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Abstract 

The synthesis, anti-trypanosomal and cytotoxic activities of seventeen furanchalcone derivatives are 

described herein. The structure of the synthesized products was elucidated by a combination of 

spectrometric analyses. The synthesized compounds were evaluated against Trypanosoma cruzi, which 

is the pathogenic species to humans. Cytotoxicity was evaluated against human U-937 macrophages. 

Eleven compounds were active against amastigotes of T. cruzi with EC50 values lower than 40 µM. 

Hybrids 7b-7d and 8a-8g showed better activity than that of benznidazole. Structure Activity 

Relationship (SAR) showed that the presence of electron withdrawing groups, such as the nitro or 

fluorine, increased the activity and that the degree of oxygenation is essential for activity. In addition, 

molecular docking was used to identify a possible protein target for the designed compounds. A 

spearman correlation of 0.608 between the predicted scores and the experimental data profile the 

enzyme cruzipain as a potential candidate. Finally, in silico ADMET studies of the arylfuranchalcones 

showed that these novel compounds have good drug like properties, making them potentially promising 

agents for antichagasic therapy.  
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Introduction  



Neglected tropical diseases (NTDs) are diverse group of communicable diseases that prevail in tropical 

and subtropical conditions in 149 countries. These diseases affect more than one billion people 

worldwide. NTDs include, among others, Chagas disease (American trypanosomiasis) which is caused 

by protozoan parasites from Trypanosoma cruzi (T. cruzi) [1]. 

Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness 

caused by the protozoan parasite Trypanosoma cruzi (T. cruzi). This disease is an important public 

health problem in Latin America affecting nowadays an estimated 8 million people in 21 countries and 

spreading by human migration to a number of non-endemic regions. Approximately 20-30% of the 

infected population will suffer irreversible cardiovascular, gastrointestinal, and/or neurological 

problems. The two registered drugs for Chagas disease treatment are Nifurtimox and benznidazole, 

which require prolonged treatment and have frequent side-effects that can lead to discontinuation of 

treatment [2]. Based on the above, there is a need to look for new drugs for these diseases in order to 

provide a shorter treatment course, with fewer side-effects, and also to devise pediatric formulations. 

Chalcones are a major class of natural products often found in edible plants. They have received 

considerable attention due to their wide range of biological actions, probably due to their small 

structures and Michael acceptor features, which allows them to be tolerant to many biomolecules and at 

the same time confers on them the necessary reactivity to bind to their biological targets. For this 

reason, this class of compounds have been used as a scaffold in the development of different 

pharmacological agents [3-5] including among them those endowed with antitripanosomal activity [6]. 

Some chalcones depicted in fig. 1 show antiprotozoal activity, such as chalcone 1a, which showed high 

trypanocidal activity against trypomastigotes of T. cruzi and low cytotoxicity (12.2 and 190.9 µM, 

respectively) with a selectivity index of 15.6 [7] and licochalcone A (1b), an oxygenated chalcone 

isolated from the roots of Glycyrrhiza spp, a Chinese plant, which inhibited the fumarate reductase, a 

selective target present in the mitochondria of the parasite [8].  

Many natural products, such as honokiol (1c) and schisandrin C (1d) (fig. 1), exhibiting a biphenyl 

moiety in their structures are endowed with many relevant biological activities [9,10]. In this regard, 

the biphenyl derivative 1e (fig. 1), whose structure is based on that of methylglyoxal 

bis(guanylhydrazone), was examined for in vitro antitrypanosomal activity and cytotoxicity for human 

cells. This compound had a MIC50 of 0.14 µM for Trypanosoma brucei rhodesiense, and was also 

active against other trypanosome species, including multidrug-resistant Trypanosoma brucei brucei 

(MIC50 = 11.1 µM) [11]  



 

	
 

Fig. 1. Chalcones and biphenyls biologically actives 
 

A promising strategy based on hybrid molecules has recently emerged in medicinal chemistry for the 

discovery and development of new drugs. Hybrid molecules bear in their structures two distinct 

pharmacophores and can therefore show a dual mode of action [12,13] without necessarily acting on 

the same biological target [14]. In this sense we have synthesized several triclosan-caffeic acid hybrids 

and tested them against amastigotes of Trypanosoma cruzi. Among the compounds tested, hybrids 2a 

and 2b exhibited the highest trypanocidal activity (EC50 = 8.25 and 8.69 µM, respectively). These 

activities were even greater when compared with those of benznidazole, the reference drug (EC50 = 

40.3 µM) [15]. Triclosan and quinolone-hydrazone hybrids synthesized and evaluated in our group also 

exhibited good antitrypanosomal activity. Among these, hybrids 2c and 2d displayed the best results 

showing EC50 values of 1.10 µM and 4.6 µM, respectively [16,17]. Quinoline-chalcone hybrid 2e also 

exhibited trypanocidal activity with a value of  31.73 µM [18]. Furanchalcones-imidazole hybrids 2f 

(EC50= 0.66 µM) and 2g (EC50= 0.72 µM), furanchalcone-chromone hybrid 2h (EC50i= 13.78 µM) and 

furanchalcone-quinoline hybrid 2i (EC50-T.cruzi= 7.09 µM) also exhibited a good activity against T. cruzi 

[19]. Z. Qiao and coworkers have also investigated the biological action of hybrids such as chalcone-

benzoxaborole hybrid 2j which showed an IC50 of 0.01 µg/mL against bloodstream form of T. brucei 

and elimination of parasitemia in a murine model of infection [20]. On the other hand, M. A. Ismail and 

coworkers evaluated the in vitro biological action of biphenyl-benzimidazole-diamidines against 

Trypanosoma brucei rhodesiense, which showed IC50 values ranging from 3 to 37 nM, being 2k the 

most active compounds with an IC50 value of  3.0 nM [21] (fig. 2).  



 

 
 

Fig. 2. Hybrids molecules derived from chalcone and biphenyl with antitrypanosomal activity 

 

In the search for new therapeutic alternatives to treat Chagas disease, a series of furanchalcone-

biphenyl hybrids were designed, synthesized and evaluated in vitro as regards their cytotoxicity and 

anti-trypanosomal activity (fig. 3). 

 

 
 

Fig. 3 Design of furanchalcone-biphenyl hybrids as antitrypanosomal agents 

 

2. Results and discussion 

2.1. Chemistry 

The synthetic strategy for the preparation of biphenyl-furanchalcones is shown in Scheme 1. Thus, 

Claisen-Schmidt aldol condensation reaction of acetophenones 1 and 2 with furfural 3, yielded 



chalcones 4 and 5 (51% and 85 % yield), respectively [20]. Microwave assisted Suzuki reaction of 

furanchalcones 4 and 5 with boronic acids 6 a– i upon [22] afforded arylfuranchalcones 7 a – i and 8 a 

– i in 17 – 85%. Compound 8d could not be obtained under the same reaction conditions.  

 

The structure of each compound have been elucidated by a combined study of IR, ESI-MS, 1H NMR, 
13C NMR and bidimensional analysis. The IR spectrum exhibits characteristic absorption peaks 

corresponding to C=O, C=C, C=CAr, C-O-C, y C-HAr.  ESI-MS spectra exhibit characteristic [M+H]+ 

peaks corresponding to their molecular weights. The assignation of all the signals to individuals H or 

C- atoms have been performed on the basis of typical δ-values and J-constant coupling.  1H-RMN 

spectrum showed signal around 3.80-3.40  and 7.5 ppm corresponding to –OCH3 aryl group, –C=C–H furan 

ring and –CH=CH-C=O, respectively. The 13C-NMR spectrum showed signals of C=O (~187 ppm), Ar–

O– (~150-153ppm), furan ring (~144ppm ), -CH=C-C=O (~130 ppm) and –OCH3 (~56 ppm).  

