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Abstract. We look at the Bohr topology of maximally almost periodic groups (MAP, for short). Among
other results, we investigate when a Hausdorff precompact abelian group (G,w) is the Bohr reflection of
a locally compact abelian group. Necessary and sufficient conditions are established in terms of the inner

properties of w. As an application, an example of a MAP group (G, t) is given such that every closed,
metrizable subgroup N of bG with N ∩ G = {0} preserves compactness but (G, t) does not strongly

respect compactness. Thereby, we respond to Questions 4.1 and 4.3 in [6].

1. Introduction

For each topological group G (resp. (G, t) if we wish to emphasize the topology considered on G)
there is associated a compact Hausdorff group bG and a continuous homomorphism b from G onto a dense
subgroup of bG with the following universal property: for every continuous homomorphism h from G into
a compact group K there is a continuous homomorphism h+ from bG into K such that h = h+ ◦ b. The
group bG is essentially unique; it is called the Bohr compactification of G (see Heyer [15] for a careful
examination of bG and its properties). Here, we restrict our attention to the abelian groups such that the
homomorphism b above is one-to-one; these are exactly the maximally almost periodic (MAP) abelian
groups.

For such a topological group G (resp. (G, t)) we denote by G+ (resp. (G, t+) the underlying group
of G equipped with its Bohr topology. Evidently, G+ is an example of a Hausdorff precompact group.
The following notion plays an important rôle for the rest of this discussion: A MAP abelian group G is
said to respect a topological property P if a subset A of G has P as a subspace of G if and only if A has
P as a subspace of G+ (Trigos-Arrieta [20]).

The question of the disposition or placement of a LCA group G within its Bohr compactification
bG has been investigated by many researchers. It is known for such G, for example, that G+ is sequen-
tially closed in bG in the sense that no sequence from G can converge to a point of bG\G [19]. And
Glicksberg [11] has shown that LCA groups respect compactness. This result concerning LCA groups is
one of the pivotal results of the subject, often referred to as Glicksberg’s theorem. Hughes [16] proved
a generalization of Glicksberg’s theorem to (not necesary Abelian) locally compact groups by consider-
ing the weak topology generated by the continuous irreducible unitary group representations. Several
authors have achieved additional results which continue the lines of investigation suggested above (see
[10]). Nevertheless many questions relating the topology of a MAP group with its Bohr topology are still
open in general. In this paper, we continue with the investigation of the Bohr topology of maximally
almost periodic groups accomplished in [6] and [8]. Among other results, we investigate when a Hausdorff
precompact abelian group (G,w) is the Bohr reflection of a locally compact abelian group. Necessary
and sufficient conditions are established in terms of the inner properties of w. As an application, an
example of a MAP abelian group G is given such that every closed, metrizable subgroup N of bG with
N ∩ G = {0} preserves compactness but G does not strongly respects compactness (see Definition 5.3
below). Thereby, we respond to Questions 4.1 and 4.3 in [6].

Date: January 11, 2019.

2010 Mathematics Subject Classification. Primary: 22B05; Secondary: 54H11.
Key words and phrases. abelian group, weak topologies, Weil completion, Bohr compactification, locally compact group,

maximally almost periodic group, hemicompactness.
The first listed author acknowledges partially support by the Spanish Ministerio de Economı́a y Competitividad, grant

MTM2016-77143-P (AEI/FEDER, EU), and the Universitat Jaume I, grant P1171B2015-77.

1



2. Preliminaries

Let G be an abelian group and let Hom(G,T) be the group of all homomorphisms of G into T. If
X ⊆ G and Γ ⊆ Hom(G,T), the symbolism (X, tp(Γ)) (resp. (Γ, tp(X))) denotes the set X (resp. Γ)
equipped with the finite-open (or pointwise convergence) topology on the elements of Γ (resp. on the
elements of X). A celebrated result by Comfort and Ross [5] establishes that a topological abelian group
(G,w) is precompact if and only if there is a subgroup X ⊆ Hom(G,T) such that w = tp(X). However,
in order to keep the notation as simple as possible, we will simply use the symbol “w” to denote a totally
bounded (precompact and Hausdorff) group topology on an abelian group G if there is no ambiguity in
it. Unless it is explicitly written otherwise, all the topologies considered in this article are assumed to be
Hausdorff. In the same manner, if G is an abelian group, the symbol “τ” stands for a Hausdorff locally
compact group topology on G. Therefore τ+ stands for the Bohr topology on G, associated to τ (we will
simply write G+ when there is no ambiguity about the topology on G). For example, R+ stands for the
usual real numbers group equipped with its Bohr topology. If τ is the discrete topology, we write τ#

instead of τ+; we could also write G# to mean the group G equipped with its largest totally bounded
group topology. For example, Z# stands for the integers with its Bohr topology. We identify the torus
T with the group [0, 1) ⊂ R equipped with the operation + mod 1. If (G, t) is a topological abelian
group and H is a subgroup of G, then (H, t�H ) stands for the group H equipped with the topology
inherited from (G, t). Writing (H, t�H ) < (G, t) means that (H, t�H ) is a closed subgroup of (G, t). If so,
(G/H, t/H) stands for the natural quotient group.

