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Impedance analysis of perovskite solar cells: a case study 

 

Lidia Contreras-Bernala,†, Susana Ramos-Terróna,†, Antonio Riquelmea, Pablo Boixc, Jesús Idígorasa,*, 

Iván Mora-Seró b,* and Juan A. Antaa,* 

 

Metal halide perovskites are mixed electronic-ionic semiconductors with an extraordinary rich optoelectronic behavior and 

the capability to function very efficiently as active layers in solar cells, with a record efficiency surpassing 23% nowadays. In 

this work, we carry out an impedance spectroscopy analysis of two perovskite solar cells with quite distinct optical and 

electrical characteristics, i.e. MAPbI3 and CsPbBr3-based devices. The main aim of the analysis is to establish how, regardless 

the inherent complexity of the impedance spectrum due to ionic effects, information like ideality factors, recombination 

losses and the collection efficiency can be qualitative and quantitatively assessed from impedance experiments at operating 

conditions. 

 

Introduction 

Emerging technologies in photovoltaics such as dye-sensitized solar 

cells, organic solar cells and the more recent concept of halide 

perovskite solar cells (PSC) have been the object of a huge amount 

of research in the last few decades.1,2 These new types of solar cells 

bring the promise of cheaper synthesis and fabrication processes 

along with competitive efficiencies. As in any new concept, the state 

of the art is based on trial-and-error methods and empirical findings. 

However, a proper understanding of the fundamental processes that 

take place under operation is still required to further optimize the 

performance of solar cells. PSCs is a typical “hot” topic example of 

this due to the impressive progress accomplished in less than ten 

years, with a current certified record efficiency of 23.7%.3  

 

In spite of this progress, some drawbacks and open questions 

remain. Photovoltaic halide perovskites are ionic compounds with a 

substantial covalent character and generic structural formula ABX3, 

where A is an organic or inorganic cation, B is the metal center and X 

is a halide. In the most studied perovskite solar cells (those based on 

MAPbI3: CH3NH3PbI3), methylammonium (MA: CH3NH3
+) is employed 

as monovalent organic cation, whereas Pb2+ and I- are used as metal 

and halide, respectively. This material behaves as a sort of “soft” 

semiconductor where electronic and ionic conduction are mixed.4,5,6 

This feature appears to be related to the occurrence of different 

kinetic processes that take place in quite separated time scales: 

electronic transport and recombination in the ns-s range,7–9 ionic 

redistribution and hysteresis in the ms-seconds range,10–13 and 

reversible and irreversible degradation processes for seconds, 

minutes and even in a longer time scale.14–16 In particular, it is 

generally accepted that recombination is especially slow and 

diffusion lengths especially long in PSCs, leading to open-circuit 

photovoltages very close to the theoretical limits.7,17–19  

 

In this context, advanced optoelectronic techniques such as 

Impedance Spectroscopy (IS)20,21 are particularly appealing to study 

solar cells, as they allow the characterization in a broad range of time 

scales. A typical impedance experiment consists in setting a small 

frequency-modulated (AC) signal (voltage perturbation) which is 

applied in addition to a stationary (DC) voltage. By registering the AC 

response in terms of current one can extract the complex frequency-

dependent impedance and obtain information about internal 

processes of PSC occurring at different time scales (s – s). This 

makes it possible to distinguish processes of distinct kinetics, like 

those based on either pure electronic changes (supposed to be fast) 

or, indirectly, those based on ionic changes either in the bulk or at 

interfaces (supposed to be slow). Thus, IS can be theoretically used 

as characterization method of PSCs and provide a basis to quantify 
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transport rates, recombination losses, interfacial charge 

accumulation processes, characteristic geometric capacitances, ionic 

diffusion coefficients, etc., occurring in these time domains.  

 

 

The main drawback of IS, especially as regards its exploitation to 

characterize PSCs, is that an interpretation of the spectra is still not 

well-established in the field yet, as it is for other systems such as dye-

sensitized solar cells.21 Several factors contribute to this. First of all, 

the impedance experiment itself produces internal electrical fields 

that displace and reorganize the ions, altering the electrical 

features.22 Secondly, there is a large variety of equivalent circuits “in 

the market” to fit the spectra. Due to the existence of the afore-

mentioned disparity of kinetics, different types of circuit happen to 

yield the same fitted parameters.23 As a consequence, the 

interpretation of the obtained fitted parameters is not univocally 

understood yet. Thus, the following questions can be formulated to 

establish IS as a useful tool to assess the performance of a perovskite 

solar cell: in spite of the ionic effects and inherent complexity of the 

spectrum, can we still quantify recombination, and charge collection 

at working conditions?  