 
 

 
	

Scheme 1. Synthetic pathway to furanchalcone-biphenyl hybrids  



 

2.2. Biological activities 

The effect of furanchalcone-biphenyl hybrids on cell growth and viability was assessed in human 

macrophages (U-937 cells) [23], which are the host cells for T. cruzi parasites. On the other hand, the 

antiparasite activity of these compounds was tested on intracellular amastigotes of T. cruzi [24,25], 

which are the parasite form causing the disease, assessing the ability of these compounds to reduce the 

amount of parasite living inside infected macrophages. Results are summarized in Table 1. 

 

 

 

 

 

Table 1 In vitro cytotoxicity and antitrypanosomal activity of furanchalcone-biphenyl hybrids 

 
Compound 

Citotoxicity 
(U-937 cells) 

 Antitrypanosomal 
activity 

SI c 

 

LC50 (Mean ± SEM) [µM] a  EC50 (Mean ± SEM) [µM] b   

7a  16.34 + 0.12     17.81 +  0.75 0.92 

7b 15.82 ±0.15  13.59 + 1.23 1.16 

7c 15.81+ 0.39  15.61 +1.71 1.01 

7d 16.04+ 0.26  15.71+ 1.86 1.02 

7e 46.27 +5.65  83.01+ 14.23 0.56 

7f 393.92 +47.07  86.94+ 6.22 4.53 

7g 85.68+ 10.73  99.71+ 5.76 0.86 

7h 142.75 + 16.95  259.66 + 48.0 0.55 

7i 283.36 + 102.64  460.0 + 250.5 0.61 

8a  18.99+ 0.98  18.15+ 0.54 1.05 

8b 19.44+ 1.40  16.79+ 2.28 1.16 

8c 15.65+ 0.17  15.53+ 1.85 1.01 

8e 15.61+ 0.32  12.59+ 1.01 1.24 



8f 15.74+ 0.23  10.52+ 0.23 1.50 

8g 17.77+ 0.46  13.42+ 0.39 1.32 

8h 20.56 + 0.10  64.03 + 8.37 0.32 

8i 17.54 + 0.22  30.41 + 5.46 0.58 

4  24.48 0.98  15.46 0.19 1.58 

5 17.74 0.72  13.29 1.04 1.34 

Benznidazole 687.80 ± 16.14   40.3 ± 6.92  17.0 

Data represent mean value +/- standard deviation; a LC50: Lethal Concentration 50 in µM;  b EC50: Effective Concentration 50 in 
µM; c SI: Selectivity Index = LC50 / EC50. 
	

 

Overall, all hybrids were highly cytotoxic to U-937 cells showing LC50< 200 µM (Table 1). Compound 

7f exhibited moderate cytotoxicity and benznidazole was not cytotoxic (LC50 > 600 µM). The 

antitrypanosomal activity was measured by determining the effective concentration 50 (EC50) that 

corresponds to the concentration of drug that gives the half-maximal reduction of the amount of 

intracellular parasites (Table 1). Dose-response relationship showed that hybrids 7a-7d, 8a-8g, 

furanchalcone 4 and 5 were active against intracellular amastigotes of T. cruzi with EC50 of < 40 µM.  

The most active compounds were 7b and 8e-8g with an EC50 values of 13.59 µM, 12.59 µM, 10.52 µM 

and 13.42 µM, respectively. In this case, benznidazole showed activity with an EC50 values of 40.3 

µM. The hybrids 7b-7d and 8a-8g showed better activity than reference drugs. Both the starting 

chalcones and the hybrids showed similar activities. This unexpected result could be due to the 

dominance of the mode of action of the chalcones, that could be explained by the presence of the 

Michael acceptor system that is reactive towards nucleophilic amino residues present in target enzymes 

of Leishmania [26,27]. Hybrids 7f, 8e, 8f, and 8g showed higher activity than cytotoxicity. Thus, the SI 

(Selectivity Index) values calculated for these compounds were >1 (Table 1). These results suggest that 

biological activity of these hybrids is selective, being more active against T. cruzi parasites than to U-

937 cells. 

On a structure-activity relationship, it is interesting to note that electron withdrawing elements, such as 

the nitro group or fluorine atom, increase the activity (7g, 7f vs 7h, 7i or 8g,8f vs 8h, 8i). In 

monosubstituted compounds series (7h, 7i, 7g, 7f vs 8h, 8i, 8g, 8f) the presence of the hydroxyl group 

improves activity. This result is in agreement with the reports for several chalcones, coumarins, 

cinnamic ester and triclosan-caffeic acid hybrids [28-31]. The effect of the hydroxyl groups may be due 



to a better molecular recognition ability towards target bioreceptors upon hydrogen bond formation 

[32]. The degree of oxygenation is essential for activity, with dimethoxylated compounds (7b, 7e, 8b 

and 8e) exhibiting higher activity than monomethoxylated hybrids (7i and 8i). This result is in 

accordance with previous report [30]. Dimethoxylated compounds showed similar activity regardless 

the position of these oxygenated groups (7a-7e and 8a-8e). This result is inconclusive for these 

compounds. However, for the case of cinnamic esters we found that oxygenation in positions 3 and 4 of 

the phenyl group were fundamental for the activity [30], which could be associated with different 

mechanisms of action. 

2.3. Docking results 
 

Determining essential genes whose lost is not tolerable by the organism is a potential strategy to 

identify therapeutic targets in the development of anti-parasitic drugs. Cysteine proteases are essential 

for survival of both T. cruzi and T. brucei [33,34]. Among them, cruzipain have become a relevant 

protein target to design novel inhibitors for the treatment of Chagas disease [35]. This enzyme 

hydrolyzes chromogenic peptides at the carboxyl arginine or lysine terminus, and plays a key role in 

the development and differentiation of the parasite during various life cycle stages [36]. Chalcones are 

structurally related to classes of compounds that have been reported as novel potent cruzipain 

inhibitors, which can effectively cause the death of the parasite [37-39]. Therefore, it is of our interest 

to test in silico the affinity of the designed hybrids and to correlate the results with the experimental 

findings. Thus, from docking experiments we examined the interactions between the hybrids and key 

residues of the protein (fig. 4).  

 



 
Fig 4. (A) Interaction of a set of hybrids (7 series) within the delimited active site of T. cruzi cruzipain 
structure (PDB:3I06). (B) 2D representation of interactions formed by compounds 7a and 7g with 
aminoacids of the enzyme. 
 
 

In general, the compounds docked similarly across the delimited binding site, with a set of hydrophobic 

interactions that potentially confers stability during the binding event. The molecules also form diverse 

types of interactions, especially π-π and π-sulfur between aromatic amino acids of the protein and ring 

motifs of the compounds. Table 2 summarizes the average scores per evaluated compound, and the 

corresponding spearman correlation factor.  

 

Table 2 Average docking scores per compound evaluated and the spearman correlation against the 

average experimental binding data. 

Compound Average docking score (kcal/mol) 
7a -6.70 
7b -6.94 
7c -6.72 
7d -6.90 
7e -6.64 
7f -6.60 
7g -6.82 
7h -6.74 
7i -6.60 
8a -6.80 
8b -6.70 
8c -6.82 



8e -6.96 
8f -7.10 
8g -6.70 
8h -6.70 
8i -6.80 

Spearman correlation 0.608 
 
 

According to the ranking correlation (which is higher than 0.5), cruzipain could be a potential 

candidate of the hybrids evaluated, despite the docking scores are close between each other in 

compound library with small structural differences. However, this initial hint can lead us to propose 

novel experimental evaluations against this molecular target, looking for optimizing the hits obtained in 

this project in a rational way. These findings are also supported by previous reports of active chalcones 

against this parasite protein target [40]. 