For each topological abelian group (G, t), the symbol (G, t)̂ stands for the set of t-continuous
homomorphisms from G to T. (G, t)̂ is an abelian group that is called the group of characters of (G, t).
Again, in order to simplify the notation, we will denote by ((G, t) ,̂ tp) the group ((G, t) ,̂ tp(G)). In
like manner, the symbolism ((G, t) ,̂ tk(G)), or just ((G, t) ,̂ tk) for short, will denote the group (G, t)̂
equipped with the compact-open topology on the compact subsets of (G, t). The group ((G, t) ,̂ tk) is
known as the dual group of (G, t). There is a canonical homomorphism of (G, t) into its bidual group

Ω : (G, t) −→ ((G, t) t̂k) ,̂ tk)

given by

Ω(g)(χ) = χ(g)

for χ ∈ (G, t)̂ and g ∈ G. The map Ω is called evaluation map of (G, t). It is not hard to see that

• Ω is injective iff for all eG ̸= x ∈ G there is a character χ ∈ Ĝ such that χ(x) ̸= 1;
• Ω is continuous when (G, t) is locally compact.

If H is a subgroup of G, the annihilator of H in (G, t) ,̂ denoted by A((G, t) ,̂ H) is the subgroup
of (G, t)̂ consisting of those characters φ from G to T, such that φ[H] = {0}. If X is a subgroup of
Hom(G,T), we say that X separates the points of G if whenever g ∈ G and g ̸= 0G, the identity of G,
then there is φ ∈ X such that φ(g) ̸= 0.

Theorem 2.1. Let G be an abelian group. The following assertions hold true:

(1) If (G, τ) is locally compact ((G, τ) ,̂ tk) is locally compact.
(2) if (G, τ) is discrete (resp., compact) then ((G, τ) ,̂ tk) is compact (resp. discrete).
(3) If (G, τ) is locally compact then Ω is a topological isomorphism of (G, τ) onto its bidual group.
(4) The group (Hom(G,T), tp(G)) is compact.
(5) If X ⊆ Hom(G,T), then (X, tp(G)) is precompact.
(6) If (G,w) is precompact and X = (G,w) ,̂ then (G,w) = (G, tp(X)).
(7) If X is a subgroup of Hom(G,T), then X separates the points of G if and only if the group

(G, tp(X)) is Hausdorff (resp. if and only if X is dense in (Hom(G,T), tp(G))).
(8) The evaluation map Ω : (G,w) −→ (((G,w) ,̂ tp) ,̂ tp) is a topological isomorphism onto.
(9) If (G, τ) is locally compact, then K is a compact subspace of (G, τ) if and only if K is a compact

subspace of (G, τ+).
(10) If τ is locally compact and (H, τ�H) < (G, τ), then the Bohr topology of (H, τ�H) as a locally

compactgroup is the same as the topology that it inherits as a subgroup of (G, τ+).



Proof: 1 and 2 are the celebrated Pontryagin-van Kampen theorem. 3 follows from 1 taking τ discrete. 4
and 5 follow from Comfort and Ross [5]. 6 is [14] (26.16). 7 is Raczkowski and Trigos-Arrieta [18]. 8 is
Glicksberg’s Theorem [11]. 9 is done in [20]. �

3. Necessary conditions.

In the sequel, the symbolism (G,w) will denote a totally bounded abelian group.

Theorem 3.1. If (G,w) is such that ((G,w) ,̂ tk) is locally compact, then (G, τ) := (((G,w) ,̂ tk) ,̂ tk)
satisfies that (G,w) is contained in (G, τ+) densely.

Proof: The identity I : ((G,w) ,̂ tk) −→ ((G,w) ,̂ tp), is clearly continuous and onto. Hence, the adjoint

map, which is the containment, Î : (((G,w) ,̂ tp) ,̂ tp) −→ (((G,w) ,̂ tk) ,̂ tp) is continuous. By Theorem

2.1(8), (((G,w) ,̂ tp) ,̂ tp) = (G,w). By Theorem 2.1(1), the group (G, τ) is locally compact. Hence,

(G, τ+) = (((G,w) ,̂ tk) ,̂ tp). That the containment is dense, follows from Theorem 2.1(7). �
The following is one of the principal subjects of this paper.

Definition 3.2. Let B := {(G,w) : ∃τ [w = τ+]}. Members of the class B will be called Bohr groups.

Notice that (G,w) ∈ B =⇒ (G,w)̂ = (G, τ+)̂ = (G, τ) ,̂ for some locally compact topological
abelian group topology τ .

Lemma 3.3. If (G,w) ∈ B, then ((G,w) ,̂ tk) is locally compact.

Proof: Suppose that τ is locally compact with τ+ = w. By Theorem 2.1.8, ((G,w) ,̂ tk) = ((G, τ) ,̂ tk),
which is locally compact by Theorem 2.1.1. �
Theorem 3.4. Let H be a closed subgroup of (G,w). If (H,w�H) ∈ B, and (G/H,w/H) ∈ B, then
(G,w) ∈ B.

Proof: By Lemma 3.3, both ((G/H,w/H) ,̂ tk) and ((H,w�H) ,̂ tk) are locally compact. Let X :=
((G,w) ,̂ tk). We have that (G/H,w/H)̂ = A(X,H) [14] (23.25 & 23.30) and (H,w�H)̂ = X/A(X,H)

[14] (24.11 & 23.30). By [14] (5.25), we have that X is locally compact, hence (G, τ) := (X ,̂ tk) is locally
compact as well. It follows that G ⊆ (G, τ) densely, since both G and G separate the points of X. We
claim that H as a subgroup of (G, τ) is closed. For, (H,w�H) ∈ B implies ∃τH locally compact such that
(H, τ+H ) = (H,w�H). The latter implies that (H, τH)̂ = (H, τ+H )̂ = (H,w�H)̂ = X/A(X,H). There-

fore, (H, τH) = (X/A(X,H))̂ ≤ (G, τ) which proves the claim. Similarly, we claim that G/H is locally
compact as a subgroup of (G/H, τ/H). For, (G/H,w/H) ∈ B implies ∃τG/H locally compact such that