 

Herein, to provide a deeper electrical and phenomenological 

characterization with new insights in the physical process that 

determine the photovoltaic response of PSC under working 

conditions, we have chosen two configurations characterized by very 

different optical characteristics and band gaps and a quite distinct 

hysteretic behavior in the current density-voltage curve. In 

particular, we analyzed the electrical properties of MAPbI3 and 

CsPbBr3 devices under illumination, being probably the most studied 

hybrid and inorganic perovskites, respectively. In order to 

understand the spectra, the impedance parameters (time constants, 

resistances and capacitances) are analyzed, for both configurations, 

as a function of three experimental variables: (1) illumination 

intensity and open-circuit voltage, (2) DC voltage and (3) 

temperature. From experiment (1) it will be shown how the ideality 

factor can be extracted, and how it can be qualitatively compared to 

the recombination rates of PSC with different optical band gaps. 

From experiment (2) we can follow how the current-voltage curve 

can be traced down from the impedance response. From experiment 

(3) we can differentiate between electronic and ionic process and 

extract activation energies.  

 

With this purpose, perovskite solar cells based on MAPbI3 and 

CsPbBr3 films were fabricated and characterized. MAPbI3 films were 

deposited at ambient conditions using a synthesis method where the 

proportion of PbI2 and DMSO was adjusted to the environmental 

relative humidity.24,25 For CsPbBr3 films, the deposition process was 

optimized controlling the immersion time, temperature and 

perovskite solvent to avoid the presence of impurities such as 

CsPb2Br5 and Cs4PbBr6 in the solution.26
 (see “Experimental section” 

for details about the fabrication of the films and devices and their 

characterization by SEM, EDX, UV-Vis and IS). Using these materials 

as a case study we demonstrate how the recombination loss and the 

charge collection efficiency can be estimated for cells with different 

optical band gaps and distinct low frequency behavior, an analysis 

procedure which is missing so far in the impedance spectroscopy 

literature.  

Results and discussion 

After perovskite deposition, pinhole-free and crystalline perovskite 

layers with close to 400 nm thickness in both cases were formed and 

characterized for both configurations (Figure S1). As it is well known, 

the use of different ions affects the morphological (Figure S1A and 

S2) and optical properties (Figures S1B and S1C).27 28 Optical band-

gaps were extracted from UV-Vis spectra for MAPbI3 (1.61 eV) and 

CsPbBr3 (2.33 eV), Figure S1C. A relatively long subgap tail is observed 

in the absorption spectra of CsPbBr3, extending for about 0.6-0.7 eV, 

in contrast to the tail of only 0.02 eV for MAPbI3 (Figures S1B, S1C).  

Figure 1. Photovoltaic characterization of MAPbI3 and CsPbBr3 films and solar 

cells: (A) Density current-voltage characteristic of MAPbI3 and CsPbBr3 based 

devices in reverse scan under 1 sun – AM 1.5G illumination. A scan rate of 100 

mV·s-1 after poling 20 s at 1.2V and 1.4V was employed for MAPbI3 and 

CsPbBr3 based devices, respectively. (B) IPCE as a function of monochromatic 

wavelength and the corresponding AM 1.5G illumination integrated 

photocurrent. 

 

Figure 1A shows the current-potential (IV) curves obtained for the 

best performing MAPbI3 and CsPbBr3 devices measured at 1 sun. 

Statistics of the photovoltaic parameters extracted from all 

fabricated devices is shown in Figure S3. Average Power Conversion 

Efficiency (PCE) of 14.9% (short circuit current, JSC: 19.2 mA·cm-2, 

Open circuit potential, VOC: 1037 mV and Fill factor, FF: 0.74) and 
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4.1% (JSC: 5.3 mA·cm-2, VOC: 1254 mV and FF: 0.61) in a reverse scan 

of 100 mV/s were obtained for MAPbI3 and CsPbBr3 solar cells 

respectively. The PCE of CsPbBr3 is substantially lower than the one 

obtained for MAPbI3. The lower JSC is due, in one hand, to a wider 

band gap, and on the other, to a lower Incident Photon-to-Electron 

Conversion Efficiency (IPCE) recorded for CsPbBr3 cell, Figure 1B. The 

integrated photocurrents are in good agreement with the JSC 

obtained from IV curve measurements, Figure 1B and S3. After 

correction by the absorption coefficient, the Internal Quantum 

Efficiencies (IQE) at stationary conditions has also been measured at 

465 and 630 nm and different light intensities. Values very close to 

95% are obtained for best MAPbI3 based devices whereas a lower IQE 

(around 80-90%) is obtained for CsPbBr3 devices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (A) VOC vs. illumination intensity and (B) VOC as a function of the 

temperature at a light intensity of 14 mW·cm-2 using a white-LED as light 

source. The ideality factors “m” and the estimation of the band gap in 

accordance to Eq. (5) are shown in panel A and B, respectively.  

 

Figures 2A and 2B show the variation of VOC with respect to 

illumination intensity and temperature. The VOC has a logarithmic 

dependence with respect to illumination intensity which follows the 

diode equation (5), as discussed below. The slope determines the 

ideality factor (m) of the solar cells (Eq. (5)), which lies between 1.7 

and 2.2 for both configurations (Figure 2A). The VOC decreases 

linearly with respect to absolute temperature, except at lower 

temperatures (Figure 2B). The extrapolation to T → 0 K reproduces 

the optical band gap of each type of perovskite in good agreement 

with the optical characterization (Figure S1C). 

