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Abstract

Let A and G be finite groups of relatively prime orders and suppose
that A acts on G via automorphisms. We demonstrate that if G has
a maximal A-invariant subgroup M that is nilpotent and the Sylow 2-
subgroup of M has class at most 2, then G is soluble. This result extends,
in the context of coprime action, a solubility criterion given by W.E.
Deskins.
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1 Introduction

In [2], in the course of a study of the lattice of subinvariant subgroups in a
finite group, W.E. Deskins provided an interesting solubility criterion concerning
maximal subgroups: When a finite group G contains a maximal subgroup M
that is nilpotent of class less than 3, then G is soluble. This result is similar to
a theorem of B. Huppert, which originally appeared in [6], except in the case in
which M has a Sylow 2-subgroup of class 2. The criterion of Deskins was also in
line with a theorem announced by Thompson: If a finite group G has a maximal
subgroup that is nilpotent of odd order, then G is soluble. The crucial tool of
Deskins’s work, which allowed him to extend the nilpotence class to 2 instead of
1 (abelian), was the First Theorem of Grün (see for instance [5, IV.3.4]), which
is an application of the transfer theory into a Sylow subgroup. Precisely, Grün’s
Theorem was used so as to obtain the existence of a normal complement to the
maximal subgroup M .
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In this paper we study such results in the context in which a finite group
A with (|A|, |G|) = 1 acts on G. We ask whether the existence of a maximal
A-invariant subgroup in G (which needs not be a maximal subgroup) satisfying
the same conditions as in Deskins’s theorem must imply the solubility of G. We
give an affirmative answer.

Theorem. Let G and A be finite groups of coprime orders and assume that
A acts on G by automorphisms. If G has a maximal A-invariant subgroup that
is nilpotent with a Sylow 2-subgroup of class less than 3, then G is soluble.

At first sight, there seems only to be a subtle difference from Deskins’s theo-
rem, but there exists a great distinction between our development and Deskins’s
approach. It is not possible to use Grün’s Theorem in the setting of a coprime
action, and instead, we appeal to the Classification of the Finite Simple Groups.
We point out that the authors have already obtained a coprime action version
of the Thompson’s aforementioned result [1, Theorem B]. This is not done by
employing the Classification, but by transferring into the setting of coprime ac-
tion results like the Glauberman-Thompson criterion for p-nilpotence. In fact,
this result will be used in the proof of our theorem.

We denote by π(G) the set of primes dividing the order of a group G. The
rest of the notation is standard and all groups are supposed to be finite.

2 Preliminaries

We start with an elementary observation that is needed for the inductive argu-
ments.

Lemma 2.1. Let P be a finite p-group of class 2. If A � P , then the class of
A and P/A is less than or equal to 2.

We require the following theorem of Wielandt.

Theorem 2.2 (IV.7.3, [5]). Let H be a Hall π-subgroup of a group G which is
not a Sylow subgroup of G. Suppose that for every p ∈ π and for every Sylow p-
subgroup Hp of H, we have NG(Hp) = H. Then H has a normal π-complement
in G.

We also recall the Thompson subgroup. If p is prime and P is a p-group, the
Thompson subgroup J(P ) is the subgroup generated by all abelian subgroups of
P of maximal order. It is immediate that J(P ) and Z(J(P )) are characteristic in
P , and hence, these subgroups are left invariant by every automorphism acting
on P , so in particular, by every group acting coprimely on P . As we said in
the Introduction, in order to prove our result we need to use the celebrated
Glauberman-Thompson p-nilpotence criterion.

Theorem 2.3 (Theorem 8.3.1, [4]). Let P be a Sylow p-subgroup of a finite
group G, where p is an odd prime. If NG(Z(J(P ))) is p-nilpotent, then G is
p-nilpotent.
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As mentioned in the Introduction, we appeal to the Classification of the
Finite Simple Groups. Precisely, we need to determine all non-abelian simple
finite groups whose Sylow 2-subgroups are self-normalising as well as all those
simple groups whose Sylow 2-subgroups have nilpotence class at most 2. Such
groups have been classified by Kondrat’ev [7] and by Gilman and Gorenstein
[3], respectively, so we can gather the list of those simple groups satisfying both
conditions in the next result.