(G/H, τ+G/H) = (G/H,w/H). The latter implies that (G/H, τG/H)̂ = (G/H, τ+G/H)̂ = (G/H,w/H)̂ =

A(X,H). Therefore, (G/H, τG/H) = A(X,H)̂= G/H; proving the second claim. Since H and G/H are

locally compact as a subgroup and quotient of G ⊆ (G, τ) respectively, it follows, by [14] (5.25), that G
is locally compact as a subgroup of (G, τ). Because G is dense in G, it follows that G = G [14] (5.11),
hence, (G, τ+) = (G,w), as required. �
Theorem 3.5. Assume all compact subsets of (G,w) are finite. Then TFAE:

(1) (G,w) ∈ B.
(2) w is the largest totally bounded group topology on G.
(3) ((G,w) ,̂ tp) is compact.
(4) ((G,w) ,̂ tk) is compact.
(5) ((G,w) ,̂ tp) is locally compact.
(6) ((G,w) ,̂ tk) is locally compact.
(7) Every homomorphism f : (G,w) −→ T is continuous.

Proof: The hypothesis on the compact subsets of (G,w) implies that ((G,w) ,̂ tp) = ((G,w) ,̂ tk). There-
fore 3 ⇐⇒ 4 and 5 ⇐⇒ 6. 2 =⇒ 1 is obvious, Lemma 3.3 yields 1 =⇒ 6. Because every group of
characters equipped with the finite-open topology is totally bounded, 5 =⇒ 3. Obviously, 2 ⇐⇒ 7.
3 =⇒ 7 can be seen by using (3), (4) and (6) of Theorem 2.1. �

By [14] (5.14), every locally compact abelian group (G, τ) contains an open compactly generated
subgroup (H, τ�H). Notice then that (G/H, τ/H) is discrete. By properties of the Bohr topology, we have



then that (G, τ+) contains a compactly generated subgroup (H, τ+�H) such that (G/H, τ+/H) = (G/H)#.
This proves the sufficiency of the following:

Lemma 3.6. (G,w) ∈ B if and only if there is a compactly generated subgroup (H,w�H) of (G,w), such
that (H,w�H) ∈ B and (G/H,w/H) = (G/H)#.

Proof: For the necessity, use Theorem 3.4. �
Corollary 3.7. If for every compactly generated subgroup (H,w�H) of (G,w) we have that (H,w�H) ̸∈ B
or (G/H,w/H) ̸= (G/H)#, then (G,w) ̸∈ B. �

By [14] (9.8) a compactly generated locally compact abelian group must have the form Zm×Rn×K
where m,n are non-negative integers and K is a compact abelian group. Because of Theorem 2.1.8 and
properties of the Bohr topology, a compactly generated precompact group (G,w) ∈ B if and only if it has
the form (Z#)m × (R+)n ×K where m,n are non-negative integers and K is a compact abelian group,
and by duality properties, if (G,w) ∈ B, then ((G,w) ,̂ tk) has the form Tm × Rn × D, where m,n are
non-negative integers and D is a discrete abelian group.

Theorem 3.8. Assume that (G,w) is compactly generated. Then 1 ⇐⇒ 2 =⇒ 3:

(1) (G,w) ∈ B,
(2) (G,w) = (Z#)m × (R+)n ×K, where m,n are non-negative integers and K is a compact abelian

group,
(3) ((G,w) ,̂ tk) = Tm × Rn × D, where m,n are non-negative integers and D is a discrete abelian

group. �
Notice that (3) does not imply (2) above: Setting (G,w) := Q+, one has ((G,w) ,̂ tk) = R.

Theorem 3.9. Assume that (G,w) is compactly generated and 0-dimensional. Then (G,w) ∈ B if
and only if the subgroup B of (G,w) of all compact elements of (G,w) [14, (9.10)] is compact, and
(G/B,w) = (G/B)#.

Proof: (=⇒) Assume that (G,w) = (G, τ+). By [14] (9.8) there are m,n ∈ ω and a compact group
K such that (G, τ) = Rm × Zn × K. By hypothesis, m = 0 and K is 0-dimensional. It follows that
(G,w) = (G, τ+) = (Z#)n ×K, B = K, and (G/B,w) = (Z#)n, as required. For (⇐=), apply Theorem
3.4. �
Lemma 3.10. Suppose the groups A,B and G satisfy (G,w) = (A,w1) × (B,w2). Then (G,w) ∈ B if
and only if both (A,w1) ∈ B and (B,w2) ∈ B.

Proof: By the main hypothesis, ((G,w) ,̂ tk) = ((A,w1) ,̂ tk)× ((B,w2) ,̂ tk). If (G,w) ∈ B, say (G,w) =
(G, τ+), then, by Theorem 2.1.2, (G, τ) = (((G,w) ,̂ tk) ,̂ tk) = (((A,w1) ,̂ tk) ,̂ tk)× (((B,w2) ,̂ tk) ,̂ tk).
We write (A, τ1) := (((A,w1) ,̂ tk) ,̂ tk), and (B, τ2) := (((B,w2) ,̂ tk) ,̂ tk). Hence (G, τ) = (A, τ1) ×
(B, τ2), and by Theorem 3.1, (A, τ1�A) is a dense subgroup of (A, τ1), and (B, τ2�B) is a dense subgroup of