 

2.4. Drug-Likeness Prediction Studies 

 

We calculated and analyzed various drug-likeness properties for the seventeen arylfuranchalcones 

derivatives and data are summarized in Table 3. All the compounds showed significant values for the 

parameters analyzed, exhibiting good drug like characteristics, besides, the values were found within 

the range of properties of 95% of currently known drugs. According to Lipinski’s rule of five [41] (an 

orally active drug has no more than one violation of the criteria) the synthesized compounds 7(a-i) and 

8(a-i) could be orally active drugs in human. It was observed that all the title compounds exhibited 

good human intestinal absorption (% HIA) and good percent of human oral absorption (% HOA) 

ranging from 74.38 to 100%. Greater HIA and HOA values denote that the synthetized compounds 7(a-

i) and 8(a-i) could be better absorbed from the intestinal tract upon oral administration. These in silico 

ADMET predictions suggest that arylfuranchalcones derivatives 7(a-i) and 8(a-i) follow the criteria for 

orally active drugs and thus represent a pharmacologically active framework that should be considered 

on progressing further potential hits. 

 

On the other hand, applicability of these physicochemical properties is modelling strategies for many 

processes, such as passive membrane permeation, where their molecular mechanism is hardly 

delineated and provides approaches such as structure-activity relationship (SAR). Furthermore, 

molecular polar surface area (PSA) is a descriptor that was shown to correlate well with passive 

molecular transport through membranes and allows prediction of drug-membrane interactions. A 



comparison of calculated PSA [42] values for 4-arylfuranchalcones 7 with the 3-arylfuranchalcones 8, 

displayed a significant deviation. Thus, when PSA was applied, a correlation between PSA values and 

EC50 numbers showed that a high PSA value (derivatives 8) favored their anti-trypanosomal activity, 

whereas low PSA value (compounds 7) contributed to a reduction of the antiprotozoal activity, 

suggesting that perhaps these polar compounds tend to have a greater affinity and good ability to 

penetrate through T. cruzi-infected cell.  

 

On the other hand, lipophilicity is an important property of a drug molecule as it influences a number 

of physiological properties including transport through lipid bilayer. LogP gives a measure of the 

lipophilicity of a compound and it is a good indicator of permeability across the cell wall [43]. In this 

study, all tested compounds exhibited LogP values below 5, ranging from 2.887 to 4.773, suggesting 

good permeability and permeation across the cell membrane of infected cells. Additionally, in this 

work we calculated the number of rotatable bonds (Nrot), a topological parameter to measure 

flexibility, and we correlated this parameter with the anti-protozoal activity of the tested compounds 

7(a-i) and 8(a-i). We found that the most active compounds exhibited an optimum antichagasic activity 

containing rotatable bonds in the range of 4 to 8 (see Table 3). This high conformational flexibility of 

the molecules suggests that all synthesized compounds display good absorption. Moreover, in silico 

artificial membrane permeation rate across Caco-2 cell monolayers or MDCK cell was calculated for 

all arylfuranchalcones derivatives. It was found that the passive transmembrane permeation of the 

novel compounds displayed high permeability values (from 720 to 5259 nm/sec), except for nitro-

substituted arylfuranchalcones 7f and 8f which displayed poor cell permeability values (<400 nm/sec). 

In addition, early prediction of plasma protein binding (Log KHSA) has vital importance in the 

characterization of drug distribution in the systemic circulation. Unfavorable Log KHSA values can 

represent a negative effect on clinical development of promising drug candidates for human Chagas 

disease chemotherapy. Plasma protein binding affinity (Log KHSA) for the arylfuranchalcones 

derivatives displayed high binding affinity values (from -0.038 to 0.554). These values were very 

similar, up to 95%, to  known drugs (the recommended range for 95% of known drugs is -1.5 to 1.5), 

demonstrating the potential of these compounds as therapeutic candidates for the treatment of T. cruzi 

infection. 

 



 
 

3. Conclusions 

The synthesis, anti-trypanosomal and cytotoxic activities of seventeen furanchalcone derivatives are 

reported. This study showed that hybrids 7a-7d and 8a-8g  were active against intracellular amastigotes 

of T. cruzi with EC50 of < 40 µM.  The most active compounds were 7b and 8e-8g with an EC50 values 

of 13.59 µM, 12.59 µM, 10.52 µM and 13.42 µM, respectively. The hybrids 7b-7d and 8a-8g exhibited 

better activity than reference drugs being compounds 7f, 8e, 8f, and 8g the most selective ones. SAR 

analysis showed that electron withdrawing elements, such as the nitro group or fluorine atom, increase 

the activity. The degree of oxygenation is essential for activity being dimethoxylated compounds, 

regardless the position of these oxygenated groups, more active than monomethoxylated hybrids. In 

silico ADMET studies of arylfuranchalcones derivatives 7(a-i) and 8(a-i), showed that these novel 

compounds have good drug like properties, making them potentially promising agents for antichagasic 

therapy. Physicochemical and ADMET profile of these molecules, such as polar surface area (PSA), 

LogP and the number of rotatable bonds (Nrot), Log P (se repite ????), membrane permeation rate and 

Plasma Protein Binding (Log KHSA) showed that these compounds have potential for an eventual 

development as oral agents and can be significant active drug candidates in search of better and safe 

anti-trypanosomal agents. The structural analysis allowed us to determine whether cruzipain could be a 



potential molecular target of the evaluated compounds. Among the cysteine proteases reported in T. 

cruzi, cruzipain is a key protein that has been studied for inhibition purposes with different molecules, 

including chalcones. In our case, we found a significant prediction correlation with this enzyme, 

providing us clues for further optimization steps of the synthesized hybrids. This study has showed that 

these furanchalcone-byphenyl hybrids have potential to be considered as candidates for 

antitrypanosomal drug development. 

 

 

4. Experimental section 

4.1. Chemical synthesis 

4.1.1. General remarks 

Microwave reactions were carried out in a CEM Discover microwave reactor in sealed vessels 

(monowave, maximum power 300 W, temperature control by IR sensor, fixed temperature). 1H and 13C 

NMR spectra were recorded on a Varian instrument operating at 300 and 75 MHz, respectively. The 

signals of the deuterated solvent (CDCl3 or CD3OD) were used as reference (CDCl3: δ = 7.27 ppm for 
1H NMR and δ = 77.00 ppm for 13C NMR; CD3OD: δ = 3.31 and 4.87 ppm for 1H NMR and δ = 49.2 

ppm for 13C NMR). Carbon atom types (C, CH, CH2, CH3) were determined by using the DEPT or 

APT pulse sequence. Signal were assigned using two dimensional heteronuclear correlations (COSY, 

HSQC and HMBC). High resolution mass spectra were recorded using electrospray ionization mass 

spectrometry (ESI-MS). A QTOF Premier instrument with an orthogonal Z-spray-electrospray 

interface (Waters, Manchester, UK) was used operating in the W-mode. The drying and cone gas was 

nitrogen set to flow rates of 300 and 30 L/h, respectively. Methanol sample solutions (ca. 1 x 10-5 M) 

were directly introduced into the ESI spectrometer at a flow rate of 10 µL/min. A capillary voltage of 

3.5 kV was used in the positive scan mode, and the cone voltage set to Uc = 10 V. For accurate mass 

measurements, a 2 mg/L standard solution of leucine enkephalin was introduced via the lock spray 

needle at a cone voltage set to 85 V and a flow rate of 30 µL/min. IR spectra were recorded on a 

Spectrum RX I FT-IR system (Perkin-Elmer, Waltham, MA, USA) in KBr disks. Silica gel 60 (0.063-

0.200 mesh, Merck, Whitehouse Station, NJ, USA) was used for column chromatography, and 

precoated silica gel plates (Merck 60 F254 0.2 mm) were used for thin layer chromatography (TLC). 