 

Both kind of solar devices were characterized by IS. Two types of IS 

experiments were performed: (1) at open circuit (OC) under varying 

illumination intensities (results plotted as a function of the resulting 

VOC) and (2) at non-open-circuit (NOC) conditions varying DC 

potential (voltage) while light intensity is fixed at 1 sun.29 In this latter 

case the parameters are corrected for voltage drop due to the 

resulting DC current and the corresponding series resistance.21  

 

Figure 3 shows representative Nyquist (Z´-Z´´) plots of impedance 

spectra for both studied configurations under illumination at 

different photopotentials at OC and different applied potentials at 

NOC conditions in the 106-10-2 Hz frequency range. The 

corresponding Bode plots are depicted in Figure S4. At OC conditions, 

the Nyquist plots of MAPbI3 based devices (Figure 3A) are 

characterized by the presence of two arcs and the corresponding 

frequency plots show two peaks at high and low frequencies 

accordingly (Figures S4A). The impedance spectra of CsPbBr3 based 

devices at OC conditions (Figure 3B, S4B) display a different behavior 

depending on illumination. At very high OC photovoltages (1.3-1.2 V) 

there are two signals in the high frequency region (104-106 Hz) that 

merge into a single one as the VOC is reduced. 

 

Under NOC conditions (Figure 3C and 3D), the Nyquist plots for 

MAPbI3 and CsPbBr3 based devices were characterized by one 

complete and well-defined high-frequency arc and, depending on 

the applied DC potential, a second low frequency arc. The Bode plots 

display two peaks in the high and frequency regions accordingly, 

Figures S4C and S4D. 

 

 

Figure 3. Nyquist plots of impedance spectra obtained under white LED 

illumination in the vicinity of the 1-sun open-circuit potential for (A, C) MAPbI3 
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and (B, D) CsPbBr3 based devices. In Figures A and B the measurements were 

carried out under varying illumination and open-circuit (OC) and in Figures C 

and D the measurement was done at fixed 1-sun equivalent illumination and 

non-open-circuit (NOC) conditions. Insets: zoom at the high frequency region. 

 

Despite the presence of other minor features, the IS of perovskite 

solar cells is basically determined by the existence of two 

characteristic times, at high and low frequencies. Note that the 

characteristic times can be easily obtained from the reverse of the 

frequency at which a peak is observed in the Bode plot (Figure S4). 

The corresponding arc in the Nyquist representation can be 

described by a parallel association of a resistor and a capacitor, 

where the time constant is the product of both of them. In order to 

properly interpret these characteristic times and how a 

recombination rate or a collection efficiency can be inferred from 

them, we have performed additional experiments. 

 

On one hand, temperature dependence of IS at short circuit 

conditions for MAPbI3 based solar cells (i.e. 0 V DC bias in NOC) have 

been carried out, Figure S5. It can be easily appreciated that the high 

frequency signal is independent of temperature, T. In contrast, the 

low frequency part varies with T and the low frequency signal gets 

shifted towards higher frequencies when the sample is heated. An 

activation energy of 36.9 kJ/mol was extracted from these data, 

Figure S5C, in agreement with previous results.9,11 This finding 

suggests that it is in the low frequency region of the spectra where 

processes that are thermally activated (as could be ionic migrations 

and/or chemical reactions) are probed, whereas at high frequencies 

mainly pure electronic processes are determining the response. On 

the other hand, Figure S6 summarizes the impact of illumination at 

NOC conditions. We observe that for MAPbI3 based devices, the high 

frequency time constant shifts towards shorter time scales, whereas 

the low frequency one remains basically unaltered.  

 

A proper interpretation or analysis of an impedance spectrum 

requires a suitable model based on rate (continuity) equations. From 

these equations, an equivalent circuit is derived, which is used to fit 

the experimental data. However, due to the complexity of the system 

with electronic and ionic conductivity, there is no broad consensus 

on the equations ruling perovskite devices. These can include 

different boundary conditions, such as extracting ones for electrons 

and blocking ones for ions. On the other hand, the possibility of 

interfacial reactions cannot be ruled out.30,31 The lack of a well-

stablished model prevents taking full advantage of impedance 

characterization, which otherwise could allow to extract an 

important number of parameters. Nevertheless, here we show a 

semi-empirical approach that allow to extract important parameters.  

Ideality factors, recombination losses and the collection efficiency 

can be qualitative and quantitatively assessed at operating 

conditions. 

 

The recombination rate in units of volume-1 and time-1 is given by a 

rate law of the type:32 

 

    𝑈𝑟𝑒𝑐 ≈ −
𝑑𝑛

𝑑𝑡
= 𝑘𝑇𝑝0𝑛𝛾     (1) 

 

where n is the minority carrier concentration in the active layer 

(electrons for a p-type semiconductor), p0 is the majority carrier 

concentration, kT is a rate constant and  is the recombination order. 

