encoded as a combination of

these three fields, as shown in Figure 6.1, given that these elements allow identifying a

mutant uniquely. These fields are encoded using integer values. To help acquire a better

understand of this representation, we show the example in Figure 6.2. The mutant

depicted in that figure is identified as:

1 int f (int x , int y) {
2 i f (x > 0) {
3 i f (y > 1) {
4 return y ;
5 }
6 }
7 return x ;
8 }

(a) Original

1 int f (int x , int y) {
2 i f (x > 0) {
3 i f (y < 1) {
4 return y ;
5 }
6 }
7 return x ;
8 }

(b) Mutant

Operators Attributes

1.Relational operator replacement <=, >=, <, >, ==, !=
2.Arithmetic operator replacement +, -, *, /, %
... ...

(c) List of operators

Figure 6.2: Information for mutant encoding: a) original code, b) mutant (second
appearance of > replaced by <) and c) predefined positions in the list of operators and

in their attributes

• Operator = 1: The first mutation operator in the list of operators is applied.

• Location = 2: The second relational operator in the code (line 3) is mutated (the

first location is in line 2).

• Attribute = 3: The relational operator (>) is changed by the third variant (<)

in the predefined set of attributes.

Chapter 6. Evolutionary Mutation Testing 100

6.1.2 Fitness function

The fitness function measures the quality of a solution and, therefore, is devised for each

specific problem. In EMT, the fitness function attaches the best value to potentially

equivalent and difficult to kill mutants (strong mutants). Roughly speaking, the fitness

of a mutant decreases as:

• The number of test cases detecting the mutant increases.

• At the same time, the number of mutants detected by those test cases increases.

Therefore, the generated mutants are executed on every test case to calculate their fitness

function. The information is then saved in an execution matrix (see Appendix B for a

definition), which helps compute the fitness of each mutant.

Equation 6.1 shows how the fitness of mutant I is computed with respect to test suite

S, where M is the number of mutants, T is the number of test cases in S, and mij is 1

when mutant i is detected by test case j, and 0 otherwise.

Fitness(I, S) =M × T −
T∑

j=1

(
mIj ×

M∑
i=1

mij

)
(6.1)

The value of the fitness function is in the range [0,M × T]. In general, the greater the

number of test cases killing a mutant and the number of mutants being detected by those

test cases, the lower the fitness function. According to this fitness function, if mutant I

is:

• Potentially equivalent, it receives the maximum value (M × T) because mIj = 0

for all j.

• Difficult to kill, it receives a fitness of M × T − 1 because mIj = 0 for all j except

for one (test case z), which kills no other mutants (mIz = 1 and
M∑
i=1
miz = 1).

• Weak, it receives a fitness lower than M × T − 1. The more test cases kill I, the

lower the fitness; also, the more mutants those test cases kill, the lower the fitness.

Invalid mutants neither are assigned a fitness nor affect the fitness computation of the

rest of valid mutants, as their rows are removed from the execution matrix. We should

note the following regarding this fitness function:

Chapter 6. Evolutionary Mutation Testing 101

• It penalises groups of mutants killed by the same test cases. Even if few mutants

from one of those groups are produced in a generation and they are selected to breed

a new generation, it is likely that several mutants from that group are created and,

consequently, the fitness of the mutants in that group drops.

• Similarly, when the mutants of a group are generated by the same mutation oper-

ator, the genetic algorithm will penalise this operator focusing on other operators

in successive generations.

6.1.3 Genetic algorithm

A genetic algorithm is a search-based technique that, starting from the information of

a population of individuals, successively selects new individuals in order to optimise the

solution. This optimisation is based on the fitness function: the algorithm maximises the

sum of the fitness of the individuals in each generation to evolve toward better solutions.

As aforementioned, EMT makes use of the fitness function to find strong mutants. The

genetic algorithm produces several generations formed by mutants that depend on the

mutant fitnesses in the previous generations, favouring those mutants with a high value

at all times. Thus, the algorithm supposes that nearby individuals are likely to be similar

to those that induced their generation. The algorithm performs two main steps in each

generation:

1. Generation of mutants:

• First generation: a subset of mutants is generated randomly.

• Next generations: a subset of mutants is generated both randomly and using

reproductive operators with the mutants selected from the previous generation

(using selection operators).

2. Execution of the test suite against the mutants generated:

• First generation: the fitness assigned to those mutants is computed with

respect to the mutants in that generation.

• Next generations: unlike the first generation, the fitness of a mutant depends

on all the mutants generated so far. This is achieved by storing a second

population with the mutants created in previous generations. This helps the

fitness function to produce better estimations since the fitness of a mutant can

vary depending on other mutants. Therefore, this is a co-evolutive genetic

algorithm because the individuals in a generation (or first population) are

influenced by the individuals in the second population.

Chapter 6. Evolutionary Mutation Testing 102

At the end of its execution, the genetic algorithm returns all the mutants stored in the

second population.

6.1.4 Selection and reproductive operators

A genetic algorithm depends on two kind of operators: selection and reproductive oper-

ators.

Selection operators follow different criteria to select individuals from the population.

Examples of selection methods are tournament selection, rank-based selection and reward-

based selection. The genetic algorithm implemented in GAmera applies the roulette wheel

method [51] to select the mutants. The quick convergence of this selection method is

convenient in the case of EMT because we are interested in obtaining the set of strong

mutants with a reduced set of mutants.

Regarding reproductive operators, the genetic algorithm can apply mutation operators1

and crossover operators to individuals from the previous generation to create new ones:

• Mutation operators: they modify the information of one of the selected individu-

als to generate a new individual. As such, one of the three fields to identify an

individual (operator, location or attribute) is mutated. The integer value of the

selected field is mutated according to this equation:

β = (α± random(1, 10(1− pm))) (mod U) (6.2)

Where:

– β is the final value of the field.

– α is the current value of the field.

– pm is the probability that a mutation operator is applied (configuration pa-

rameter of the algorithm).

– α is added or subtracted a random value in the range [1, 10(1− pm)]. In this

way, the upper limit of this range decreases as pm increases, which reduces

the impact of the mutation.

– U is the maximum value that the field can be assigned.

– The operation is carried out modulo U to avoid generating invalid mutants.
1Do not confuse these mutation operators with the mutation operators applied in mutation testing.

Chapter 6. Evolutionary Mutation Testing 103

Figure 6.3: Mutant crossover

• Crossover operators: they combine the information of two individuals (parents),

(operator1, location1, attribute1) and (operator2, location2, attribute2), to gener-

ate two new individuals (children), which inherit information from both parents.

To that end, a crossover point related to the encoding scheme is selected. In this

case, the genetic algorithm contemplates two crossover points (see Figure 6.3):

– Point 1: generates the individuals (operator1, location2, attribute2) and

(operator2, location1, attribute1).

– Point 2: generates the individuals (operator1, location1, attribute2) and

(operator2, location2, attribute1).

Given that each mutation operator produces a different number of mutants, we should

note that a process of normalization of the fields (location and attribute) avoids that

invalid representations of mutants are produced. Those fields are encoded by a value

in the range 1 to the least common multiple of the number of locations and attributes

respectively of all the operators that can be applied to the subject program.

6.2 GiGAn

The genetic algorithm described in the previous section is implemented in GAmera [42].

This system makes use of MuBPEL to analyse, generate and execute the mutants for

WS-BPEL compositions. In order to reuse the same genetic algorithm implemented in

GAmera, we have developed a new system called GiGAn2. Analogously to GAmera and

MuBPEL, GiGAn connects the genetic algorithm to MuCPP.

Figure 6.4 displays how GiGAn connects MuCPP and GAmera to apply EMT to C++

object-oriented systems. As it can be seen, GiGAn acts as a bridge between the mutation

tool and the genetic algorithm, translating the commands and mapping mutant identifiers
2GiGAn, like GAmera, belongs to the set of daikaiju and kaiju creatures that appears in Japanese

movies of the 1960s and 1970s. Uppercase letters are used for ‘GA’ (Genetic Algorithm).

Chapter 6. Evolutionary Mutation Testing 104

Figure 6.4: GiGAn diagram

so that MuCPP and GAmera can work together. The process orchestrated by GiGAn

is as follows:

1. MuCPP analyses the C++ source code of the project. This generates a report

with a list of the mutants that each mutation operator can produce in the code

(mutation operator analysis).

2. The genetic algorithm implemented in GAmera uses the report to know the indi-

viduals that can be generated.

3. The genetic algorithm selects several mutants in a generation and a converter

transforms the individuals into usable mutant identifiers for MuCPP.

4. MuCPP generates and executes the mutants on the test suite, resulting in an

execution matrix that is used by the genetic algorithm to compute the fitness

function.

5. Steps 2 to 5 are repeated until the stopping condition is satisfied, for instance,

when reaching a percentage of the full set of mutants or a number of generations.

The output is the set of selected C++ mutants in all the generations.

The experiments conducted in this thesis using GiGAn presents two main changes with

respect to the experiments using GAmera [43]. These two differences are highlighted

because they can impact the evaluation of EMT:

• Attribute: In Section 4.1.3, we explained that we distinguish between fixed at-

tribute (when the mutations injected into a location are known in advance) and

variable attribute (when the number of variants depends on the context). Only in

the former case, the genetic algorithm can select the attribute of the mutant to

Chapter 6. Evolutionary Mutation Testing 105

Figure 6.5: Example of mutant mapping between MuCPP and GiGAn when one
operator (op1) generates mutants in several files (file1 and file2)

be generated with the same probability. As a consequence, in the latter case, the

attribute is marked as 1 and each mutation in the same location is simply counted

as a new location instead.

In the case of mutation testing at the class level for C++, either mutation operators

have attribute = 1 or variable attribute. In other words, none of the class operators

has attribute > 1. Thus, we limit reproductive operators to mutation of operator

and location fields and point 1 crossover (see the previous section), as the rest of

reproductive operators would result in the same mutant being created.

• Mutants in different source files: In Section 4.3.1, we commented that MuCPP

allows analysing several source files of a project in the same execution. Thus,

MuCPP uses a further field to identify a mutant: the source file. Provided that

two mutations are in different files, they can have the same fields operator, location

and attribute. This fact is not contemplated in the genetic algorithm implemented

in GAmera, which only uses the aforementioned three fields to identify a mutant.

To handle this disparity, we map the mutant identifiers used by MuCPP (with the

field file) and the genetic algorithm (without the field file), as shown in Figure 6.5.

We make use of the field location and the ranges of mutants in each file to that

end. Notice that GiGAn knows which mutant belongs to which file because the

source files are sorted beforehand. For instance, the mutant with location = 4 in

Figure 6.5 belongs to file2 because file1 only contains 3 mutants and it is analysed

before file2 (see “File ranges”).

This fact is relevant to this evaluation because mutants from different source files

can be generated when the field location is modified to produce new individuals

from previous ones (using reproductive operators). Even though classes in a project

Chapter 6. Evolutionary Mutation Testing 106

often use a similar design pattern, it is possible that the behaviour of a mutation

operator varies for different classes, especially when they belong to different source

files.

6.3 Experiment 1: Finding Strong Mutants

In this first experiment, we want to study the ability of the genetic algorithm to find

strong mutants. To do so, we calculate the number of mutants generated to reach different

percentages of strong mutants, and we also compare the results of EMT and a random

strategy.

6.3.1 Setup

First of all, we need to be aware that EMT has to be configured with several parameters

and that the results of these experiments are subject to the selected configuration (which

will be the same for all the applications). Namely, the parameters are:

• Population size: It is the number of individuals to produce in each generation.

This parameter is a percentage of the total of mutants in each application.

• Individuals generated randomly and by reproductive operators: The mutants in a

generation are produced either randomly or by reproductive operators (see Sec-

tion 6.1.3), so these parameters set the percentage of mutants generated by each

of these methods. The sum of both percentages has to be 100%.

• Mutation and crossover probability : These parameters reflect the probability that

mutation or crossover operators are used when a mutant is generated through

reproductive operators. As in the previous item, both parameters have to sum

100%.

Domínguez-Jiménez et al. [43] experimented with different values for these parameters

and determined an optimal combination. These values, which can be seen in Table 6.1,

have been used for the execution of this algorithm in our experiments.

All mutants were generated and run on the test suite in a previous execution, resulting

in an execution matrix. This execution allows us to maintain a record of strong mutants

in the subjects under study with the current test suite, which is used as a ground truth

to compute our results. We can divide the experiment into two parts:

Chapter 6. Evolutionary Mutation Testing 107

Table 6.1: Genetic algorithm configuration

Block Parameter Value

- Population size 5%

Individual generation
Random 10%
Reproductive operators 90%

Reproductive operators
Mutation probability 30%
Crossover probability 70%

First part of the experiment: We established several stopping conditions for the

algorithm: finding 30%, 45%, 60%, 75% and 90% of the set of strong mutants. Then

EMT was run 30 times with different seeds for each of the stopping conditions. Therefore,

the statistics are obtained from the results of these 30 executions.

Second part of the experiment: We executed 30 times a random strategy (Random

from now on) where mutants were selected one by one until reaching the stopping con-

dition, and then we compared these results with the data reported by EMT in the first

part of the experiment.

6.3.2 Results

Table 6.2 collects several statistics (mean, median, minimum, maximum and standard

deviation of the results of the 30 executions) about the percentage of mutants that EMT

needs to generate before finding different percentages of the set of strong mutants. The

results in this table are divided by program and stopping condition.

As it was expected, we can observe that the percentage of necessary mutants increases as

the stopping condition becomes more demanding in all the programs. For instance, the

percentage of mutants generated in Dolphin increases continuously from 28.35% (to find

30% of strong mutants) to 85.35% (to find 90% of strong mutants). In order to study

the tendency of this increase in each program, Figure 6.6 depicts the average percentage

of mutants generated in them for each of the five stopping conditions. Given that the

stopping conditions have been selected in 15% increments, this graphic reflects that:

• The upward tendency is quite stable among applications.

• The relation between the number of mutants generated and the percentage of strong

mutants is almost linear.

• There is often a small increment in the percentage of mutants generated as the

stopping condition increases. Taking Tinyxml2 to illustrate this fact, on average

EMT needs to produce around 12.5% more mutants to find 45% of the strong

Chapter 6. Evolutionary Mutation Testing 108

T
a
bl

e
6.

2:
P
er
ce
nt
ag
e
of

th
e
to
ta
lo

fm
ut
an

ts
ge
ne
ra
te
d
in

th
e
pr
og
ra
m
s
w
it
h
E
M
T

(a
)
an

d
w
it
h
R
an

do
m

(b
)
to

ac
hi
ev
e
30
%
,4

5%
,6

0%
,7

5%
an

d
90
%

of
th
e
st
ro
ng

m
ut
an

ts
(S
D
:s

ta
nd

ar
d
de
vi
at
io
n)

(a
)

E
M

T
re

su
lt

s

P
ro
gr
am

S
ta
ti
st
ic

3
0
%

4
5
%

6
0
%

7
5
%

9
0
%

T
C
L

M
ea
n

23
.4
5

37
.5
9

53
.5
5

67
.5
9

84
.3
3

M
ed
ia
n

24
.0
8

39
.0
5

54
.7
4

67
.5
2

83
.9
4

M
in
.

13
.1
3

25
.5
4

40
.1
4

51
.0
9

7
0.
07

M
ax

.
37
.2
2

51
.0
9

65
.6
9

7
9.
56

92
.7
0

S
D

5.
44

6.
67

6.
10

6.
98

5.
21

D
P
H

M
ea
n

28
.3
5

41
.9
4

55
.1
9

69
.8
7

85
.3
5

M
ed
ia
n

28
.5
4

42
.2
3

54
.7
9

70
.0
9

85
.3
8

M
in
.

24
.6
5

38
.3
5

50
.6
8

62
.5
5

7
8.
99

M
ax

.
33
.3
3

47
.0
3

59
.8
1

7
6.
71

90
.4
1

S
D

2.
11

2.
28

2.
10

3.
57

2.
67

T
X
M

M
ea
n

24
.0
9

36
.6
2

49
.7
4

64
.9
1

84
.3
2

M
ed
ia
n

24
.1
8

36
.0
7

49
.6
7

64
.7
4

84
.1
2

M
in
.

20
.5
2

31
.9
2

44
.7
8

60
.5
8

7
7.
85

M
ax

.
27
.8
5

41
.0
4

56
.3
5

7
1.
49

89
.7
3

S
D

1.
61

2.
34

3.
05

2.
59

3.
34

D
O
M

M
ea
n

21
.2
0

34
.8
6

52
.2
1

69
.9
6

87
.8
4

M
ed
ia
n

21
.1
6

34
.8
6

52
.3
1

70
.1
5

88
.0
9

M
in
.

19
.0
2

32
.2
8

46
.5
9

66
.0
5

8
3.
33

M
ax

.
23
.0
3

37
.2
6

57
.0
6

7
3.
38

90
.1
3

S
D

1.
01

1.
26

2.
39

1.
98

1.
60

(b
)

R
an

do
m

re
su

lt
s

P
ro
gr
am

S
ta
ti
st
ic

3
0
%

4
5
%

6
0
%

7
5
%

9
0
%

T
C
L

M
ea
n

2
8
.6
1

4
3.
13

57
.9
0

72
.5
3

8
8.
25

M
ed
ia
n

28
.1
0

44
.1
6

58
.7
6

7
2.
26

8
8.
32

M
in
.

1
6.
78

31
.3
8

4
4.
52

6
0.
58

7
9
.5
6

M
ax

.
4
0
.8
7

54
.7
4

7
0.
07

79
.5
6

94
.1
6

S
D

6
.0
3

5
.1
7

5
.6
3

3.
89

3.
57

D
P
H

M
ea
n

2
9
.8
9

4
5.
76

59
.9
8

75
.1
1

8
9.
07

M
ed
ia
n

29
.2
2

44
.9
7

59
.5
9

7
5.
79

8
9.
72

M
in
.

2
4.
65

38
.3
5

5
2.
96

6
7.
57

8
2
.6
4

M
ax

.
3
5
.1
5

53
.4
2

6
7.
12

81
.2
7

93
.1
5

S
D

3
.0
7

3
.9
8

4
.3
0

3.
57

2.
86

T
X
M

M
ea
n

2
9
.0
9

4
4.
50

59
.2
3

74
.9
3

8
9.
98

M
ed
ia
n

28
.8
3

44
.5
4

59
.1
2

7
4.
83

9
0.
22

M
in
.

2
2.
63

38
.2
7

5
4.
23

6
9.
70

8
5
.0
1

M
ax

.
3
5
.0
1

51
.1
4

6
5.
63

80
.6
1

93
.6
4

S
D

3
.1
4

3
.4
0

3
.0
3

2.
78

1.
78

D
O
M

M
ea
n

2
9
.4
9

4
4.
16

59
.3
8

74
.4
3

8
9.
76

M
ed
ia
n

29
.2
3

44
.1
1

59
.6
0

7
4.
34

8
9.
75

M
in
.

2
5.
65

39
.0
9

5
4.
88

7
1.
64

8
6
.2
1

M
ax

.
3
4
.2
9

49
.4
7

6
3.
96

78
.8
8

93
.7
1

S
D

2
.1
4

2
.2
8

2
.5
1

2.
00

1.
58

Chapter 6. Evolutionary Mutation Testing 109

Figure 6.6: Average percentage of mutants generated with EMT in the programs to
reach the five different stopping conditions

mutants than to find 30%. However, this difference increases when considering the

rest of conditions: 45%-60% (13.1%) 60%-75% (15.2%) and 75%-90% (19.4%).

Despite these facts, the best results in terms of the relation between the number of

mutants and the percentage of strong mutants are not necessarily obtained with the

lowest stopping condition. Considering Tinyxml2 again, the benefits of using EMT are

more notable for the stopping condition 60% (49.74% of mutants are generated to find

60% of strong mutants) than for the stopping condition 30% (24.09% of mutants are

generated to find 30% of strong mutants). As such, the effectiveness of this technique

also depends on the moment when the algorithm stops.

The standard deviation does not follow a pattern and is quite low, except for Matrix

TCL Pro where it might be affected by the few mutants in this program.

Table 6.2 also shows the results of Random (in the same format as the statistics of EMT

are presented). In the light of the results, EMT produces a better outcome than the

random selection of mutants in all cases and statistics, except for the standard deviation

(where we can observe varying results). Figure 6.7 graphically shows the difference

between both techniques focused on the average results of the two more demanding

stopping conditions (75% and 90%).

In order to know about the significance of these results, we run a statistical test using the

web application STATService [121], which selects an appropriate statistical test depend-

ing on the introduced data (called smart statistical test). The p-value obtained with the

smart test for the stopping conditions 75% and 90% is collected by Table 6.3. These

results lead us to accept that the median percentage of mutants that EMT needs to gen-

erate to find a subset of strong mutants is significantly lower than with random selection

within a 99.9% confidence interval. We also computed the non-parametric Vargha and

Chapter 6. Evolutionary Mutation Testing 110

(a) 75% (b) 90%

Figure 6.7: Average percentage of the total of mutants generated with EMT and
Random to achieve 75% (a) and 90% (b) of the strong mutants

Table 6.3: Results of the smart and Vargha and Delaney’s A12 statistical tests

75% 90%

Program p-value A12 p-value A12

TCL 2.26×10−03 0.711 1.24×10−03 0.734
DPH 4.55×10−07 0.848 2.72×10−06 0.829
TXM 7.14×10−21 0.996 1.65×10−06 0.937
DOM 4.31×10−12 0.962 1.71×10−05 0.816

Delaney’s A12 statistic to complement this study with the evaluation of the effect size

(see Table 6.3). The difference between both algorithms can be described as large in all

cases, especially in Tinyxml2 where the best results are achieved (with a difference over

10% for the 75% stopping condition).

Still, the gap between both strategies in the experiments by Domínguez-Jiménez et al. [43]

is greater than in this study in the better case (16% on average for the more complex WS-

BPEL composition when trying to find all strong mutants). As the results in Chapter 7

suggest, it seems that each of the class operators addresses different object-oriented

features in general. As a consequence, strong mutants may be spread across a large

subset of the operators. We suspect that this fact may limit the benefits of using this

genetic algorithm at the class level.

6.4 Experiment 2: Improving the Test Suite

A percentage of the strong mutants selected in the previous experiments may be later

found to be equivalent mutants (once the mutants are reviewed). Being aware of this fact,

finding a subset of strong mutants does not ensure that the test suite is proportionally

improved with new test cases. This is the origin of the experiments in this section.

Chapter 6. Evolutionary Mutation Testing 111

In this second experiment, we seek to simulate the process of generating a subset of

mutants and then use the information of their execution to design new test cases. Instead

of measuring how many of the generated mutants are strong, we estimate how much the

test suite is actually improved thanks to those mutants. The goal is to know which

algorithm, the genetic or the random algorithm, is able to augment the test suite in a

number of test cases but generating fewer mutants.

6.4.1 Setup

The aforementioned simulation was carried out in two different phases: the test suite

is improved in the first phase and it is used in the simulation in the second phase.

In the first phase, we obtain adequate test suites for the case studies as follows:

1. Execute the current non-adequate test suite (TNA) against all the mutants.

2. Review the surviving mutants and identify equivalent and non-equivalent mutants.

3. Design new test cases to kill all the surviving non-equivalent mutants. At the end

of this step, we achieve an adequate test suite (TA).

4. Execute all the test cases in TA against all the mutants, obtaining the final ex-

ecution matrix associated with TA (EM). This execution matrix contains the

information about which mutants can induce the generation of which test cases in

that test suite.

5. Minimise TA using the information in EM . At the end of this step, we have a

minimal and adequate test suite (TMA).

For instance, if we have the execution matrix in Figure 6.8 associated with the current

test suite (TNA), we can use that information and augment the test suite until reaching

an adequate test suite (TA). When applied to the set of mutants, TA produces the

execution matrix (EM) in Figure 6.9, where:

• The mutants m2, m4 and m7, which remained alive with TNA, are now killed.

• m2 and m4 are killed with two new test cases, test6 and test7 respectively; m7 is

killed with a modified test case (test4).

• The mutant m8 turns out to be equivalent.

Chapter 6. Evolutionary Mutation Testing 112

test1 test2 test3 test4 test5

m1 1 0 1 0 0
m2 0 0 0 0 0
m3 0 1 1 0 0
m4 0 0 0 0 0
m5 2 2 2 2 2
m6 0 0 0 0 0
m7 0 0 0 0 0
m8 0 0 0 0 1

Figure 6.8: Example of execution matrix associated with a non-adequate test suite

TNA and the whole set of mutants

test1 test2 test3 test4 test5 test6 test7

m1 1 0 1 0 0 0 0
m2 0 0 0 0 0 1 0
m3 0 1 1 0 0 0 0
m4 0 0 0 0 0 0 1
m5 2 2 2 2 2 2 2
m6 0 0 0 0 0 0 0
m7 0 0 0 1 0 0 0
m8 0 0 0 0 1 0 0

Figure 6.9: Example of execution matrix associated with an adequate test suite TA

and the whole set of mutants (EM)

In the second phase, we make use of the information in EM to know how many mutants

the genetic algorithm would need to generate to reach the stopping condition: the al-

gorithm stops when reaching a given percentage (P) of the number of test cases in the

minimal and adequate test suite (|TMA|) with the subset of mutants generated.

Let i be an index to refer to a generation of the genetic algorithm. We run EMT and

the genetic algorithm follows these steps, starting from i = 1:

1. Select the mutants to produce in generation i (Mi).

2. Select the rows of EM corresponding to the mutants in the set of generations

{M0,...,Mi}, producing EMi. In this step, we create a new execution matrix asso-

ciated with the generation i (EMi), but selecting the rows in EM of the mutants

generated so far by the algorithm ({M0,...,Mi}).

3. Minimise TA using the information in EMi. At the end of this step, we obtain a

minimal and adequate test suite for the mutants selected by the algorithm so far

(TMAi).

4. Go to step 1 (the index i is increased by one) until the stopping condition is reached.

Therefore, the genetic algorithm stops when |TMAi | ≥ |TMA| × P .