 



4.1.2. General procedure for the synthesis of furanchalcones (4,5)  
Acetophenones  1 or 2 (1 eq) and furfural 3 (1.1 eq) were added to  an ethanolic solution of NaOH 

20%. The mixture was sonicated for 45 minutes and neutralized with a solution HCl 10% in an ice 

bath. The yellow solid was filtered, washed with water and dried. The solid was recrystallized with 

methanol to get the furanochalcones 4 and 5 with yields of 51% an 85% respectively. Monitoring the 

reaction progress and product purification was carried by TLC.   

 

4.1.2.1. (2E)-3-(furan-2-il)-1-(4-iodofenil)prop-2-en-1-ona (4): Yield 51%; pale yellow solid; m.p. 61-
64°C; IR (cm−1): νmax 1658 (C=O), 1583 (C=C), 1543 (C=CAr), 995 (-C-O-CFurane), 804 (C-HAr). 1H-
NMR (CDCl3, 300 MHz): δ 6.57 (H2, dd, J1 = 1.70, J2 = 3.23 Hz), 6.73 (H3, d, J = 3.23 Hz), 7.38 (H5, 
d, J = 15.32 Hz), 7.53 (H1, sapparent), 7.59 (H6, d, J = 15.32 Hz), 7.73 (H9, H10, d, J = 8.45 Hz), 7.85 
(H11, H12, d, J = 8.45 Hz); 13C-NMR (CDCl3, 75 MHz): δ 100.68 (C13), 112.84 (C2), 116.78 (C3), 
118.60 (C6), 129.88 (C9, C10), 131.15 (C5), 137.44 (C8), 137.94 (C11, C12), 145.18 (C1), 151.56 (C4), 
188.97 (C7). ESI-MS: m/z  324.9725 [M + H]+, Calc. for C13H9IO2: 324.9726 
 

4.1.2.2. (2E)-3-(furan-2-il)-1-(4-hidroxi-3-iodofenil)prop-2-en-1-ona (5): Yield 85%; yellow solid; m.p 
169-170 °C; IR (cm−1): νmax 3369 (-OH), 1629 (C=O), 1579 (C=C), 1519 (C=CAr), 1014 (-C-O-C-
furane), 806 y 742 (C-HAr). 1H-NMR (DMSO-d6, 300 MHz): δ 6.68 (H2, dd, J1 = 1.8, J2 = 3.5 Hz), 6.99 
(H12, d, J = 8.50 Hz), 7.09 (H3, d, J = 3.5 Hz), 7.52  (H5, H1, sapparent), 7.90 (H6, s), 7.99 (H9, dd, J1 = 
2.05, J2 = 8.5 Hz), 8.38 (H10, d, J = 2.05 Hz); 13C-NMR (DMSO-d6, 75 MHz): δ 85.63 (C11), 113.55 
(C2), 115.10 (C12), 117.14 (C3), 118.89 (C6), 130.40 (C9), 131.14 (C5), 131.19 (C8), 140.10 (C10), 
146.52 (C1), 151.69 (C4), 161.62 (C13), 186.01 (C7). ESI-MS: m/z  294.9884 [M + H]+, Calc. for 
C13H9IO3: 294.9888 
 

4.1.3. General procedure for the synthesis of aryl-furanchalcones (7a-7i and 8a-8i)  

A mixture of 4-iodofuranochalcona 4 or 4-hydroxy-3-iodofuranochalcona 5 (1 eq), boronic acid 6 a – i 

(2 eq), palladium acetate (5%), triphenylphosphine (10%), sodium carbonate (7eq) and 4 mL of 

toluene:methanol (3:1), were heated  under microwave radiation for 40 minutes (100°C, 200 W). then 

the mixture were diluted with dichloromethane and filtered. The crude reaction mixture, was 

evaporated under reduced pressure and the residue was purified by preparative TLC eluting with a  

mixture of dichlorometahane:hexanes (9:1). The final product was recrystallized to obtain the aryl-

furanochalcones 7 a – i and 8 a – i with yield between 27-85% y 61-65% respectively. 



4.1.3.1. (2E)-1-{2',3'-dimethoxy-[1,1'-biphenyl]-4-yl}-3-(furan-2-iy)prop-2-en-1-one (7a): Yield 35%; 
beige solid; m.p. 111-114 °C; IR (cm−1): νmax   2933 (-CH3), 1666 (C=O), 1597 (C=C), 1548 (C=CAr), 
1263 y 1035 (-OCH3 Ar), 1006 (-C-O-C- furane), 796, 736 y 700 (C-HAr). 1H-NMR (CDCl3, 300 MHz): δ 
3.60 (-O-CH3, s), 3.93 (-O-CH3, s), 6.53 (H2, dd, J1 = 3.4 y J2 = 1.8), 6.74 (H3, d, J = 3.02 Hz), 6.93-
7.02 (H15, H17, m), 7.15 (H16, t, J = 7.88 Hz), 7.52 (H1, H6, d, J =15.50 Hz), 7.63 (H5, d, J = 15.50 Hz), 
7.70 (H11, H12, d, J = 8.20 Hz), 8.09 (H9, H10, d, J = 8.20 Hz). 13C-NMR (CDCl3, 300 MHz): δ 56.00 (-
O-CH3), 60.80 (-O-CH3), 112.24 (C17), 112.71 (C2), 116.25 (C3), 119.38 (C6), 122.40 (C15), 124.31 
(C16),  128.36 (C11, C12), 129.59 (C9, C10), 130.59 (C5), 134.88 (C14), 136.77 (C14), 142.94 (C8), 144.94 
(C1), 146.65 (C19), 151.78 (C4), 153.23 (C18), 189.54 (C7). ESI-MS: m/z 335.1281 [M + H]+, Calc. for 
C21H18O4: 335.1283 
4.1.3.2. (2E)-1-{2',4'-dimethoxy-[1,1'-biphenyl]-4-yl}-3-(furan-2-iy)prop-2-en-1-one (7b): Yield 34%; 

yellow pale solid; m.p. 114-117 °C; IR (cm−1): νmax   2927 (-CH3), 1651 (C=O), 1583 (C=C), 1548 

(C=CAr), 1211 y 1024 (-OCH3 Ar), 1004 (-C-O-C- furane), 829, 759 y 677 (C-HAr). 1H-NMR (CDCl3, 300 

MHz): δ 3.82 (-O-CH3, s), 3.86 (-O-CH3, s), 6.52 (H2, dd, J1 = 1.8 y J2 = 3.3 Hz), 6.55-6.63 (H16, H18, 

m), 6.72 (H3, d, J =3.30 Hz), 7.29 (H19, d, J = 8.11 Hz), 7.51 (H6, H5, d, J =14.99 Hz), 7.60 (H1, 

sapparent), 7.64 (H11, H12, d, J = 8.23 Hz), 8.07 (H9, H10, d, J = 8.23 Hz); 13C-NMR (CDCl3, 75 MHz): δ 

55.50 (-O-CH3), 55.60 (-O-CH3), 99.07 (C16), 104.90 (C18), 112.69 (C2), 116.09 (C3), 119.46 (C6), 

122.38 (C19),  128.30 (C11, C12), 129.61 (C9, C10), 130.40 (C14), 131.35 (C5), 136.06 (C13), 143.24 (C8), 

144.86 (C1), 151.83 (C4), 157.64 (C15), 161.00 (C17), 189.39 (C7). ESI-MS: m/z 335.1278 [M + H]+, 

Calc. for C21H18O4: 335.1283.   