(B, τ2). But since (A,w1)×{0} ≤ (G,w), it follows that (A, τ1)×{0} ≤ (G, τ). Similarly, {0}× (B, τ2) ≤
(G, τ). Thus both (A, τ1) and (B, τ2) are locally compact, hence (A, τ1�A) = (A, τ1) and (B, τ2�B) =

(B, τ2). By properties of the Bohr topology, (A,w1) × (B,w2) = (G,w) = (G, τ+) = (A, τ+1 ) × (B, τ+2 ).
This obviously implies that (A,w1) = (A, τ+1 ) and (B,w2) = (B, τ+2 ). The converse is obvious. �
Theorem 3.11. The topological group (G,w) ∈ B if and only if there are groups A,B and C such that
(a) G = A × B, (b) (A × {0},w�(A×{0})) = (R+)n for some n ∈ ω, and (c) ({0} × C,w�({0}×C)) is a

compact subgroup of ({0} ×B,w�({0}×B)) such that (B/C,w/C) = (B/C)#.

Proof: (=⇒) Assume that (G,w) = (G, τ+). By [14] (24.30) there are n ∈ ω, a locally compact group
G0 and a compact group K such that (G, τ) = Rn ×G0, and (G0/K, τ/K) is discrete. Let A,B and C
be the underlying groups of Rn, G0, and K, respectively. By properties of the Bohr topology, we have
that (a), (b) and (c) hold. For (⇐=), apply Theorem 3.4 to see that ({0} × B,w�({0}×B)) ∈ B. That
(G,w) ∈ B follows after an application of Lemma 3.10. �
Theorem 3.12. Consider the topological abelian group (G,w). Suppose that F is its connected compo-
nent. Then (G,w) ∈ B if and only if both (F,w�F ) ∈ B, and (G/F,w/F ) ∈ B.



Proof: (=⇒) Assume that (G,w) = (G, τ+). By [14] (24.30) there are n ∈ ω, a locally compact group
G0 and a compact group K such that (G, τ) = Rn × G0, and (G0/K, τ/K) is discrete. Let C be the
connected component of G0. Clearly, (C, τ+) ≤ (G0, τ

+) = (G0,w), with (C, τ+) = (C,w) connected.
Since (G0/C, τ) is 0-dimensional, it follows, by properties of the Bohr topology [12], that (G0/C, τ

+) is 0-
dimensional. If F := (R+)n×C, it follows that (F,w) ∈ B is the connected component of (G,w) = (G, τ+).
Of course (G/F,w) = (G/F, τ+) ∈ B. For (⇐=), apply Theorem 3.4. �

Corollary 3.13. The following are equivalent for a topological abelian group (G,w).

(1) (G,w) ∈ B.
(2) There are groups A,B and C such that (a) G = A × B, (b) (A × {0},w�(A×{0})) = (R+)n for

some n ∈ ω, and (c) ({0}×C,w�({0}×C)) is a compact subgroup of ({0}×B,w�({0}×B)) such that

(B/C,w/C) = (B/C)#.
(3) If F is the connected component of (G,w) ∈ B then (F,w�F ) ∈ B, and (G/F,w/F ) ∈ B.
(4) There is a compactly generated subgroup (H,w�H) of (G,w), such that (H,w�H) ∈ B and (G/H,w/H) =

(G/H)#.

Corollary 3.14. If (G,w) is a metrizable Hausdorff group in B, then (G,w) is compact.

4. Some topologies canonically associated to topological groups

Following the terminology in [6], for a (Hausdorff) space X = (X, t) we denote by kX, or (X, kt),
the set X with the topology kt defined as follows: A subset U of X is kt-open if and only if U ∩ K is
(relatively) t-open in K for every t-compact subset K of X. Then kX is a k-space (that is, kX = kkX),
kt is the smallest k-space topology on X containing t. Furthermore kt is the unique k-space topology on
X larger than t such that each t-compact subset of X is also kt-compact. In like manner, we say that a
map f defined on X is k-continuous when f is continuous on each compact subset of X.

Given a topological abelian group (G, t) with dual X := (̂G, t), for any subset A of G, we define
A0 := {χ ∈ X : |χ(g)| ≤ 1

4 ∀ g ∈ A}. Assuming that we are considering the dual pair (G,X), for any

subset L of X, we define L0 := {g ∈ G : |χ(g)| ≤ 1
4 ∀ χ ∈ L}. This set operator behaves in many aspects

like the polar operator in vector spaces. For instance, it is easily checked that A000 = A0 for any A ⊂ G.
Given an arbitrary subset A in G, we define the quasi convex hull of A, denoted co(A), as the set A00.
A set A is said to be quasi convex when it coincides with its quasi convex hull. These definitions also
apply to subsets L of X. The topological group (G, t) is said to be locally quasi convex when there is a
neighborhood base of the identity consisting of quasi convex sets.

Let (G, t) be a MAP topological abelian group. In the sequel we are going to look at the following
natural group topologies canonically attached to (G, t).

Definition 4.1. (1) The Bohr topology. Denoted by t+, it is the weak topology generated by the
t-continuous homomorphisms from G into T. It easily seen that the canonical map b : (G, t) 7→
(G, t+) is an epireflective functor from the category of topological groups into the subcategory of
Hausdorff precompact groups.

(2) The locally quasi convex topology. Denoted by q[t], it is the finest locally quasi convex
topology that is contained in t. Again, it easily seen that the canonical map q : (G, t) 7→ (G, q[t])
is an epireflective functor from the category of topological groups into the subcategory of locally
quasi convex groups.