Theorem 2.4. Let G be a finite non-abelian simple group and P a Sylow 2-
subgroup of G. If NG(P ) = P and P has class at most 2, then G ∼= PSL(2, q),
where q ≡ 7, 9 (mod 16).

Proof. This is a consequence of combining the main result of [7] and Theorems
7.1 and 7.4 of [4].

We will also need to know the structure of the Sylow normalisers in PSL(2, q),
especially for odd primes.

Lemma 2.5. Let G = PSL(2, q), where q is a power of prime p and d =
(2, q + 1). Let r ∈ π(G) and R ∈ Sylr(G).

(1) If r = p, then NG(R) = Ro C q−1
d

is a dihedral group;

(2) If 2 6= r | q+1
d , then NG(R) = C q+1

d
o C2;

(3) If 2 6= r | q−1d , then NG(R) = C q−1
d

o C2;

(4) Assume p 6= r = 2.

(4.1) If q ≡ ±1(mod 8), then NG(R) = R;

(4.2) If q ≡ ±3(mod 8), then NG(R) = (C2 × C2) o C3.

Proof. This follows from [5, Theorem 2.8.27].

3 Proof of the Theorem

Proof. We study a minimal counter-example. Suppose then that G is a minimal
counter-example to the theorem and let M be the nilpotent maximal A-invariant
subgroup of G with a Sylow 2-subgroup of class less than 3. We divide the proof
into the following steps.

Step 1. We can assume that M is a Hall subgroup of G and that M does
not contain any A-invariant normal subgroup of G.

If M contains a non-trivial A-invariant normal subgroup N of G, then by
taking into account Lemma 2.1, G/N satisfies the hypotheses of the theorem,
so G/N is soluble by minimality, and consequently, G is soluble for N being
nilpotent. Henceforth, it can be assumed M does not contain any A-invariant
normal subgroup of G.
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Suppose that there exists a prime p ∈ π(M) such that the Sylow p-subgroup
of M is not a Sylow p-subgroup of G. Then by elementary coprime action
properties there exists an A-invariant Sylow p-subgroup Gp of G and an A-
invariant Sylow p-subgroup Mp of M with Mp < Gp. Since M is nilpotent, we
have M < NG(Mp). Also, NG(Mp) is A-invariant. By the maximality of M we
get NG(Mp) = G, that is Mp � G, a contradiction with the above paragraph.
This shows that Mp = Gp, or equivalently, M is a Hall subgroup of G.

Step 2. We can assume that M is a Sylow 2-subgroup of G.

Suppose that M is not a Sylow subgroup of G. For every prime p ∈ π(M)
we take P an A-invariant Sylow p-subgroup of M . Then M ≤ NG(P ) and by
maximality of M and Step 1, it follows that NG(P ) = M . Thus, we can apply
Theorem 2.2, so there exists a normal complement K of M in G. Clearly, K is
A-invariant. Now let us consider the action of MA on K. Since the orders of
MA and K are coprime, we get that K has a MA-invariant Sylow q-subgroup
Q. Therefore MQ ≤ G is A-invariant, and by the maximality of M , we have
G = MQ. However, Q and G/Q are soluble, so we deduce that G is soluble as
well, a contradiction. This shows that M is a Sylow p-subgroup of G for some
prime p.

Next we prove that p = 2. Assume that p 6= 2. Let J = J(M), the
Thompson’s subgroup of M , and Z = Z(J). Note that Z and NG(Z) are A-
invariant by the observation made before Theorem 2.3. Since by Step 1, Z is
not normal in G, we have M ≤ NG(Z) < G. By the maximality of M , we
get M = NG(Z), so in particular it is a p-subgroup. Then G is p-nilpotent by
Theorem 2.3, that is, G has a normal p-complement, say L, which is obviously
A-invariant too. This means that G = ML with M ∩ L = 1. The rest of the
proof of this step consists in proving that L is a q-group for some prime q.
Indeed, take Q an A-invariant Sylow q-subgroup of L for some prime q. The
Frattini argument gives G = NG(Q)L. Now, the Schur-Zassenhaus Theorem
assures that NL(Q) has complements in NG(Q) that are conjugate in NG(Q).
Since A acts on the set of complements, Glauberman’s Lemma (for instance
[8, Theorem 6.2.2]) implies that there exists an A-invariant complement X of
NL(Q) in NG(Q). As a result, G = XNL(Q)L = XL, so X is an A-invariant
complement of L in G. Again by Glauberman’s Lemma, we know that the A-
invariant complements of L are conjugate in the fixed point subgroup CG(A), so
in particular, X = M c for some c ∈ CG(A). We conclude that X is a maximal
A-invariant subgroup of G. However, X normalizes Q and by maximality of X,
we get G = XQ. This forces L = Q, as wanted. As a consequence, G is soluble
by Burnside paqb Theorem, a contradiction. Hence p = 2 and M is a Sylow
2-subgroup of G.