4.1.3.3. (2E)-1-{2',5'-dimethoxy-[1,1'-biphenyl]-4-yl}-3-(furan-2-yl)prop-2-en-1-one (7c): Yield 47%; 

yellow pale solid; m.p. 87-90 °C; IR (cm−1): νmax   2935 (-CH3), 1662 (C=O), 1604 (C=C), 1552 

(C=CAr), 1220 y 1047 (-OCH3 Ar), 1016 (-C-O-C- furane), 723 (C-HAr).  1H-NMR (CDCl3, 300 MHz): δ 

3.77 (-O-CH3, s), 3.82 (-O-CH3, s), 6.52 (H2, dd, J1 = 1.8 y J2 = 3.4 Hz), 6.73 (H3, d, J = 3.40 Hz), 

6.83-6.98 (H6, H17, H18, m), 7.51 (H5, H15, d, J = 15.66 Hz), 7.60 (H1, s), 7.67 (H11, H12, d, J = 8.4 Hz), 

8.08 (H9, H10, d, J = 8.4 Hz); 13C-NMR (CDCl3, 75 MHz): δ 55.87 (-O-CH3), 56.34 (-O-CH3), 112.71 

(C18), 112.79 (C2), 113.94 (C17), 116.21 (C15), 116.62 (C3), 119.40 (C6),  128.29 (C9, C10), 129.76 (C11, 

C12), 130.49 (C5), 130.57 (C14), 136.66 (C13), 143.13 (C8), 144.92 (C1), 150.82 (C4), 151.79 (C19), 

153.84 (C16), 189.46 (C7). ESI-MS: m/z 335.1277 [M + H]+, Calc. for C21H18O4: 335.1283. 



4.1.3.4.  (2E)-1-{2',6'-dimethoxy-[1,1'-biphenyl]-4-yl}-3-(furan-2-yl)prop-2-en-1-one (7d): Yield 46%; 

beige solid; m.p. 140-143 °C; IR (cm−1): νmax   2927 (-CH3), 1652 (C=O), 1587 (C=C), 1550 (C=CAr), 

1246 y 1103 (-OCH3 Ar), 1012 (-C-O-C- furane), 732 (C-HAr).  1H-NMR (CDCl3, 300 MHz): δ 3.75 (-O-

CH3, s), 6.52 (H2, dd, J1 = 1.8 y J2 = 3.40 Hz), 6.67 (H16, H18, d, J = 8.40 Hz), 6.72 (H3, d, J =3.40 

Hz), 7.32 (H17, t, J = 8.40 Hz), 7.46-7.57 (H1, H6, H11, H12, m), 7.62 (H5, d, J = 15.30 Hz), 8.08 (H9, 

H10, d, J = 8.40 Hz); 13C-NMR (CDCl3, 75 MHz): δ 55.94 (-O-CH3), 104.22 (C16, C18), 112.65 (C2), 

116.00 (C3), 118.44 (C6), 119.55 (C13),  127.90 (C11, C12), 129.38 (C5), 130.35 (C17), 131.39 (C9, C10), 

136.41 (C14), 139.45 (C8), 144.81 (C1), 151.86 (C4), 157.55 (C15, C19), 189.58 (C7). ESI-MS: m/z 

335.1285 [M + H]+, Calc. for C21H18O4: 335.1283.  

4.1.3.5.  (2E)-1-{3',4'-dimethoxy-[1,1'-biphenyl]-4-yl}-3-(furan-2-yl)prop-2-en-1-one (7e): Yield 27%; 

yellow solid; m.p. 131-134 °C; IR (cm−1): νmax   2951 (-CH3), 1654 (C=O),  1595 (C=C), 1548 (C=CAr), 

1222 y 1147 (-OCH3 Ar), 1016 (-C-O-C- furane), 806 y 754 (C-HAr).  1H-NMR (CDCl3, 300 MHz): δ 3.94 

(-O-CH3, s), 3.98 (-O-CH3, s), 6.53 (H2, sapparent), 6.74 (H3, d, J = 3.30 Hz), 6.97 (H16, d, J = 8.40 Hz), 

7.18 (H5, H15, d, J = 15.54 Hz), 7.50 (H6, d, J =15.54 Hz), 7.55 (H19, s), 7.61 (H1, s), 7.69 (H11, H12, d, J 

= 8.20 Hz), 8.10 (H9, H10, d, J = 8.20 Hz); 13C-NMR (CDCl3, 75 MHz): δ 56.05 (-O-CH3), 110.38 

(C19), 111.54 (C16), 112.74 (C2), 116.30 (C3), 119.27 (C6), 119.86 (C15),  126.89 (C11, C12), 129.12 (C9, 

C10), 130.59 (C5), 132.86 (C14), 136.44 (C13), 144.95 (C8), 145.36 (C1), 149.34 (C18), 149.43 (C17), 

151.76 (C4), 189.21 (C7). ESI-MS: m/z 335.1277 [M + H]+, Calc. for C21H18O4:  335.1283.  

4.1.3.6.  (2E)-1-{4'-nitro-[1,1'-biphenyl]-4-yl}-3-(furan-2-yl)prop-2-en-1-one (7f): Yield 36%, beige 

solid; m.p. 183-185 °C; IR (cm−1): νmax   1651 (C=O),  1593 (C=C), 1514 (C=CAr), 1512 y 1334 (-NO2), 

1006 (-C-O-C- furane), 817 y 738 (C-HAr).  1H-NMR (CDCl3, 300 MHz): δ 6.54 (H2, dd, J1 = 1.78 y J2 

= 3.45 Hz), 6.76 (H3, d, J = 3.45 Hz), 7.49 (H6, d, J = 15.30 Hz), 7.56 (H1, d, J = 1.78 Hz), 7.64 (H5, d, 

J =15.30 Hz), 7.75 (H15, H19, d, J = 8.60 Hz), 7.80 (H11, H12, d, J = 8.90 Hz), 8.15 (H16, H18, d, J = 8.60 

Hz), 8.34 (H9, H10, d, J = 8.90 Hz); 13C-NMR (CDCl3, 75 ,Hz): δ 112.87 (C2), 116.81 (C3), 118.91 (C6), 

124.28 (C16, C18), 127.69 (C11, C12), 128.14 (C15, C19),  129.29 (C9, C10), 131.12 (C5), 138.23 (C8), 

142.80 (C13), 145.20 (C1), 146.37 (C14), 147.62 (C17), 151.61 (C4), 189.04 (C7). ESI-MS: m/z 320.0926 

[M + H]+, Calc. for C21H18O4:  320.0923. 



4.1.3.7.  (2E)-1-{4'-fluoro-[1,1'-biphenyl]-4-yl}-3-(furan-2-yl)prop-2-en-1-one (7g): Yield 38%; beige 

solid; descomp. p 260 °C; IR (cm−1): νmax   1654 (C=O), 1598 (C=C), 1550 (C=CAr), 1058 (-C-O-C- 

furane), 813 (C-HAr). 1H-NMR (CDCl3, 300 MHz): δ 6.53 (H2, dd, J1 = 1.8 y J2 = 3.36 Hz), 6.74 (H3, d, 

J = 3.36 Hz), 7.10-7.22 (H16, H18, m), 7.50 (H6, d, J = 15.42 Hz), 7.54 (H1, sapparent), 7.57-7.64 (H5, H15, 

H19, m), 7.67 (H11, H12, d, J = 8.28 Hz), 8.11 (H9, H10, d, J = 8.28 Hz); 13C-NMR (CDCl3, 75 MHz): δ 

112.79 (C2), 115.81 (C16), 116.09 (C18), 116.46 (C3), 119.15 (C6), 127.16 (C11, C12),  128.93 (C15), 

129.04 (C19), 129.15 (C9, C10), 130.73 (C5), 136.09, 136.13 (C14), 136.86 (C8), 144.48 (C13), 145.03 

(C1), 151.72 (C4), 161.36, 164.65 (C17), 189.20 (C7). ESI-MS: m/z 293.0972 [M + H]+, Calc. for 

C21H18O4:  293.0978. 