Chapter 6. Evolutionary Mutation Testing 113

test1 test2 test3 test4 test5 test6 test7

m1 1 0 1 0 0 0 0
m3 0 1 1 0 0 0 0
m4 0 0 0 0 0 0 1
m7 0 0 0 1 0 0 0

Figure 6.10: Example of execution matrix associated with an adequate test suite TA

and the subset of mutants generated by EMT after two generations (EM2)

In this simulation, we count with the test suite in the present (TNA) for the execution of

EMT, and a test suite in the future (TA) for the stopping condition. We also have the

result of the execution of the mutants on the adequate test suite in the future (EM).

The idea is to simulate a real process of test suite improvement; we stop the algorithm

when it has generated enough mutants to improve the test suite in a percentage with

respect to TA. By extracting from EM the information of the execution of the mutants

generated by the algorithm, we can estimate how many test cases those mutants would

induce.

Using the same example as in the first phase, if EMT selected the subset of mutants m1,

m3, m4 and m7 in the first two generations, we could extract from EM the information

of the exectuion of those mutants, as shown in Figure 6.10. As a result of that, we could

estimate how much that subset of mutants would help improve the test suite. In this

case, when minimising the test suite in the second generation (TMA2) and the adequate

test suite (TMA), we have that |TMA2 | = 3 (test3, test4 and test7) while |TMA| = 5 (test3,

test4, test5, test6 and test7). As such, if our stopping condition was lower than or equal

to P = 60%, the algorithm would stop (|TMA2 | (3) ≥ |TMA| (5) × P (60%)); otherwise,

the algorithm would produce a new generation.

The experiment has been executed with two stopping conditions (two values for P):

reaching 75% and 90% of the minimal and adequate test suite (TMA). Note that we

do not compute the results with lower values for P (as in the previous experiment)

because the current test suite already contributes to the minimal and adequate test

suite. Therefore, demanding stopping conditions are required so that some of the new

test cases appear in the minimal and adequate test suite TMAi .

As in the first experiment in the previous section, we executed the second phase 30 times

with different seeds. The same process is followed for the Random algorithm, where only

one mutant is randomly selected in step 1 of the second phase.

Chapter 6. Evolutionary Mutation Testing 114

6.4.2 Results

Table 6.4 shows the results of the experimental procedure explained in Section 6.4.1. The

same statistics shown in the first experiment have been computed. The figures shown

in the table represent the percentage of mutants that have been generated to reach the

stopping conditions by EMT and Random. Therefore, the lower the percentage, the

better.

Table 6.4: Percentage of mutants generated with the evolutionary and the random
strategy to reach the stopping conditions (75% and 90% of the minimal and adequate

test suite) in the subjects under study

P 75% 90%

Program Statistic EMT Random EMT Random

TCL

Mean 37.24 32.45 49.24 47.85
Med. 38.32 33.57 50.36 50.36
Min. 18.97 14.59 25.54 25.54
Max. 54.74 52.55 75.91 68.61
SD 10.77 9.09 13.41 12.78

DPH

Mean 49.75 54.10 66.33 71.08
Med. 48.63 52.05 65.29 69.63
Min. 36.52 30.13 52.51 40.63
Max. 74.42 84.01 84.93 88.58
SD 8.51 9.95 8.61 10.45

TXM

Mean 19.26 25.75 31.93 46.79
Med. 18.48 24.34 32.25 43.24
Min. 10.58 11.88 20.52 24.75
Max. 27.36 53.09 46.09 86.80
SD 4.38 8.98 7.13 15.21

DOM

Mean 13.33 23.74 21.41 49.04
Med. 13.00 21.90 21.16 46.68
Min. 7.85 11.16 11.95 26.96
Max. 23.29 49.04 35.86 81.15
SD 3.35 7.99 5.00 12.85

Before interpreting these results, we should note that the evaluation is impacted by the

test suite itself. For instance, not in all the subjects under study the current suite (TNA)

is at the same distance of the adequate test suite (TA); the difference between the sizes of

the current non-adequate test suite and the adequate test suite when they are minimised

is not the same for all the programs. The size of the test suite (having few or many test

cases) may also affect the search and the results of the genetic algorithm. Moreover, each

test suite has a different killing power (whether mutants are killed by few or many of its

test cases in general), which depends on the nature of the test cases (general or specific

test cases). Thus, we can observe that, on average, EMT needs to generate 49.75% of

mutants to reach 75% of TMA in Dolphin, whereas it only needs to generate 13.33% in

Chapter 6. Evolutionary Mutation Testing 115

QtDom for the same end. As such, we should not directly compare the results among

applications, as done in the first experiment.

The results reported by EMT are better than the results reported by Random in Dolphin,

Tinyxml2 and QtDom, but worse in Matrix TCL Pro. In this experiment, we can observe

that the results scale with the size of the program, given that the best result is obtained

in QtDom, followed by Tinyxml2 and Dolphin (in descending order of the number of

mutants). If we focus on the 75% stopping condition, the difference between EMT and

Random increases from about 5% in Dolphin to 10% in QtDom. We can also note that

the outcome is better for the most demanding condition (90%). Again, the difference

between EMT and Random increases from about 5% in Dolphin to 28% in QtDom. When

comparing the results for both stopping conditions, we can see that the gap between EMT

and Random is wide in the case of:

• Tinyxml2 : approximately 6% for P = 75% and 15% for P = 90%.

• QtDom: approximately 10% for P = 75% and 28% for P = 90%.

The standard deviation is lower in the executions of EMT than in Random for Dolphin,

Tinyxml2 and QtDom and both stopping conditions. The standard deviation is especially

low for EMT in comparison with Random in Tinyxml2 and QtDom.

However, we should note that the difference between both techniques may be impacted by

the number of invalid mutants, which is higher in Tinyxml2 and QtDom than in Matrix

TCL Pro and Dolphin. In the first experiment (see Section 6.3), selecting either a weak

mutant or an invalid mutant has no effect on the stopping condition for Random; unlike

the first experiment, while invalid mutants do not affect the moment when the algorithm

stops, selecting a weak mutant may increase the size of the minimal and adequate test

suite TMAi in this second experiment. Studying how much of the difference between

both algorithms is due to the existence of invalid mutants in these programs could be

addressed in future experiments. Still, this fact also means that EMT has the ability to

avoid the generation of invalid mutants, especially when they are generated by a subset

of the operators.

RegardingMatrix TCL Pro, where the result of Random was better, we suspect that these

results are due to the test cases for this application. These test scenarios are quite general

in the sense that several invocations are needed before testing a particular functionality

and some other test scenarios cover a subset of related functionalities instead of a single

functionality. This type of test cases does not usually lead to mutants killed by few test

cases. On the contrary, given that these tests cover a great part of the code, these test

cases tend to detect several mutants. As it was mentioned in Section 5.1.3, we created

Chapter 6. Evolutionary Mutation Testing 116

new test scenarios as complete as possible, following a similar design pattern as the rest

of scenarios in that test suite. As a result, some of the new or modified test cases (those

that were manually designed) are likely to appear in this experiment without generating

the mutants that led to the design of those test cases. In summary, it is easy to reach 75%

and 90% of the minimal and adequate test suite with different combinations of mutants.

This fact can be disadvantageous for EMT because this strategy is guided by the fitness

function to find a specific subset of mutants (which includes equivalent mutants).

Table 6.5: Average percentage of mutants generated with the evolutionary and the
random strategy to find the whole minimal and adequate test suite in the subjects

under study

Program EMT Random

TCL 75.79 80.05
DPH 88.24 91.63
TXM 49.30 75.92
DOM 34.69 80.51

As a result of the above, we carried out the same simulation to find the complete minimal

and adequate test suite (P = 100%). By doing so, it is expected that EMT benefits from

the fitness function to find the most specific test cases quicker than the random strategy.

The average results for all the applications are shown in Table 6.5, which confirms that

EMT is more effective than Random in finding the whole adequate and minimal test

suite for Matrix TCL Pro. Again, this situation shows that the assessment is subject to

the test suite. As it can be seen, the results are again especially positive for the largest

programs in terms of mutants generated; the difference between EMT and Random is

around 26% and 45% in Tinyxml2 and QtDom respectively.

Table 6.6 also reveals that the average percentage of mutants that EMT needs to generate

notably increases from P = 90% to P = 100% when compared to the difference between

P = 75% and P = 90%. Nonetheless, this is an expected outcome: some test cases are

induced by mutants that are generated by operators either producing very few mutants

or generating mutants with a low fitness function overall (that is, there are some high-

quality mutants generated by low-quality operators). As such, these mutants are not

easy to find by the guided search of the genetic algorithm.

Table 6.6: Differences in the average percentage of mutants generated
between P = 75% and P = 90%, and between P = 90% and P = 100%

in the subjects under study

Program 75–90% 90–100%

TCL 12.00 26.55
DPH 16.58 21.91
TXM 12.67 17.37
DOM 8.08 13.28

Chapter 7

Selective Mutation Assessment

In this chapter, we delve into the analysis of mutation operators following a

selective approach. In particular, we divide our analysis into two dimensions:

classifying the operators into a ranking around their mutant redundancy for

the evaluation of test suites and another ranking regarding their ability to

improve the quality of tests. Once both rankings are obtained, we apply

two selective strategies based on the best-valued mutation operators in the

rankings. The results are then compared to other traditional techniques

for the selection of mutants, validating the used metrics for the operator

classification.

7.1 Selective Approach

In this section, we set the basis for the selective mutation study in the following sections,

describing the double perspective to classify operators, the selective strategies applied in

the experiments and the metrics to evaluate the effectiveness of our approach.

7.1.1 Test suite evaluation and test suite refinement

Mutation testing is mainly used for two purposes: evaluate and refine test suites. In

our thesis, we conjecture that the value of each mutation operator differs depending on

whether the test suite is being evaluated or refined:

• Test Suite Evaluation (TSE): mutation testing is used to assess how effect-

ive a test suite is at detecting faults. Several studies have observed that some

117

Chapter 7. Selective Mutation Assessment 118

mutants can be redundant and therefore removed without impacting the effec-

tiveness. Therefore, redundant mutants should be removed as much as possible to

reduce the computational cost.

• Test Suite Refinement (TSR): mutation testing guides the tester on the im-

provement of the test suite by designing new test cases that kill the surviving

mutants. Some mutants may be more effective than others in guiding the tester on

the creation of high-quality test cases. We say that the quality of a test case is high

when it detects non-trivial faults which are not easy to find with a straightforward

test case. Therefore, those mutants that contribute to creating high-quality test

cases should be favoured as much as possible.

Based on this idea, we rank C++ class mutation operators regarding their influence

during TSE and TSR respectively. While the ranking for TSE arranges the operators

according to their degree of redundancy, the ranking for TSR sorts them regarding their

potential to contribute to the creation of high-quality test cases (we use the metric

devised by Estero-Botaro et al. [45] to that end). These two rankings are the basis of the

selective mutation study in this chapter, where we show the trade-off between discarding

mutation operators and the loss of effectiveness.

As such, we divide our selective approach into TSE and TSR, which will be studied

separately in Section 7.2 and Section 7.3 respectively.

7.1.2 Selective strategies

Mutation testing suffers from two main drawbacks. Firstly, it has a high computational

cost due to the potentially large number of mutants that can be generated. Secondly,

the technique is limited by the existence of equivalent mutants; even when the number

of mutants is manageable, the effort required to identify equivalent mutants could make

the application of the technique unbearable. This led to researchers in this field to seek

other alternatives to the generation and evaluation of the whole set of mutants. Selective

mutation is a well-known cost reduction technique to exclude some of the mutants while

retaining effectiveness (see Section 2.4.3 for further information).

In this study, we will distinguish two main selective strategies:

• Operator-based selective mutation: traditional definition of selective muta-

tion [13, 102]. It works under the assumption that not all mutation operators are

equally effective and that there should be a sufficient set of operators which is

representative of the full set of mutation operators.

Chapter 7. Selective Mutation Assessment 119

• Mutant-based selective mutation: Unlike operator-based selective mutation, a

subset of mutants (instead of a subset of operators) is discarded. Mutant sampling

can be categorised as a mutant-based selective strategy [20, 126].

Both strategies will be applied later on in the study in order to know whether C++ class

mutation operators exhibit any degree of redundancy (percentage of redundant mutants

generated by each operator) or the extent to which they contribute to creating high-

quality test cases. This could help us estimate the loss of accuracy that we concede when

using them in a selective mutation process.

7.1.3 Test-Quality selective mutation

Studies in the literature about selective mutation have mainly sought to find a sufficient

set of mutation operators that allows us to accurately predict the overall mutation score

when applying operator-based mutant selection. In other words, we obtain a sufficient set

of operators if the mutation score, when measured against the original set of operators,

correlates with the mutation score associated with the reduced set of operators. This

is the approach to selective mutation when it comes to evaluating the fault detection

capability of the test suite (TSE).

However, during TSR we focus on the improvement of the test suite with high-quality

test cases, and the best mutation operators are not necessarily those with the greatest

potential to predict the mutation score of the full set of operators. As a consequence, we

should not apply selective mutation and compute the mutation score (as traditionally

done) to evaluate the effectiveness of the used metric in TSR.

We can illustrate with a simple example why a new approach related to test quality is

required. Consider the executing matrix in Figure 7.1. If we had to select only one

mutant to refine our test suite, we would select the mutant m1 because it is a resistant

hard to kill mutant (see Appendix B). Therefore, the mutation score is low because test1
does not kill any other mutants, but we are retaining a test case which is not easy to

design. As it can be seen, the mutation score is not an appropriate method to measure

the effectiveness of a set of mutation operators in the refinement of the test suite.

As a result, our proposal in this study is applying:

• Traditional selective mutation for TSE, where we seek for a representative

subset of mutants and the test suite effectiveness is measured using the mutation

adequacy score.

Chapter 7. Selective Mutation Assessment 120

test1 test2 test3

m1 1 0 0
m2 0 1 1
m3 0 0 1
m4 0 1 0

Figure 7.1: Execution matrix to illustrate the difference between TSE and TSR with

respect to selective mutation

• Test-quality selective mutation for TSR, where we seek for a subset of mutants

that allows us to leverage the information of surviving mutants in such a way that

the test suite is enhanced with as many high-quality test cases as possible. We

define the metric test suite size to compute its effectiveness: percentage of test

cases loss when compared to T , the original adequate and minimal test suite (see

Appendix B). Let n be a number to represent the n selected mutants (represented

by m1...mn), the percentage of test cases loss is measured as follows:

|T | − |Tm1...mn |
|T | × 100

The lower the percentage, the fewer test cases we are losing because of removing

the rest of mutants which are not in the subset {m1...mn}.

As a final remark, effectiveness in mutation testing has been traditionally associated with

the capability of the test suite to kill as many mutants as possible. In our approach,

whether the test suite kills a large number of mutants is unimportant as we just seek a

set of operators which is effective at refining the test suite with specific test cases.

7.1.4 Rank-based selective mutation

As we mentioned earlier in Section 7.1.2, we follow a mutant-based selective strategy in

addition to an operator-based selective one. However, we cannot assess the performance

of the operator rankings by randomly selecting individual mutants from the operators.

Instead of random mutant selection, we apply rank-based selective mutation, which fa-

vours the selection of mutants from the top ranked operators.

In this strategy, we follow a similar approach to the two-round random selection technique

proposed by Zhang et al. [135]. While in the two-round random technique the number

of mutants selected from each operator is probabilistically speaking about the same,

in rank-based mutant selection we seek to generate more mutants from the top-ranked

Chapter 7. Selective Mutation Assessment 121

operators than from the operators at the bottom of the ranking. Our rank-based mutant

selection comprises two steps:

1. Operator selection: The probability of being selected for an operator is proportional

to its position in the ranking. As an example, consider the following ranking with

three operators:

• First operator in the ranking (top ranked) → it will be selected with probab-

ility 3/6.

• Second operator in the ranking → it will be selected with probability 2/6.

• Third operator in the ranking → it will be selected with probability 1/6.

2. Mutant selection: A mutant is randomly selected from the operator previously

selected.

7.1.5 Selective assessment

This section summarises the evaluation that we will perform taking into account the

information presented in previous sections. The evaluation of selective mutation in this

chapter is as follows:

1. We divide our assessment into two main blocks:

• Test Suite Improvement.

• Test Suite Refinement.

For each of these blocks, we obtain a different ranking of mutation operators de-

pending on how good the operators are for TSE and TSR based on two different

metrics.

2. For both TSE and TSR, we apply two selective strategies:

• Operator-based selective mutation.

• Mutant-based selective mutation and, more specifically, rank-based selective

mutation.

Both strategies follow the aforementioned rankings of mutation operators to discard

some of the mutants.

3. To evaluate each block, we use two different selective approaches:

• TSE : Traditional selective mutation.

Chapter 7. Selective Mutation Assessment 122

• TSR: Test-quality selective mutation.

At the end of this evaluation, we will compare:

• The rankings of mutation operators obtained for TSE and TSR.

• The results reported by operator-based and rank-based selective mutation with

other selective approaches.

• The results between the selective strategies.

7.2 Selective Mutation for Test Suite Evaluation

In this section, we assess the value of each mutation operator for TSE. To that end, we

first present the evaluation metric followed by the ranking of mutation operators and the

experiments performed applying the selective strategies.

7.2.1 Evaluation metric

Not all the mutation operators offer the same effectiveness when assessing a test suite.

The rationale behind selective mutation is that some mutants are redundant with regard

to the whole set of mutants and they can be discarded. At the mutation operator level, an

operator is redundant if it produces mutants that are always killed by the test cases that

kill mutants from other operators. Therefore, an operator that only generates redundant

mutants is said to be subsumed by the rest of mutation operators in the set [102].

We propose to measure the degree of redundancy of a mutation operator as the number

of redundant mutants generated by the operator with respect to the mutants generated

by the rest of operators. Roughly speaking, if a mutation operator o is eliminated and

the same number of test cases are needed so that the test suite is adequate for the

rest of mutants, then the mutants from o are redundant regarding the rest of mutation

operators. Otherwise, some of the mutants derived from o are not redundant and they

can help detect test deficiencies.

Formally, we define the metric operator redundancy to measure the degree of redundancy

of a mutation operator o as follows:

Ro(TMO) =

∣∣D(TMO\o)

∣∣
|D(TMO)|

× 100, Do 6= ∅

100, Do = ∅
(7.1)

Chapter 7. Selective Mutation Assessment 123

Where:

• Do is the set of dead mutants from operator o.

• MO is the set of mutation operators.

• TMO is an adequate test suite for the set of mutants in MO .

• D(TMO) is the set of dead mutants with TMO.

• D(TMO\o) is the set of dead mutants when using an adequate and minimal test

suite derived from TMO without considering the mutants from operator o.

Equation 7.1 measures the operator redundancy (Ro), which actually computes the per-

centage of dead mutants when using an adequate test suite for all the mutants except

for the mutants from the operator under evaluation. The lower the value of Ro, the

fewer the number of redundant mutants and therefore the more valued is that mutation

operator.

The value of Ro can range from 100 to 0:

• Ro = 100:

– |D(TMO)| =
∣∣D(TMO\o)

∣∣: all the mutants from the mutation operator o are

redundant, that is, the same test cases that kill the mutants generated by o

are still needed to kill the mutants from other operators.

– Do = ∅: all the mutants are equivalent, as stated in Equation 7.1.

• Ro = 0: the analysed mutation operator is the only operator in the set generating

non-equivalent mutants (i.e., TMO\o = ∅).

7.2.2 Example

To illustrate the evaluation metric in the previous section, consider the execution matrix

in Figure 7.2. The set {test1, test2, test3} is an adequate and minimal test suite for the

set of operators {o1, o2, o3} (TMO) because all of those test cases are essential to kill

the mutants from those operators. Then, we can compute the following adequate and

minimal test suites when removing each of the operators in turns:

• TMO\o1 = {test3}

• TMO\o2 = {test1, test2, test3}

Chapter 7. Selective Mutation Assessment 124

test1 test2 test3

op1 −m1 0 1 0
op1 −m2 1 0 0

op2 −m3 1 1 1
op2 −m4 0 1 1

op3 −m5 0 0 1
op3 −m6 1 0 1

Figure 7.2: Execution matrix to illustrate the metric Ro

• TMO\o3 = {test1, test2}

The subset {test1, test2} is an adequate and minimal test suite forMO\o3 as this subset
kills all the mutants without considering o3 (m1-m4). Once those adequate and minimal

test suites are known, we can calculate the set of dead mutants associated with those

test suites:

• D(TMO\o1) = {m3,m4,m5,m6}

• D(TMO\o2) = {m1,m2,m3,m4,m5,m6}

• D(TMO\o3) = {m1,m2,m3,m4,m6}

Finally, knowing that Do 6= ∅ in all cases, the value of the operator redundancy metric

for these three operators can be calculated as follows:

• Ro1 = (4/6)× 100 = 66.6

• Ro2 = (6/6)× 100 = 100

• Ro3 = (5/6)× 100 = 83.3

Interpreting these results, the operator o1 presents the lowest redundancy: only 66.6%

of the mutants (4 out of 6) would be killed with an adequate test suite for the subset of

operators {o2, o3}, while the mutants from o2 are redundant with regard to the mutants

created by o1 and o3 (Ro2 = 100). The mutant 5 from o3 would be alive after using the

subset {test1, test2} (Ro3 = 83.3). As a result, while the mutants from o2 are subsumed

by o1 and o3, the mutants from o1 are not killed with an adequate test suite obtained

from o2 and o3.

Chapter 7. Selective Mutation Assessment 125

As a conclusion, a mutation operator with a low degree of redundancy increases the prob-

ability of losing effectiveness if mutants from that operator are discarded when following

a selective mutation strategy. Therefore, the operators with the lowest Ro should be at

the top of our ranking.

7.2.3 Ranking mutation operators

This section explains the general procedure followed in this study to rank mutation

operators, and also shows the resulting operator classification.

7.2.3.1 Experimental procedure

We first measured the operator redundancy metric described in Section 7.2.1. Ro was

calculated for each of the class mutation operators generating at least one dead mutant

in the subjects under study in this experiment (see Section A.2 in Appendix A). Then,

we followed this process for each of those mutation operators:

1. The mutants from the mutation operator o were removed from the execution matrix

(MO \ o).

2. An adequate and minimal test suite was computed for the remaining operators

(TMO\o).

3. The mutants from the mutation operator o were included again in the execution

matrix.

4. The columns of the test cases which were not in the computed adequate and min-

imal test suite were removed from the execution matrix.

5. The operator redundancy of o was calculated with respect to a minimal test suite

derived from TMO (Ro(TMO)).

This procedure was carried out for each of the case studies and then a mean was calculated

considering the different values of Ro for each operator. Finally, a ranking was prepared

taking into account the average value of each mutation operator in descending order of

Ro.

Chapter 7. Selective Mutation Assessment 126

Table 7.1: Ranking of mutation operators based on mutant redundancy

Operator TCL RPC DPH TXM KMY DOM Mean SD

MCO 100 83.90 91.47 100 64.76 97.93 89.67 13.70
PCI 100 94.83 97.92 80.22 93.24 8.94
OMD 89.56 98.85 100 100 97.92 99.76 97.68 4.06
CID 100 97.70 96.12 98.06 96.89 100 98.13 1.60
IOD 100 96.12 98.70 99.48 98.62 98.58 1.49
OAN 98.96 98.96 -
MCI 99.03 99.03 -
IPC 100 99.22 97.92 100 99.28 0.98
OMR 98.26 100 100 98.96 100 99.44 0.80
CDC 98.85 100 100 99.62 0.66
EHC 100 99.48 99.74 0.37
CDD *100 98.85 *100 100 100 *100 *99.81 0.47
IHI 100 100 99.48 100 99.87 0.26
IOR *100 100 99.67 *100 *99.92 0.17
IHD 100 100.00 -
ISD 100 100.00 -
PNC 100 100.00 -
CTD 100 100.00 -
CTI 100 100 100.00 0.00
ISI 100 100 *100 100 *100.00 0.00
IOP 100 *100 *100.00 0.00
PMD *100 *100 *100 *100.00 0.00
PPD *100 100 100 100 *100.00 0.00
CCA 100 100 *100 *100 *100 100 *100.00 0.00

7.2.3.2 Ranking

The results of the operator redundancy metric of each operator and case study appear

in Table 7.1. As aforementioned, an average is calculated per operator in order to form

the operator ranking. As it can be seen, the top ranked operator is MCO whereas a

group of 10 operators (from IHD to CCA) present the worst value (Ro = 100). These

operators at the bottom of the table do not impact the TSE process when excluding one

of them from the set of operators, that is, they are not useful to detect test deficiencies

that would not be revealed by other mutants from other operators. The figures marked

with ‘*’ represent operators only producing equivalent mutants in that case study. The

standard deviation (SD) has also been included in this table to observe the stability of

the metric in each operator among case studies.

As illustrated, although ten operators have Ro = 100, the rest of operators show a

redundancy degree between 89.67 and 99.92 on average, where 18 out of 24 mutation

operators present a value over 99. These high values are explained by the fact that a

test case usually reveals the mutations injected by different operators, so removing an

operator does not always lead to a reduction in the number of test cases. Given these

Chapter 7. Selective Mutation Assessment 127

values, the fact that the operators at the top of the classification present the highest

standard deviation is not surprising.

The top 4 ranked operators are the ones spawning the highest number of mutants (see

Table A.5), which suggests a correlation between the number of mutants and the metric

Ro. This is not unexpected: it seems unlikely that removing a large subset of mutants

does not lead to a decrease in the number of necessary test cases. However, this correl-

ation does not hold for all the operators in the ranking: IHI is the fifth most prolific

operator and it is placed in the 13th position. Thus, in order to know how the num-

ber of mutants influences Ro, we run the Spearman’s correlation test (see Table 7.2).