Step 3. We can assume that M has nilpotence class 2.

Suppose on the contrary, that the class of M is not 2, so by hypothesis M is
abelian. As NG(M) = M by the maximality of M , we have M ≤ Z(NG(M)).
We can apply then Burnside normal p-complement Theorem for p = 2 (for
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instance [5, 2.2.6]), and we conclude that G has a normal 2-complement. Now
Feit-Thompson Theorem implies that G is soluble, a contradiction.

Step 4. Final contradiction.

Let N be a minimal A-invariant normal subgroup of G. We can assume
that N is not soluble; otherwise by Step 1, N is not contained in M , and
by maximality we obtain NM = G. As a consequence, G would be soluble
and the proof is finished. Therefore, we can write N = S1 × . . . × Sn where
Si are isomorphic non-abelian simple groups (possibly n = 1). Put S = S1,
B = NA(S) and let T be a transversal of B in A. Now, as M is self-normalising
in G for being maximal, then M ∩ S is self-normalising in S and it has class
at most 2 by Lemma 2.1. Then by applying Theorem 2.4, we obtain S ∼=
PSL(2, q) with q ≡ 7, 9 (mod 16). We distinguish separately these two cases.
If q ≡ 9 (mod 16), with q > 9, then we can certainly choose an odd prime
r | (q − 1)/2 and R to be a B-invariant Sylow r-subgroup of S. By Lemma
2.5(3), we know that |NS(R)| = q + 1, so NS(R) has odd index in S and
contains properly a Sylow 2-subgroup of S. Analogously, if q ≡ 7 (mod 16),
with q > 7, there exists an odd prime r | (q + 1)/2 and we take R to be a
B-invariant Sylow r-subgroup of S. Again by Lemma 2.5(2), we know that
|NS(R)| = (q−1), so NS(R) has odd index in S and hence, it contains properly
a Sylow 2-subgroup of S. In both cases, we put R0 =

∏
t∈T R

t, which is an
A-invariant Sylow r-subgroup of N because A acts transitively on the Si. We
deduce that |N : NN (R0)| = |S : NS(R)|n is odd too. Now, by the Frattini
argument, G = NNG(R0) and thus, |G : NG(R0)| = |N : NN (R0)|. We
conclude that NG(R0) properly contains an A-invariant Sylow 2-subgroup of G,
contradicting the maximality of M .

Finally, suppose that S ∼= PSL(2, 9) or PSL(2, 7). Both groups contain
{2, 3}-Hall subgroups, which are isomorphic to the symmetric group S4. We
remark that these subgroups are not all conjugate in S. If this were the case,
then Glauberman’s Lemma would provide an A-invariant Hall {2, 3}-subgroup,
against the maximality of M . But this is not the case and we give the following
alternative argument. The Sylow 2-subgroups of S are dihedral groups of order
8. Now, M ∩ N is an A-invariant Sylow 2-subgroup of N , which is the direct
product of n copies of such a B-invariant dihedral group, say D, of S. Let K be
the cyclic group of order 4 of D, which is also B-invariant for being characteris-
tic, and let K0 =

∏
t∈T K

t. It is easily seen that K0 is A-invariant because A is
acting transitively on the factors. Moreover, since K is characteristic in D, then
K0 is characteristic in M ∩N , so K0 �M , that is, M ≤ NG(K0). On the other
hand, in both cases S ∼= PSL(2, 9) or PSL(2, 7), we have that K is normalised
by an element of order 3 lying in S, so the same occurs with K0 and N . We
conclude that NG(K0) is an A-invariant subgroup that contains properly M .
Again this contradicts the maximality of M .
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