(3) The g-sequential topology. Denoted by sg[t], it is the finest group topology coarser than
the sequential modification of t, i.e., the largest topology on G with the same t-convergent se-
quences. When t = sg[t], it is said that (G, t) is a g-sequential group. The canonical map
g : (G, t) 7→ (G, sg[t]) defines a coreflective functor from the category of topological groups into
the subcategory of g-groups.

(4) The kg-topology. Denoted by kg[t], it was originally defined by Noble [17] as the supreme of
all group topologies on G that lie between t and the k-topology kt attached to t. When t = kg[t],
it is said that (G, t) is a kg-group. As in (3), the canonical map kg : (G, t) −→ (G, kg[t]) is a
coreflective functor from the category of topological groups into the subcategory of kg-groups.



First, we explore the relationship among these topologies. The topologies (3) and (4) have very
similar properties and we will only present the proofs for the g-sequential topology since basically the
same proofs work for the kg-topology.

Lemma 4.2. Let (G,w) be a totally bounded group. Then (G,w) is the Bohr reflection of a g-sequential
group if and only if w is the finest among all totally bounded topologies on G that share the same collection
of convergent sequences. If either condition holds, then (G, sg[w]) has the same dual as (G,w).

Proof: Assume that w = t+ for some g-sequential topology t on G. Let ρ be another totally bounded
topology on G such that w and ρ have the same family of convergent sequences. Then the identity
mapping 1G : (G, sg[w]) −→ (G, ρ) is sequentially continuous and, therefore, continuous as well. Now,
since the map g defines a correflective functor and (G, t) is a g-sequential group, from t ≥ w, it follows
that τ ≥ sg[w], hence 1G : (G, τ) −→ (G, ρ) is continuous. Being ρ totally bounded, this implies that
1G : (G, t+) −→ (G, ρ) is continuous. Since t+ = w, it follows that w ≥ ρ.

Conversely, suppose that w is the finest totally bounded topology on G with the same family of
convergent sequences. First, we will see that (G, sg[w]) has the same dual as (G,w). Trivially, every
w-continuous character is automatically sg[w]-continuous. We claim that if χ were a sg[w]-continuous
character that is not w-continuous, then w ∨ tχ, the supreme topology generated by w and the initial
topology generated by χ, would be a totally bounded topology with the same convergent sequences as w.

Indeed, let (xi) be a sequence in G w-converging to some point x0 ∈ G. Since every w-convergent
sequence is sg[w]-convergent, it follows that (xi) sg[w]-converges to x0. As a consequence (χ(xi)) converges
to χ(x0), and therefore, (xi) converges to x0 in w ∨ tχ. Thus w = w ∨ tχ, which means that χ is w-
continuous by Theorem 2.1.5. We have therefore verified that w is the Bohr topology associated to
sg[w]. �
Lemma 4.3. Let (G,w) be a totally bounded group. Then (G,w) is the Bohr reflection of a kg-group if
and only if w is the finest among all totally bounded topologies on G that share the same collection of
compact subsets. If either condition holds, then (G, kg[w]) has the same dual as (G,w).

Corollary 4.4. A countable totally bounded group (G,w) is in B if and only if every character of G is
w-continuous. In this case, the groups (G, sg[w]) and (G, kg[w]) are discrete.

Proof: (=⇒) follows from Corollary 3.13, while (⇐=) follows from Theorem 2.1.5 and Corollary 3.13.2.
That sg[w] and kg[w] are the discrete topology follows from Theorem 3.5. �
Corollary 4.5. Let (G,w) be a totally bounded group that is the Bohr reflection of a g-sequential (resp.
kg) group (G, τ). Then w = sg[w]

+ (resp. w = kg[w]
+).

Proof: It suffices to notice that (G, sg[w]) ((G, kg[w]), resp.) has the same dual as (G,w). �
Lemma 4.6. Let (G, t) be a topological abelian group and let G′ := (G, t)̂ denote its dual group. Then
the following are equivalent:

(1) Every sequentially continuous character on (G, t) is continuous;
(2) (G, sg[t])̂= G′;
(3) (G, sg[t]

+) = (G, t+);
(4) There exists a g-sequential topology t̃ on G such that t ⊆ t̃ and t+ = t̃+.

Lemma 4.7. Let (G, t) be a topological abelian group and let G′ := (G, t)̂ denote its dual group. Then
the following are equivalent:

(1) Every k-continuous character on (G, t) is continuous;
(2) (G, kg[t])̂= G′;
(3) (G, kg[t]

+) = (G, t+);
(4) There exists a kg-topology τ on G such that t ⊆ τ and t+ = τ+.

Corollary 4.8. The group (G, t) respects convergent sequences if and only if t ⊆ sg[t
+].

Corollary 4.9. The group (G, t) respects compact subsets if and only if t ⊆ kg[t
+].

In order to characterize Bohr groups we need two basic notions. The first one is well known and
the later was introduced in [13].



A family N of subsets of a topological space X is a network at x ∈ X if for every neighborhood U
of x there exists an M ∈ N such that x ∈ M ⊆ U . If N is a network at each point in X, we say that N
is a network for X.

For any topological group (G, t), we say that W ⊂ G is a k-neighborhood of 0 if for any t-compact
subset K ⊂ G containing 0, there exists a neighborhood U of 0 such that U ∩ K ⊂ W ∩ K. It is not
true in general that if x ∈ G and W is a k-neighborhood of x in (G, t) then W is a neighborhood of x in
(G, kg[t])). However, when W is a quasi convex set the assertion above holds true (see Proposition 1 in
[13]).

A topological space is said to be hemicompact if in the family of all the compact subspaces of
X ordered by ⊆ there is a countable cofinal subfamily. The concept was introduced by Arens in [1].
Hemicompact spaces are of course σ-compact but Q shows that the containment is proper. We now look
at groups that are hemicompact.