The results in each of the programs range from -0.56 in XmlRpc to -0.73 in KMyMoney

(95% confidence level except for Matrix TCL Pro). Effectively, these results suggest that

there is an inverse correlation between the number of mutants generated by these muta-

tion operators and the value that the redundancy metric attaches them. Nevertheless,

the correlation is not very strong, which means that the operator redundancy does not

depend only on the number of mutants generated by each operator.

Table 7.2: Spearman’s correlation test (rho and p-value) between the number of
mutants generated by the operators and the value that the redundancy metric assigns

them for each of the programs under test

Program rho p-value

TCL -0.68 0.07018
RPC -0.56 0.01199
DPH -0.66 0.0139
TXM -0.58 0.01449
KMY -0.73 0.000493
DOM -0.66 0.001424

The top 5 operators are from different operator groups (see Table 3.1). “Exception

handling” is the only block not represented in that top 5. This fact leads us to think

that the operators at the top of the ranking partially subsume the rest of operators in

the same group. It also suggests that each operator block addresses different features of

the language, which makes operators from different groups less likely to be redundant

among them.

7.2.4 Selective mutation based on the ranking

In this section, we use the ranking of mutation operators for TSE to perform selective

mutation. The goal is to observe the loss in the mutation adequacy score when some of

the mutants are not taken into account for the evaluation of the test suite.

Chapter 7. Selective Mutation Assessment 128

7.2.4.1 Experimental procedure

The experimental setup comprises two phases:

First phase

We gathered the operators with a similar average value of operator redundancy, grouping

them into five different categories. We set the following ranges with a view to balancing

the number of operators in each category (see Table 7.1). The operators in each of the

categories are shown in Table 7.3.

Table 7.3: Categories and operators for TSE

Category Condition Operators

1 98 > Ro MCO-PCI-OMD
2 99 > Ro ≥ 98 CID-IOD-OAN
3 99.5 > Ro ≥ 99 MCI-IPC-OMR
4 100 > Ro ≥ 99.5 CDC-EHC-CDD-IHI-IOR
5 Ro = 100 IHD-ISD-PNC-CTD-CTI-ISI-IOP-PMD-PPD-CCA

Second phase

Once defined the categories in the first phase, we applied both selective mutation strategies:

operator-based and rank-based selective mutation. These two strategies follow a different

process, which will be separately explained below:

Operator-based selection We performed the following steps for each case study from

i = 4 to i = 1 (being i a variable to refer to a category1):

1. The operators encompassed within categories [1...i] (MO[1...i]) were selected from

the execution matrix.

2. An adequate and minimal test suite was computed for the selected operators

(TMO[1...i]
).

3. The mutants generated by the operators that were not in MO[1...i] were included

again in the execution matrix.

4. The mutation score associated with the test suite TMO[1...i]
and the reduction in

the number of mutants were calculated.
1The operators classified in the category 5 are removed in the first loop as we select the categories

1–4.

Chapter 7. Selective Mutation Assessment 129

Rank-based mutant selection In rank-based mutant selection, we select a subset of

mutants from all operators but with different probability depending on the position of

each operator in the ranking. In this case, we do not decide a particular size for that

subset; instead, we select the same number of mutants as in operator-based selection in

order to compare both selective strategies later on in Section 7.4.3.

We performed the following steps for each case study from i = 4 to i = 1 (being i a

variable to refer to a category):

1. As many mutants from D (set of dead mutants) as dead mutants were contained in

the operators encompassed within categories [1...i] (
∣∣∣DMO[1...i]

∣∣∣) were selected using

rank-based mutant selection with all operators. We call MR the set of selected

mutants using rank-based selection from now on.

2. An adequate and minimal test suite was computed for the selected mutants (TMR
).

3. The mutants that were not in MR were included again in the execution matrix.

4. The mutation score associated with the test suite TMR
and the reduction in the

number of mutants was calculated.

We applied the above process 30 times with different seeds and computed the average.

7.2.4.2 Selective mutation results

Operator-based selection

Table 7.4 shows the mutation adequacy score when performing the experimental proced-

ure explained in the second phase in Section 7.2.4.1 to apply operator-based selection

following the five categories presented in the first phase. The mean (Mean) and the

standard deviation (SD) of the results in all the case studies are computed in the two

last columns.

Each value of this table is the result of excluding the operators classified into the cat-

egories under that row. As an example, only the operators MCO, PCI and OMD were

applied to compute the mutation scores shown in the first row (category 1). We achieved

a mutation score over 90% in 4 out of 6 case studies only applying these three operators.

The second row presents the results of selecting the operators within category 1 (MCO,

PCI, OMD) and 2 (CID, IOD and OAN), where the mutation score was greater than

90% for all the case studies.

Chapter 7. Selective Mutation Assessment 130

Table 7.4: Operator-based selective mutation results (mutation score) based on the
ranking of mutant redundancy

Category TCL RPC DPH TXM KMY DOM Mean SD

1 93.0 92.0 89.1 94.8 79.3 94.9 90.52 5.89
2 98.3 97.7 99.2 98.7 91.7 97.7 97.22 2.76
3 100 97.7 100 99.7 99.0 100 99.40 0.92
4 100 100 100 100 100 100 100 0

Table 7.5: Rank-based selection results based on the ranking of mutant redundancy

Program
1 2 3 4

M SD M SD M SD M SD

TCL 92.3 2.88 98.4 1.80 100 0.00 100 0.00
RPC 95.1 3.61 98.8 1.86 99.8 0.42 99.9 0.58
DPH 93.1 2.57 98.2 1.39 99.1 0.97 99.3 0.75
TXM 99.8 0.49 100 0 100 0 100 0
KMY 95.0 1.91 97.9 1.45 99.6 0.49 100 0.13
DOM 100 0 100 0 100 0 100 0

Total 95.89 3.30 98.87 0.92 99.77 0.35 99.87 0.27

Table 7.6: Reduction in the number of mutants by categories when applying operator-
based selective mutation based on the ranking of mutant redundancy

Category TCL RPC DPH TXM KMY DOM Mean SD

1 63.7 52.0 69.6 46.6 60.4 23.5 52.63 16.47
2 34.1 36.2 30.8 31.9 40.4 16.8 31.70 8.06
3 8.9 27.6 25.3 22.2 22.5 13.3 20.00 7.28
4 7.4 5.5 9.1 5.5 8.9 5.7 7.02 1.70

Rank-based selection

Table 7.5 contains the results of the rank-based mutant selection strategy, described in

Section 7.2.4.1. The mean mutation score (M) in each of the categories and the standard

deviation (SD) of the 30 executions are shown. As an example of the meaning of the

figures in this table, the average in KMyMoney in category 3 (99.6%) is the mutation

score when selecting the same number of dead mutants as dead mutants are produced by

the subset of operators classified into the categories 1 (MCO, PCI, OMD), 2 (CID, IOD

and OAN) and 3 (MCI, IPC and OMR). By selecting the same size of mutants as in

the categories, the effectiveness of this strategy is comparable to the effectiveness of the

operator-based strategy (99.0%) for the same case study and category (see Table 7.4).

As remarkable results, we can observe that in category 2 we achieve the full mutation

score in two programs and a total average score of 98.87%. The mutation score declines

by 3% (95.89%) in category 1, but it is over 92% for all case studies.

Chapter 7. Selective Mutation Assessment 131

Savings

Table 7.6 shows the reduction in the percentage of generated mutants because of the

operators removed in each step (we also calculated the mean and the standard deviation

(SD)). Applying the three operators in category 1, we achieve a reduction of more than

half of the mutants (52.63%) with a standard deviation of 16.47. In this case, the

mutation score is:

• 90.52% of the original mutation score with operator-based selection.

• 95.89% of the original mutation score with rank-based selection.

Analogously, using the six operators from the categories 1 and 2 offers a reduction in the

number of mutants of 31.7% (standard deviation: 8.06), and the mutation score is:

• 97.22% with operator-based selection.

• 98.87% with rank-based selection.

The mutation score gradually decreases when removing each of the categories, except

for the operators in category 5 when applying operator-based selection (the mutation

score is still 100%, as it can be seen in Table 7.4 in the row of the fourth category). In

this latter case, there is no loss of mutation score accuracy while lowering the number of

mutants to 92.98%.

7.3 Selective Mutation for Test Suite Refinement

This section presents an evaluation of mutation operators for the refinement of the test

suite analogous to the assessment carried out for TSE. In this regard, we show the

evaluation metric used to form the operator ranking and the experiments conducted

based on that classification.

7.3.1 Evaluation metric

After the test suite execution, those non-equivalent mutants remaining alive require

additional test cases to be killed. However, a single test case could suffice to kill all of

those surviving mutants if they represent faults that are not hard to detect. This usually

happens when those mutations are in a part of the code not covered by the current test

suite.

Chapter 7. Selective Mutation Assessment 132

Thus, the mutants offering resistance to be killed should be the most valued when de-

termining a classification of operators for TSR. Therefore, assigning a greater value to

resistant and resistant hard to kill mutants (see Appendix B) over other kinds of mutants

is a proper approach if we want to give preference to the generation of high-quality test

cases.

This is the approach embodied in the quality metric devised by Estero-Botaro et al. [45],

which was commented in Section 2.4.4. The formula of the quality metric of a mutant

Qm is presented in Equation 7.2:

Qm =

0, m ∈ E

1− 1

(|M | − |E|) · |T |
∑
t∈Km

|Ct| , m ∈ D (7.2)

Where:

• M is the set of valid mutants.

• E is the set of equivalent mutants.

• D is the set of dead mutants.

• T is an adequate and minimal test suite.

• Km is the set of test cases that kill the mutant m.

• Ct is the set of mutants killed by the test case t.

This quality metric punishes the existence of equivalent mutants (m ∈ E) as well as

takes into account a twofold aspect regarding dead mutants (m ∈ D):

• The number of test cases that kill a mutant.

• The number of mutants that those test cases kill at the same time.

Therefore, this metric considers that a mutant will assist a tester in designing high-

quality test cases not only when there are few test cases killing it, but also when there

are few mutants killed by those test cases. This is a desirable property because the fewer

the mutants that are able to guide the tester on the creation of a test case, the more

specific and hard to design is that test case. Consequently, this metric seeks that the

mutants killed by few test cases that in turn kill few other mutants are included in the

Chapter 7. Selective Mutation Assessment 133

subset of selected mutants: this will increase the probability that the more specific test

cases are designed through the inspection of those mutants.

Every mutant receives a value in the range [0, 1], which depends on the number of test

cases and mutants killed by those test cases: the lower the number of test cases killing

the mutant, the higher that value. In the same line, the lower the number of mutants

killed by those test cases, the higher that value. As such, resistant and resistant hard to

kill mutants are the kind of mutants with the highest value according to this metric.

On this basis, being Mo the set of mutants generated by the operator o, the quality of a

mutation operator can be defined as:

Qo =
1

|Mo|
∑

m∈Mo

Qm (7.3)

The metric Qo can be used as a means to rate operators by their potential to help the

tester to enhance the fault detection power of the test suite. The operators with the

highest quality metric should be the most valued. Notice that this quality metric can

be computed even when the operator only generates equivalent mutants (in that case,

Qo = 0).

7.3.2 Example

To illustrate the quality metric, we include an example based on the execution matrix

in Figure 7.3. Let To be an adequate and minimal test suite for the mutation operator

o. We can compute the following adequate and minimal test suites for each mutation

operator:

• To1 = {test1, test2}

• To2 = {test3}

To1 is formed by {test1, test2} because the test cases test1 and test2 can be used to kill

the three mutants from operator o1 (m1, m2, m3). In the same line, {test3} is sufficient

to kill the mutants from o3 (m4, m5, m6). Then, the value of the quality metric for these

two operators is:

1. Quality of operator o1 (|Mo1 | = 3, |Eo1 | = 0, |To1 | = 2, Ctest1 = {m2,m3},
Ctest2 = {m1}):

• Qm1 = 1− 1/((3− 0) · 2) = 0.83 where Km1 = {test2}

Chapter 7. Selective Mutation Assessment 134

test1 test2 test3

op1 −m1 0 1 0
op1 −m2 1 0 0
op1 −m3 1 0 1

op2 −m4 0 0 0
op2 −m5 0 0 1
op2 −m6 1 0 1

Figure 7.3: Execution matrix to illustrate the quality metric

• Qm2 = 1− 2/((3− 0) · 2) = 0.67 where Km2 = {test1}

• Qm3 = 1− 2/((3− 0) · 2) = 0.67 where Km3 = {test1}

Qo1 = (0.83 + 0.67 + 0.67)/3 = 0.72

2. Quality of operator o2 (|Mo2 | = 3, |Eo2 | = 1, |To2 | = 1, Ctest3 = {m5,m6}):

• Qm4 = 0 (equivalent)

• Qm5 = 1− 2/((3− 1) · 1) = 0 where Km5 = {test3}

• Qm6 = 1− 2/((3− 1) · 1) = 0 where Km6 = {test3}

Qo2 = (0 + 0 + 0)/3 = 0

Interpreting these results, test1 and test2 may not be generated without considering o1;

test2 would be generated only after analysing the first mutant generated by o1 (m1). On

the contrary, o2 could induce the creation of test3, which would be generated inspecting

either m5 or m6 from this operator; both mutants are killed by a single test case (test3),

which results in Qm = 0 when just a test case suffices to kill all the non-equivalent

mutants generated by an operator. In addition, o2 produces an equivalent mutant (m4),

which is penalised by this metric. Consequently, o1 is more valued than o2 according to

this quality metric, which is reflected in the values for these operators: Qo1 = 0.72 >

Qo2 = 0.

As a conclusion, a mutation operator with a high value of Qo increases the probability of

missing some test cases when performing a selective mutation strategy without mutants

generated by that operator. Therefore, the operators with the highest Qo should be at

the top of the ranking.

Chapter 7. Selective Mutation Assessment 135

7.3.3 Ranking mutation operators

This section explains the application of the quality metric described in Section 7.3.1

to each mutation operator. This is useful to rank mutation operators and perform a

selective study for TSR.

7.3.3.1 Experimental procedure

We computed the quality metric for each class mutation operator generating some

mutants in the subject programs in this chapter (see Section A.2 in Appendix A). We

should note that the authors of the original quality metric [45] established a threshold

of four mutants as the minimum number of mutants that a mutation operator should

generate so that the value of the metric was significant. We have seen that class oper-

ators generate fewer mutants than traditional operators (see Section 5.2.2), but we have

maintained this condition in our study for consistency with the experiments performed

in that paper.

We calculated the quality metric of the operators for each case study and computed a

mean with the values obtained for each operator. Finally, a ranking was prepared in

ascending order of Qo.

7.3.3.2 Ranking

Table 7.7 shows the results of applying the quality metric to each operator and case

study. The operators are sorted according to the mean (the standard deviation is also

calculated). IOD, with Qo = 0.82, is the most valued operator on average, while IOP,

PMD and EHC are given the lowest value and they are placed at the bottom of the

classification. Note that mutants from operators with Qo = 0 in a case study are either

equivalent or all the mutants are killed by the same test case in the adequate and minimal

test suite for the operator, as shown in the example in Section 7.3.2.

Because of the imposed threshold of four mutants (commented in the previous section),

some mutation operators could not be rated in each of the programs; these cases have

been highlighted with the symbol ‘-’. In the same line, we should remark that five of

these operators (IHD, ISD, PNC, CTD and CTI) did not generate more than three

valid mutants in any of the case studies (see Table A.5); these operators are not shown

in Table 7.7. The mutation operator OMR, in the third position, was the only operator

with values over 0.9 in some of the subject programs. The quality metric in the rest of

operators with Qo > 0 range from 0.07 to 0.71. Unlike the operator classification for

Chapter 7. Selective Mutation Assessment 136

Table 7.7: Ranking of mutation operators based on test quality

Operator TCL RPC DPH TXM KMY DOM Mean SD

IOD - 0.80 0.78 - 0.89 0.82 0.06
MCO - 0.74 0.79 0.72 0.89 0.73 0.77 0.07
OMR 0.88 0.92 0 0.98 0.89 0.73 0.41
OMD 0.80 0.82 - 0.52 0.68 0.71 0.71 0.12
IPC - 0.30 0.65 0.79 0.58 0.25
CID 0.83 0.74 0.52 0.58 0.52 0.29 0.58 0.19
ISI - 0.57 - - 0.57 -
CDC - - 0.47 0.47 -
PCI - 0.71 0 0.60 0.44 0.38
OAN 0.38 0.38 -
IHI 0 0.72 0.29 0.39 0.35 0.30
MCI 0.30 0.30 -
IOR 0 0.07 0.65 - 0.24 0.36
PPD - 0 0.17 0.11 0.14 0.09
CCA 0.17 - 0 0 - 0.25 0.10 0.13
CDD - 0.30 - 0 0 0 0.07 0.15
IOP 0 - 0 -
PMD - - 0 0 -
EHC - 0 0 -

TSE, operators present varying standard deviations across the ranking because the differ-

ences of the quality metric among case studies are more pronounced than the differences

when computing the operator redundancy. Also, unlike the ranking based on mutant

redundancy, none of the operators from the “polymorphism and dynamic binding” group

is in the top 5 of the ranking based on test quality, finding the first one (PCI) in the 9th

position.

Table 7.8: Spearman’s correlation test (rho and p-value) between the number of
mutants generated by the operators and the value that the quality metric assigns them

for each of the programs under test

Program rho p-value

TCL 0.20 0.4583
RPC 0.26 0.2891
DPH 0.57 0.06911
TXM 0.63 0.01387
KMY 0.59 0.02193
DOM 0.48 0.05652

We replicated the Spearman’s correlation test in Section 7.2.3.2, but correlating the

number of mutants and the value of the quality metric for each operator. The results

divided by case study are shown in Table 7.8. In this case, we can observe a direct

correlation between both factors, but considerably less strong than in the test conducted

with regard to the operator redundancy metric.

Chapter 7. Selective Mutation Assessment 137

7.3.4 Test-quality selective mutation based on the ranking

In this last section of the assessment for TSR, we perform test-quality selective mutation

following the operator classification derived previously using the quality metric. The goal

is to observe the loss in the number of test cases in an adequate and minimal test suite

for the full set of mutants when applying both operator-based and rank-based mutant

selection for TSR (see Section 7.1.3).

7.3.4.1 Experimental procedure

The experimental setup comprises two phases:

First phase

We gathered the operators with a similar quality metric into five categories, but also

trying to balance the number of operators in each category (see Table 7.7). Table 7.10

classifies mutation operators according to the five categories. The five mutation operators

that could not be evaluated because of the threshold of four mutants are included in

category 5, as they are supposed not to have a significant impact on the results.

Table 7.9: Categories and operators for TSR

Category Condition Operators

1 0.70 < Qo IOD-MCO-OMR-OMD
2 0.50 < Qo ≤ 0.70 IPC-CID-ISI
3 0.25 < Qo ≤ 0.50 CDC-PCI-OAN-IHI-MCI
4 0.00 < Qo ≤ 0.25 IOR-PPD-CCA-CDD
5 Qo = 0.00 IOP-PMD-EHC-IHD-ISD-PNC-CTD-CTI

Second phase

Following the same process as in Section 7.2.4.1, in this second phase we apply both

selective mutation strategies:

Operator-based selection Once defined the categories in the first phase, we per-

formed the following steps for each case study from i = 4 to i = 1 (being i a variable to

refer to a category):

1. The operators encompassed within categories [1...i] (MO[1...i]) were selected from

the execution matrix.

Chapter 7. Selective Mutation Assessment 138

2. An adequate and minimal test suite was computed for the selected operators

(TMO[1...i]
).

3. The loss of test cases with respect to the original adequate and minimal test suite,

|TMO| −
∣∣∣TMO[1...i]

∣∣∣, and the reduction in the number of mutants were calculated.

Rank-based mutant selection As in Section 7.2.4.1, we executed 30 times the fol-

lowing steps for each case study from i = 4 to i = 1 (being i a variable to refer to a

category) and computed the average:

1. As many mutants from D (set of dead mutants) as dead mutants are contained

in the operators encompassed within categories [1...i] (
∣∣∣DMO[1...i]

∣∣∣) were selected

using rank-based mutant selection with all operators. Recall, MR represents the

set of selected mutants.

2. An adequate and minimal test suite was computed for the selected mutants (TMR
).

3. The loss of test cases with respect to the original adequate and minimal test suite

was calculated: |TMO| − |TMR
|.

7.3.4.2 Test-quality selective mutation results

Operator-based selection

Table 7.10 shows the percentage of loss in the number of test cases from the original

adequate and minimal test suite as a consequence of removing the operators under that

category (just as in Table 7.4). Again, we obtained the mean as well as the standard

deviation (SD) of the results of each case study.

We should note that the number of test cases in the minimal test suite is not very high

in most case studies (from 15 to 36 test cases, as it can be seen in Table A.4), so the

reduction of a single test case implies a significant percentage.

When applying operator-based selective mutation, the number of test cases in the ad-

equate and minimal test suite decreases from 0.47% when discarding the operators be-

longing to category 5 to 23.68% only using the operators within category 1. Considering

the 16 operators from the first four categories (with Qo > 0), the same number of test

cases are retained except for a loss of one test case in the adequate and minimal test

suite for KMyMoney (2.8%).

Chapter 7. Selective Mutation Assessment 139

Table 7.10: Percentage of test cases loss when performing operator-based selective
mutation based on the ranking of test quality

Category TCL RPC DPH TXM KMY DOM Mean SD

1 0 20.0 18.2 53.3 30.6 20.0 23.68 17.57
2 0 13.3 0 33.3 13.9 20.0 13.42 12,65
3 0 6.7 0 6.7 2.8 0 2.70 3.28
4 0 0 0 0 2.8 0 0.47 1.10

Table 7.11: Rank-based selection results based on the ranking of test quality

Program
1 2 3 4

M SD M SD M SD M SD

TCL 9.6 5.7 0 0 0 0 0 0
RPC 8.9 7.1 1.6 2.9 0.2 1.2 0 0
DPH 10.9 6.4 1.5 3.0 1.5 3.0 0.5 1.4
TXM 28.0 8.1 19.1 5.7 0 0 0 0
KMY 6.0 2.4 0.6 1.2 0 0 0 0
DOM 15.5 4.4 11.5 5.2 0 0 0 0

Total 13.14 7.91 5.72 7.82 0.29 0.61 0.08 0.19

Rank-based selection

Table 7.11 shows the results of the rank-based mutant selection with the same format as

Table 7.5 (with the results of the rank-based selection using the operator classification

based on operator redundancy). By using the same size of mutants as in the operators

within categories 1 and 2, we assume a mean loss of 5.72% test cases with a standard

deviation of 7.82. This percentage increases to 13.14% when we just consider the first

category. Overall, we can also observe that the standard deviation successively increases

from category 4 to 1: the fewer the mutants selected, the more varied are the results in

the different executions.

Savings

Table 7.12 depicts the percentage of reduction in the number of mutants when we put

into practice both selective strategies.

The reduction in the number of mutants is not very relevant when removing the mutants

regarding the categories 4 and 5, but meaningful when considering the first two categories

(39.42%). In that case, we assume a loss of:

• 13.42% test cases when applying operator-based selection.

• 5.72% test cases when applying rank-based selection.

Chapter 7. Selective Mutation Assessment 140

We should note an increasing standard deviation because of disparities in the results

among case studies. For instance, in the case of Matrix TCL Pro and Tinyxml2 in the

first category: while we reduce 38.5% mutants in the former, we save twice as much in

the latter (79.8%). However, this gap is also reflected in the test suite size, assuming a

loss of:

• 0% and 53.3% test cases respectively for Matrix TCL Pro and Tinyxml2 when

applying operator-based selection.

• 9.6% and 28% test cases respectively for Matrix TCL Pro and Tinyxml2 when

applying rank-based selection.

Table 7.12: Reduction in the number of mutants by categories when applying
operator-based selective mutation based on the ranking of test quality

Category TCL RPC DPH TXM KMY DOM Mean SD

1 38.5 44.1 48.5 79.8 53.9 83.5 58.05 19.01
2 8.9 27.6 19.7 71.3 29.3 79.7 39.42 28.99
3 8.9 20.5 19.7 9.7 11.4 6.1 13.20 5.96
4 0 2.4 1 2.7 2.9 1.5 1.75 1.13

7.4 Comparison Between Evaluations

7.4.1 Comparison between rankings

In this section, we want to know whether it makes sense to distinguish between the

usefulness of mutation operators for TSE and TSR by comparing the rankings arranged

in Section 7.2.3 and 7.3.3.

At first sight, we can observe an appreciable similarity between these two rankings. For

instance, both share some commonalities:

• MCO, OMD and IOD are fruitful class mutation operators because these operators

occupy the first positions in both classifications

• PMD and IOP are not so useful because they are at the bottom of these two

rankings.

This fact suggests that the most suitable mutation operators for TSE and TSR match.

However, looking at the positions of each operator more carefully, we can notice some

dissimilarities:

Chapter 7. Selective Mutation Assessment 141

• PCI falls from 2nd in the ranking for TSE (see Table 7.1) to 9th in the ranking for

TSR (see Table 7.7). Therefore, while PCI shows a low operator redundancy, test

cases are quite effective with the mutants from this operator, so PCI is not such

an useful operator to induce new test cases.

• OMR climbs six positions (from 9th in the ranking related to operator redundancy

to 3rd in the ranking related to test quality) and ISI eight positions (from 15th to

7th).

• EHC, CDD, IOD, OAN and MCI also exhibit discordant positions in both rank-

ings.

In conclusion, these disparities between rankings validate our double perspective when

addressing the value of each mutation operator.

7.4.2 Validation of results

The results shown so far in this chapter do not allow to rule out the possibility that other

operator rankings could report better results when performing a selective strategy based

on them. Hence, this section serves as a sanity check for both selective strategies.

7.4.2.1 Operator-based selective mutation

In order to check if the same results hold with different operator classifications, we

compared our operator-based selection results with other rankings of mutation operators.

We carried out selective mutation determining categories derived from new rankings. To

this end, we followed three classical approaches to operator-based selective mutation:

• Random:

– Ranking: random sort of mutation operators.