4.1.3.8.  (2E)-1-([1,1'-biphenyl]-4-yl)-3-(furan-2-yl)prop-2-en-1-one (7h): Yield 65%; yellow solid; 

m.p. 143-145 °C; IR (cm−1): νmax   1654 (C=O), 1593 (C=C), 1544 (C=CAr), 1012 (-C-O-C- furane), 736 

(C-HAr).  1H NMR (CDCl3, 300 MHz): δ 6.33 (H2, sapparent), 6.74 (H3, sapparent), 7.36 – 7.63 (H1, H5, H6, 

H15, H17, H19, m), 7.66 (H16, H18, d, J = 7.2 Hz), 7.73 (H11, H12, d, J = 8.0 Hz), 8.12 (H9, H10, d, J = 8.0 

Hz; 13C NMR (CDCl3, 75 MHz) δ 189.38 (C=O), 151.85 (C4), 145.63 (C1), 145.07 (C13), 140.10 (C14), 

136.98 (C8), 130.74 (C5), 129.19 (C9,10), 129.10 (C18,16), 128.33 (C16,18), 127.42 (C11,12,15,17,19), 119.36 

(C6), 116.44 (C3), 112.85 (C2); ESI-MS: m/z  [M + H]+, Calc. for C19H14O2:  274,0994. 

4.1.3.9.  (2E)-1-(4'-methoxy-[1,1'-biphenyl]-4-yl) -3-(furan-2-yl)prop-2-en-1-one (7i): Yield 85%; 

yellow solid; descomp. p. 170 °C; IR (cm−1): νmax   1654 (C=O), 1598 (C=C), 1014 (-C-O-C- furane), 817 

(C-HAr).  1H NMR (CDCl3, 300 MHz): δ 4.30 (-O-CH3, s), 6.99 (H2, sapparent), 7.23 (H3, sapparent), 7.45 

(H15, H19, d, J = 8.3 Hz), 7.87-8.09 (H1, H5, H6, H16, H17, H18, m), 8.14 (H11, H12, d, J = 8.0 Hz), 8.51 

(H9, H10, d, J = 8.0 Hz); 13C NMR (CDCl3, 75 MHz) δ: 59.15 (-O-CH3), 116.71 (C2), 118.31 (C11, C12), 

120.70 (C3), 122.95 (C6), 130.60 (C9, C10), 132.27 (C16, C18), 133.05 (C15, C19), 134.92 (C5), 136.12 

(C14), 139.92 (C13), 149.27 (C8), 149.37 (C1), 155.50 (C4), 163.87 (C17), 194.19 (C7);  ESI-MS: m/z  [M 

+ H]+, Calc. for C19H14O2:  274,0994. 

4.1.3.10.  (2E)-1-{6-hydroxy-2',3'-dimethoxy-[1,1'-biphenyl]-3-yl}-3-(furan-2-yl)prop-2-en-1-one (8a) 

Yield  61%, beige solid; 1H-NMR (CDCl3, 300 MHz): δ 3.71 (-O-CH3, s), 3.95 (-O-CH3, s ), 6.51 (H2, 

dd, J1 = 1.8 y J2 = 3.15 Hz), 6.71 (H3, d, J = 3.15 Hz), 7.02 (H16, H17, d, J = 8.11 Hz), 7.14 (H11, d, J = 

8.50 Hz), 7.23 (H15, d, J = 8.11 Hz), 7.49 (H1, H6, d, J = 15.32 Hz), 7.62 (H5, d, J = 15.32 Hz), 8.05 

(H9, dd, J1 = 2.10 y J2 = 8.50 Hz), 8.11 (H10, d, J = 2.10 Hz); 13C-NMR (CDCl3, 75 MHz): δ 56.02 (-

O-CH3), 61.76 (-O-CH3), 112.12 (C16), 112.66 (C2), 115.97 (C3), 118.40 (C11), 119.18 (C6), 124.01 

(C17), 125.85 (C15), 125.93 (C8), 130.15 (C5), 130.41 (C9), 131.46 (C13), 131.67 (C14), 132.53 (C10), 



144.77 (C1), 145.25 (C19), 151.85 (C4), 152.82 (C18), 158.24 (C12), 188.16 (C7). ESI-MS: m/z 351.1225 

[M + H]+, Calc. for C21H18O5: 351.1232.  

4.1.3.11.  (2E)-1-{6-hydroxy-2',4'-dimethoxy-[1,1'-biphenyl]-3-yl}-3-(furan-2-yl)prop-2-en-1-one (8b) 

Yield 45%; yellow oil; 1H-NMR (CDCl3, 300 MHz): δ 3.88 (-O-CH3, s), 6.50 (H2, dd, J1 = 1.5 y J2 = 

3.27 Hz), 6.62 (H3, d, J = 3.27 Hz), 6.68 (H16, H18, dd, J1 = 2.3 y J2 = 8.5 Hz), 7.08 (H11, d, J = 8.50 

Hz), 7.30 (H15, d, J = 8.50 Hz), 7.48 (H1, H5, d, J = 15.27 Hz), 7.59 (H6, d, J = 15.27 Hz), 7.97 (H10, d, 

J = 2.10 Hz), 8.01 (H9, dd, J1 = 2.10 y J2 = 8.50 Hz); 13C-NMR (CDCl3, 75 MHz): δ 55.62 (-O-CH3), 

56.21 (-O-CH3), 99.24 (C18), 106.33 (C16), 112.63 (C2), 115.85 (C11), 117.08 (C3), 118.13 (C6), 119.30 

(C13), 125.98 (C10), 129.96 (C15), 130.01 (C9), 131.33 (C5), 132.59 (C14), 133.18 (C8), 144.70 (C1), 

151.88 (C4), 156.73 (C12), 158.10 (C19), 161.40 (C17), 188.23 (C7). ESI-MS: m/z 351.1235 [M + H]+, 

Calc. for C21H18O5: 351.1232.   

4.1.3.12.  (2E)-1-{6-hydroxy-2',5'-dimethoxy-[1,1'-biphenyl]-3-yl}-3-(furan-2-yl)prop-2-en-1-one (8c) 

Yield 65%, yellow oil; 1H-NMR (CDCl3, 600 MHz): δ 3.83 (-O-CH3, s), 3.85 (-O-CH3, s), 6.51 (H2, 

dd, J1 = 1.8 y J2 = 3.47 Hz), 6.70 (H3, d, J = 3.47 Hz), 6.94 (H15, d, J = 3.05 Hz), 6.97 (H17, dd, J1 = 

3.05 y J2 = 8.90 Hz), 7.01 (H11, d, J = 8.90 Hz), 7.11 (H18, d, J = 8.90 Hz), 7.49 (H5, d, J = 15.30 Hz), 

7.51 (H1, d, J = 1.80 Hz), 7.60 (H6, d, J = 15.30 Hz), 8.05 (H9, H10, dd, J1 = 2.25 y J2 = 6.90 Hz); 13C-

NMR (CDCl3, 150 MHz): δ 55.91 (-O-CH3), 57.22 (-O-CH3), 112.66 (C18), 113.40 (C2), 114.90 (C17), 

116.01 (C11), 117.73 (C15), 117.74 (C3), 119.14 (C6), 126.27 (C14), 127.10 (C13), 130.15 (C10), 130.35 

(C9), 131.44 (C5), 132.46 (C8), 144.77 (C1), 149.61 (C4), 151.80 (C12), 154.82 (C19), 158.16 (C16), 

188.16 (C7). ESI-MS: m/z 351.1232 [M + H]+, Calc. for C21H18O5: 351.1232. 