It is possible to relate the carrier concentration with the 

photopotential and the band gap32,33 

 

𝑛 = (𝑁𝐶𝑁𝑉)1/𝑥𝑒𝑥𝑝 (−
𝐸𝑔−𝑞𝑉

𝑥𝑘𝐵𝑇
)    (2) 

 

where Nc and Nv represent the density of states of the conduction 

band (CB) and the valence band (VB), respectively. At intrinsic or at 

high injection conditions, as expected from the inner properties of 

halide perovskites34, n = p, and the density parameter reduces to x = 

2. Combining Eqs. (1) and (2) one finds for the recombination current 

 

𝐽𝑟𝑒𝑐 = 𝑞𝑑𝑈𝑟𝑒𝑐 = 𝐽00𝑒𝑥𝑝 (−(𝛾/𝑥)
𝐸𝑔−𝑞𝑉

𝑘𝐵𝑇
)  (3) 

 

where d is the thickness of the active layer and J00 depends on the 

rate constant.  

 

Under OC conditions the generation rate of photogenerated carriers 

G should exactly compensate the recombination rate Urec = G. Using 

Eq. (3) the open-circuit photopotential should thus conform to the 

following equation 

 

    
𝐽00

𝑞𝑑
𝑒𝑥𝑝 (−𝛾𝑥

𝐸𝑔−𝑞𝑉𝑂𝐶

𝑘𝐵𝑇
) = 𝐺          (4) 

 

from which one obtains 

 

     𝑉𝑂𝐶 =
𝐸𝑔

𝑞
−

𝑚𝑘𝐵𝑇

𝑞
𝑙𝑛 (

𝐽00

𝑞𝑑𝐺
)    (5) 

 

where m, the ideality factor, is given by m = x/γ. Equation (5) provides 

a simple description of the behavior found in Figures 2A and 2B and 

how the ideality factor and the band gap can be extracted from open-

circuit photopotential measurements.  

 

The recombination resistance, Rrec, can be defined as the inverse of 

the voltage derivative of Eq. (3). Consequently, we have 

 

   𝑅𝑟𝑒𝑐 = (
𝜕𝐽𝑟𝑒𝑐

𝜕𝑉
)

−1
= 𝑅00𝑒𝑥𝑝 (−

𝛽𝑞𝑉

𝑘𝐵𝑇
)           (6) 

 

with R00 = (kBT J00/qγ)exp(γEg/kBT) and   = 1/m. From this result 

we also get m = 1/. This equation predicts an exponential 

dependence for the high frequency component of the resistance.  

 

The two features at high frequency (HF) and low frequency (LF) of 

the impedance spectra, Figure 3, have been fitted using a simplified 

equivalent circuit depicted in the inset of Figure 4 B, and the obtained 

parameters are plotted in Figure 4. This equivalent circuit yields 

essentially the same results as an alternative one in which the two 

RC elements (or R-CPE) are placed in series.23 RS takes into account 

the series resistance induced by extracting contacts and wiring. CHF is 

associated with the geometrical capacitance35, in line with the 
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potential independent values obtained and in good agreement with 

previous works.23,32,35,36,37 In contrast, the CLf capacitance shows an 

exponential trend at high potentials: 

 

𝐶𝐿𝑓 = 𝐶00𝑒𝑥𝑝 (
𝛼𝑞𝑉

𝑘𝐵𝑇
)     (7) 

where C00 is a preexponential factor and  is a positive parameter. 

Although the actual choice of the equivalent circuit is not affecting 

the resistance and capacitance values reported in Fig. 4, a 

configuration in which the high frequency capacitance is in parallel 

with the rest of the circuit elements is the choice with the most 

physical sense in view of the geometrical nature of this capacitance.  

 

Interestingly, the data shows  =  (see Table 1) where  is obtained 

from the slope of the LF resistance, as also reported in the 

literature.36,38,39 In addition, the CLf becomes flat at the same Vd (Vd = 

Vappl-Vseries) at which the resistance reaches its saturation value. 

These facts point towards a coupled LF resistance and capacitance, 

with a corresponding characteristic time, LF = RLFCLF, roughly voltage 

independent (Figure S7). The complementary behavior of the two 

circuit elements suggests that the same process that makes the LF 

capacitance to increase with illumination or DC applied voltage 

makes the LF resistance to decrease. 

 

Table 1.  and 𝛼 parameter values extracted from the high frequency and low 

frequency resistances and capacitances fitted from impedance spectra for 

MAPbI3 and CsPbBr3 based devices at open-circuit (OC) and non-open-circuit 

(NOC) conditions (for NOC conditions only the exponential region is used in 

the fittings to Eqs. (6) and (7)) 

Device IS  - RHf  - RLf 𝜶 - CHf 𝜶 - CLf 

MAPbI3 
OC 0.56 - 0.5 0.81 - 0.75 flat 0.80 - 0.77 

NOC 0.15 - 0.13 0.51 - 0.46 flat 0.46 - 0.42 

CsPbBr3 
OC 0.51 – 0.43 No signal flat No signal 

NOC 0.15 – 0.11 0.46 – 0.40 flat 0.46 – 0.4 

 

Analysis of Figure 4 reveals exponential behavior for both resistances 

and for the HF capacitance in the high voltage region. The resistances 

in the OC experiment fit well to Eq. (6). The values of the 

corresponding slope parameters are collected in Table 1. 