– Category size: For the selective strategy, we maintained the same sizes of

the categories from the original experimental results (see Section 7.2.4.1 and

Section 7.3.4.1). This allows for a direct comparison between this and the

original ranking because the categories contain the same number of operators.

• Number of mutants (Size):

– Ranking: sort of mutation operators by the number of mutants [101, 126],

where the most prolific operators are at the bottom of the ranking.

Chapter 7. Selective Mutation Assessment 142

– Category size: few operators should be removed in each step if we want to

maintain a significant number of mutants at all times. Thus, unlike in the

previous ranking Random, we do not maintain the same sizes of the categories

from the original experiments: in those experiments, many operators were

removed at the beginning (10 and 8 operators in the evaluation for TSE and

TSR respectively) and few operators belonged to the category 1 (3 for TSE;

4 for TSR).

Therefore, the category size is proportional to the number of mutants gener-

ated in the analysed programs (see Table A.5). Thus, we divided the total

number of mutants (1,868) by 5 categories, which results in 374 mutants per

category. Then, we included as many operators as needed to complete 374

mutants, which depends on the mutants produced by each operator. As an

example, PCI (the most prolific operator) is the only operator classified into

the category 5 as it generates 659 mutants, which suffices to reach the number

of mutants set for a category.

• Operator type (Block):

– Ranking: sort of mutation operators related to the operator block (see Table 3.1).

Class operators with similar characteristics were previously grouped in dif-

ferent blocks. The idea is to apply selective mutation removing operator

groups [102]. We sort the blocks depending on their number of operators,

where the block with more operators (“inheritance”) is at the top of the rank-

ing.

– Category size: the category size is related to the number of operators within

each group. In this regard, we only counted operators creating at least one

mutant in our case studies. For instance, 3 out of 4 operators from the “method

overloading” block were applied (OMD, OMR and OAN). Because of the few

operators, the groups “exception handling” and “object and member replace-

ment” are placed together in the last category.

The final arrangement of these three rankings and the division of the operators into

categories is depicted in Table 7.13. While the categories are the same for TSE and TSR

in the rankings Size and Block, we have to consider different categories for TSE and

TSR in the ranking Random; as aforementioned, the category size for this ranking is

related to the number of operators within each category in the original experiments. For

instance, in the first category there were 3 operators for TSE (MCO, PCI and OMD),

but 4 operators for TSR (IOD, MCO, OMR and OMD).

For each of the three rankings:

Chapter 7. Selective Mutation Assessment 143

Table 7.13: Arrangement of the rankings Random, Size and Block classified into
categories for TSE and TSR

Category Random TSE Random TSR Size TSE,TSR Block TSE,TSR

1 IPC,OMR,ISD IPC,OMR, CTD,ISD,IHD,PNC, IHD,IHI,ISD,
ISD,ISI CTI,OAN,EHC,PMD, ISI,IOD,IOP,

CDC,IOP,ISI,CDD, IOR,IPC
IPC,CCA,MCI,PPD,
IOR

2 ISI,CCA,OMD CCA,OMD, IOD,IHI, CTD,CTI,CID,
CTI OMR,OMD CDC,CDD,CCA

3 CTI,PNC,MCI PNC,MCI,IOD, CID PCI,PMD,PPD,
MCO,IOP PNC

4 IOD,MCO,IOP, CDC,PCI, MCO OMD,OMR,
CDC,PCI CID,PMD OAN

5 CID,PMD,IOR, IOR,IHD,IHI, PCI MCO,MCI,EHC
IHD,IHI,CTD, CTD,CDD,
CDD,OAN, OAN,EHC,
EHC,PPD PPD

Table 7.14: Comparison of the mutation score when using operator-based selective
mutation testing for TSE with the rankings Random, Size and Block

Category
Original Random Size Block

M SD M SD M SD M SD

1 90.52 5.89 48.89 29.90 56.02 21.47 53.70 31.09
2 97.22 2.76 74.66 14.10 82.76 13.52 78.15 14.77
3 99.40 0.92 78.17 13.94 85.18 13.48 84.36 15.62
4 100 0 97.54 2.12 95.50 7.75 89.43 13.75

Table 7.15: Comparison of the percentage of test cases loss when using operator-based
selective mutation testing for TSR with the rankings Random, Size and Block

Category
Original Random Size Block

M SD M SD M SD M SD

1 23.68 17.57 66.71 19.38 66.97 11.76 64.46 22.17
2 13.42 12.65 48.09 23.73 26.56 11.45 37.68 12.38
3 2.68 3.28 19.31 12.98 17.69 9.81 30.79 17.92
4 0.45 1.10 4.07 4.75 5.35 7.34 13.92 10.51

• Table 7.14 shows the mutation score achieved by the operators of each category

following the selective mutation procedure described in the second phase in Sec-

tion 7.2.4.1.

• Table 7.15 shows the percentage of loss in the number of test cases in the adequate

and minimal test suite following the test-quality selective mutation procedure de-

scribed in the second phase in Section 7.3.4.1.

Chapter 7. Selective Mutation Assessment 144

For each of the new rankings, the column M represents the averaged results in our case

studies and SD is the standard deviation. In order to facilitate the comparison, we also

show in both tables the mean and the standard deviation obtained with our original

rankings (see column Mean and SD in Table 7.4 and 7.10). We label these results as

Original.

The results of the original rankings on average are clearly better than the results of the

rankings Random, Size and Block. Studying the results in detail, we can observe that:

• Random shows the worst performance in general in terms of the mutation score and

the loss in the percentage of test cases for all the categories except when removing

the operators in category 5.

• Size gets better results than Block in both selective strategies in 7 out of 8 cases

(four categories for TSE plus other four categories for TSR). As an exception,

we have to note that the ranking Block is able to surpass the ranking based on

test quality for Tinyxml2 when selecting the operators from category 1 and the

operators from categories 1 and 2.

• The rankings Random and Size match the outcome of our original results in a pair

‘(case study, category)’ only in few cases, but the averaged results are still very far

from the ones achieved with Original in both TSE and TSR.

• The high standard deviations in the three rankings suggest that they do not provide

a stable performance.

7.4.2.2 Rank-based selective mutation

Similarly to the previous sanity check, we aim to compare our rank-based mutant se-

lection results with other strategies for the selection of mutants. Namely, we run two

random strategies proposed by Zhang et al. [135]:

• One-round random (One-round): random selection of mutants from all the

operators. The probability of selecting each of the mutants is the same.

• Two-round random (Two-round): the probability of selecting a mutant from

each of the operators is the same. It is performed in two different rounds:

– First round : one operator is selected randomly.

– Second round : one mutant is selected randomly from the operator selected in

the first round.

Chapter 7. Selective Mutation Assessment 145

In both strategies, we selected the same number of mutants in each category for TSE

and TSR as in the rank-based mutant selection.

(a) Mean

(b) Standard deviation

Figure 7.4: Comparison of the mutation score when using Rank-based selective muta-
tion testing for TSE with the rankings One-round and Two-round

Figures 7.4 and 7.5 depict the comparative results (mean and standard deviation) of

the two random strategies and the rank-based strategy for TSE and TSR respectively.

Studying the results in detail:

• One-round : Rank-based mutant selection outperforms this random strategy in all

cases. It also shows worse performance than Two-round.

– TSE: The rank-based strategy is better than One-round. There is a remark-

able difference of 2.6% in the pair ‘(KMyMoney, category 2)’. However, apart

Chapter 7. Selective Mutation Assessment 146

(a) Mean

(b) Standard deviation

Figure 7.5: Comparison of the percentage of test cases loss when using Rank-based
selective mutation testing for TSR with the rankings One-round and Two-round

from a few ties, the latter was able to obtain a higher score for the two first

categories when analysing Dolphin.

– TSR: We can find a notable gap between both strategies in ‘(QtDom, category

1)’): 18.1% for rank-based selection and 30.6% for One-round.

• Two-round : Rank-based selection gets better results in 6 out of 8 cases on average

and the gap between the two selective strategies widens as the size of the subset

of mutants selected decreases. This outcome is quite interesting as that means

that the operator rankings work better for large reductions of mutants (which is

desirable in mutation testing). The standard deviation in Two-round is also higher

than in the original strategy for both evaluations in category 1, which means that

Chapter 7. Selective Mutation Assessment 147

the rank-based strategy is more stable in general than Two-round with a reduced

subset of mutants.

– TSE: The rank-based strategy surpasses Two-round by 0.3% on average in

the first category. As it was mentioned earlier, the margins are narrow due

to the nature of the mutation score. If we study the results in each program

individually, Two-round only produces better results overall in Dolphin.

– TSR: If we focus again in the first category, rank-based selection surpasses

Two-round by 1.85% test cases lost. There are relevant differences in favour

of rank-based mutant selection in several cases, like in the pair ‘(Tinyxml2,

category 1)’) where the difference is 6.6%.

7.4.3 Comparison between selective mutation strategies

To complete this section, it is interesting to study which one of the selective strategies,

operator-based or rank-based selective mutation, provided a better result. We also made

use of the results of the sanity checks in the previous section for this analysis.

We studied this aspect separately for TSE and TSR:

• TSE: Figure 7.6 shows graphically the average mutation score when applying the

operator-based and rank-based strategy for each of the categories (see the results

divided by case studies in Table 7.4 and Table 7.5).

Figure 7.6: Comparison of the mutation score when using operator-based and rank-
based selective mutation for the categories 1–4

Operator-based selection maintains the maximum mutation score when removing

the operators at the bottom of the ranking. However, the rank-based mutant

Chapter 7. Selective Mutation Assessment 148

selection offers better performance in the rest of categories, especially in category

1 where the gap is over 5% on average (90.52% and 95.89%).

• TSR: Figure 7.7 compares the average percentage of test cases loss when applying

the operator-based and rank-based strategy for each of the categories (see the

results divided by case studies in Table 7.10 and Table 7.11).

Figure 7.7: Comparison of the percentage of test cases loss when using operator-based
and rank-based selective mutation for the categories 1–4

Rank-based mutant selection gets much better results in all of the categories.

Surprisingly, the averaged result of the rank-based strategy in the first category

(13.14%) not only outperforms the result of operator-based selection in the same

category (23.68%) but also in the second category (13.42%).

As it can be seen, using rank-based mutant selection is not only more effective than using

operator-based selective mutation, but it is also a more stable strategy in general when

we analyse the standard deviations in the different categories. This fact is important

since the selective process will be executed only once in practice.

It is also interesting to observe that a simple random selection of mutants (One-round)

turned out to be better than operator-based selection except for the fourth category

in both TSE and TSR evaluations (see Table 7.4 and Table 7.5). This supports the

fact that each operator block addresses completely different object-oriented features.

Unlike traditional operators, we suspect that several of these class operators are hardly

redundant among them because they target different parts of the code and it is not

common that their mutants overlap. The fact that Two-round random outperforms One-

round random also supports this idea. We can draw from these results the conclusion

that most of the operators can contribute to the assessment or refinement of the test

Chapter 7. Selective Mutation Assessment 149

suite. Therefore, if we remove all the mutants produced by some of these operators, we

might be diminishing the benefits of selective mutation.

In summary, discarding individual mutants is more convenient than discarding mutation

operators when applying mutation testing at the class level.

Chapter 8

Results

This chapter summarises all the results presented throughout this thesis,

highlighting the main findings. This allows for a view of the whole pic-

ture regarding the contributions and the experimental results in the different

chapters. It also includes a section that collects threats to validity of the

results.

8.1 Summary of Results

In the first part of this thesis, we have defined a set of 37 mutation operators for C++

at the class level. To define a set of mutation operators as complete as possible, we have

surveyed existing papers in the literature addressing the definition of operators. This set

of mutation operators has been classified into 7 categories, following a similar approach

as previous studies in this field. Among the 37 mutation operators:

• 5 of them were particularly defined for C++ according to specific features of this

language.

• 19 of them were modified with respect to their original definition or implementation

for other languages.

• 13 of them were adopted without any modification.

We have compared our class mutation operators for C++ with the operators defined for

other object-oriented languages, remarking the most notable differences.

After that, the approach to performing mutation testing in C++ has been presented,

based on the reuse of the libraries of Clang, a parser for the C family languages. Clang

151

Chapter 1. Results 152

provides its libraries for the construction of new source code analysis tools. The traversal

of the AST generated by this compiler is really convenient to implement a mutation

tool. Moreover, the implementation technique to inject a mutation into the code has

been explained step by step, with the operator CID as an example. This operator

implementation mode is challenging as it is necessary to analyse the AST and, then, to

establish a margin for each mutation operator, which sets the different situations where

an operator can be applied or not. Notwithstanding, the insertion of the faults can

be controlled in an accurate manner as the elements of the language are well-defined in

Clang. We have illustrated the implementation of operators inMuCPP with the operator

CDC.

Once a first version of the mutation operators was implemented, the set of operators was

evaluated by using several case studies. The first study has been based on a qualitative

analysis of the generated mutants: this was possible due to the fact that there was a

manageable number of them in the analysed subjects. This study has been focused on

five mutation operators (CDD, CCA, CID, PVI and IHI) and it has revealed interesting

observations about these operators. For instance, we have pointed out that several

mutants generated by CDD are potentially equivalent in the sense that its mutations

do not necessarily propagate to the output because they only affect the memory. Some

other mutants from CCA and CID have also shown that their mutation is not always

reflected in the output directly: a mutant is also killed when there is a runtime error or

a significant change in the execution time.

The main facilities integrated into MuCPP have been described: analysis of several

source files, removal of duplicate mutants, use of JSON files [69], analysis of header

files (avoiding system header files) and use of the Git version control system [50]. We

have also stated that MuCPP does not suffer from scalability problems because of Git.

We have also gone in depth with implementation details of the operators; by taking

a closer look at the mutants generated by this type of operators, we found out some

situations in which the mutations injected always led to invalid, trivial or equivalent

mutants (uninteresting mutants). As a result, we have listed 9 improvement rules that

can be applied to different operators in the set. These improvements have been analysed,

showing that they can lead to a great reduction of the cost by avoiding the generation and

execution of unproductive mutants. In particular, 46.6% of the mutants were avoided on

average only taking into account those improved class operators that reduced the number

of mutants in the analysed systems, and 32.1% in general. Then, we have computed the

impact of that reduction in terms of time and resources. Regarding the time required,

the reduction was significant in both the generation and the execution of mutants. For

instance, in KMyMoney the test suite execution phase was reduced in almost 3 hours

from the basic to the improved version of the operators. Regarding the disk space, Git

Chapter 1. Results 153

storages the mutants in a very efficient way. For that reason, the reduction of space is

not as remarkable as the reduction of time when the number of mutants decreases thanks

to the improvement rules.

After that, we have extended the quantitative evaluation, analysing several subjects and

calculating several metrics about the performance of these operators, such as the total

number of mutants, equivalent mutants or their mutation scores. These have been the

main findings:

• We first calculated the number of mutants generated by a subset of traditional

mutation operators based on previous studies in the literature about selective muta-

tion. The experiment reported clear results: there were many more traditional

mutants for the same applications than class mutants. On average, the subset of

class mutation operators injecting mutants into a class produced 39.7 mutants per

class. Class operators therefore required less time to evaluate. On the contrary, the

percentage of equivalence was high. It seems that the improvement rules helped

reduce the percentage of equivalent mutants, but it was still quite notable (27.9%).

These two observations align with the results of similar studies in the literature.

• The quantitative analysis of the mutants revealed which are the most prolific op-

erators: PCI and MCO . However, the operators generating more mutants did not

always coincide with those mutating more classes. For instance, MCO injected 7

mutations on average per class, and mutated 17.8% of the classes. On the contrary,

CID injected a mean of 2.4 mutations per class but it was applied to 47.4% of the

classes. Other operators generated very few mutants (IHD, ISD, PVI and PNC)

or were not applied in the tested applications (IMR, PRV, OAO, EHR and CTD).

All these facts reflect how different mutation operators behave depending on the

features used, though the existence of inheritance relationships is a factor with a

strong impact on the application of this set of class operators.

• We calculated the mutation score of the mutants generated in a part of these ap-

plications. We also augmented the test suite by reviewing surviving class mutants,

obtaining an adequate test suite for two of the programs. In all cases, the mutation

score was far from 100% (32% in the worst case and 80% in the best case). This

fact suggests that the test suites for these applications do not tackle object-oriented

features properly and shows the ability of class mutants to reveal test deficiencies at

the same time. While inspecting surviving mutants and designing new test cases,

we found two coding errors in two of these programs.

We have to remark that the obtained experimental results can only be compared with

similar studies to a certain extent. For example, C++-specific operators such as CDD

Chapter 1. Results 154

and CCA are not defined for other object-oriented languages, and some of the modi-

fied operators are completely different from the comparable mutation operators in other

languages, like CID.

Regarding the comparison of class-based and traditional mutants, we wanted to examine

the extent to which class-based mutants could contribute to the assessment of test suites

for object-oriented systems when used along with traditional mutants. To do so, we have

devised a new metric (Td) which estimates the percentage of test cases in a minimal test

suite that is added when evaluating class mutants in addition to traditional mutants. The

result gave evidence that a proportion of those test cases only appeared when analysing

class-based mutants in all the systems under test (from Td = 0.04 in the worst case to

Td = 0.16 in the best case)1. Given that we only reviewed class mutants in the process of

test suite improvement, it was interesting to observe that some of the test cases that had

not been modified or added by ourselves appeared when considering the class mutants

in 3 of the 5 subjects. Finally, we conducted an experiment to analyse the subsuming

relation between both sets of operators. In this experiment, we computed the mutation

score of class mutants associated with different test suites guided by traditional mutants

and vice versa. On average, class-adequate test suites obtained a mutation score of 80%

when they were run against traditional mutants and, conversely, the mutation score of

traditional-adequate test suites when applied to class mutants was 93%. Although this

aspect would require further investigation, there seems to be a higher percentage of class

mutants which is trivial to detect. However, there are two aspects that should be taken

into account if we want to draw a more detailed conclusion. First, a tester who wants

to obtain a more effective test suite will still need to analyse the class mutants. Second,

we should also consider the number of mutants generated by each set of operators, as

mentioned earlier.

In this thesis, we have developed GiGAn to connect the genetic algorithm implemented

in GAmera and MuCPP. In this way, we could analyse the performance of EMT in

C++ object-oriented systems. Our experiments differed from previous experiments in

two aspects that might impact the results: some of the subject programs were comprised

of several source files (a mutant injected into a file can breed a new mutant belonging

to a different file) and the attribute field was not taken into account (which limited the

application of some reproductive operators).

We wanted to answer several research questions with our experiments. Firstly, we have

studied the behaviour of EMT when searching different percentages of strong mutants,

replicating previous studies with WS-BPEL compositions [43]. In this regard, we found
1Recall that Td indicates the proportion of test cases that appears in the minimal test suite only

when the class-level mutants are analysed.

Chapter 1. Results 155

that the relation between the number of mutants generated and the number of strong

mutants did not vary much among the subject programs. We observed this relation when

finding five different percentages of strong mutants (from 30% to 90% in 15% increments)

in four programs. In addition, the experiments reported that the proportion of strong

mutants found by EMT slightly decreased with the number of mutants generated in

general.

Secondly, we wanted to know whether EMT produced better results when compared to

random mutant selection. In this case, we have compared both strategies when finding

the two highest percentages of strong mutants (75% and 90%). EMT yielded better

results than the random strategy with high confidence (a smaller percentage of mutants

was needed to achieve the same percentage of strong mutants). On average, the gap

between EMT and Random was 6.17% and 3.80% to find 75% and 90% of strong mutants

respectively. The most notable difference was observed in TXM : 10.02% when reaching

75% of the set of strong mutants. The gap between both strategies was however greater

in the experiments with WS-BPEL.

Finally, in the last experiments related to EMT, instead of evaluating how useful this

technique is in finding strong mutants, we wanted to know about the extent to which

EMT leads to the generation of missing test cases when compared to a random strategy.

Our experiment simulated a real process in which the generated mutants were reviewed

and new test cases were added to detect surviving mutants. Despite the influence of

test suites in this experiment, EMT outperformed Random in general. The best results

were obtained for the largest programs (in terms of generated mutants), where we can

highlight a difference between EMT and Random around 26% and 45% in Tinyxml2 and

QtDom respectively to find the whole minimal and adequate test suite. However, these

results should be taken with caution because of the presence of invalid mutants.

In Chapter 7 we have arranged two operator rankings for TSE and TSR as a first step.

To that end, we made use of two different metrics (degree of redundancy and quality

metric) in order to rank the operators. When doing so, we found differences between

both rankings, sometimes quite pronounced such us in the case of ISI (a difference of 8

positions between rankings) and PCI (7 positions).

Then we sought to determine whether those rankings were useful from a selective per-

spective (i.e., to what extent we can discard operators/mutants based on the rankings

without significant loss in the effectiveness). We have found out that we cannot use the

same metric to measure the effectiveness of a selective strategy for TSE and TSR. Instead

of measuring the mutation score as in TSE, we measured the loss of test cases for TSR,

which we called test-quality selective mutation. In addition to operator-based selection

following our rankings, we have proposed a strategy to perform mutant-based selection

Chapter 1. Results 156

also based on these rankings: rank-based mutant selection. This strategy favours the

generation of mutants from the best-valued operators. The first finding was that we

could remove several operators/mutants using the rankings with minimal information

loss. As an illustration:

• In the case of TSE and operator-based selection, we could discard 10 operators

maintaining the same mutation score (100%).

• In the case of TSR and rank-based selection, we could discard as many mutants

as the number of mutants generated by the 8 top ranked operators with a minimal

loss of test cases (0.08% on average).

To complete the evaluation of the operator rankings, we have performed two comparative

analyses of selective strategies:

1. Operator-based mutant selection vs mutant-based selection.

2. Rank-based mutant selection vs random mutant selection.

Regarding (1), since there does not seem to be a high redundancy among class operators

from different categories, removing operators can reduce the effectiveness of mutation

testing. As a consequence, mutant-based selection was found to be superior to operator-

based mutant selection. For instance:

• The mutation score was 97.22% for operator-based selection and 98.87% for rank-

based selection when considering the 6 top operators and the same number of

mutants as generated by those 6 operators respectively.

• The percentage of test cases loss was 13.42% for operator-based selection and 5.72%

for rank-based selection when considering the 7 top operators and the same number

of mutants as generated by those 7 operators respectively.

Recall that the higher the mutation score, the better. Similarly, the lower the percentage

of test cases loss, the better. The reduction in the number of mutants achieved in the

above mentioned cases was 31.7% and 39.42% for TSE and TSR respectively.

As for the second comparative analysis (2), while mutant-based selection performed

better than operator-based selection, this study showed that the results of the rank-

based strategy were better than those of the random strategy. We could observe that

the results for the rank-based strategy were better than those of two random strategies

Chapter 1. Results 157

overall, especially in the category 1 when the highest reduction of mutants was achieved

(mutation score of 95.89% vs 95.59% for TSE and percentage of test cases loss of 13.14%

vs 14.99% for TSR). We should remark that the differences between both mutant-based

strategies were more notable in the case of the percentage of test cases loss than for

the mutation score, but we should take into account the nature of these metrics when

analysing the data (the margins are usually narrow in the case of the mutation score).

As a summary, the main finding of these experiments was that, while selecting a subset

of mutants from all operators was a better approach than discarding operators, it was

also true that favouring the selection of mutants generated by the best-valued operators

reported better results than random mutant selection.

8.2 Threats to Validity

Several aspects pose a threat to validity of the results derived from the experiments con-

ducted in this thesis:

Mutant equivalence. Equivalence is an inherent limitation to mutation testing because

this is an undecidable problem. As such, the metrics shown may be inaccurate because

they might be influenced by the manual determination of equivalent mutants. This is an

error-prone task, especially when analysing third-party applications for which it is not

trivial to acquire a full insight into the source code.

To counter the threat that the quality metric by Estero-Botaro et al. [45] penalised

mutants incorrectly classified as equivalent, we classified as undecided [117] instead of as

equivalent those mutants for which we were unsure.

Test suites. The reliance of mutation testing on the test suites supposes a threat to

validity of the results. We used the test suite accompanying the analysed subjects, so

we worked with test suites developed by different testers:

• Some of the test suites make a more exhaustive use of the classes and their members

than others.

• We can classify some test cases as specific (testing a particular functionality) or

general (testing a subset of related functionalities), which present a different killing

power.

To the best of our knowledge, there are no similar test case generators to EvoSuite [48]

(for Java) addressing object-oriented programs in C++: this would help generate new

Chapter 1. Results 158

test cases driven to kill surviving mutants. Therefore, we extended the test suites manu-

ally to achieve adequate test suites. The modified and new test cases were designed

with the utmost care to develop consistent test cases. The use of a single test suite can

also impact the results. The minimisation of the test suite for our calculations with an

exact algorithm to exclude unproductive test cases alleviates the effect of these potential

threats.

Mutation operators. One of the main limitations in the conducted studies is that

only a subset of all the operators could be analysed in depth because not all the ana-

lysed operators produced mutants in the case studies. Most class mutation operators

often generate no or few mutants in each class because they are less prolific than tra-

ditional operators and depend on the object-oriented features used by the programmer.

Therefore, we could not measure the metrics for several of the class-level operators.

Moreover, many of the improvement rules to enhance the effectiveness of the operators

produced great improvements in the operator efficiency in some cases, while having no

effect on others. However, new rules could be detected applying the technique to other

programs with different features and could lead to a further reduction of uninteresting

mutants.

Altogether, the different behaviour of the operators in each application makes it difficult

to provide conclusions and generalise the results to the whole set of operators.

Implementation. The generation and execution of mutants to obtain execution matrices,

the calculation of the metrics and all the experimental procedures in this thesis rely on

multiple software systems. The experiments have been automated whenever possible,

but there may exist defects in the tools implemented and the systems used despite being

thoroughly tested.

We cannot ensure that the improvements implemented in the mutation operators prevent

valid mutants to be created due to dark corners of the language or the AST, which might

not have been considered.