4.1.3.13.  (2E)-1-{6-hydroxy-3',4'-dimethoxy-[1,1'-biphenyl]-3-yl}-3-(furan-2-yl)prop-2-en-1-one (8e) 

Yield 64%, yellow solid; m.p. 145-147 °C; IR (cm−1): νmax   3116 (-OH), 2995 (-CH3), 1645 (C=O),  

1600 (C=C), 1556 (C=CAr), 1271 y 1049 (-OCH3 Ar), 1022 (-C-O-C- furane), 813 y 763 (C-HAr).  1H-

NMR (CDCl3, 600 MHz): δ 3.92 (-O-CH3, s), 3.94 (-O-CH3, s), 6.51 (H2, dd, J1 = 1.5 y J2 = 3.44 Hz), 

6.70 (H3, d, J = 3.44 Hz), 6.98 (H19, d, J = 2.02 Hz), 6.99 (H16, d, J = 8.20 Hz), 7.04 (H9, dd, J1 =2.02 y 

J2 = 7.45 Hz), 7.06-7.10 (H15, m), 7.48 (H5, d, J = 15.30 Hz), 7.51 (H1, d, J = 1.50 Hz), 7.60 (H6, d, J = 

15.30 Hz), 7.98-8.01 (H10, H11, m); 13C-NMR (CDCl3, 150 MHz): δ 56.03 (-O-CH3), 56.07 (-O-CH3), 

111.72 (C19), 112.20 (C16), 112.70 (C2), 115.85 (C11), 116.15 (C3), 119.01 (C6),  121.24 (C13), 128.24 

(C15), 128.38 (C10), 130.06 (C5), 130.24 (C9), 131.12 (C14), 131.25 (C8), 144.83 (C1), 149.15 (C18), 

149.70 (C17), 151.77 (C4), 157.07 (C12), 188.24 (C7). ESI-MS: m/z 351.1230 [M + H]+, Calc. for 

C21H18O5: 351.1232.  



4.1.3.14.  (2E)-1-{6-hydroxy-4'-nitro-[1,1'-biphenyl]-3-yl}-3-(furan-2-yl)prop-2-en-1-one (8f) 

Yield 31%, yellow solid; m.p. 154-157 °C; IR (cm−1): νmax   3111 (-OH), 1643 (C=O),  1602 (C=C), 

1562 (C=CAr), 1510 y 1346 (-NO2), 1014 (-C-O-C- furane), 850 (C-HAr). 1H-NMR (CDCl3, 300 MHz): δ 

6.59 (H2, sapparente), 6.88 (H3, d, J = 3.50 Hz), 7.06 (H9, dd, J1 = 5.76 y J2 = 8.45 Hz), 7.55-7.60 (H15, 

H19, m), 7.68 (H1, s), 7.84-7.90 (H5, H6, m), 7.99-8.05 (H11, m), 8.08 (H10, d, J = 5.76 Hz), 8.25-8.33 

(H16, H18, m); 13C-NMR (CDCl3, 75 MHz): δ 112.43 (C2), 115.86 (C11), 116.08 (C3), 118.39 (C6), 

122.80 (C16, C18), 126.45 (C13),  129.98 (C9), 130.06 (C15, C19), 130.17 (C10), 130.82 (C5), 131.44 (C14), 

144.74 (C8), 145.37 (C1), 146.78 (C17), 151.73 (C4), 159.55 (C12), 188.44 (C7). ESI-MS: m/z 336.0872 

[M + H]+, Calc. for C21H18O5: 336.0872. 

4.1.3.15.  (2E)-1-{4'-fluoro-6-hydroxy-[1,1'-biphenyl]-3-yl}-3-(furan-2-yl)prop-2-en-1-one (8g) 

Yield 54%, yellow solid; m.p. 164-166 °C; IR (cm−1): νmax   3149 (-OH), 1649 (C=O),  1600 (C=C), 

1571 (C=CAr), 1006 (-C-O-C- furane), 813 y 744 (C-HAr). 1H-NMR (CDCl3, 300 MHz): δ 6.48 (H2, dd, 

J1 = 1.70 y J2 = 3.20 Hz), 6.68 (H3, d, J = 3.20 Hz), 6.97 (H11, d, J = 8.42 Hz), 7.05-7.17 (H16, H18, 

m), 7.44 (H5, d, J = 15.31 Hz), 7.48-7.54 (H1, H6, H19, m), 7.57 (H15, d, J = 8.08 Hz), 7.90 (H9, dd, J1 = 

2.10 y J2 =8.42 Hz), 7.95 (H10, d, J = 2.10 Hz); 13C-NMR (CDCl3, 75 MHz): δ 112.68 (C2), 115.16 

(C11), 115.44 (C16), 115.97 (C18), 116.18 (C3), 119.02 (C6),  127.76 (C13), 129.94 (C9), 130.25 (C15), 

130.98 (C19), 131.09 (C10), 131.87 (C5), 133.39 (C8), 133.44 (C14), 144.87 (C1), 151.73 (C4), 158.54 

(C12), 160.63, 163.90 (C17), 188.67 (C7). ESI-MS: m/z 309.0923 [M + H]+, Calcd for C21H18O5: 

309.0927.   



4.1.3.16.  (2E)-1-(6-hydroxy-[1,1'-biphenyl]-3-yl)-3-(furan-2-yl)prop-2-en-1-one (8h): Yield 66%; 

orange solid; m.p. 115-118 °C; IR (cm−1): νmax   3429 (-OH), 1710 (C=O),  1647 (C=C), 1600 (C=CAr), 

1006 (-C-O-C- furane), 813 y 744 (C-HAr). 1H-NMR (CDCl3, 300 MHz): δ 6.51 (H2, dd, J1 = 3.4, J2 = 

1.8 Hz), 6.70 (H3, d, J = 3.4 Hz), 7.13 – 7.05 (H11, m), 7.56 – 7.39 (H16, H18, H5, H1, H19, H15, H9, m), 

7.61 (H6, d, J = 15.3 Hz), 8.09 – 7.96 (H10, H17, m); 13C NMR (CDCl3, 75 MHz): δ 112.71 (C2), 116.16 

(C16, C18), 119.07 (C3), 128.33 (C6), 128.45 (C17), 129.21 (C9, C10), 129.36 (C15, C19), 130.26 (C11), 

130.34 (C5), 131.16 (C13), 131.56 (C8), 136,27 (C14), 144.86 (C1), 151.79 (C4), 157.19 (C12), 188.39 

(C7); ESI-MS: m/z [M + H]+, Calcd for C19H14O3: 290.0943.    

4.1.3.17.  (2E)-1-(6-hydroxy-4'-methoxy-[1,1'-biphenyl]-3-yl)-3-(furan-2-yl)prop-2-en-1-one (8i): 

Yield 74%; orange solid; m.p. 144-146 °C; IR (cm−1): νmax   3427 (-OH), 1653 (C=O),  1602 (C=C), 

1016 (-C-O-C- furane). 1H NMR (CDCl3, 300 MHz): δ 3.86 (-O-CH3, s), 6.21 (-OH, s), 6.51 (H2, dd, J = 

3.4, 1.8 Hz), 6.70 (H3, d, J = 3.4 Hz), 6.99 – 7.10 (H11, H16, H18, m), 7.43 (H15, H19, d, J = 8.82 Hz), 

7.48 – 7.54 (H1, H5, m), 7.60 (H6, d, J = 15.3 Hz), 8.04 – 7.94 (H9, H10, m); 13C NMR (CDCl3, 75 

MHz): δ 55.44 (-O-CH3), 112.69 (C2), 114.84 (C15, C19), 115.94 (C3), 116.08 (C11), 119.12 (C6), 128.14 

(C9), 128.22 (C10), 129.96 (C5), 130.26 (C14), 130.40 (C16, C18), 131.16 (C13), 131.46 (C8), 144.82 (C1), 

151.81 (C4), 157.18 (C17), 159.67 (C12), 188.38 (C7); ESI-MS: m/z [M + H]+, Calcd for C20H16O4: 

320.1049 

 

 

 

 

 

 

 

 

 

 

 

 



4.2. Biological activity assays 

The compounds were subjected to in vitro evaluation as regards their cytotoxicity and antitrypanosomal 

activity against U-937 human cells and intracellular amastigotes of T. cruzi, respectively.  

 

4.2.1. In vitro Cytotoxicity  

    The cytotoxic activity of the compounds was assessed based on the viability of the human 

promonocytic cell line U-937 (ATCC CRL-1593.2TM) evaluated by the MTT (3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide) assay following the methodology described previously [23]. 