 

RHf obtained for MAPbI3 and CsPbBr3 -based devices show a similar  

parameter value at OC conditions, of around 0.5. This follows the 

expected dependence for a dominating recombination resistance, 

Rrec, considering the ideality factor measured in Figure 2A. In 

contrast, values around 0.78 were found for the RLf of MAPbI3 devices 

at OC. It is worth mentioning the different voltage-dependence for 

the LF and HF resistances, which is not the case reported in previous 

works.9,36 Considering the different nature of the low and high 

frequency signals described above, this behavior is not unexpected. 

 

At NOC conditions the behavior of the two resistances is quite 

different. Firstly, the exponential dependence is only observed at 

high DC potentials but becomes flat as the experiment approaches 

SC conditions, which suggests that the device is ruled by the shunt 

resistance at fixed light intensity and low applied bias. The transition 

between the two regimes occurs at voltages right below the 

maximum power point of the corresponding IV curves (Figure 1A). 

Secondly, at high applied bias in NOC the slope in good agreement 

with the ideality factor is that at LF. Note that in Figure 4 NOC 

parameters are plotted as a function of the device potential, Vd = 

Vappl-Vseries, where the applied voltage, Vappl, is corrected by the 

subtraction of the voltage drop at the series resistance, Vseries. It is 

important to stress out that the series resistance correction does not 

change significantly the slope of neither the two resistances (Figure 

S8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. (A, B) Resistive and (C, D) capacitance elements as extracted from 

fittings of the impedance spectra obtained at (A, B) open-circuit (OC) and (C, 

D) non-open-circuits (NOC) conditions using the equivalent circuit model for 
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(red) MAPbI3 and (blue) CsPbBr3 based devices. At NOC conditions, 

parameters are plot versus the series corrected potential Vd = Vappl-Vseries 

 

 

As previously discussed, there is not consensus on the interpretation 

of the elements producing the low frequency arc, but all the models 

point that ionic movement is related to the origin of this feature. This 

lack of consensus is mainly due to the difficulty of interpretation of 

the physical origin of each one of the parameters of the equivalent 

circuit. While, in dye sensitized solar cell just one physical process 

can be assigned to each parameter in the case of PSCs, different 

processes present similar characteristic times and it is difficult to 

decouple their effect. Consequently, different processes affect the 

same feature. For example, HF arc has been previously ascribed to 

account for Rrec
32 but it is also affected by selective contact or 

perovskite transport.35,40,41 In the same, line, Rrec has been related 

with the LF arc40 or with both6,9,39,42, as it is not straightforward to 

decouple the recombination contribution from other contributions, 

as transport or injection at the interfaces  

 

Since at OC the RHf slope is in good agreement with the ideality 

factor, indicating that this resistance is linearly proportional to Rrec as 

expected from Eqs. (5) and (6), the results are consistent with 

intrinsic or high injection (x = 2) conditions and a recombination 

reaction order of γ  1, a signature of Shockley-Read-Hall (SRH) 

recombination for both MAPbI3 and CsPbBr3.32,43 Eq. (5) also predicts 

a linear dependence of VOC versus absolute temperature. This 

behavior is indeed reproduced in Figure 2B and the fact that the 

optical band gap is recovered by extrapolation to T → 0 K, strongly 

suggests that, at least under OC conditions, the recombination 

process represented by the rate law (Eq. 1) takes place in the bulk or 

it is determined by the perovskite layer only. This is consistent with 

previous findings using ideality factor43, different optical 

penetrations of the light in impedance experiments with different 

excitation wavelengths,44,32 and the comparison of devices made 

with alternative contact layers.45–47 

 

The exponential dependence of RHf with voltage and its proportional 

connection to Rrec at OC allows for a direct comparison between 

MAPbI3 and CsPbBr3 recombination behaviors. To do that, it is 

necessary to take into account both the thermodynamic effect 

(different band gap) and the kinetic behavior (recombination rate), 

plotting the impedance parameters at the same value of the 

photogenerated charge density. Eq. (2) provides a means to do this. 

According to this expression, plotting versus Eg/q – Voc makes sure 

that we are comparing cells of different band gaps at the same value 

of the photogenerated charge density. The correction is analogous 

to an analysis commonly done in dye-sensitized solar cells,48,49 and 

would be valid if the n = p condition is fulfilled, i.e., at intrinsic or at 

high injection conditions.  

 

 

Figure 5. High frequency resistances at OC conditions corrected for the optical 

band gap of each perovskite.  

 

Once the effect of the band gap is corrected for (Figure 5), it becomes 

evident that the recombination rate in CsPbBr3 based devices is 

substantially larger than in the MAPbI3 ones. This could be expected 

from the potential loss with respect to the band gaps, which is  1 V 

for CsPbBr3 (Eg/q – VOC  = 2.34 – 1.3) versus  0.45 V for MAPbI3 (Eg/q 

– VOC  = 1.55 – 1.1). The difference roughly coincides with the voltage 

separation between the two resistances in Figure 5.  