Generalisation. Representativeness of the programs under study is a common threat

to validity of the results. It is not easy to ensure that the studied population is repres-

entative, so the results reported should be interpreted as estimations. Nonetheless, we

have selected applications of varying nature so that different mutation operators were

applied and those operators generated a different number of mutants. Selecting sev-

eral programs of diverse complexity and sizes minimises the threat to the generalisation

because it avoids the partial perspective of the individual applications.

Chapter 1. Results 159

We should note that the experimental procedures were carried out using class mutation

operators in C++, so it is unknown if the results hold in other contexts.

Metrics. There are some threats related to the metrics computed in our experiments:

• Mutation score: The mutation score may greatly vary depending on the operators

because of the few mutants injected into a class. Several trivial mutants are avoided

because of the improvement rules, which may have reduced the mutation score.

We only analysed a subset of the mutants generated in the applications because

reviewing these mutants and designing new test scenarios to kill them is a time-

consuming and laborious task.

• Td: Being this metric dependent on the test suite, the results may change if the test

suites were adequate both for class-level and traditional mutants. In the same line,

the results are also dependent on the assertions and test cases added to increase the

mutation score. As it was mentioned earlier, we designed the test cases as general

as possible to reduce this kind of threat.

• Quality metric: As aforementioned, the object-oriented features of the language

are used with varying frequency, so several operators did not produce a significant

number of mutants. As a result, by maintaining the threshold in the number of

mutants to apply the quality metric used by Estero-Botaro et al. [45], the metric

could not be computed for several operators. Given that some operators could not

be appropriately evaluated, it is required further research so that we can better

know the usefulness of each mutation operator.

To assess the performance of the quality metric, we measured the percentage of

test cases loss instead of the mutation score. However, that percentage does not

provide information on the specificity of the test cases (losing trivial test cases is

not as important as losing high-quality test cases).

EMT. The performance of the genetic algorithm may vary depending on the values given

to the parameters, but the best configuration is unknown in practice. As such, we have

used the same configuration that Domínguez Jiménez et al. [43] found to be optimal in

their experiments.

Assessing randomised algorithms requires several executions to avoid biased results. We

executed the techniques 30 times, a common number of runs according to the guide by

Arcuri and Briand [9].

In the second experiment to evaluate EMT, we simulated the process of extending the

test suite thanks to this technique. By selecting a particular mutant, the minimal and

Chapter 1. Results 160

adequate test suite in a generation can change (TMAi). However, that does not mean

that each of the mutants has the potential to help the tester design all the test cases

that kill the mutant, especially when the test suite is comprised of general test cases.

Comparison between mutant-based test strategies. In Chapter 7, we compared

the results of different strategies for the reduction of mutants. Namely, we prepared new

operator rankings following traditional approaches to operator-based selective mutation

and two random strategies for the selection of mutants. Subsequently, we compared them

with operator-based and rank-based selective mutation based on our rankings respect-

ively. Both our operator-based and rank-based strategies for TSE and TSR yielded better

results overall, though this sanity check is limited to the subset of strategies analysed.

We also compared operator-based and mutant-based selective mutation under the same

number of non-equivalent mutants, as done by Zhang et al. [135]. However, we should

note that a mutant-based strategy will also select a subset of equivalent mutants in

practice, which might impact the results. Recently, Papadakis et al. [109] found that this

kind of comparative studies are vulnerable to a threat to validity if mutant subsumption

is not controlled.

Chapter 9

Conclusion and Future Work

The last chapter is devoted to the conclusions drawn from this research period

and the future work lines. A list of the publications derived from this thesis

complements this closing chapter.

9.1 Conclusions

The set of mutation operators is a key factor in mutation testing as operators have the

potential to guide us to effective test suites. Given that mutation testing is a language-

dependent technique, the first step to apply mutation testing is the definition of mutation

operators for the different programming languages. In this sense, the study carried out

is an important contribution because there were no works focused on the definition of

a set of operators for C++. Despite the dependence on the language, it is necessary

that the entire development of the technique follows the same path so that the studies

for a specific language are as generalisable as possible for similar languages. As such,

the mutation operators for other similar languages have been analysed, mainly around

Java (because this language has drawn the attention of multiple studies regarding object-

oriented programming), and also C#.

As a result, a complete set of 37 operators was defined for C++ at the class level. We

have seen that many of the adopted operators are impacted by different C++ charac-

teristics and we have also created new operators according to particular C++ features.

We compared these operators with those defined for Java and C#, highlighting simil-

arities and differences. Overall, the multiple facilities provided by C++ makes more

complex the operator implementation than for other languages. We evaluated certain

operators in qualitative terms; this study allowed us to observe particular situations in

161

Chapter 1. Conclusion and Future Work 162

which operators at the class level could detect test deficiencies. Likewise, the calculation

of the mutation score gave us a first evidence that test suites implemented for real pro-

grams do not deal with object-oriented features properly, justifying the incorporation of

this type of operators into mutation systems for C++. This qualitative assessment was

complemented with a quantitative evaluation, showing an approximation of the num-

ber and kind of mutants that these operators usually generate. The results supported

several observations in previous experiments in the literature. Firstly, class operators

tend to generate few mutants when compared to traditional operators. This is a positive

observation since the cost has always been one of the major concerns when applying

mutation testing. Secondly, the percentage of equivalence is pronounced, which is the

other main problem in this technique. Thus, it is important to find ways to reduce the

number of this kind of mutants. Finally, these operators show a different behaviour in

each application, which mainly depends on the object-oriented features used. All the

experiments are inevitably impacted by the subjects under study, but this fact makes

difficult to generalise the results for any system.

The correct definition and implementation of mutation operators are fundamental to suc-

cessful mutation testing so that they provide valid and useful mutants for the analysis

of the technique. Thus, different situations have been considered to create the expected

mutations. Moreover, the operator quality has been enhanced by establishing a specific

scope for the implementation of each operator which cuts out unnecessary mutants. Pre-

vious studies have defined rules to automatically remove equivalent mutants in particular

operators. In our thesis, we have set general improvement rules, which can be taken into

account for different mutation operators in different languages. With this approach,

the equivalence drawback can be alleviated and the mutation operator effectiveness, as

well as the computational cost, can be improved in general, both when generating and

when executing the mutants (mainly with regard to the compilation time), increasing

the efficiency of the mutation system.

The work presented here brings down the barrier regarding the complicated task of

automating the mutations in C++ by developing a feasible and comprehensive solution

through the traversal of the AST generated with Clang [22]. The AST is used to de-

termine the mutation locations through pattern matching, and to transform the code in

a robust way, given that this pattern matching is not based on the concrete syntax of the

language. Also, using a mature parser for this language like Clang guarantees a complete

coverage of the grammar. MuCPP is the first mutation system for C++ implementing

traditional and class-based operators. This system incorporates other interesting fea-

tures that enhance the mutation testing process: MuCPP uses the Git version control

system [50] to save storage resources and to facilitate the generation and execution of

mutants. Even though this is not the first time that a version control system is used to

Chapter 1. Conclusion and Future Work 163

create mutants in a mutation tool, Git has shown to be more convenient for mutation

testing than SVN.

Given that a C++ project usually comprises several source files, the analysis of more than

a single file at the same time is an interesting option. To that end, MuCPP was designed

to sequentially parse several source files in the same execution, identifying duplicate

mutants when a header is included in different source files. JSON compilation database

files also help us analyse different source files in the same execution. Using JSON files,

each source file is independently analysed to be compiled with the proper command.

This is an automatic process that allows us to forget about compilation details. The

mutation system is not only a mutant generator but also handles the execution of the

test suite against the mutants. While JUnit is broadly used to implement test suites for

Java programs, there is not a prevailing framework when it comes to C++. As a result,

we have found a plethora of frameworks and libraries used by testers when searching for

case studies for our experiments. The fact thatMuCPP is not subject to a specific testing

framework has facilitated the experiments and will avoid testers having to translate test

suites already implemented.

The conducted experiments have shown that test suites developed for object-oriented

systems often fail at addressing the particularities of the object-oriented paradigm. Sur-

viving class mutants have been helpful to improve the quality of those test suites and

also to detect real coding errors. However, we wondered whether the same missing test

scenarios could be found just using traditional operators. Standard operators can also be

applied to test object-oriented systems, but experts in this field have hypothesised that

those operators for procedural languages were not sufficient since they do not consider

some types of faults related to object-oriented features. In this work, we have compared

traditional and class-based operators, showing that effectively class mutants can provide

information that may not be derivable from traditional mutants. The main conclusion

is that class operators in conjunction with traditional operators can be applied to design

more comprehensive test suites as these two sets complement each other. While it is true

that traditional operators make a greater contribution to the assessment of a test suite

than class operators, our experiments also confirm that there are far fewer class mutants

than traditional ones. Thus, it would be interesting to explore in the future whether first

analysing class mutants before traditional ones could be a good strategy to find missing

test cases without inspecting many mutants.

The reduction of the expenses in mutation testing should be based on well-studied cost

reduction techniques to avoid biased results. Evolutionary Mutation Testing (EMT)

aims at generating a reduced set of mutants by means of an evolutionary algorithm,

which searches for potentially equivalent and difficult to kill mutants to guide on the

Chapter 1. Conclusion and Future Work 164

creation of new test cases. However, there was little evidence of its applicability to other

contexts beyond WS-BPEL compositions. This study explored its performance when

applied to C++ object-oriented programs thanks to a newly developed system, GiGAn.

The experiments revealed that EMT has stability among the tested programs and little

variation in the percentage of strong mutants found as the number of generated mutants

increases. They also support previous studies about EMT when compared to random

mutant selection, with better results in all case studies with high confidence.

In this thesis, we went a step further in estimating the ability of this technique to induce

the generation of test cases. Instead of measuring the relation between the percentage

of strong mutants and the number of mutants generated, we computed the extent to

which the test suite could be actually improved thanks to the mutants selected. We can

conclude from the results that the percentage of mutants generated with EMT is lower

than with the random strategy to obtain a test suite of the same size. In other words,

the results show that mutation testing can leverage this genetic algorithm to produce a

subset of mutants that leads to a further test suite improvement when compared to the

random selection of the same size of mutants. Additionally, another positive factor is

that the technique scales better for complex programs. Altogether, these experiments

confirm the promising results yielded by EMT in previous research studies.

Most of the studies on cost reduction techniques have analysed traditional mutants for

procedural languages like C. However, it remained unclear whether the benefits yielded by

those techniques could be extrapolated to other sets of operators, especially to class-level

operators which have shown to be of a different nature. In the conducted experiments in

this thesis applying selective mutation based on the best-valued operators for TSE and

TSR, we have observed that class operators may not benefit from operator-based selection

as much as traditional operators. Thus, it might be the case that, by using operator-

based selective mutation with class-based operators, it is not possible to reach the great

reduction and effectiveness obtained in similar studies addressing other sets of operators.

As for EMT, while this technique allows reducing the number of mutants generated, the

reduction was greater when mutation operators for WS-BPEL were applied. All these

results suggest that the effectiveness of object-oriented mutation testing may be more

related to particular mutants than to particular operators.

In our thesis, we have extended the selective approach for the evaluation of the operators

by considering not only operator-based selection (selection of some of the operators)

but also mutant-based selection (selection of some of the mutants). This resulted in

a more comprehensive operator evaluation that allowed us to undertake a comparative

study between operator-based and mutant-based selection. Moreover, we found this

double perspective necessary given the significant body of research that has called the

Chapter 1. Conclusion and Future Work 165

benefits of operator-based selection into question recently. As a first interesting finding,

the random selection of mutants turned out to be better than operator-based selective

mutation. However, maintaining a complete set of operators and generating mutants

from all of them with the same probability seems a more convenient approach, which

supports the idea that discarding mutants is more effective than discarding operators

in object-oriented mutation testing. Then, we proposed a new mutant-based selective

strategy following our rankings of operators. This mutant-based strategy, which we

call rank-based mutant selection, favours the selection of mutants from the best-valued

operators (those operators at the top of our rankings). To complete the selective study,

we have compared the results of using random and rank-based mutant selection. While

random mutant selection was found to be superior to operator-based mutant selection,

this novel study showed that the results of the rank-based strategy were better than

those of the random strategy, validating the operator evaluation in this thesis, both for

TSE and TSR.

As we have exposed in this thesis, there is a clear difference between finding hard-to-kill

mutants (when the test cases killing those mutants kill few other mutants at the same

time) and finding representative mutants of the whole set of mutants (when the test

cases killing those mutants also kill other mutants), but none of the authors in this field

had made this distinction before to the best of our knowledge. The differences found in

the operator classifications when they were evaluated regarding TSE and TSR validate

this double assessment. Therefore, this study suggests that a different sort of mutation

operators should be used depending on the goal, TSE or TSR. In practice and from

the operator-based selective perspective, the mutation tool should implement the full set

of mutation operators and should allow us to enable/disable each of the operators (or

alternatively each of the categories defined in the selective process). From the rank-based

selective perspective, the tool should allow us to indicate how many mutants we want to

generate, and then the tool should take into account the sort of mutation operators to

favour the generation of mutants from the best-valued operators. Therefore, the tester

might want to generate a different subset of mutants depending on:

1. The goal when applying mutation testing, TSE or TSR.

2. How thorough the testing process needs to be.

9.2 Future Perspectives

In this section, we suggest several investigation lines and work to undertake in the near

future.

Chapter 1. Conclusion and Future Work 166

• Mutation operators: As for the future work in this aspect, we will divide our

efforts between the refinement of our set of operators and the possibility of adding

new operators according to features not covered yet. Mutation testing is in continu-

ous development as well as the programming language itself, and we should update

our list of operators in accordance with this evolution. For instance, recent studies

have pointed to the usefulness of deletion operators (statement, variable, operator

and constant) [29, 32]. Moreover, new standards for C++ are being approved in

the last years (C++11, C++14 and C++17). Clang announced recently that it

had achieved a full C++11 and C++14 compliance and the project is starting to

take care of the new changes in the standard C++17. This fact could allow us to

keep using Clang us the underlying technology to locate and inject mutations if the

set of operators needs to be redefined in the future because of the new standards.

The application of MuCPP to new case studies can also lead to the detection of

new improvement rules in addition to the ones presented in this thesis, which could

be incorporated into the implementation of several operators. The review of these

standards can reveal novel mutation operators, but also some of the operators

already defined could need to be reconsidered because of the new features.

• Mutation system: MuCPP is currently a mutation system that generates all

the mutants contemplated by the mutation operators, except when the tool is ap-

plied in conjunction with the genetic algorithm thanks to GiGAn. This tool also

executes all mutants and test cases because it does not count with runtime optimi-

sations. As such, MuCPP has room for improving its efficiency and expanding the

functionalities. Regarding the generation of mutants, the system could avoid those

mutants not covered by the test suite as done by similar tools [40, 114]. As for the

execution of mutants, the same strategy could be used to avoid the execution of

those test cases that do not cover a mutant. Also, Trivial Compiler Equivalence

(TCE) proposed by Papadakis et al. [108] could be used to automatically detect

equivalent and duplicate mutants (see Section 2.4.1). A final goal is to study the

impact of these improvements on the efficiency of mutation testing. For example,

TCE has been integrated into MILU for C, but the performance of this technique

is unknown for object-oriented languages. Updating the mutation system (for in-

stance, adapting it to the new versions of Clang) and including new options to offer

greater flexibility are important aspects for its maintenance in the future.

• EMT improvements: The findings in this thesis and related studies on mutation

testing in the last years lead us to think that this technique can be further improved.

In this sense, the future line will follow a multi-objective approach. Three new

objectives could be integrated into the fitness function:

Chapter 1. Conclusion and Future Work 167

1. Coverage impact : Several papers have analysed the impact that mutations

have on the code coverage [107, 115]. Roughly speaking, those mutations

causing a great impact on the coverage of the test suite execution are less

likely to be equivalent mutations. EMT currently assigns the highest fitness

to potentially equivalent mutants, but it cannot distinguish between those

mutants that turn out to be equivalent and those that help design a new

test case. Analysing the coverage impact of the mutants could guide on the

selection of non-equivalent mutants with a high probability.

2. Scattering in the code: The genetic algorithm selects mutations without tak-

ing care of the location in which it is injected. An object-oriented program is

divided into different classes, which counts with different methods comprised

of multiple statements. Furthermore, some methods or even statements are

directly associated to specific object-oriented features (and thereby to partic-

ular class operators), such as constructors or exceptions. Therefore, spreading

mutations all over the code seems an important aspect so that all code items

are covered, as done by Schwarz et al. [116].

3. Scattering in the set of operators: This objective aligns with a finding in this

thesis. Given that Two-round random selection yielded better results than

One-round random selection (see Section 7.4), it is plausible to think that each

class operator is useful to address a different object-oriented feature. As such,

it is better to produce mutants from all operators, and this is not currently

taken into account by the genetic algorithm. Consequently, the algorithm

should favour the selection of mutants from operators barely applied so far.

As aforementioned, Papadakis et al. [108] devised the technique called TCE to de-

tect some equivalent mutants automatically by comparing an optimised executable

of the original program and the mutants. It could be interesting to combine both

TCE and the genetic algorithm to isolate some equivalent mutants and observe the

effect when applying this technique before or during the execution of the genetic

algorithm.

• Operator rankings: Despite the good performance of the operator classifications

shown in this thesis, it will be interesting to obtain more stable rankings based

on the results of a greater number of case studies and covering mutation operators

that were not evaluated because they did not generate any mutants in the programs

analysed. It would be interesting to apply our approach for the reduction of the

cost based on operator rankings to other sets of operators.

Selective mutation based on operator rankings is studied in advance in order to

incorporate this knowledge into the mutation tool, whereas the benefits of EMT

Chapter 1. Conclusion and Future Work 168

applies directly during the execution of the tool. In other words, while EMT uses

the current execution information to reduce the cost, the applied metrics make use

of the information once the test suite has been improved. As a result, the approach

of both techniques could be merged to further reduce the cost: EMT could only

generate mutants from the best-valued operators based on the ranking for TSR

and mutants could be generated in a rank-based manner instead of randomly.

• Operator-based vs mutant-based selective mutation: The performance of

mutant-based selective mutation in comparison with operator-based selection was

a surprising fact. The analysis of traditional operators has usually revealed great

redundancy among operators and, consequently, a subset of operators could sub-

sume the rest. Our research suggests that this high degree of redundancy does not

hold in the case of class-based operators. However, we feel that the application

of these two selective techniques should be explored further to know the extent to

which mutant-based selective mutation is superior to operator-based selection. For

example, we would like to examine if, despite this fact, we can still remove some

operators or can use both selective strategies together, as suggested by Zhang et

al. [136]. We should take into account that one of the basics of EMT is the genera-

tion of strong mutants from those operators that have generated them in previous

generations, so it is important to understand how much the nature of class oper-

ators can affect the performance of EMT.

In our thesis, we have proposed the technique called rank-based selective muta-

tion based on the rank selection method used in genetic algorithms. Despite the

good results, it would be interesting to compare the results of different selection

techniques, such as roulette wheel selection, tournament selection or stochastic

universal sampling.

9.3 Publications

This section presents the publications with contributions derived from this thesis, divided

into journals, book chapters and conferences and symposiums.

9.3.1 Journal articles

Software Testing, Verification and Reliability, 2017

Pedro Delgado-Pérez, Sergio Segura and Inmaculada Medina-Bulo

Chapter 1. Conclusion and Future Work 169

Assessment of C++ Object-Oriented Mutation Operators: A Selective Mutation Ap-

proach

Software Testing, Verification and Reliability. Available online. doi: 10.1002/stvr.1630

Impact factor: 1.082 - Q2 (JCR 2015)

Abstract : Mutation testing is an effective but costly testing technique. Several studies

have observed that some mutants can be redundant and therefore removed without af-

fecting its effectiveness. Similarly, some mutants may be more effective than others in

guiding the tester on the creation of high-quality test cases. Based on these findings,

we present an assessment of C++ class mutation operators by classifying them into two

rankings: the first ranking sorts the operators based on their degree of redundancy, and

the second regarding the quality of the tests they help to design. Both rankings are used

in a selective mutation study analysing the trade-off between the reduction achieved and

the effectiveness when using a subset of mutants. Experimental results consistently show

that leveraging the operators at the top of the two rankings, which are different, lead to

a significant reduction in the number of mutants with a minimum loss of effectiveness.

Information and Software Technology, 2017

Pedro Delgado-Pérez, Inmaculada Medina-Bulo, Francisco Palomo-Lozano, Antonio García-

Domínguez and Juan José Domínguez-Jiménez

Assessment of Class Mutation Operators for C++ with the MuCPP Mutation System

Information and Software Technology, 2017; volume 81, pages 169-184, ISSN 0950-5849,

doi: 10.1016/j.infsof.2016.07.002

Impact factor: 1.569 - Q1 (JCR 2015)

Abstract : Context: Mutation testing has been mainly analyzed regarding traditional

mutation operators involving structured programming constructs common in mainstream

languages, but mutations at the class level have not been assessed to the same extent.

This fact is noteworthy in the case of C++ , despite being one of the most relevant

languages including object-oriented features. Objective: This paper provides a complete

evaluation of class operators for the C++ programming language. MuCPP , a new system

devoted to the application of mutation testing to this language, was developed to this end.

This mutation system implements class mutation operators in a robust way, dealing with

the inherent complexity of the language. Method: MuCPP generates the mutants by

traversing the abstract syntax tree of each translation unit with the Clang API, and stores

mutants as branches in the Git version control system. The tool is able to detect duplicate

mutants, avoid system headers, and drive the compilation process. Then, MuCPP is

Chapter 1. Conclusion and Future Work 170

used to conduct experiments with several open-source C++ programs. Results: The

improvement rules listed in this paper to reduce unproductive class mutants have a

significant impact on the computational cost of the technique. We also calculate the

quantity and distribution of mutants generated with class operators, which generate far

fewer mutants than their traditional counterparts. Conclusions: We show that the tests

accompanying these programs cannot detect faults related to particular object-oriented

features of C++. In order to increase the mutation score, we create new test scenarios to

kill the surviving class mutants for all the applications. The results confirm that, while

traditional mutation operators are still needed, class operators can complement them

and help testers further improve the test suite.

Annals of Telecommunications, 2015

Pedro Delgado-Pérez, Inmaculada Medina-Bulo, J. J. Domínguez-Jiménez, Antonio García-

Domínguez and Francisco Palomo-Lozano

Class mutation operators for C++ object-oriented systems

Annals of Telecommunications 2015; 70(3-4):137-148, ISSN 0003-4347, doi: 10.1007/s12243-

014-0445-4

Impact factor: 0.722 - Q3 (JCR 2015)

Abstract : Mutation testing is a fault injection testing technique around which a great

variety of studies and tools for different programming languages have been developed.

Nevertheless, the mutation testing research with respect to C++ is pending. This paper

proposes a set of class mutation operators related to this language and its particular

object-oriented (OO) features. In addition, an implementation technique to apply muta-

tion testing based on the traversal of the abstract syntax tree (AST) is presented. Finally,

an experiment is conducted to study the operator behaviour with different C++ pro-

grams, suggesting their usefulness in the creation of complete test suites. The analysis

includes a Web service (WS) library, one of the domains where this technique can prove

useful, considering its challenging testing phase and that C++ is still a reference language

for critical distributed systems WS.

9.3.2 Book chapters

Encyclopedia of Information Science and Technology, 4th Edition

Pedro Delgado-Pérez, Inmaculada Medina-Bulo y Juan José Domínguez-Jiménez

Chapter 1. Conclusion and Future Work 171

Mutation Testing Applied to Object-Oriented Languages

Khosrow-Pour, M. (Ed.) Encyclopedia of Information Science and Technology, 4th Edi-

tion, IGI Global, 2018, doi: 10.4018/978-1-5225-2255-3

Encyclopedia of Information Science and Technology, 3rd Edition

Pedro Delgado-Pérez, Inmaculada Medina-Bulo y Juan José Domínguez-Jiménez

Mutation Testing

Khosrow-Pour, M. (Ed.) Encyclopedia of Information Science and Technology, 3rd Edi-

tion, pages 7212-7221, IGI Global, 2015, doi: 10.4018/978-1-4666-5888-2.ch710

9.3.3 Conferences and symposiums

CEC 2017

Pedro Delgado-Pérez, Inmaculada Medina-Bulo and Manuel Núñez

Using Evolutionary Mutation Testing to Improve the Quality of Test Suites

IEEE Congress on Evolutionary Computation 2017 (CEC 2017), accepted contribution.

Abstract: Mutation testing is a method used to assess and improve the fault detection

capability of a test suite by creating faulty versions, called mutants, of the system under

test. Evolutionary Mutation Testing (EMT), like selective mutation or mutant sampling,

was proposed to reduce the computational cost, which is a major concern when applying

mutation testing. This technique implements an evolutionary algorithm to produce a

reduced subset of mutants but with a high proportion of mutants that can help the

tester derive new test cases (strong mutants). In this paper, we go a step further in

estimating the ability of this technique to induce the generation of test cases. Instead

of measuring the percentage of strong mutants within the subset of generated mutants,

we compute how much the test suite is actually improved thanks to those mutants. In

our experiments, we have compared the extent to which EMT and the random selection

of mutants help to find missing test cases in C++ object- oriented systems. We can

conclude from our results that the percentage of mutants generated with EMT is lower

than with the random strategy to obtain a test suite of the same size and that the

technique scales better for complex programs.

Chapter 1. Conclusion and Future Work 172

SAC 2017

Pedro Delgado-Pérez, Inmaculada Medina-Bulo, Sergio Segura, Antonio García-Domínguez

and Juan José Domínguez-Jiménez

GiGAn: Evolutionary Mutation Testing for C++ Object-Oriented Systems

The 32nd ACM Symposium On Applied Computing (SAC 2017), accepted contribution.