Briefly, cells grown in tissue flasks were harvested and washed with phosphate buffered saline (PBS) 

by centrifuging. Cells were counted and adjusted at 1 ×106 cells/mL of RPMI-1640 supplemented with 

complete 10% Fetal Bovine Serum (FBS) and 1% antibiotics (100 U/mL penicillin and 0.1 mg/mL 

streptomycin). One hundred µL were dispensed into each well of a 96-well cell-culture plate and then 

100 mL of RPMI-1640 and the corresponding concentrations of the compounds were added, starting at 

200 µg/mL in duplicate. Plates were incubated at 37 °C, 5% CO2 during 72 h in the presence of 

extracts. The effect of compounds was determined by measuring the activity of the mitochondrial 

dehydrogenase by adding 10 µL/well of MTT solution (0.5 mg/mL) and incubation at 37 °C for 3h. 

The reaction was stopped by adding 100 µL/well of 50% isopropanol solution with 10% sodium 

dodecyl sulfate and 30 min incubation. Cell viability was determined based on the quantity of formazan 

produced according to the intensity of color (absorbance) registered as optical densities (O.D) obtained 

at 570 nm in a spectrophotometer (Varioskan™ Flash Multimode Reader - Thermo Scientific, USA). 

Cells cultured in absence of compounds were used as control of viability (negative control), while 

meglumine antimoniate (Sbv) and amphotericin B (AmB) were used as control for cytotoxicity (non-

cytotoxic and cytotoxic drugs, respectively). Assays were conducted in two independent runs with 

three replicates per each concentration tested. 

 

 

 

 

 

 

 

 



4.2.2. In vitro Trypanocidal Activity  

    Compounds were tested on intracellular amastigotes of T. cruzi, Tulahuen strain transfected with β-

galactosidase gene (donated by Dr. F. S. Buckner, University of Washington) [25]. The activity was 

determined according to the ability of the compound to reduce the infection of U-937 cells by T. cruzi 

as described elsewhere [38]. Following the procedure described above, anti-T. cruzi  activity was 

initially screened at a single concentration of 20 mg/mL. In this case, 100 µL of U-937 human cells at a 

concentration of 2.5 × 105 cells/mL in RPMI-1640, 10% SFB and 0.1 µg/mL of PMA were placed in 

each well of 96-well plates and then infected with phase growth epimastigotes in 5:1 (parasites per cell) 

ratio and incubated at 34 °C, 5% CO2. After 24 hours of incubation, 20 µg/mL of each compound were 

added to infected cells. After 72 h of incubation, the effect of all compounds on viability of 

intracellular amastigotes was determined by measuring the β-galactosidase activity by 

spectrophotometry adding 100 µM CPRG and 0.1% nonidet P-40 to each well. After 3 h of incubation, 

plates were read at 570 nm in a spectrophotometer (Varioskan™ Flash Multimode Reader - Thermo 

Scientific, USA) and intensity of color (absorbance) was registered as O.D. Compounds that showed 

inhibition percentages higher than 50% were evaluated again at four concentrations selected according 

to the LC50 previously obtained for each compound. Infected cells exposed to benznidazol (BNZ) were 

used as control for anti-trypanosomal activity (positive control) while infected cells incubated in 

culture medium alone were used as control for infection (negative control). Non-specific absorbance 

was corrected by subtracting the O.D of the blank. Determinations were done by triplicate in at least 

two independent experiments [25]. 

 

 

 

 

 

 

 

 

 

 

 



4.2.3. Statistical Analysis  
Cytotoxicity was determined according to the percentages of viability and mortality registered to 

each compound a concentration, including Benznidazole and culture medium alone. Percentage of 

viability was calculated by Equation 1, where the O.D of control, corresponds to 100% of viability.  

 

% Viability = (O.D Exposed cells) / (O.D Control cells) × 100 (1) 

In turn, mortality percentage corresponds to 100 – % viability. 

 

Results were expressed as 50 lethal concentrations (LC50) that corresponds to the concentration 

necessary to eliminate 50% of cells and calculated by Probit analysis [44]. The degree of toxicity was 

graded according to the LC50 value using the following scale: high cytotoxicity: LC50 < 200 µM; 

moderate cytotoxicity: LC50 > 200 to < 600 µM and potentially non-cytotoxicity: LC50 > 600 µM. 

Trypanocidal activity was determined according to the percentage of infection obtained for each 

experimental condition by colorimetry. Parasite inhibition was calculated by equation 1, where the O.D 

of control corresponds to 100% of infection.  

 % Infection = (O.D Exposed parasites) / (O.D Control parasites) × 100 (1) 

In turn, percentage of inhibition of infection corresponds to 100% – % of Infection. 

Results of antitrypanosomal activity were expressed as EC50 determined by the Probit analysis [44]. 

antitrypanosomal activity were graded according to the EC50 value using the following scale: High 

activity: EC50 < 40 µM, moderate activity: EC50 > 40 to < 80 µM; potentially non activity: EC50 > 80 

µM. The selectivity index (SI), was calculated by dividing the cytotoxic activity and the trypanocidal 

activity using the following formula: SI = LC50/EC50.  

 

4.3. Molecular docking against cruzipain structure 
 
4.3.1. Structures parameterization 
 
To verify the potential mechanism of action of the hybrids, the structure of cruzipain, the major papain-

like cysteine protease in Trypanosoma cruzi, was obtained from the Protein Data Bank (PDB) [45]. 

with the id PDB:3I06. The crystal is in complex with a small molecule that acts as inhibitor of the 

enzymatic activity [46]. For our case, we used the characterized binding site of the complex to test the 

affinity of the hybrids. The structures of the compounds were 3D-modelled using the server Frog2 [47], 

which implements a force field to obtain by clustering the 3D structures that are most likely to be 



active, using as input SMILES representations of the molecules. Both, the structures of the selected 

proteins and the compounds were parameterized using AutoDock Tools [48], as proposed in a previous 

work [49]. In general, hydrogens were added to polar side chains to facilitate the formation of hydrogen 

bonds, and the Gasteiger partial charges were calculated. Flexibility was included by considering the 

torsion angles of the compounds structures. 

 
4.3.2. Docking and posterior analysis 

 

The docking search space was delimited with a box containing the binding site identified previously 

from the crystal. However, the site delimitation was improved with the program Ligsite [50], which is 

useful to detect pockets using geometrical considerations. Subsequently, the docking simulations were 

carried out with AutoDock Vina [51]. The exhaustiveness (internal number of repetitions) was 20 for 

each protein-compound pair. In addition, five replicas per compound were calculated and averaged to 

obtain the final docking scores in kcal/mol. The final list was compared with the experimental data 

using a ranking approach based on the spearman correlation factor. Some of the docked conformations 

were graphically inspected to check the interactions. 

 

4.4. Drug-likeness evaluation 

 

In silico drug-likeness prediction along with further ADMET tools present an array of opportunities 

which help to accelerate the discovery of new antiparasitic drugs. To find out the drug like properties 

for all the tested compounds 7a-i and 8a-i, the ADMET physicochemical parameters were determined 

by QikProp v3.5 module of Schrödinger software. We calculated and analyzed various 

physicochemical descriptors and pharmaceutical relevant properties such as molecular weight (MW), 

total polar surface area (TPSA), predicted aqueous solubility (Log S), apparent predicted intestinal 

permeability (App. Caco-2), prediction of binding to human serum albumin (log Khsa), number of 

rotatable bonds, hydrogen bond acceptor site (n-OHNH) and hydrogen bond acceptors (n-ON). Polar 

surface area was used to calculate the percentage human intestinal absorption (% HIA) according to the 

equation %HIA = 109 – [0.345 x PSA] [52]. These important parameters define absorption, 

permeability, movement and action of drug molecules. 
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