 

At NOC and high applied voltage, it is RLf the one than presents a 

slope concurring with the ideality factor, and consequently, 

proportional to Rrec. Thus, the same correction of thermodynamic 

effect can be applied with similar results than those in Figure 5 

(Figure S9). 

 

The faster recombination in CsPbBr3 devices, which is derived from 

the analysis, is most probably related to their rougher morphology 

and longer tail of subgap states observed in the absorption spectra 

(Figure S1). A relatively long Urbach tail will lead to a substantial Voc 

loss with respect to the thermodynamic limit.19 In addition, more 

crystal defects will cause a more rapid recombination rate, that may 

cause additional voltage loss. Thus, recombination is of the same 

type as in MAPbI3 cells, as indicated by a similar value of the ideality 

factor, but it is faster due to a higher concentration of defects 

(parameter p0 in Eq (1)). In a recent publication, a 300-400 mV 

voltage loss in bromine-based devices is attributed to surface 

recombination.50 However, contrary to our results, the reported 

activation energy at T → 0 is significantly lower than the optical band 

gap, and the authors do not detect any Urbach tail in their IPCE 

measurements, showing that in their case the main voltage loss 

arises from band misalignment and recombination mediated by 

interfacial effects. Consequently, the T analysis allows discriminating 

between surface and bulk recombination, while impedance 

comparison permits comparing the recombination rate when the 

thermodynamic effect is corrected for, as in Figure 5.   

 

As mentioned in the introduction, the main objective of this work is 

to establish an approach to quantify recombination losses and 

charge collection from the impedance spectrum. First of all, it is 
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important to verify that the two resistances at NOC and steady-state 

conditions, can be used to reconstruct the IV curve21,29,42, taking into 

account all contributions related with recombination, transport, 

injection or series resistance: 

   

𝐽(𝑉) = 𝐽SC − 𝐴 ∫
𝑑𝑉

𝑅𝑡𝑜𝑡

𝑉𝑎𝑝𝑝

0
                                     (8) 

 

with Rtot = Rs + RHF + RLF (A is the active area of the device). In Figure 

S10 it is shown that the experimental curves for both MAPbI3 and 

CsPbBr3 based devices can be recovered, using Eq. (8), from the 

impedance data at NOC conditions.  

 

Following previous work42, the charge collection efficiency, CCE, in a 

solar cell can be determined from the recombination resistance at 

OC and NOC conditions using the expression: 

 

𝐶𝐶𝐸 ≈   1 − 
𝑅𝑟𝑒𝑐(𝑂𝐶)

𝑅𝑟𝑒𝑐(𝑁𝑂𝐶)
                 (9) 

 

where Rrec is the recombination resistance as defined by Eq. (6). 

Hence, at open-circuit CCE = 0 by definition and at short-circuit, for 

an optimal system with minimum recombination, Rrec (V = 0) →  

and CCE → 1. 

The main challenge, thus, is how to define and extract Rrec from the 

impedance spectrum. As outlined before, several possibilities have 

been proposed in the literature. Since no definitive theoretical model 

for impedance is well-established yet, we apply here an empirical 

approach. In the studied devices, the OC high frequency resistance is 

the feature which follows the same voltage dependence as the 

ideality factor, in line with Eqs. (5) and (6). However, at NOC 

conditions it is the low frequency resistance the one with a slope 

closer to the ideality factor. Thus, in order to identify the 

recombination resistance, it is necessary to independently evaluate 

high and low frequency resistances, as well as the sum of the two. All 

three possibilities are tested in Figure S11 in Supporting Information. 

Due to the fact that RLF >> RHF (see Figure 4C) at NOC conditions, only 

assuming Rrec  RHF yields values significantly different from 100%. As 

a matter of fact, only this possibility makes it possible to discriminate 

between MAPbI3 and CsPbBr3 cells, as observed in Figure 6.  

Figure 6. Charge collection efficiency as predicted from Eq. (9) if the Rrec is 

temptatively assumed to be equal to RHF. Inset: comparison between the 

prediction of Eq. (9) at short-circuit with Rrec  RHF and the stationary value of 

the IQE for a batch of MAPbI3 devices. 

 

The collection efficiency of photogenerated electrons in the 

perovskite film can be considered an approximation to the IQE 

(assuming that there are no charge losses in the injection of chargers 

to the contacts). The variation of the collection efficiency in Figure 6 

with DC potential resembles the shape of the JV curve. The curve 

yields the collection efficiency at SC conditions (V = 0). Values of  

0.9 and  0.8 are obtained for MAPbI3 and CsPbBr3 based devices, 

respectively. These figures agree remarkably well with IQE values 

measured for both configurations, which confirms the larger 

recombination loss for CsPbBr3 cells.  