Abstract: The reduction of the expenses of mutation testing should be based on well-

studied cost reduction techniques to avoid biased results. Evolutionary Mutation Test-

ing (EMT) aims at generating a reduced set of mutants by means of an evolutionary

algorithm, which searches for potentially equivalent and difficult to kill mutants to help

improve the test suite. However, there is little evidence of its applicability to other

contexts beyond WS-BPEL compositions. This study explores its performance when

applied to C++ object-oriented programs thanks to a newly developed system, GiGAn.

The conducted experiments reveal that EMT shows stable behavior in all the case studies,

where the best results are obtained when a low percentage of the mutants is generated.

They also support previous studies of EMT when compared to random mutant selection,

reinforcing its use for the goal of improving the fault detection capability of the test

suite.

JISBD 2016

Pedro Delgado-Pérez, Inmaculada Medina-Bulo, Sergio Segura, Antonio García-Domínguez

y Juan José Domínguez-Jiménez

Prueba de Mutación Evolutiva Aplicada a Sistemas Orientados a Objetos

XXI Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2016), 13–16 sep-

tiembre 2016, Salamanca, España

Resumen: A pesar del beneficio que puede reportar la prueba de mutaciones en el pro-

ceso de prueba de software, el coste que supone su aplicación siempre ha sido visto como

un obstáculo para una mayor acogida por parte de la industria. Por esta razón, se han

desarrollado diversas técnicas que tratan de paliar el problema, principalmente mediante

la reducción del número de mutantes que son generados. Entre ellas se encuentra la

Prueba de Mutación Evolutiva (PME), que propone el empleo de algoritmos evolutivos

para encontrar un subconjunto de mutantes que presenta mayor posibilidad de ayudar

a refinar el conjunto de casos de prueba empleado. La técnica solo había sido probada

con éxito en operadores para el lenguaje de programación WS-BPEL. En este artículo se

presentan los experimentos llevados a cabo aplicando la técnica de PME con mutantes

Chapter 1. Conclusion and Future Work 173

generados por operadores de mutación para C++ relacionados con la orientación a obje-

tos. Los resultados obtenidos, usando los parámetros considerados como más apropiados

para la configuración del algoritmo, revelan que la técnica también es más efectiva que

una estrategia aleatoria con operadores de clase para sistemas en C++.

SS-SSBE 2016

Pedro Delgado-Pérez

Evolutionary Mutation Testing Applied to Object-Oriented Systems.

First International Summer School on Search-Based Software Engineering (SS-SBSE

2016)

Abstract: Mutation testing is a powerful testing technique to assess and refine the fault-

revealing ability of a test suite, but it involves a high cost. Evolutionary Mutation

Testing proposes the generation of a subset of the mutants by means of an evolutionary

algorithm in order to reduce the cost. This algorithm favours that the subset contains

mutants with great potential to assist the tester in improving the test suite with new test

cases. This technique had been successfully applied to WS-BPEL compositions. In this

talk, we present the results when using class mutation operators in C++ object-oriented

systems.

ESCIM 2015

Pedro Delgado-Pérez, Inmaculada Medina-Bulo and Juan José Domínguez-Jiménez

Correct Application of Mutation Testing to the C++ Language

7th European Symposium on Computational Intelligence and Mathematics (ESCIM

2015), 7–10 october 2015, Cádiz, Spain.

Abstract: Success of mutation testing greatly depends on the mutation operators defined.

As a white-box technique, selecting specific mutants for each language addressed is ne-

cessary, but it should be accompanied by an implementation focused on the particular

details of the language. Only then we will be able to undertake a correct application

of the technique, obtaining exactly the mutants that should be generated. This paper

shows different C++-specific features that a mutation tool for this language should take

into account with a twofold goal: creating valid but also useful mutants. Refining the

implementation may reduce the computational cost of mutation testing application and

enhance the effectiveness of mutation operators.

Chapter 1. Conclusion and Future Work 174

JISBD 2015

Pedro Delgado-Pérez, Inmaculada Medina-Bulo y Juan José Domínguez-Jiménez

Herramienta para la Prueba de Mutaciones en el Lenguaje C++

XX Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2015), 15–17 septiembre

2015, Santander, España

Resumen: La prueba de mutaciones es una técnica basada en fallos en torno a la cual se

han elaborado herramientas para un amplio abanico de lenguajes de programación. Sin

embargo, el desarrollo de un marco de prueba de mutaciones no comercial para C++

estaba pendiente. En este artículo se presenta una herramienta que permite analizar

código C++, generar mutantes y ejecutar un conjunto de casos de prueba para obtener

resultados que nos permitan determinar su efectividad en la detección de errores en el

código. La herramienta está diseñada para permitir la inclusión de nuevos operadores

para cubrir cualquier característica del lenguaje. En este documento, el uso de la her-

ramienta se muestra a través de un operador de mutación al nivel de clase.

TAROT 2015

Pedro Delgado-Pérez

Advances in Mutation Testing Research for C++

11th International Summer School on Training And Research On Testing (TAROT 2015),

29 june–2 july 2015, Cádiz, Spain.

SGSOACS 2014

Pedro Delgado-Pérez

Advances in Mutation Testing Research for C++ with MuCPP

First Spanish-German Symposium on Applied Computer Science (SGSOACS 2014), 11

december 2014, Cádiz, Spain.

JISBD 2014

Pedro Delgado-Pérez, Inmaculada Medina-Bulo y Juan José Domínguez-Jiménez

Generación de Mutantes Válidos en el Lenguaje de Programación C++

Chapter 1. Conclusion and Future Work 175

XIX Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2014), 16–19 sep-

tiembre 2015, Cádiz, España

Resumen: La prueba de mutaciones es una técnica basada en fallos que se ha desar-

rollado alrededor de un amplio rango de lenguajes de programación. Sin embargo, la

construcción de un marco de trabajo de prueba de mutaciones no comercial para C++

ha sido pospuesto en favor de otros lenguajes, principalmente por la variedad de altern-

ativas que ofrece C++. Este artículo presenta una solución factible y completa para la

implementación de los operadores de mutación en C++, la cual se basa en la búsqueda

de patrones en el árbol de sintaxis abstracta (AST) que el compilador Clang genera a

partir del código fuente. Estos patrones se construyen según las reglas que determinan

los distintos operadores de mutación, permitiendo localizar los puntos del código en los

que es posible introducir una mutación. Asimismo, en el artículo se abordan distintas

situaciones que han de ser consideradas para la validez de los mutantes creados. Este

proceso se ilustra a través de un operador de mutación a nivel de clase, si bien este

enfoque sirve para crear operadores a cualquier nivel del lenguaje.

ICCGI 2014

Pedro Delgado-Pérez, Inmaculada Medina-Bulo and Juan José Domínguez-Jiménez

Analysis of the Development Process of a Mutation Testing Tool for the C++ Language

The Ninth International Multi-Conference on Computing in the Global Information Tech-

nology (ICCGI 2014), 22–26 june 2014, Seville, Spain.

Abstract : Mutation testing is a fault-based software testing technique to measure the

quality of a test suite depending on its ability to detect faults in the code. This technique

has been applied to an assortment of languages of very diverse nature since its inception

in the late 1970s. However, the researchers have postponed its development around C++

in favor of other mainstream languages. This paper aims to survey the mutation testing

research regarding C++, studying the existing tools and approaches. To the same extent,

we discuss the different aspects that should be taken into account in the construction of

a comprehensive mutation tool for this language, from the analysis of the code to the

execution of the mutants. In addition, we expound how the technique can be assessed

so that it can contribute effectively in the composition of a complete test suite. The

findings in this paper pose that the construction of a mutation tool for this language is

complex, but still realizable.

Chapter 1. Conclusion and Future Work 176

V JORPRESI

Pedro Delgado-Pérez, Inmaculada Medina-Bulo y Juan José Domínguez-Jiménez

Definición e Implementación de Operadores de Mutación a Nivel de Clase para el Len-

guaje de Programación C++

En las V Jornadas Predoctorales de la ESI, 20–21 mayo 2014, Cádiz, España.

Resumen: La prueba de mutación es una técnica de prueba de software alrededor de la

cual se han desarrollado diversas herramientas para varios lenguajes. Sin embargo, no

existe ningún marco de trabajo para el lenguaje C++ en el que se traten operadores

relativos a estructuras más complejas como las de la orientación a objetos. En este

trabajo se presentan los avances en el trabajo de aplicación de la prueba de mutaciones a

este lenguaje, desde el conjunto definido de operadores de clase hasta el sistema utilizado

para la implementación de los mismos, lo cual permite la inserción de los errores que

modelan en el código.

PROLE 2013

Pedro Delgado-Pérez, Inmaculada Medina-Bulo, Juan José-Domínguez Jiménez y Anto-

nio García-Domínguez.

Operadores de Mutación a Nivel de Clase para el Lenguaje C++

XII Jornadas sobre Programación y Lenguajes (PROLE 2013), 18–20 septiembre 2013,

Madrid, España.

Resumen: La prueba de mutaciones es una técnica basada en fallos alrededor de la cual

existe una gran variedad de estudios de investigación y se han elaborado herramientas

para un amplio abanico de lenguajes de programación. Sin embargo, el desarrollo re-

specto a C++, uno de los lenguajes orientados a objetos más populares y usados, es

escaso. Este trabajo aborda esta cuestión presentando un conjunto de operadores de

mutación de acuerdo a las propiedades de la orientación a objetos (a nivel de clase) y

a las características propias del lenguaje C++. También se ofrece una primera visión

general del uso de esos operadores para analizar programas en este lenguaje, a partir de

un experimento reducido con los operadores.

IV JORPRESI

Pedro Delgado-Pérez, Inmaculada Medina-Bulo y Juan José Domínguez-Jiménez.

Chapter 1. Conclusion and Future Work 177

Aplicación de la Técnica de Prueba de Mutación Evolutiva a C++

En las IV Jornadas Predoctorales de la ESI, 10–12 diciembre 2012, Cádiz, España.

Resumen: La prueba de mutación es una técnica de prueba basada en fallos de la que

existen gran diversidad de estudios y aplicaciones para un amplio abanico de lenguajes.

Sin embargo, el desarrollo con respecto a C++, uno de los lenguajes orientados a objetos

más populares, es prácticamente inexistente. En este trabajo se presentan un conjunto

de operadores de mutación asociados a este lenguaje y se propone la creación de un nuevo

framework que nos permita aplicar esta técnica con el lenguaje C++.

Appendix A

Case Studies

In this appendix, we describe the programs and libraries used in the exper-

iments throughout this thesis. We also provide several metrics about the

programs which are relevant for the experiments in Chapters 5, 6 and 7.

A.1 Description

Three programs were chosen from the LLVM 3.2 test-suite [85], containing pieces of code

written in C/C++ (most of them taken from examples in books). These programs are

appropriate to observe exemplary mutations in Section 5.2.1. Namely, the programs

garage, family and simul from “MultiSource/Benchmarks/Prolangs-C++” were used:

• Garage, with a class modelling a parking where two kinds of vehicles (represented

by two subclasses) are parked and released.

• Family, with three classes simulating the hierarchy grandfather-father-son, sharing

some attributes.

• Simul, modelling the function of a cursor on a screen.

Other seven known open-source programs and libraries were used to apply the set of

operators to real applications. They are listed below, showing between parentheses the

abbreviation used to refer to these programs in the tables in this thesis:

• Matrix TCL Pro (Tcl) [94]: library for performing matrix algebra calculations in

C++ programs.

179

Appendix A. Case Studies 180

• XmlRpc++ (Rpc) [130]: library implementing the XML-RPC protocol to incor-

porate client-server communication through HTTP support into other C++ pro-

grams.

• Dolphin (Dph) [41]: default navigational file manager used by desktop applications

in KDE.

• Tinyxml2 (Txm) [123]: lightweight and efficient XML parser that can be integrated

into C++ applications.

• KMyMoney (Kmy) [79]: KDE desktop application for personal finance manage-

ment.

• QtDom (Dom) [113]: Qt module that provides a C++ implementation of the DOM

standard.

• KatePart (Kap) [74]: text editor component with many advanced features, common

in the KDE desktop environment.

The selected libraries are reused in many other applications. For instance, XmlRpc++

is used in SIREMIS (Open-Source Web Management Interface for SIP Routing En-

gines)1 and ROS (Robot Operating System)2. In the case of Tinyxml2, we can mention

mFAST 3, an efficient implementation of the FAST protocol for the communication of

high-volume data market between financial institutions with low latency. KatePart is

part of various popular KDE applications, such as the text editors Kate and Kwrite, the

browser Konqueror or the IDE KDevelop.

Apart from the widespread use of these programs, we selected them because they were

accompanied by non-trivial test suites. In these experiments, we seek to estimate the fault

detection ability of these test suites with regard to object-oriented features. Furthermore,

adequate test suites are required to calculate the metrics in Chapter 7, so starting from

the non-trivial test suites distributed with the aforementioned programs allows us to

manually extend it with new test cases based on surviving mutants.
1http://siremis.asipto.com
2http://www.ros.org
3http://sett.ociweb.com/sett/settOct2013.html

http://siremis.asipto.com
http://www.ros.org
http://sett.ociweb.com/sett/settOct2013.html

Appendix A. Case Studies 181

Table A.1: Metrics about the programs used in the experiments in Chapter 5

Measure TCL RPC TXM KMY KAP

Classes 9 13 20 68 365
Lines of code 3,228 2,194 2,620 29,094 57,833
Constructors (mean) 3.0 1.5 0.9 1.7 0.9
Methods (mean) 21.1 11.2 15.6 21.5 14.5
Attributes (mean) 2.6 3.8 2.9 4.8 5.3
Inheriting classes 0 5 8 27 135
Inherited members (mean) 0.0 6.6 41.1 18.9 20.9
Depth inheritance (max.) 0 1 1 2 2
Direct bases (max.) 0 1 1 3 14
Test suite (seconds) 0.5 0.8 1.7 4.0 141.1

Table A.2: Number of classes in the analysed programs by range of lines of code

TCL RPC TXM KMY KAP Total
Range C C% C C% C C% C C% C C% C C%

0-100 7 77.8 7 53.9 13 65.0 38 55.9 245 67.1 310 65.3
101-300 1 11.1 3 23.0 3 15.0 12 17.6 67 18.4 86 18.1
301-500 0 0.0 2 15.4 3 15.0 6 8.8 25 6.8 36 7.6
+500 1 11.1 1 7.7 1 5.0 12 17.6 28 7.7 43 9.0

A.2 Features

Experiments in Chapter 5

Different characteristics and measurements of the real programs used in the experiments

conducted in Chapter 5 are collected in Table A.1, providing an overall picture of their

complexity. We also include the time that the original programs spend executing their

test suites. Table A.2 complements the information for the quantitative analysis by

classifying the classes of these programs into four ranges according to the lines of code.

For each program, the number of classes belonging to each range (C) and the overall

percentage (C%) are shown. The last column presents the total percentage of classes

within each range.

Experiments in Chapter 6

Table A.3 shows different metrics related to the experiments in Chapter 6, divided by:

• Distribution of mutants: total, valid and strong mutants (the percentage of strong

mutants with respect to the set of valid mutants is also shown).

Appendix A. Case Studies 182

• Size of the test suites: size of the original test suite, adequate test suite after

adding new test cases (between parentheses, the number of test cases additionally

modified) and minimal test suite.

We can remark from this table that MuCPP generates a different percentage of strong

mutants for these applications with the test suite distributed with them.

Table A.3: Metrics about the programs used in the experiments in Chapter 6

TCL DPH TXM DOM

Mutants

Total 137 219 614 1,146
Valid 135 208 433 681
Strong 45 103 159 348
% Strong mutants 33.3% 49.5% 36.7% 51.1%

Test suite

|Original T | 17 61 57 46
|Adequate T | 24(3) 70(5) 62(3) 56(4)
|Minimal T | 15 22 15 25

Experiments in Chapter 7

Table A.4 depicts several metrics about the case studies used in the experiments in

Chapter 7:

• Features: number of classes, lines of code and mean of methods in the classes.

• Mutants: total of mutants, percentage of equivalent mutants and percentage of

undecided mutants [117]. We classify as undecided those mutants for which we are

unable to ascertain the condition of equivalence with high confidence. We use this

term to avoid skewing of results when computing the metrics.

• Size of the test suites: size of the original test suite, adequate test suite after

adding new test cases (between parentheses, the number of test cases additionally

modified) and minimal test suite.

Table A.5 shows a breakdown of the total number of mutants and their classification into

dead (D) and equivalent (E), divided by case study and mutation operator. The number

of undecided mutants corresponds to the cases where the sum of dead and equivalent

mutants is not equal to the number of mutants (M) in Total.

Notice that:

• For the sake of simplicity, we have duplicated the data from Table A.1 for some of

the programs.

Appendix A. Case Studies 183

Table A.4: Features of the case studies used in the experiments in Chapter 7

TCL RPC DPH TXM KMY DOM

Features

Classes 9 13 13 20 17 11
Lines of code 3,228 2,194 3,667 2,620 13,709 2,117
Methods (mean) 21.1 11.2 16.4 15.6 35.6 23.6

Mutants

Valid 135 127 208 433 284 681
% Equivalent 14.8 31.5 33.2 21.0 30.6 34.7
% Undecided 0 0 4.8 7.4 1.4 1.5

Test suite

|Original T | 17 26 61 57 241 46
|Adequate T | 24(3) 34(5) 70(5) 62(3) 248(10) 56(4)
|Minimal T | 15 15 22 15 36 25

Table A.5: Mutants generated in each case study by operator (M: mutants; D: dead;
E: equivalent)

Op.
TCL RPC DPH TXM KMY DOM Total

D E D E D E D E D E D E M D E

IHD 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0
IHI 0 0 2 2 0 0 41 6 8 15 21 25 120 72 48
ISD 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0
ISI 0 0 2 1 9 2 0 0 0 3 1 1 19 12 7
IOD 0 0 1 2 15 3 24 1 1 0 28 2 79 69 8
IOP 0 0 0 0 0 0 8 0 0 0 0 2 10 8 2
IOR 0 0 0 15 3 27 10 1 0 0 0 1 57 13 44
IPC 0 0 1 0 2 3 0 0 12 6 8 0 32 23 9
PCI 0 0 2 1 0 0 138 20 14 1 293 155 659 447 177
PMD 0 0 0 0 0 0 0 3 0 1 0 4 8 0 8
PPD 0 0 0 1 0 0 5 2 4 14 2 12 42 11 29
PNC 0 0 0 0 0 0 0 0 0 0 2 0 2 2 0
OMD 38 8 9 1 2 1 23 14 9 4 16 6 131 97 34
OMR 33 1 10 0 5 1 0 0 32 0 16 0 98 96 2
OAN 0 0 0 0 0 0 0 0 3 4 0 0 7 3 4
MCO 3 0 38 10 68 7 18 1 76 7 36 7 285 239 32
MCI 0 0 0 0 0 0 13 26 0 0 0 0 39 13 26
EHC 0 0 1 1 0 0 0 0 1 5 0 0 8 2 6
CTD 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
CTI 0 0 0 0 2 0 0 0 0 0 1 0 3 3 0
CID 38 2 14 3 23 18 24 10 26 22 6 9 196 131 64
CDC 0 0 2 0 0 0 3 0 4 1 0 0 10 9 1
CDD 0 2 2 3 0 2 3 3 2 2 0 4 23 7 16
CCA 3 7 2 0 0 5 0 4 0 2 4 8 37 9 26

Total 115 20 87 40 129 69 310 91 193 87 435 236 1,868 1,269 543

Appendix A. Case Studies 184

• The metrics for KMyMoney in Table A.1 and Table A.4 differ because the latter

refers to a subset of the source files of this program.

• A mutant generated by PPD in Tinyxml2 was classified into the set of equivalent

mutants in the experiments in Section 5.1.3 (see Table 5.8), but it was found killable

in a second review of the mutants. The percentage of equivalence in that table also

differs from the percentage of equivalence shown in Table A.4 because some of the

mutants that were classified as equivalent were later classified as undecided.

Appendix B

Useful Concepts

In this appendix, we group together several concepts that are used in different

chapters of this thesis. Namely, we describe and explain several terms related

to the execution of mutants and the properties of test suites.

B.1 Execution Matrix

An execution matrix contains the whole information about the execution of the mutants

on a test suite. The rows in the execution matrix represent the mutants and the columns

represent the test cases. Let M the set of mutants and T the set of test cases. The

execution matrix with size |M | × |T | stores the result of running each test case against

each mutant. That result depends on the behaviour of the mutant when compared with

the original program. A mutant x killed by a test case y is represented with the value 1

in the intersection of the row x and the column y. On the contrary, the value 0 denotes

that the mutation is not revealed by that test case.

Execution matrices are used throughout this thesis to (among others):

• Classify mutants according to the values in the matrix.

• Calculate the used metrics.

• Illustrate examples.

• Compute the fitness function of the mutants when applying EMT.

A mutant, represented by a row in the execution matrix, is said to be:

185

Appendix B. Useful Concepts 186

test1 test2 test3 test4 test5

m1 1 0 0 0 0
m2 0 0 1 0 0
m3 0 0 1 0 0
m4 0 0 0 1 0
m5 0 0 0 0 1
m6 1 0 0 1 1
m7 1 0 1 0 1
m8 0 0 1 1 1
m9 0 1 0 0 0
m10 0 0 0 1 0

Figure B.1: Example of matrix execution with size 10× 5

• Alive when the row is filled with the value 0.

• Dead when there is at least one entry with the value 1 in the row.

Invalid mutants are also represented in the execution matrix with rows filled with the

value 2. Furthermore, Estero-Botaro et al. [44] defined several other terms to classify

mutants (see Section 2.4.4):

• A weak mutant1 is killed by every test case in the test suite. It can be identified

as a row filled with the value 1.

• A resistant mutant is killed by a single test case, and it is identified as a row

filled with the value 0 except for one entry with the value 1. In Figure B.1, the

mutant 1 (m1) is a resistant mutant.

• A resistant hard to kill mutant is killed by a single test case which only kills

that mutant. It is identified as a row with a single entry y with the value 1, where

the rest of the entries in the column y are filled with the value 0. In Figure B.1,

m1 is resistant but not resistant hard to kill because test1, which kills that mutant,

also kills the mutants m6 and m7. The mutant 9 does represent a resistant hard

to kill mutant.

Note that:

• We cannot find a weak and a resistant hard to kill mutant simultaneously in the

same execution matrix.
1Please, do not confuse weak mutants with weak mutation (see Section 2.4.2).

Appendix B. Useful Concepts 187

• We also use the term weak in Chapter 6 to refer to those mutants which are not

strong.

• The concept difficult to kill mutant used in Chapter 6 is equivalent to the concept

resistant hard to kill mutant.

• In Chapter 4, we use the term trivial mutant to indicate that every test case

covering its mutation will kill the mutant. In contrast, a weak mutant is killed by

all the test cases of a particular test suite, which does not necessarily imply that

there might exist other test cases that do not kill the mutant.

B.2 Properties of a Test Suite

We can ascribe different properties to a test suite when analysing the execution with

respect to a set of mutants. To that end, the execution matrix can be useful to ascertain

these properties:

• Non-adequate test suite: when it does not detect the full set of non-equivalent

mutants, that is, there are non-equivalent mutants that remain alive when executed

on the test suite.

• Adequate test suite: when it detects all non-equivalent mutants. In other words,

the mutation adequacy score associated with an adequate test suite is 100%.

• Non-redundant test suite: when none of the test cases in an adequate test

suite can be removed without losing the adequacy of the test suite (there are no

redundant test cases).

• Minimal test suite: when a non-redundant test suite is of the minimum size,

that is, there are no other non-redundant test suites of smaller size.

The test suite in Figure B.1 is adequate and non-redundant, as we cannot discard any

of the test cases maintaining the same mutation score. It is also a minimal test suite, as

we cannot find a subset of these test cases that kills all those mutants.

We have to note that our concepts of non-redundant and minimal test suite are called

minimal and minimum test suite respectively by Amman et al. [6]. Therefore, in our

work we focus on minimal test suites, which are called minimum test suites by the

aforementioned authors.

In the experiments in this thesis, we use the random adequate and minimal test suite

generated by the exact algorithm that Estero-Botaro et al. [45] used in their study. Any

Appendix B. Useful Concepts 188

metric is dependent on the test suite. Thus, we make use of minimal test suites because

that property prevents the results from being distorted by unproductive test cases, as

pointed by Estero-Botaro et al. [44]. This allows us to properly assess the different

metrics used in this thesis.

Bibliography

[1] A. T. Acree, Jr. On Mutation. PhD thesis, Atlanta, GA, USA, 1980.

[2] K. Adamopoulos, M. Harman, and R. M. Hierons. How to overcome the equival-

ent mutant problem and achieve tailored selective mutation using co-evolution. In

GECCO 2004: Proceedings of the Genetic and Evolutionary Computation Con-

ference, pages 1338–1349, 2004. doi: 10.1007/978-3-540-24855-2_155. URL

http://dx.doi.org/10.1007/978-3-540-24855-2_155.

[3] H. Agrawal, R. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E. Krauser, R. Martin,

A. Mathur, and E. Spafford. Design of mutant operators for the C programming

language. Technical report, Technical Report SERC-TR-41-P, Software Engineer-

ing Research Center, Purdue University, West Lafayette, Indiana, Mar. 1989.

[4] Z. Ahmed, M. Zahoor, and I. Younas. Mutation operators for object-oriented

systems: A survey. In The 2nd International Conference on Computer and Auto-

mation Engineering (ICCAE), volume 2, pages 614–618, feb. 2010. doi: 10.1109/

ICCAE.2010.5451692. URL http://dx.doi.org/10.1109/ICCAE.2010.5451692.

[5] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University

Press, New York, NY, USA, 1st edition, 2008. ISBN 0521880386, 9780521880381.

[6] P. Ammann, M. E. Delamaro, and J. Offutt. Establishing theoretical minimal sets

of mutants. In Proceedings of the 2014 IEEE International Conference on Software

Testing, Verification, and Validation, ICST ’14, pages 21–30, Washington, DC,

USA, 2014. IEEE Computer Society. ISBN 978-1-4799-2255-0. doi: 10.1109/ICST.