Theorem 4.10. Let (G,w) be a hemicompact totally bounded group whose cardinality is not Ulam-
measurable. Then (G,w) ∈ B if and only if the following properties hold:

(1) Every sequentially continuous character on (G,w) is continuous.
(2) There exists a compact subgroup K of G such that (G/K,w/K) has a countable network at 0

consisting of k-neighborhoods of 0.

Proof: First, we notice that a wide use of duality techniques are essential for the proof. Assume that
(G,w) ∈ B and let τ be a locally compact topology on G such that τ+ = w. Then (G, τ) satisfies the
two assertions above. Indeed, that (G, τ) satisfies (1) is due to results of Varopoulos [21] and Reid [19].
Also, the celebrated Kakutani-Kodaira Theorem [3] (3.7) and Theorem 2.1(9) imply that G contains a
compact subgroup K such that (G/K, τ/K) is metric. Therefore (G/K, τ/K) will be hemicompact and
metric. Now, every LCA group is a locally quasi convex kg-group. Therefore, there exists a countable
neighborhood base N = {Un} at the neutral element of (G/K, τ/K) consisting of k-neighborhoods, quasi
convex sets. Then N is a countable network for G/K, which proves (2).

Conversely, suppose that (1) and (2) hold. By Theorem 3.4, in order to prove that (G,w) ∈ B, it
will suffice to verify that (G/K,w/K) ∈ B. In other words, there is no loss of generality in assuming that
(G,w) has a countable network at 0G consisting of k-neighborhoods of 0.

Let us denote by G′ := ((G,w) ,̂ tk), the dual topological group of (G,w). Because (G,w) is
hemicompact, it follows that G′ is metric and, by (1), it follows that G′ is complete metric. Further, by
[13, Lemma 5], we have that if F is a k-neighborhood of 0G, then F 0 is precompact in G′. Furthermore,
being F 0 closed in G′, which is complete, it follows that F 0 is in fact a compact subset of G′. Since (G,w)
has a countable network {Wn} at 0G consisting of quasi convex subsets, it follows that G′ =

∪
n∈N W 0

n .
Therefore G′ is σ-compact. Furthermore, since G′ is complete metric and σ-compact, by the Baire
category theorem, it follows that G′ is locally compact. In particular, G′ is hemicompact [1].

Since (G,w) = (G, tp(G
′) by Theorem 2.1(6), we have the following commuting diagram:

(G, tk(G
′)) −−−−→ (G,w)y y

(Ĝ′, tk(G
′)) −−−−→ (Ĝ′, tp(G

′))

where the evaluation maps given by the vertical arrows are topological embeddings, and the identity maps

given by the horizontal arrows are continuous. By Theorem 2.1(9), the totally bounded group (Ĝ′, tp(G
′))

and the locally compact group (Ĝ′, tk(G
′)) have the same collection of compact subsets, which implies

that (G, tk(G
′)) is itself hemicompact (since (G,w) is hemicompact), and metrizable, as subgroup of

(Ĝ′, tk(G
′)). It follows then, by [1] again, that (G, tk(G

′)) is a locally compact subgroup of (Ĝ′, tk(G
′)).

Therefore, we have proved that (G, tkG
′)) is locally compact and metric. By Lemma 4.7, its dual group

is G′. By Theorem 2.1(1) it follows that G = Ĝ′ and since (G, tk(G
′))̂ = G′ = (G,w)̂ we have that

(G, tk(G
′)+) = (G,w), hence (G,w) ∈ B. This completes the proof. �

In case G has Ulam-measurable cardinality, Theorem 4.10 does not hold because there are compact
groups that are not g-sequential (see [4]). In this case, we must replace sequential continuity by k-
continuity.



Theorem 4.11. Let (G,w) be a hemicompact, totally bounded group. Then (G,w) ∈ B if and only if the
following properties hold:

(1) Every k-continuous character on (G,w) is continuous.
(2) There exists a compact subgroup K of G such that (G/K,w/K) has a countable network at 0

consisting of k-neighborhoods of 0.

Example 4.12. The hemicompactness condition on Theorems 4.10 and 4.11 cannot be relaxed. If G = Q+,
then G satisfies (1) and (2) but G ̸∈ B since it is not hemicompact [1].

The question of characterizing those totally bounded groups (G,w) such that (G, kw) is locally
compact and (kw)+ = w is proposed in [6], and studied further by Galindo [8]. Next, we show how this
question is related to the subject matter of this paper.

Lemma 4.13. Let (G,w) be a totally bounded group. Then (G,w) ∈ B if and only if (G, kw) is locally
compact and (kw)+ = w.

Proof: Sufficiency is obvious. In order to prove necessity, assume that (G,w) ∈ B. That is, there is a
locally compact topology τ on G such that τ ⊇ w and τ+ = w. Since the topology of every locally
compact group is both g-sequential and k-space (see [21]) and τ ⊇ w, it follows that τ ⊇ sg[w] ∪ kw. On
the other hand, by Theorem 2.1(9), the groups (G,w) and (G, τ) have the same collection of compact
subsets, which implies that τ ⊆ sg[w] ∩ kw. In other words, we have that τ = sg[w] = kw. �

In light of the previous lemma, the next theorem provides an answer to Question 4.3 in [6].

Theorem 4.14. Let (G,w) be a totally bounded group whose cardinality is not Ulam-measurable. Then
(G,w) ∈ B if and only if the following properties hold:

(1) Every sequentially continuous character on (G,w) is continuous.
(2) There is a hemicompact subgroup H of (G,w) such that (G/H,w/H) = (G/H)#

(3) There exists a compact subgroup K of (H,w�H) such that (H/K,w/K) has a countable network
at 0 consisting of k-neighborhoods of 0.