 

Additional evidence that there is a substantial recombination loss in 

CsPbBr3 devices, even at SC conditions, is provided by the maximum 

theoretical photocurrents, as obtained from integration of the 

measured absorptance (Figure S12). Values of 24.9 and 10.8 mA/cm2 

are obtained for MAPbI3 and CsPbBr3 based devices, respectively. 

When compared with the actual experimental values, 20  2 and 5  

1 mA/cm2, we infer that recombination losses (and possibly poorer 

injection too) are affecting critically the performance of the devices 

made with CsPbBr3 perovskite. 

 

The prediction of the collection efficiencies evidences that the 

impedance response changes from a regime where recombination is 

dominant: V > Vmp, and both resistances show an exponential 

behavior (although with different slopes), and a regime where 

collection is dominant: V < Vmp and both resistances become flat. As 

the recombination resistance increases exponentially as the voltage 

decreases, at low voltages the impedance response becomes 

determined by the other elements in the equivalent circuit like 

shunting and transport resistances, which are effectively voltage 

independent. The previous results in terms of ideality factors and CCE 

point to a phenomenological determination of CCE using the high 

frequency component as the impedance element that basically 

contains the information about recombination losses. However, the 

exponential behavior of RLF at NOC conditions implies that this 

identification is not so straightforward. To provide additional 

assurance we have measured the IQE at short-circuit of a batch of 

MAPbI3 based devices and plotted the results versus the predictions 

of Eq. (9) at V = 0 using Rrec  RHF in Eq. (9) for the determination of 

IQE. In this respect, we have to bear in mind that CCE and IQE, 

although related, do not represent exactly the same thing and they 

can only be identified if there are not additional losses between 

photocarrier generation and carrier collection (like for instance poor 

injection of excitation dissociation).  

 

The results in the inset of Figure 6 reveal a clear correlation between 

both magnitudes. This demonstrates that the impedance of the high 

frequency signal provides a phenomenological way to evaluate IQE. 

However, impedance values do not exactly coincide with IQE 

stationary measurements, being the difference larger the less 

efficient a particular cell is. For instance, for the most efficient 

specimen of the batch the prediction of Eq. (9) is 0.83, whereas the 

stationary measurement gives 0.88. Assuming that there are no 

additional losses after photocarrier generation, this difference 
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means that the RHF cannot be naïvely identified with the 

recombination resistance and probably includes other contributions 

as transport, interfacial and ion-mediated dielectric relaxation 

mechanisms.51  

Conclusions 

MAPbI3 and CsPbBr3 perovskite solar cells have been thoroughly 

studied by impedance spectroscopy at open-circuit and non-open-

circuit conditions, at different illuminations and temperatures. 

Despite the difficulty of decoupling the different processes occurring 

in the photovoltaic device, a resistance linearly related with 

recombination resistance can be obtained by comparing the 

exponential slope with the ideality factor. We have shown that these 

resistances can be used to extract information, both qualitative and 

semi-quantitative, about the nature of recombination. Correction is 

needed if cells of different band gaps are compared. The use of this 

protocol allowed us to establish, as a case study, that MAPbI3 and 

CsPbBr3 perovskite solar cells analyzed in this work have the same 

recombination mechanism (trap-limited in the bulk) but it is much 

faster in CsPbBr3 devices, possibly due to a larger concentration of 

subgap states.  

High-frequency resistances measured at OC and NOC conditions are 

found to provide an estimation of the charge collection efficiency 

along the JV curve. However, both low and high frequency 

resistances probably include additional mechanisms such as 

transport and dielectric contributions. Further efforts are therefore 

required to develop a robust model to describe the impedance 

response of perovskite solar cells.  

Experimental Section 

Fabrication of the perovskite solar cell devices 

Perovskite solar devices were fabricated on FTO-coated glass 

(Pilkington–TEC15) patterned by laser etching. Before the 

deposition, the substrates were cleaned using Hellmanex® solution 

and rinsed with deionized water and ethanol. Thereupon, they were 

ultrasonicated in 2-propanol and dried by using compressed air. The 

TiO2 blocking layer was deposited onto the substrates by spray 

pyrolysis at 450 °C, using a titanium diisopropoxide 

bis(acetylacetonate) solution (75% in 2-propanol, Sigma Aldrich) 

diluted in ethanol (1:14, v/v), with oxygen as carrier gas. The TiO2 

compact layer was then kept at 450 °C for 30 min for the formation 

of anatase phase. Once the samples achieve room temperature, a 

TiO2 mesoporous layer was deposited by spin coating at 2000 rpm 

during 10 s using a commercial TiO2 paste (Dyesol, 18NR-T) diluted in 

ethanol (1:5, weight ratio). After drying at 100 °C for 10 min, the TiO2 

mesoporous layer was heated at 500 °C for 30 min and later cooled 

to room temperature. An additional doping treatment using Li+ ions 

(10.04 mg LiTFSI in 1 ml acetonitrile, 35mM) was used for the TiO2 

mesoporous layer prior to CsPbBr3 deposition. 