2014.13. URL http://dx.doi.org/10.1109/ICST.2014.13.

[7] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool

for testing experiments? In Proceedings of the 27th International Conference on

Software Engineering, ICSE ’05, pages 402–411, New York, NY, USA, 2005. ACM.

ISBN 1-58113-963-2. URL http://dx.doi.org/10.1145/1062455.1062530.

[8] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin. Using mutation

analysis for assessing and comparing testing coverage criteria. IEEE Transactions

189

http://dx.doi.org/10.1007/978-3-540-24855-2_155
http://dx.doi.org/10.1109/ICCAE.2010.5451692
http://dx.doi.org/10.1109/ICST.2014.13
http://dx.doi.org/10.1145/1062455.1062530

Bibliography 190

on Software Engineering, 32(8):608–624, Aug 2006. ISSN 0098-5589. doi: 10.1109/

TSE.2006.83. URL http://dx.doi.org/10.1109/TSE.2006.83.

[9] A. Arcuri and L. Briand. A Hitchhiker’s guide to statistical tests for assessing

randomized algorithms in software engineering. Software Testing, Verification and

Reliability, 24(3):219–250, May 2014. ISSN 0960-0833. doi: 10.1002/stvr.1486.

URL http://dx.doi.org/10.1002/stvr.1486.

[10] R. Baker and I. Habli. An empirical evaluation of mutation testing for improving

the test quality of safety-critical software. IEEE Transactions on Software En-

gineering, 39(6):787–805, June 2013. ISSN 0098-5589. doi: 10.1109/TSE.2012.56.

URL http://dx.doi.org/10.1109/TSE.2012.56.

[11] D. Baldwin and F. Sayward. Heuristics for Determining Equivalence of Program

Mutations. Department of Computer Science: Research report. Yale University,

Department of Computer Science, 1979.

[12] A. S. Banzi, T. Nobre, G. B. Pinheiro, J. C. G. Árias, A. Pozo, and S. R. Vergilio.

Selecting mutation operators with a multiobjective approach. Expert Systems with

Applications, 39(15):12131–12142, 2012. ISSN 0957-4174. doi: 10.1016/j.eswa.

2012.04.041. URL http://dx.doi.org/10.1016/j.eswa.2012.04.041.

[13] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi. Toward the determination

of sufficient mutant operators for C. Software Testing, Verification and Reliability,

11(2):113–136, 2001. ISSN 1099-1689. doi: 10.1002/stvr.226. URL http://dx.

doi.org/10.1002/stvr.226.

[14] M. B. Bashir and A. Nadeem. Object oriented mutation testing: A survey.

In International Conference on Emerging Technologies (ICET), 2012, pages 1–6,

Oct 2012. doi: 10.1109/ICET.2012.6375480. URL http://dx.doi.org/10.1109/

ICET.2012.6375480.

[15] M. B. Bashir and A. Nadeem. A fitness function for evolutionary mutation testing

of object-oriented programs. In Emerging Technologies (ICET), 2013 IEEE 9th In-

ternational Conference on, pages 1–6, Dec 2013. doi: 10.1109/ICET.2013.6743531.

URL http://dx.doi.org/10.1109/ICET.2013.6743531.

[16] E. Blanco-Muñoz, A. García-Domínguez, J. J. Domínguez-Jiménez, and I. Medina-

Bulo. Towards higher-order mutant generation for WS-BPEL. In Proceedings of

the International Conference on e-Business (ICE-B), 2011, pages 1–6. IEEE, 2011.

http://dx.doi.org/10.1109/TSE.2006.83
http://dx.doi.org/10.1002/stvr.1486
http://dx.doi.org/10.1109/TSE.2012.56
http://dx.doi.org/10.1016/j.eswa.2012.04.041
http://dx.doi.org/10.1002/stvr.226
http://dx.doi.org/10.1002/stvr.226
http://dx.doi.org/10.1109/ICET.2012.6375480
http://dx.doi.org/10.1109/ICET.2012.6375480
http://dx.doi.org/10.1109/ICET.2013.6743531

Bibliography 191

[17] I. Bluemke and K. Kulesza. Reduction in mutation testing of Java classes. In

9th International Conference on Software Engineering and Applications (ICSOFT-

EA), 2014, pages 297–304, Aug 2014. doi: 10.5220/0004992102970304. URL http:

//dx.doi.org/10.5220/0004992102970304.

[18] J. Boubeta-Puig, A. García-Domínguez, and I. Medina-Bulo. Analogies and dif-

ferences between mutation operators for WS-BPEL 2.0 and other languages. In

Proceedings of the 2011 IEEE Fourth International Conference on Software Test-

ing, Verification and Validation Workshops (ICSTW), page 398–407, Berlin, Ger-

many, 2011. IEEE. ISBN 978-0-7695-4345-1. doi: 10.1109/ICSTW.2011.52. URL

http://dx.doi.org/10.1109/ICSTW.2011.52. Print ISBN: 978-1-4577-0019-4.

[19] P. Bourque and e. R.E. Fairley, editors. Guide to the Software Engineering Body

of Knowledge, Version 3.0. IEEE Computer Society, 2014. URL http://www.

swebok.org.

[20] T. A. Budd. Mutation Analysis of Program Test Data. PhD thesis, Yale University,

1980.

[21] P. Chevalley. Applying mutation analysis for object-oriented programs using a re-

flective approach. In Software Engineering Conference, 2001. APSEC 2001. Eighth

Asia-Pacific, pages 267–270, Dec 2001. doi: 10.1109/APSEC.2001.991487.

[22] Clang. Clang: a C language family frontend for LLVM. URL http://clang.llvm.

org. Last access: 2016.10.14.

[23] M. Daran and P. Thévenod-Fosse. Software error analysis: A real case study

involving real faults and mutations. SIGSOFT Software Engineering Notes, 21(3):

158–171, May 1996. ISSN 0163-5948. doi: 10.1145/226295.226313. URL http:

//dx.doi.org/10.1145/226295.226313.

[24] A. A. L. de Oliveira, C. G. Camilo-Junior, and A. M. R. Vincenzi. A coevolutionary

algorithm to automatic test case selection and mutant in mutation testing. In IEEE

Congress on Evolutionary Computation, 2013, pages 829–836, June 2013. doi: 10.

1109/CEC.2013.6557654. URL http://dx.doi.org/10.1109/CEC.2013.6557654.

[25] M. Delahaye and L. du Bousquet. Selecting a software engineering tool: lessons

learnt from mutation analysis. Software: Practice and Experience, 45(7):875–891,

2015. ISSN 1097-024X. doi: 10.1002/spe.2312. URL http://dx.doi.org/10.

1002/spe.2312.

[26] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Interface mutation: An

approach for integration testing. IEEE Transactions on Software Engineering, 27

http://dx.doi.org/10.5220/0004992102970304
http://dx.doi.org/10.5220/0004992102970304
http://dx.doi.org/10.1109/ICSTW.2011.52
http://www.swebok.org
http://www.swebok.org
http://clang.llvm.org
http://clang.llvm.org
http://dx.doi.org/10.1145/226295.226313
http://dx.doi.org/10.1145/226295.226313
http://dx.doi.org/10.1109/CEC.2013.6557654
http://dx.doi.org/10.1002/spe.2312
http://dx.doi.org/10.1002/spe.2312

Bibliography 192

(3):228–247, Mar. 2001. ISSN 0098-5589. doi: 10.1109/32.910859. URL http:

//dx.doi.org/10.1109/32.910859.

[27] M. E. Delamaro, J. C. Maldonado, and A. M. R. Vincenzi. Proteum/IM 2.0: An

Integrated Mutation Testing Environment, pages 91–101. Springer US, Boston,

MA, 2001. ISBN 978-1-4757-5939-6. doi: 10.1007/978-1-4757-5939-6_17. URL

http://dx.doi.org/10.1007/978-1-4757-5939-6_17.

[28] M. E. Delamaro, L. Deng, N. Li, V. H. S. Durelli, and A. J. Offutt. Growing a

reduced set of mutation operators. In Brazilian Symposium on Software Engin-

eering (SBES), 2014, pages 81–90, Sept 2014. doi: 10.1109/SBES.2014.14. URL

http://dx.doi.org/10.1109/SBES.2014.14.

[29] M. E. Delamaro, J. Offutt, and P. Ammann. Designing deletion mutation operators.

In Proceedings of the 2014 IEEE International Conference on Software Testing,

Verification, and Validation, ICST ’14, pages 11–20, Washington, DC, USA, 2014.

IEEE Computer Society. ISBN 978-1-4799-2255-0. doi: 10.1109/ICST.2014.12.

URL http://dx.doi.org/10.1109/ICST.2014.12.

[30] R. DeMillo, R. Lipton, and F. Sayward. Hints on test data selection: Help for the

practicing programmer. Computer, 11(4):34–41, Apr. 1978. ISSN 0018-9162.

[31] R. DeMillo, E. Krauser, and A. Mathur. Compiler-integrated program muta-

tion. In Computer Software and Applications Conference, 1991. COMPSAC

’91., Proceedings of the Fifteenth Annual International, pages 351–356, Sep 1991.

doi: 10.1109/CMPSAC.1991.170202. URL http://dx.doi.org/10.1109/CMPSAC.

1991.170202.

[32] L. Deng, J. Offutt, and N. Li. Empirical evaluation of the statement deletion muta-

tion operator. In 2013 IEEE Sixth International Conference on Software Testing,

Verification and Validation, pages 84–93, March 2013. doi: 10.1109/ICST.2013.20.

URL http://dx.doi.org/10.1109/ICST.2013.20.

[33] A. Derezińska. Object-oriented mutation to assess the quality of tests. In EUR-

OMICRO Conference, 2003. Proceedings. 29th, pages 417–420, Belek, Turkey,

2003. IEEE Computer Society. ISBN 0-7695-1996-2. doi: 10.1109/EURMIC.2003.

1231626. URL http://dx.doi.org/10.1109/EURMIC.2003.1231626.

[34] A. Derezińska. Quality assessment of mutation operators dedicated for C# pro-

grams. In Proceedings of VI International Conference on Quality Software, pages

227–234, Beijing (China), Oct. 2006. IEEE Computer Society. ISBN 0-7695-2718-

3. doi: 10.1109/QSIC.2006.51. URL http://dx.doi.org/10.1109/QSIC.2006.51.

ISSN 1550-6002.

http://dx.doi.org/10.1109/32.910859
http://dx.doi.org/10.1109/32.910859
http://dx.doi.org/10.1007/978-1-4757-5939-6_17
http://dx.doi.org/10.1109/SBES.2014.14
http://dx.doi.org/10.1109/ICST.2014.12
http://dx.doi.org/10.1109/CMPSAC.1991.170202
http://dx.doi.org/10.1109/CMPSAC.1991.170202
http://dx.doi.org/10.1109/ICST.2013.20
http://dx.doi.org/10.1109/EURMIC.2003.1231626
http://dx.doi.org/10.1109/QSIC.2006.51

Bibliography 193

[35] A. Derezińska. Advanced mutation operators applicable in C# programs, pages

283–288. Springer US, Boston, MA, 2007. ISBN 978-0-387-39388-9. doi: 10.1007/

978-0-387-39388-9_27. URL http://dx.doi.org/10.1007/978-0-387-39388-9_

27.

[36] A. Derezińska and K. Halas. Experimental evaluation of mutation testing ap-

proaches to Python programs. In IEEE Seventh International Conference on Soft-

ware Testing, Verification and Validation Workshops (ICSTW), pages 156–164,

March 2014. doi: 10.1109/ICSTW.2014.24. URL http://dx.doi.org/10.1109/

ICSTW.2014.24.

[37] A. Derezińska and K. Kowalski. Object-oriented mutation applied in common

intermediate language programs originated from C#. In IEEE Fourth International

Conference on Software Testing, Verification and Validation Workshops (ICSTW),

2011, pages 342–350, 2011. doi: 10.1109/ICSTW.2011.54. URL http://dx.doi.

org/10.1109/ICSTW.2011.54.

[38] A. Derezińska and M. Rudnik. Quality evaluation of object-oriented and stand-

ard mutation operators applied to C# programs. In Objects, Models, Compon-

ents, Patterns, volume 7304 of Lecture Notes in Computer Science, pages 42–

57. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-30560-3. doi: 10.1007/

978-3-642-30561-0_5. URL http://dx.doi.org/10.1007/978-3-642-30561-0_

5.

[39] A. Derezińska and A. Szustek. CREAM - A system for object-oriented mutation

of C# programs. Annals Gdansk University of Technology Faculty of ETI, (5):

389–406, 2007.

[40] A. Derezińska and A. Szustek. Object-oriented testing capabilities and perform-

ance evaluation of the C# mutation system. In Advances in Software Engineering

Techniques, pages 229–242. Springer, 2012. doi: 10.1007/978-3-642-28038-2_18.

URL http://dx.doi.org/10.1007/978-3-642-28038-2_18.

[41] Dolphin. Dolphin. https://www.kde.org/applications/system/dolphin. Last

access: 2016.10.14.

[42] J. J. Domínguez-Jiménez, A. Estero-Botaro, A. García-Domínguez, and I. Medina-

Bulo. GAmera: an automatic mutant generation system for WS-BPEL com-

positions. In Proceedings of the 7th IEEE European Conference on Web Ser-

vices, pages 97–106, Eindhoven, The Netherlands, Nov. 2009. IEEE Computer

Society Press. ISBN 978-0-7695-3854-9. doi: 10.1109/ECOWS.2009.18. URL

http://dx.doi.org/10.1109/ECOWS.2009.18.

http://dx.doi.org/10.1007/978-0-387-39388-9_27
http://dx.doi.org/10.1007/978-0-387-39388-9_27
http://dx.doi.org/10.1109/ICSTW.2014.24
http://dx.doi.org/10.1109/ICSTW.2014.24
http://dx.doi.org/10.1109/ICSTW.2011.54
http://dx.doi.org/10.1109/ICSTW.2011.54
http://dx.doi.org/10.1007/978-3-642-30561-0_5
http://dx.doi.org/10.1007/978-3-642-30561-0_5
http://dx.doi.org/10.1007/978-3-642-28038-2_18
https://www.kde.org/applications/system/dolphin
http://dx.doi.org/10.1109/ECOWS.2009.18

Bibliography 194

[43] J. J. Domínguez-Jiménez, A. Estero-Botaro, A. García-Domínguez, and I. Medina-

Bulo. Evolutionary mutation testing. Information and Software Technology, 53

(10):1108–1123, Oct. 2011. ISSN 0950-5849. doi: 10.1016/j.infsof.2011.03.008.

URL http://dx.doi.org/10.1016/j.infsof.2011.03.008.

[44] A. Estero-Botaro, F. Palomo-Lozano, and I. Medina-Bulo. Quantitative eval-

uation of mutation operators for WS-BPEL compositions. In Third Interna-

tional Conference on Software Testing, Verification, and Validation Workshops

(ICSTW), 2010, pages 142–150, 2010. doi: 10.1109/ICSTW.2010.36. URL

http://dx.doi.org/10.1109/ICSTW.2010.36.

[45] A. Estero-Botaro, F. Palomo-Lozano, I. Medina-Bulo, J. J. Domínguez-Jiménez,

and A. García-Domínguez. Quality metrics for mutation testing with applications

to WS-BPEL compositions. Software Testing, Verification and Reliability, 25(5-7):

536–571, 2015. ISSN 1099-1689. doi: 10.1002/stvr.1528. URL http://dx.doi.

org/10.1002/stvr.1528.

[46] S. C. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado, and P. C. Masiero. Muta-

tion analysis testing for finite state machines. In Proceedings of the 5th Inter-

national Symposium on Software Reliability Engineering, 1994, pages 220–229,

Nov 1994. doi: 10.1109/ISSRE.1994.341378. URL http://dx.doi.org/10.1109/

ISSRE.1994.341378.

[47] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E. Delamaro, and

E. Wong. Mutation testing applied to validate specifications based on Petri

Nets. In Proceedings of the IFIP TC6 Eighth International Conference on Formal

Description Techniques VIII, pages 329–337, London, UK, 1996. Chapman &

Hall, Ltd. ISBN 0-412-73270-X. doi: 10.1007/978-0-387-34945-9_24. URL

http://dx.doi.org/10.1007/978-0-387-34945-9_24.

[48] G. Fraser and A. Arcuri. EvoSuite: Automatic test suite generation for object-

oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium and the

13th European Conference on Foundations of Software Engineering, ESEC/FSE

’11, pages 416–419, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0443-6. doi:

10.1145/2025113.2025179. URL http://dx.doi.org/10.1145/2025113.2025179.

[49] M. R. Girgis and M. R. Woodward. An integrated system for program testing

using weak mutation and data flow analysis. In Proceedings of the 8th international

conference on Software engineering, ICSE ’85, pages 313–319, Los Alamitos, CA,

USA, 1985. IEEE Computer Society Press. ISBN 0-8186-0620-7.

[50] Git. Git version control system. URL http://git-scm.com. Last access:

2016.10.14.

http://dx.doi.org/10.1016/j.infsof.2011.03.008
http://dx.doi.org/10.1109/ICSTW.2010.36
http://dx.doi.org/10.1002/stvr.1528
http://dx.doi.org/10.1002/stvr.1528
http://dx.doi.org/10.1109/ISSRE.1994.341378
http://dx.doi.org/10.1109/ISSRE.1994.341378
http://dx.doi.org/10.1007/978-0-387-34945-9_24
http://dx.doi.org/10.1145/2025113.2025179
http://git-scm.com

Bibliography 195

[51] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,

1989. ISBN 0201157675.

[52] R. Gopinath, C. Jensen, and A. Groce. Mutations: How close are they to real

faults? In Software Reliability Engineering (ISSRE), 2014 IEEE 25th International

Symposium on, pages 189–200, Nov 2014. doi: 10.1109/ISSRE.2014.40. URL

http://dx.doi.org/10.1109/ISSRE.2014.40.

[53] R. Gopinath, M. A. Alipour, I. Ahmed, C. Jensen, and A. Groce. On the limits of

mutation reduction strategies. In Proceedings of the 38th International Conference

on Software Engineering, ICSE ’16, pages 511–522, New York, NY, USA, 2016.

ACM. ISBN 978-1-4503-3900-1. doi: 10.1145/2884781.2884787. URL http://dx.

doi.org/10.1145/2884781.2884787.

[54] R. G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions

on Software Engineering, 3(4):279–290, July 1977. ISSN 0098-5589.

[55] M. Hampton and S. Petithomme. Leveraging a commercial mutation analysis

tool for research. In Testing: Academic and Industrial Conference Practice and

Research Techniques - MUTATION, 2007. TAICPART-MUTATION 2007, pages

203 –209, Sept. 2007. doi: 10.1109/TAIC.PART.2007.39. URL http://dx.doi.

org/10.1109/TAIC.PART.2007.39.

[56] M. Harman, Y. Jia, P. Reales Mateo, and M. Polo. Angels and monsters:

An empirical investigation of potential test effectiveness and efficiency improve-

ment from strongly subsuming higher order mutation. In Proceedings of the 29th

ACM/IEEE International Conference on Automated Software Engineering, ASE

’14, pages 397–408, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3013-8. doi:

10.1145/2642937.2643008. URL http://dx.doi.org/10.1145/2642937.2643008.

[57] R. Hierons, M. Harman, and S. Danicic. Using program slicing to assist in the

detection of equivalent mutants. Software Testing, Verification and Reliability,

9(4):233–262, 1999. ISSN 1099-1689. doi: 10.1002/(SICI)1099-1689(199912)9:

4<233::AID-STVR191>3.0.CO;2-3. URL http://dx.doi.org/10.1002/(SICI)

1099-1689(199912)9:4<233::AID-STVR191>3.0.CO;2-3.

[58] C. Horstmann and T. Budd. Big C++, 2nd Edition. Wiley, 2009. ISBN

9780470383285.

[59] J. Hu, N. Li, and J. Offutt. An analysis of OO mutation operators. In IEEE

Fourth International Conference on Software Testing, Verification and Validation

http://dx.doi.org/10.1109/ISSRE.2014.40
http://dx.doi.org/10.1145/2884781.2884787
http://dx.doi.org/10.1145/2884781.2884787
http://dx.doi.org/10.1109/TAIC.PART.2007.39
http://dx.doi.org/10.1109/TAIC.PART.2007.39
http://dx.doi.org/10.1145/2642937.2643008
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<233::AID-STVR191>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<233::AID-STVR191>3.0.CO;2-3

Bibliography 196

Workshops (ICSTW), 2011, pages 334–341, March 2011. doi: 10.1109/ICSTW.

2011.47. URL http://dx.doi.org/10.1109/ICSTW.2011.47.

[60] S. Hussain. Mutation clustering. Master’s thesis, King’s College London, 2008.

[61] L. Inozemtseva and R. Holmes. Coverage is not strongly correlated with test suite

effectiveness. In Proceedings of the 36th International Conference on Software En-

gineering, ICSE 2014, pages 435–445, New York, NY, USA, 2014. ACM. ISBN

978-1-4503-2756-5. doi: 10.1145/2568225.2568271. URL http://dx.doi.org/10.

1145/2568225.2568271.

[62] Insure++. Insure++: C/C++ testing tool, detect elusive runtime memory errors

- Parasoft. URL http://www.parasoft.com/insure. Last access: 2016.10.14.

[63] O. A. J. A mutation carol: Past, present and future. Information and Software

Technology, 53(10):1098–1107, 2011. ISSN 0950-5849. doi: 10.1016/j.infsof.2011.03.

007. URL http://dx.doi.org/10.1016/j.infsof.2011.03.007. Special Section

on Mutation Testing.

[64] Y. Jia and M. Harman. Constructing subtle faults using higher order mutation

testing. In Eighth IEEE International Working Conference on Source Code Analysis

and Manipulation, 2008, pages 249–258, Sept 2008. doi: 10.1109/SCAM.2008.36.

URL http://dx.doi.org/10.1109/SCAM.2008.36.

[65] Y. Jia and M. Harman. MILU: a customizable, runtime-optimized higher order

mutation testing tool for the full C language. In Practice and Research Techniques,

2008. TAIC PART ’08. Testing: Academic Industrial Conference, pages 94–98,

Aug. 2008. doi: 10.1109/TAIC-PART.2008.18. URL http://dx.doi.org/10.

1109/TAIC-PART.2008.18.

[66] Y. Jia and M. Harman. An analysis and survey of the development of mutation

testing. Tech. report TR-09-06, CREST Centre, King’s College London, London,

UK, September 2009.

[67] Y. Jia and M. Harman. Higher order mutation testing. Information and Software

Technology, 51(10):1379–1393, Oct. 2009. ISSN 0950-5849. doi: 10.1016/j.infsof.

2009.04.016. URL http://dx.doi.org/10.1016/j.infsof.2009.04.016.

[68] Y. Jia and M. Harman. An analysis and survey of the development of mutation

testing. IEEE Transactions on Software Engineering, 37(5):649–678, Oct. 2011.

ISSN 0098-5589. URL http://dx.doi.org/10.1109/TSE.2010.62.

[69] JSON. JSON compilation database format specification. URL http://clang.

llvm.org/docs/JSONCompilationDatabase.html. Last access: 2016.10.14.

http://dx.doi.org/10.1109/ICSTW.2011.47
http://dx.doi.org/10.1145/2568225.2568271
http://dx.doi.org/10.1145/2568225.2568271
http://www.parasoft.com/insure
http://dx.doi.org/10.1016/j.infsof.2011.03.007
http://dx.doi.org/10.1109/SCAM.2008.36
http://dx.doi.org/10.1109/TAIC-PART.2008.18
http://dx.doi.org/10.1109/TAIC-PART.2008.18
http://dx.doi.org/10.1016/j.infsof.2009.04.016
http://dx.doi.org/10.1109/TSE.2010.62
http://clang.llvm.org/docs/JSONCompilationDatabase.html
http://clang.llvm.org/docs/JSONCompilationDatabase.html

Bibliography 197

[70] R. Just and F. Schweiggert. Higher accuracy and lower run time: Efficient mutation

analysis using non-redundant mutation operators. Software Testing, Verification

and Reliability, 25(5-7):490–507, Aug. 2015. ISSN 0960-0833. doi: 10.1002/stvr.

1561. URL http://dx.doi.org/10.1002/stvr.1561.

[71] R. Just, F. Schweiggert, and G. Kapfhammer. MAJOR: An efficient and extensible

tool for mutation analysis in a Java compiler. In 26th IEEE/ACM International

Conference on Automated Software Engineering (ASE), 2011, pages 612–615, Nov

2011. doi: 10.1109/ASE.2011.6100138. URL http://dx.doi.org/10.1109/ASE.

2011.6100138.

[72] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser. Are

mutants a valid substitute for real faults in software testing? In Proceedings of

the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering, FSE 2014, pages 654–665, New York, NY, USA, 2014. ACM. ISBN

978-1-4503-3056-5. URL http://dx.doi.org/10.1145/2635868.2635929.

[73] G. Kaminski, P. Ammann, and J. Offutt. Improving logic-based testing. Journal

of Systems and Software, 86(8):2002–2012, Aug. 2013. ISSN 0164-1212. doi: 10.

1016/j.jss.2012.08.024. URL http://dx.doi.org/10.1016/j.jss.2012.08.024.

[74] KatePart. KatePart. https://kate-editor.org/about-katepart. Last access:

2016.10.14.

[75] S. Kim, J. A. Clark, and J. A. McDermid. The rigorous generation of Java mutation

operators using HAZOP. In Proceedings of the 12th International Cofference Soft-

ware and Systems Engineering and their Applications (ICSSEA 99), Paris, France,

29 Nov-1 Dec 1999.

[76] S. Kim, J. Clark, and J. McDermid. Class mutation: Mutation testing for object-

oriented programs. In Proc. Net.ObjectDays, pages 9–12, 2000.