Again, when the group G has Ulam-measurable cardinality, we have the following variant of The-
orem 4.14.

Theorem 4.15. Let (G,w) be a totally bounded group. Then (G,w) ∈ B if and only if the following
properties hold:

(1) Every k-continuous character on (G,w) is continuous.
(2) There is a hemicompact subgroup H of (G,w) such that (G/H,w/H) = (G/H)#

(3) There exists a compact subgroup K of (H,w�H) such that (H/K,w/K) has a countable network
at 0 consisting of k-neighborhoods of 0.

We now establish the independence of the three conditions in Theorems 4.14 and 4.15.

Example 4.16. Set G = (Z,w), where w is a totally bounded topology on Z such that w $ tp(T), the
Bohr topology on Z, but contains no infinite compact subsets (see [6]). Then G satisfies (2) and (3)
but fails to satisfy (1). For, (1) does not hold since the only convergent sequences in G are eventually
constant; (2) G is obviously hemicompact; and (3) the singleton {0} is obviously a countable network at
{0} consisting of k-neighborhoods.

Example 4.17. Let X be an infinite compact metric space, H1 = A(X)+, where A(X) denotes the free
abelian group generated by X, and let H2 = R+. Set G = H1 × H2. Then G satisfies (1) and (2) but
fails to satisfy (3). For, a sequentially continuous character of A(X) is obviously continuous on X, and
thus it will be continuous by the properties of free abelian groups. By [2] (7.4.4) and (7.1.13) A(X) is
hemicompact, and by [9] (4.20) H1 is hemicompact as well; since H2 is hemicompact by Theorem 2.1.8,

a simple verification shows that G is also hemicompact. Notice also that if H1 satisfied (3), then Â(X)
would be first countable, hence locally compact, which is absurd [1]. Thus, G does not satisfy (3).

Example 4.18. If G = Q+, then G satisfies (1) and (3) but fails to satisfy (2) [1].



5. Respecting compactness

Let us recall that a group is von Neumann complete if every closed precompact subset of the group
is complete.

Lemma 5.1. Let G be a MAP (von Neumann) complete group that respects compactness. If (xn) is a
Cauchy sequence in G+, then it converges in G.

Proof: If (xn) is precompact in G, then (xn)
G

is a compact subset in G homeomorphic to (xn)
bG

. As
a consequence (xn) must be convergent in G. Therefore, we may assume that (xn) is not precompact.
Furthermore, taking a convenient subsequence if necessary, we may assume that (xn) is uniformly discrete.
That is, there is a neighborhood of the identity, say U , such that xnx

−1
m /∈ U for all n,m in N. Now, since

(xn) is Bohr-Cauchy, it follows that (xnx
−1
n+1) Bohr-converges to the neutral element. Since G respects

compactness, we have that (xnx
−1
n+1) converges to the neutral element in G, which is a contradiction,

completing the proof. �
As a consequence of the previous lemma, we obtain:

Lemma 5.2. Let G be a MAP (von Neumann) complete group that respects compactness, and let N be
a closed, metrizable subgroup of bG. Set H+ = G+ ∩ N . Then H, the inverse image of H+ in G, is a
compact metrizable group isomorphic to H+.

Definition 5.3. We say that a MAP group G strongly respects compactness if whenever N is a closed
metrizable subgroup of the Bohr compactification bG of G and A ⊆ G, then A+ (N ∩G) is compact in
G whenever ϕ(A) is compact, where ϕ is the composition map G −→ bG −→ bG/N . If N is a closed
subgroup of bG such that for any A ⊆ G, A + (N ∩ G) is compact in G whenever ϕ(A) is compact in
bG/N , then we say that N preserves compactness.

Obviously, a MAP group that strongly respects compactness also respect compactness, but the
converse does not hold [9] (4.10). That locally compact abelian groups strongly respect compactness is
the main result in [6], but this has been improved in several directions in [9]. In particular, the next
result contributes positively into answering Question 5.1 of [9].

Theorem 5.4. Let G be a MAP abelian Polish group (more generally, a MAP abelian metrizable von
Neumann complete group) that respects compactness. Then G strongly respects compactness.

Proof: Let N be closed, metrizable subgroup of bG and assume that A ⊆ G with ϕ(A) compact in bG/N .
We have to prove that A+ (N ∩G) is compact in G. Now, since A+ (N ∩G) = (A+N) ∩G is closed
in G+, it is also closed in G, which is complete. Therefore, it will suffice to show that A + (N ∩ G) is
precompact in G. Assume otherwise. Then A + (N ∩ G) must contain an infinite uniformly discrete
sequence (xn) = (an + yn), where (an) ⊆ A and (yn) ⊆ N ∩ G. Now, A + N is a compact metrizable
subspace of bG (in order to see this, use the first part of the proof of Lemma 2.6 in [6]). Therefore, (xn)
must contain a Cauchy subsequence, say (xnm

). By Lemma 5.1, this subsequence converges to a point
p ∈ G, which contradicts our assumption about (xn) being uniformly discrete. Thus A + (N ∩ G) is
precompact in G, which completes the proof. �

The following is Question 4.1 in [6]:

Question 5.5. Let G be a MAP group and suppose that every closed, metrizable subgroup N of bG such
that N ∩G = {0} preserves compactness. Does it follow that G strongly respects compactness?