 

For MAPbI3 based devices, a pure methylammonium lead iodide 

solution were prepared to be deposited by spin coating using a 

methodology previously reported:24,25 The perovskite precursor 

solution was adjusted to the relative humidity of the environment 

(42% R.H.) by the Pb/DMSO ratio. The perovskite precursor solution 

(50 μL) was spin-coated in a one-step setup at 4000 rpm for 50 s. 

During this step, DMF is selectively washed with non-polar diethyl 

ether just before the white solid begins to crystallize in the substrate. 

For CsPbBr3 based devices a two-step sequential deposition 

technique was employed. Firstly, a dissolution of PbBr2 in DMF (1M) 

was prepared by heating at 75 oC for 20 min and filtered (pore size 

0.45m). This solution was spin-coated (2500 rpm – 30 s) on TiO2 

mesoporous film. During the deposition process, the dissolution was 

kept at 75 oC. Afterward, the substrate was dried on a hot plate at 70 
oC for 30 min. Subsequently, the substrates were dipped for 10 min 

in a solution of 17 mg/mL CsBr in methanol at 60 oC. Then, the 

substrates were annealed at 250 oC for 10 min.  

 

For the both MAPbI3 and CsPbBr3 based devices, Spiro-OMeTAD was 

deposited as hole selective material by dissolving 72.3 mg in 1 mL of 

chlorobenzene as well as 17.5 μL of a lithium bis 

(trifluoromethylsulphonyl)imide (LiTFSI) stock solution (520 mg of 

LiTFSI in 1mL of acetonitrile), and 28.8 μL of 4-tert-butylpyridine 

(TBP). The Spiro-OMeTAD was spin coated at 4000 rpm for 30 s. The 

solution was filtered with a 0.2 μm PTFE filter prior to their 

deposition. Finally, 60 nm of gold was deposited as a metallic contact 

by thermal evaporation under a vacuum level between 1·10-6 and 

1·10-5 torr. All the deposition processes were carried out outside a 

glovebox under environmental conditions. 

 

Characterization of the devices 

 

Current-voltage characteristics of the devices were obtained using a 

solar simulator (ABET-Sun2000) under 100mW/cm2 illumination with 

AM 1.5G filter. The light intensity was recorded using a reference 

mono-crystalline silicon solar cell with temperature output (ORIEL, 

91150). A metal mask was used to define an active area of 0.16 cm2. 

The current-voltage characteristics were determined by applying an 

external potential bias to the cell and measuring the photocurrent 

using an Autolab/PGSTAT302N potentiostat. The current-voltage 

characteristics were measured with a scan rate of 100 mV/s and a 

sweep delay of 20s. Incident Photon-to-current Conversion efficiency 

(IPCE) was measured using an Oriel Xenon lamp coupled to 

McPherson monochromator. Light intensity was determined as a 

function of the wavelength using a calibrated silicon photodiode (PH-

100 Si, GENTECE). 

 

The illumination for the IS measurements was provided by white LED 

over a wide range of DC light intensities. Two types of IS experiments 

were performed: (1) at open circuit (OC) under varying illumination 

intensities (parameters are extracted, analyzed and plotted as a 

function of the resulting open-circuit photopotential) and (2) at non 

open circuit (NOC) conditions varying DC potential (voltage) while 

light intensity is fixed.29 In this latter case the parameters are 

corrected for voltage drop due to the resulting DC current and the 

corresponding series resistance.21 In the following, we will use the 

labels OC and NOC to refer to these two kinds of experiments. In both 

OC and NOC conditions a 20 mV perturbation in the 106-10-2 Hz range 

was applied. A response analyzer module (PGSTAT302N/FRA2, 

Autolab) was utilized to analyze the frequency response of the 

devices.  
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IMPS measurements were carried out by coupling the 

PGSTAT302N/FRA2 module to the LED. IMPS measurements were 

performed at short-circuit with a light perturbation corresponding to 

10% of the DC background illumination intensity. Due to limitations 

of the experimental set-up, the measurement was limited to the 105 

- 10-1Hz frequency range. The NOVA 1.7 software was used to 

generate data. Z-view equivalent circuit modelling software 

(Scribner) was used to fit the spectra.  

 

For the structural characterization, Scanning Electron Microscope 

(SEM) images of the samples were performed using a Zeiss 

GeminiSEM-300 microscope working at 2KeV. Energy Dispersive 

Spectroscopy (EDS) was performed using a Silicon Drift Detector 

(Oxford Instruments). For optical characterization, UV-Visible 

absorption spectra were recorded by using a Cary 100 UV-Vis 

spectrophotometer (Agilent) in the range of 400-800 nm. Steady 

state photoluminescence measurements were performed using a 

Hitachi, F-7000 Fluorescence spectrophotometer. Temperature-

dependent experiments were carried out by means of a MHCS622CD 

Heating and Cooling Vacuum/gas tight Stage configured with 

MTDC600 temperature controller (Microptik). 
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Eg = 1.6 eV 
Eg = 2.3 eV 

IQE ≈ 1 − $ )&'((*+
$ )&'((,*+

Rrec ∝ RHF

MAPbI3 CsPbBr3
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