[77] S.-W. Kim, J. A. Clark, and J. A. McDermid. Investigating the effectiveness of

object-oriented testing strategies using the mutation method. Software Testing,

Verification and Reliability, 11(4):207–225, 2001. ISSN 1099-1689. doi: 10.1002/

stvr.238. URL http://dx.doi.org/10.1002/stvr.238.

[78] K. N. King and A. J. Offutt. A FORTRAN language system for mutation-based

software testing. Software: Practice and Experience, 21(7):685–718, 1991. URL

http://dx.doi.org/10.1002/spe.4380210704.

[79] KMyMoney. KMyMoney, version 4.6.4. https://sourceforge.net/projects/

kmymoney2/. Last access: 2016.10.14.

http://dx.doi.org/10.1002/stvr.1561
http://dx.doi.org/10.1109/ASE.2011.6100138
http://dx.doi.org/10.1109/ASE.2011.6100138
http://dx.doi.org/10.1145/2635868.2635929
http://dx.doi.org/10.1016/j.jss.2012.08.024
https://kate-editor.org/about-katepart
http://dx.doi.org/10.1002/stvr.238
http://dx.doi.org/10.1002/spe.4380210704
https://sourceforge.net/projects/kmymoney2/
https://sourceforge.net/projects/kmymoney2/

Bibliography 198

[80] M. Kusano and C. Wang. CCmutator: A mutation generator for concurrency con-

structs in multithreaded C/C++ applications. In 28th International Conference on

Automated Software Engineering (ASE), 2013 IEEE/ACM, pages 722–725. IEEE,

2013. URL http://dx.doi.org/10.1109/ASE.2013.6693142.

[81] W. B. Langdon, M. Harman, and Y. Jia. Efficient multi-objective higher order

mutation testing with genetic programming. Journal of Systems and Software, 83

(12):2416 – 2430, 2010. ISSN 0164-1212. doi: 10.1016/j.jss.2010.07.027. URL

http://dx.doi.org/10.1016/j.jss.2010.07.027. TAIC PART 2009 - Testing:

Academic and Industrial Conference - Practice And Research Techniques.

[82] H.-J. Lee, Y.-S. Ma, and Y.-R. Kwon. Empirical evaluation of orthogonality of

class mutation operators. In 11th Asia-Pacific Software Engineering Conference,

2004, pages 512–518, Nov 2004. doi: 10.1109/APSEC.2004.49. URL http://dx.

doi.org/10.1109/APSEC.2004.49.

[83] J. A. P. Lima, G. Guizzo, S. R. Vergilio, A. P. Silva, H. L. Jakubovski Filho, and

H. V. Ehrenfried. Evaluating different strategies for reduction of mutation testing

costs. 2016.

[84] LLVM. The LLVM compiler infrastructure. URL http://llvm.org. Last access:

2016.10.14.

[85] LLVM test-suite. LLVM 3.2 test-suite. http://llvm.org/releases/3.2/docs/

TestingGuide.html. Last access: 2016.10.14.

[86] Y.-S. Ma, Y. R. Kwon, and J. Offutt. Inter-class mutation operators for Java. In

Proceedings of XIII International Symposium on Software Reliability Engineering,

pages 352–363, Annapolis (Maryland), Nov. 2002. IEEE Computer Society. ISBN

0-8186-1763-3. doi: 10.1109/ISSRE.2002.1173287. URL http://dx.doi.org/10.

1109/ISSRE.2002.1173287.

[87] Y.-S. Ma, J. Offutt, and Y. R. Kwon. MuJava: An automated class mutation

system: Research articles. Software Testing, Verification and Reliability, 15(2):

97–133, June 2005. ISSN 0960-0833. doi: 10.1002/stvr.v15:2. URL http://dx.

doi.org/10.1002/stvr.v15:2.

[88] Y.-S. Ma, Y. R. Kwon, and S.-W. Kim. Statistical investigation on class mutation

operators. ETRI Journal, 31(2):140–150, Apr. 2009. ISSN 1225-6463. doi: 10.4218/

etrij.09.0108.0356. URL http://dx.doi.org/10.4218/etrij.09.0108.0356.

[89] E. Martin and T. Xie. A fault model and mutation testing of access control policies.

In Proceedings of the 16th International Conference on World Wide Web, WWW

http://dx.doi.org/10.1109/ASE.2013.6693142
http://dx.doi.org/10.1016/j.jss.2010.07.027
http://dx.doi.org/10.1109/APSEC.2004.49
http://dx.doi.org/10.1109/APSEC.2004.49
http://llvm.org
http://llvm.org/releases/3.2/docs/TestingGuide.html
http://llvm.org/releases/3.2/docs/TestingGuide.html
http://dx.doi.org/10.1109/ISSRE.2002.1173287
http://dx.doi.org/10.1109/ISSRE.2002.1173287
http://dx.doi.org/10.1002/stvr.v15:2
http://dx.doi.org/10.1002/stvr.v15:2
http://dx.doi.org/10.4218/etrij.09.0108.0356

Bibliography 199

’07, pages 667–676, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-654-7. doi:

10.1145/1242572.1242663. URL http://dx.doi.org/10.1145/1242572.1242663.

[90] Matchers. AST matcher reference. URL http://clang.llvm.org/docs/

LibASTMatchersReference. Last access: 2016.10.14.

[91] P. R. Mateo, M. P. Usaola, and J. Offutt. Mutation at the multi-class and sys-

tem levels. Science of Computer Programming, 78(4):364–387, 2013. ISSN 0167-

6423. doi: 10.1016/j.scico.2012.02.005. URL http://dx.doi.org/10.1016/j.

scico.2012.02.005. Special section on Mutation Testing and Analysis (Muta-

tion 2010) and Special section on the Programming Languages track at the 25th

ACM Symposium on Applied Computing.

[92] A. P. Mathur. Performance, effectiveness, and reliability issues in software test-

ing. In Proceedings of the Fifteenth Annual International Computer Software

and Applications Conference, 1991. COMPSAC ’91., pages 604–605, Sep 1991.

doi: 10.1109/CMPSAC.1991.170248. URL http://dx.doi.org/10.1109/CMPSAC.

1991.170248.

[93] A. P. Mathur and E. W. Krauser. Mutant unification for improved vectorization.

Tech. report SERC-TR-14-P, Purdue University, West Lafayette, Indiana, 1988.

[94] Matrix TCL Pro. Matrix TCL Pro, version 2.2. http://www.techsoftpl.com/

matrix/download.php. Last access: 2016.10.14.

[95] E. S. Mresa and L. Bottaci. Efficiency of mutation operators and selective muta-

tion strategies: an empirical study. Software Testing, Verification and Reliabil-

ity, 9(4):205–232, 1999. ISSN 1099-1689. doi: 10.1002/(SICI)1099-1689(199912)9:

4<205::AID-STVR186>3.0.CO;2-X. URL http://dx.doi.org/10.1002/(SICI)

1099-1689(199912)9:4<205::AID-STVR186>3.0.CO;2-X.

[96] S. Naik and P. Tripathy. Software Testing and Quality Assurance: Theory and

Practice. Wiley-Spektrum, 2008.

[97] A. S. Namin, J. H. Andrews, and D. J. Murdoch. Sufficient mutation operators

for measuring test effectiveness. In ACM/IEEE 30th International Conference on

Software Engineering, 2008. ICSE ’08, pages 351–360, May 2008. doi: 10.1145/

1368088.1368136. URL http://dx.doi.org/10.1145/1368088.1368136.

[98] A. J. Offutt. Investigations of the software testing coupling effect. ACM Transac-

tions on Software Engineering and Methodology, 1(1):5–20, Jan. 1992. ISSN 1049-

331X. doi: 10.1145/125489.125473. URL http://dx.doi.org/10.1145/125489.

125473.

http://dx.doi.org/10.1145/1242572.1242663
http://clang.llvm.org/docs/LibASTMatchersReference
http://clang.llvm.org/docs/LibASTMatchersReference
http://dx.doi.org/10.1016/j.scico.2012.02.005
http://dx.doi.org/10.1016/j.scico.2012.02.005
http://dx.doi.org/10.1109/CMPSAC.1991.170248
http://dx.doi.org/10.1109/CMPSAC.1991.170248
http://www.techsoftpl.com/matrix/download.php
http://www.techsoftpl.com/matrix/download.php
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<205::AID-STVR186>3.0.CO;2-X
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<205::AID-STVR186>3.0.CO;2-X
http://dx.doi.org/10.1145/1368088.1368136
http://dx.doi.org/10.1145/125489.125473
http://dx.doi.org/10.1145/125489.125473

Bibliography 200

[99] A. J. Offutt and J. Pan. Detecting equivalent mutants and the feasible path

problem. In Proceedings of the Eleventh Annual Conference on Computer As-

surance, 1996. COMPASS ’96, Systems Integrity. Software Safety. Process Se-

curity, pages 224 –236, jun 1996. doi: 10.1109/CMPASS.1996.507890. URL

http://dx.doi.org/10.1109/CMPASS.1996.507890.

[100] A. J. Offutt and R. H. Untch. Mutation 2000: Uniting the Orthogonal, pages

34–44. Springer US, Boston, MA, 2001. ISBN 978-1-4757-5939-6. doi: 10.1007/

978-1-4757-5939-6_7. URL http://dx.doi.org/10.1007/978-1-4757-5939-6_

7.

[101] A. J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation of selective

mutation. In Proceedings of 15th International Conference on Software Engin-

eering, 1993, pages 100–107, May 1993. doi: 10.1109/ICSE.1993.346062. URL

http://dx.doi.org/10.1109/ICSE.1993.346062.

[102] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An experi-

mental determination of sufficient mutant operators. ACM Transactions on Soft-

ware Engineering and Methodology, 5(2):99–118, Apr. 1996. ISSN 1049-331X. doi:

10.1145/227607.227610. URL http://dx.doi.org/10.1145/227607.227610.

[103] A. J. Offutt, J. Voas, and J. Payne. Mutation operators for Ada. Technical Report

ISSE-TR-96-09, George Mason University, Fairfax, Virginia, 1996. Information

and Software Systems Engineering, George Mason University.

[104] A. J. Offutt, Y.-S. Ma, and Y.-R. Kwon. The class-level mutants of MuJava. In

Proceedings of the 2006 International Workshop on Automation of Software Test,

AST ’06, pages 78–84, New York, NY, USA, 2006. ACM. ISBN 1-59593-408-1. doi:

10.1145/1138929.1138945. URL http://dx.doi.org/10.1145/1138929.1138945.

[105] E. Omar, S. Ghosh, and D. Whitley. Homaj: A tool for higher order mutation

testing in AspectJ and Java. In Software Testing, Verification and Validation

Workshops (ICSTW), 2014 IEEE Seventh International Conference on, pages 165–

170, March 2014. doi: 10.1109/ICSTW.2014.19. URL http://dx.doi.org/10.

1109/ICSTW.2014.19.

[106] M. Papadakis and N. Malevris. Automatically performing weak mutation with the

aid of symbolic execution, concolic testing and search-based testing. Software Qual-

ity Journal, 19(4):691–723, 2011. ISSN 1573-1367. doi: 10.1007/s11219-011-9142-y.

URL http://dx.doi.org/10.1007/s11219-011-9142-y.

[107] M. Papadakis, M. Delamaro, and Y. Le Traon. Mitigating the effects of equivalent

mutants with mutant classification strategies. Science of Computer Programming,

http://dx.doi.org/10.1109/CMPASS.1996.507890
http://dx.doi.org/10.1007/978-1-4757-5939-6_7
http://dx.doi.org/10.1007/978-1-4757-5939-6_7
http://dx.doi.org/10.1109/ICSE.1993.346062
http://dx.doi.org/10.1145/227607.227610
http://dx.doi.org/10.1145/1138929.1138945
http://dx.doi.org/10.1109/ICSTW.2014.19
http://dx.doi.org/10.1109/ICSTW.2014.19
http://dx.doi.org/10.1007/s11219-011-9142-y

Bibliography 201

95(P3):298–319, Dec. 2014. ISSN 0167-6423. doi: 10.1016/j.scico.2014.05.012. URL

http://dx.doi.org/10.1016/j.scico.2014.05.012.

[108] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon. Trivial compiler equivalence:

A large scale empirical study of a simple, fast and effective equivalent mutant

detection technique. In Proceedings of the 37th International Conference on Soft-

ware Engineering - Volume 1, ICSE ’15, pages 936–946, Piscataway, NJ, USA,

2015. IEEE Press. ISBN 978-1-4799-1934-5. doi: 10.1109/ICSE.2015.103. URL

http://dx.doi.org/10.1109/ICSE.2015.103.

[109] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. Le Traon. Threats to the

validity of mutation-based test assessment. In Proceedings of the 25th International

Symposium on Software Testing and Analysis, ISSTA 2016, pages 354–365, New

York, NY, USA, 2016. ACM. ISBN 978-1-4503-4390-9. doi: 10.1145/2931037.

2931040. URL http://dx.doi.org/10.1145/2931037.2931040.

[110] R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data generation using ge-

netic algorithms. Software Testing, Verification and Reliability, 9(4):263–282, 1999.

ISSN 1099-1689. doi: 10.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>

3.0.CO;2-Y. URL http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:

4<263::AID-STVR190>3.0.CO;2-Y.

[111] PITest. PITest mutators overview. URL http://pitest.org/quickstart/

mutators/. Last access: 2016.10.14.

[112] PlexTest. PlexTest ITRegister. URL http://www.itregister.com.au/products/

plextest. Last access: 2016.10.14.

[113] QtDom. QtDOM. https://github.com/qtproject/qtbase/tree/dev/src/xml/

dom. Last access: 2016.10.14.

[114] D. Schuler and A. Zeller. Javalanche: Efficient mutation testing for Java. In Pro-

ceedings of the 7th Joint Meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on The Foundations of Software Engineering,

ESEC/FSE ’09, pages 297–298, New York, NY, USA, 2009. ACM. ISBN 978-1-

60558-001-2. doi: 10.1145/1595696.1595750. URL http://dx.doi.org/10.1145/

1595696.1595750.

[115] D. Schuler and A. Zeller. Covering and uncovering equivalent mutants. Software

Testing, Verification and Reliability, 23(5):353–374, 2013. ISSN 1099-1689. doi:

10.1002/stvr.1473. URL http://dx.doi.org/10.1002/stvr.1473.

http://dx.doi.org/10.1016/j.scico.2014.05.012
http://dx.doi.org/10.1109/ICSE.2015.103
http://dx.doi.org/10.1145/2931037.2931040
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y
http://pitest.org/quickstart/mutators/
http://pitest.org/quickstart/mutators/
http://www.itregister.com.au/products/plextest
http://www.itregister.com.au/products/plextest
https://github.com/qtproject/qtbase/tree/dev/src/xml/dom
https://github.com/qtproject/qtbase/tree/dev/src/xml/dom
http://dx.doi.org/10.1145/1595696.1595750
http://dx.doi.org/10.1145/1595696.1595750
http://dx.doi.org/10.1002/stvr.1473

Bibliography 202

[116] B. Schwarz, D. Schuler, and A. Zeller. Breeding high-impact mutations. In

Proceedings - 4th IEEE International Conference on Software Testing, Verific-

ation, and Validation Workshops, ICSTW 2011, pages 382–387, 2011. doi:

10.1109/ICSTW.2011.56. URL http://dx.doi.org/10.1109/ICSTW.2011.56.

[117] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés. Mutation testing on

an object-oriented framework: An experience report. Information and Software

Technology, 53(10):1124–1136, 2011. ISSN 0950-5849. URL http://dx.doi.org/

10.1016/j.infsof.2011.03.006. Special Section on Mutation Testing.

[118] R. A. Silva, S. do Rocio Senger de Souza, and P. S. L. de Souza. A systematic

review on search based mutation testing. Information and Software Technology,

2016. ISSN 0950-5849. doi: 10.1016/j.infsof.2016.01.017. URL http://dx.doi.

org/10.1016/j.infsof.2016.01.017.

[119] B. H. Smith and L. Williams. On guiding the augmentation of an automated test

suite via mutation analysis. Empirical Software Engineering, 14(3):341–369, June

2009. ISSN 1382-3256. doi: 10.1007/s10664-008-9083-7. URL http://dx.doi.

org/10.1007/s10664-008-9083-7.

[120] D. Spinellis. Global analysis and transformations in preprocessed languages. IEEE

Transactions on Software Engineering, 29(11):1019–1030, 2003. ISSN 0098-5589.

doi: 10.1109/TSE.2003.1245303. URL http://dx.doi.org/10.1109/TSE.2003.

1245303.

[121] STATService. STATService. http://moses.us.es/statservice. [Last access:

2016.10.14].

[122] B. Stroustrup. The C++ Programming Language, Third Edition. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1997. ISBN 0201889544.

[123] Tinyxml2. Tinyxml2. https://github.com/leethomason/tinyxml2. Last access:

2016.10.14.

[124] R. H. Untch, A. J. Offutt, and M. J. Harrold. Mutation analysis using mutant

schemata. In Proceedings of the 1993 ACM SIGSOFT International Symposium

on Software Testing and Analysis, ISSTA ’93, pages 139–148, New York, NY,

USA, 1993. ACM. ISBN 0-89791-608-5. doi: 10.1145/154183.154265. URL http:

//doi.acm.org/10.1145/154183.154265.

[125] M. Usaola and P. Mateo. Mutation testing cost reduction techniques: A survey.

Software, IEEE, 27(3):80–86, 2010. ISSN 0740-7459. doi: 10.1109/MS.2010.79.

URL http://dx.doi.org/10.1109/MS.2010.79.

http://dx.doi.org/10.1109/ICSTW.2011.56
http://dx.doi.org/10.1016/j.infsof.2011.03.006
http://dx.doi.org/10.1016/j.infsof.2011.03.006
http://dx.doi.org/10.1016/j.infsof.2016.01.017
http://dx.doi.org/10.1016/j.infsof.2016.01.017
http://dx.doi.org/10.1007/s10664-008-9083-7
http://dx.doi.org/10.1007/s10664-008-9083-7
http://dx.doi.org/10.1109/TSE.2003.1245303
http://dx.doi.org/10.1109/TSE.2003.1245303
http://moses.us.es/statservice
https://github.com/leethomason/tinyxml2
http://doi.acm.org/10.1145/154183.154265
http://doi.acm.org/10.1145/154183.154265
http://dx.doi.org/10.1109/MS.2010.79

Bibliography 203

[126] W. E. Wong and A. P. Mathur. Reducing the cost of mutation testing: An empirical

study. Tech. report, Purdue University, West Lafayette, Indiana, 1993.

[127] M. Woodward and K. Halewood. From weak to strong, dead or alive? An analysis

of some mutation testing issues. In Proceedings of the Second Workshop on Software

Testing, Verification, and Analysis, 1988, pages 152–158, 1988. doi: 10.1109/WST.

1988.5370. URL http://dx.doi.org/10.1109/WST.1988.5370.

[128] M. R. Woodward. Mutation testing - its origin and evolution. Information and Soft-

ware Technology, 35(3):163–169, Mar. 1993. doi: 10.1016/0950-5849(93)90053-6.

URL http://dx.doi.org/10.1016/0950-5849(93)90053-6.

[129] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, and K. Karapoulios.

Application of genetic algorithms to software testing. In Proceedings of the 5th

International Conference on Software Engineering and Applications, pages 625–

636, 1992.

[130] XmlRpc++. XmlRpc++, version 0.7. http://xmlrpcpp.sourceforge.net/. Last

access: 2016.10.14.

[131] X. Yao, M. Harman, and Y. Jia. A study of equivalent and stubborn mutation

operators using human analysis of equivalence. In Proceedings of the 36th Interna-

tional Conference on Software Engineering, ICSE 2014, pages 919–930, New York,

NY, USA, 2014. ACM. ISBN 978-1-4503-2756-5. doi: 10.1145/2568225.2568265.

URL http://dx.doi.org/10.1145/2568225.2568265.

[132] C. N. Zapf. A Distributed Interpreter for the Mothra Mutation Testing System.

Phd thesis, Clemson University, Clemson, South Carolina, 1993.

[133] H. Zhang. Mutation operators for C++. URL http://people.cis.ksu.edu/

~hzh8888/mse_project/. Last access: 2016.10.14.

[134] J. Zhang, M. Zhu, D. Hao, and L. Zhang. An empirical study on the scalability

of selective mutation testing. In IEEE 25th International Symposium on Software

Reliability Engineering (ISSRE), 2014, pages 277–287, Nov 2014. doi: 10.1109/

ISSRE.2014.27. URL http://dx.doi.org/10.1109/ISSRE.2014.27.

[135] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei. Is operator-based mutant

selection superior to random mutant selection? In Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE

’10, pages 435–444, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-719-6. doi:

10.1145/1806799.1806863. URL http://dx.doi.org/10.1145/1806799.1806863.

http://dx.doi.org/10.1109/WST.1988.5370
http://dx.doi.org/10.1016/0950-5849(93)90053-6
http://xmlrpcpp.sourceforge.net/
http://dx.doi.org/10.1145/2568225.2568265
http://people.cis.ksu.edu/~hzh8888/mse_project/
http://people.cis.ksu.edu/~hzh8888/mse_project/
http://dx.doi.org/10.1109/ISSRE.2014.27
http://dx.doi.org/10.1145/1806799.1806863

Bibliography 204

[136] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid. Operator-based and random

mutant selection: Better together. In IEEE/ACM 28th International Conference

on Automated Software Engineering (ASE), 2013, pages 92–102, Nov 2013. doi: 10.

1109/ASE.2013.6693070. URL http://dx.doi.org/10.1109/ASE.2013.6693070.

http://dx.doi.org/10.1109/ASE.2013.6693070

	Conformidad de los Directores
	Agradecimientos
	Agradecimientos Institucionales
	Abstract
	Resumen
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Aim
	1.3 Contributions
	1.4 Thesis Structure

	2 Concepts and State of the Art
	2.1 Fundamentals of Mutation Testing
	2.2 Mutation Testing in the Literature
	2.3 Mutation Operators and Tools
	2.3.1 Overview
	2.3.2 Mutation testing at the class level
	2.3.3 Mutation testing and C++

	2.4 Cost Reduction Techniques
	2.4.1 Motivation
	2.4.2 Classification
	2.4.3 Selective mutation
	2.4.4 Quality of mutation operators
	2.4.5 Genetic algorithms applied to mutation testing

	3 Definition of Mutation Operators
	3.1 Defining Mutation Operators
	3.2 Mutation Operators at the Class Level for C++
	3.2.1 Access control
	3.2.2 Inheritance
	3.2.3 Polymorphism and dynamic binding
	3.2.4 Method overloading
	3.2.5 Exception handling
	3.2.6 Object and member replacement
	3.2.7 Miscellany

	3.3 Comparison with other Languages

	4 Implementation of the C++ Mutation System
	4.1 Mutation Operator Implementation
	4.1.1 Approach
	4.1.1.1 LLVM and Clang
	4.1.1.2 Abstract syntax tree

	4.1.2 Matching nodes in the AST
	4.1.3 Fault injection
	4.1.4 Expected mutants
	4.1.4.1 Generation of the expected mutants
	4.1.4.2 Considerations for the implementation

	4.1.5 Example
	4.1.5.1 Mutation operator
	4.1.5.2 Source code and mutants

	4.2 Mutation Operator Improvement
	4.3 MuCPP: Mutation System Implementation
	4.3.1 Phases
	4.3.2 Features

	5 Mutation Operator Analysis
	5.1 Quantitative Analysis
	5.1.1 Evaluation of the reduction of uninteresting mutants
	5.1.2 Distribution of mutants
	5.1.3 Mutation score and test suite improvement

	5.2 Qualitative Analysis
	5.2.1 Class mutation operator utility
	5.2.2 Class mutants and traditional mutants
	5.2.2.1 Traditional operators
	5.2.2.2 Experiments and metric
	5.2.2.3 Results

	5.2.3 Detected coding errors with mutation testing

	6 Evolutionary Mutation Testing
	6.1 Description
	6.1.1 Individuals
	6.1.2 Fitness function
	6.1.3 Genetic algorithm
	6.1.4 Selection and reproductive operators

	6.2 GiGAn
	6.3 Experiment 1: Finding Strong Mutants
	6.3.1 Setup
	6.3.2 Results

	6.4 Experiment 2: Improving the Test Suite
	6.4.1 Setup
	6.4.2 Results

	7 Selective Mutation Assessment
	7.1 Selective Approach
	7.1.1 Test suite evaluation and test suite refinement
	7.1.2 Selective strategies
	7.1.3 Test-Quality selective mutation
	7.1.4 Rank-based selective mutation
	7.1.5 Selective assessment

	7.2 Selective Mutation for Test Suite Evaluation
	7.2.1 Evaluation metric
	7.2.2 Example
	7.2.3 Ranking mutation operators
	7.2.3.1 Experimental procedure
	7.2.3.2 Ranking

	7.2.4 Selective mutation based on the ranking
	7.2.4.1 Experimental procedure
	7.2.4.2 Selective mutation results

	7.3 Selective Mutation for Test Suite Refinement
	7.3.1 Evaluation metric
	7.3.2 Example
	7.3.3 Ranking mutation operators
	7.3.3.1 Experimental procedure
	7.3.3.2 Ranking

	7.3.4 Test-quality selective mutation based on the ranking
	7.3.4.1 Experimental procedure
	7.3.4.2 Test-quality selective mutation results

	7.4 Comparison Between Evaluations
	7.4.1 Comparison between rankings
	7.4.2 Validation of results
	7.4.2.1 Operator-based selective mutation
	7.4.2.2 Rank-based selective mutation

	7.4.3 Comparison between selective mutation strategies

	8 Results
	8.1 Summary of Results
	8.2 Threats to Validity

	9 Conclusion and Future Work
	9.1 Conclusions
	9.2 Future Perspectives
	9.3 Publications
	9.3.1 Journal articles
	9.3.2 Book chapters
	9.3.3 Conferences and symposiums

	A Case Studies
	A.1 Description
	A.2 Features

	B Useful Concepts
	B.1 Execution Matrix
	B.2 Properties of a Test Suite

	Bibliography