We will need the following:

Definition 5.6. A Hausdorff topological space X is a kω-space if there exists an ascending sequence of
compact subsets K1 ⊆ K2 ⊆ · · ·X such that X =

∪
n∈ω Kn and U ⊆ X is open if and only if U ∩Kn is

open in Kn for each n < ω.

The following result answers Question 5.5 in the negative.

Example 5.7. Take Gn := T and Hn := Q/Z, equipped with the topologies inherited from the complex
plane and the topology inherited from R/Z, respectively, for all n < ω, and set G :=

⊕
n<ω

Gn, and

H :=
⊕
n<ω

Hn, with both groups equipped with the box topology. From here on, we identify the groups



Gn, Hn,
⊕

n<N

Gn and
⊕

n<N

Hn with their isomorphic subgroups in G and H respectively. We have the

following facts:

(1) G is the countable direct limit of compact groups and, therefore it is a MAP, kω-group having
H as a dense subgroup.

(2) G strongly respects compactness.
(3) For every compact subset K of G there is n0 ∈ N such that K ⊆

⊕
n<n0

Gn.

(4) bG = bH.
(5) If N is a compact metrizable subgroup of bG such that N ∩H = {0}, then N ∩G = {0}.
(6) If N is a compact metrizable subgroup of bG such that N∩H = {0}, then N respects compactness

in H.
(7) H does not strongly respect compactness.

Proof: (1) is clear. (2) is proved in [7], where it is established that every locally kω-group strongly
respects compactness. (3) is clear since G is equipped with the countable box topology. (4) follows from
the density of H in G. In order to prove (5), reasoning by contradiction, assume that N ∩G ̸= {0}. Since
G strongly respects compactness, it follows that N ∩ G is a compact subgroup of G and, by (3), there
is n0 ∈ N such that G ∩ N ⊆

⊕
n<n0

Gn. Now, every proper closed subgroup of T is finite and contained

in Q/Z. Thus, if πn denotes the nth-projection of G onto Gn, we have that either πn(G ∩ N) = T or
πn(G ∩ N) ⊆ Q/Z. If Kerπ1 were trivial, then π1 is 1-to-1 and, therefore, π1(G ∩ N) contains a finite
subgroup F that is isomorphic to its inverse image π−1

1 (F ) ⊆ H. Thus, we may assume that Kerπ1 is
nontrivial. Then we replace G ∩N by Kerπ1. Applying induction, it follows that H ∩N ̸= {0}. (6) Let
N be a compact metrizable subgroup of bH such that H ∩N = {0} and let A ⊆ H such that A +N is
compact in bH. By (2) and (4) we have that A+(G∩N) is compact in G and, by (5), G∩N = {0}. Thus
A = A+ (G∩N) is compact in G. Since A ⊆ H, we obtain that A is compact in H. In other words, the
group N respects compactness in H if H ∩N = {0}. (7) Take N = G1 and A = H1. If ϕ : bH −→ bH/N
denotes the canonical quotient map, we have that ϕ(A) = {0} is trivially compact in bH/N . On the
other hand, A + (N ∩ H) = H1, which is not compact in H. Therefore H does not strongly respects
compactness. �

6. Conclusions and final remarks

Consider the class of aB consisting of the totally bounded groups (H,w) such that there exists a
locally compact non-compact group (G, τ) such that (a) H is a subgroup of G, (b) H is dense in (G, τ),
and (c) (H, τ+) = (H,w). For example, T ∈ B but not in aB, and Q+ ∈ aB but not in B. Let us call
members of the class aB almost-Bohr groups. The reason for requiring τ above to be non-compact is that
otherwise, every totally bounded group, being contained in its Weil-completion, would be almost-Bohr.
We see then that no totally bounded metrizable group is almost-Bohr, and they are in B if and only if
they are compact (Corollary 3.14).

Problem 6.1. Characterize the class of almost-Bohr groups.

Similarly, consider the classs kB (resp. sB) consisting of the abelian totally bounded groups (G,w)
such that there exists a locally compact topology τ such that τ = kg[w] (resp. τ = sg[w]). Obviously,
B ⊆ kB ∩ sB, but for example, the group G in Example 4.16 belongs to kB ∩ sB but not to B. Similarly,
Q+ does not belong either to kB ∩ sB, or to sB. Again, we see that no totally bounded metrizable
non-compact group is in kB ∩ sB (Corollary 3.14). When restricting ourselves to non-Ulam measurable
cardinals, obviously kB ⊆ sB.

Problem 6.2. Characterize the class kB (resp. sB).

Problem 6.3. What is the relation between the classes kB and sB?

More generally, replace the locally compact requirement on the topology τ in the definitions of the
classes B, aB, kB, and sB and request instead that τ satisfies τ+ ̸= τ , to obtain the new classes B′, aB′, kB′,
and sB′. Notice then that compact groups belong to each of B, kB, and sB but to none of B′, aB, aB′, kB′,
and sB′. Since the free abelian group A(X) of any Tychonoff space X respects compactness [9] (4.20), it



follows that groups of the form A(X)+ with X infinite belong to each of the classes B′, aB′, kB′, and sB′,
but to none of B, aB, kB, or sB. Obviously, B′ ⊆ kB′ ∩ sB′, but since semi-Montel spaces and L∞ groups
strongly respect compactness [9] (4.15 & 4.16), we see that there are groups belonging to kB′ ∩ sB′ but
not to B′. Moreover, any dense proper subgroup H of A(X)+ yields a group in aB′ but not in B′.

Problem 6.4. Characterize the classes B′, aB′, kB′, and sB′.

Problem 6.5. What are the relations between the classes in Problem 6.4?
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