
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2018 1

Try to Start It! The Challenge of Reusing Code in
Robotics Research

Enric Cervera

Abstract—This paper reviews the source code published with
the papers of a flagship robotics research conference, 2017
International Conference on Robotics and Automation (ICRA).
The aim is to investigate whether the code is actually useful, i.e.
can be reused by an interested reader without much effort. The
interest is twofold: for one side, it makes possible to replicate
and validate the results of the research; for another side, it
facilitates new progress on the field, since researchers can build
new systems on top of existing work. Unfortunately, reusing code
is not as straightforward as it could seem, and there is a need
for tools that alleviate the effort for integrating someone else’s
code into the own user’s system. We propose the use of Docker, a
Linux container technology, to turn the source code repositories
into executable images, that can be run and tested locally, in
an isolated environment, without the need of a costly integration
with the host system.

Index Terms—Software, Middleware and Programming Envi-
ronments;

I. INTRODUCTION

KNOWLEDGE sharing is a cornerstone in the progress
of science. Publication of new ideas for review and

criticism by peers in conferences and journals is the widely-
accepted way to validate and establish the research works of
the scientific community.

In the spirit of transparency and cooperation, the sharing
of source code is slowly but steadily becoming a common
practice in the robotics community, not only to enforce the
replicability of research, but to overcome the increasing com-
plexity of modern robotic systems, allowing the researchers
to focus on new developments, not on each time having to
reinvent the wheel.

Nevertheless, reusing someone else’s code can be a chal-
lenging experience with an uncertain ending: things may
integrate silently, smoothly; or the process may become a time-
consuming, painstaking, epic fail.

In this work, we analyze the difficulties in reusing the
source code available in public repositories provided by
current robotics research papers. We have looked into the
proceedings of a recent flagship conference in robotics, 2017

Manuscript received: July, 20, 2018; Revised September, 23, 2018; Ac-
cepted October, 23, 2018.

This paper was recommended for publication by Editor Tamim Asfour
upon evaluation of the Associate Editor and Reviewers’ comments. This paper
describes research done at the Robotic Intelligence Laboratory. Support for
this laboratory is provided in part by Ministerio de Economia y Competitividad
(DPI2015-69041-R), by Generalitat Valenciana (PROMETEOII/2014/028)
and by Universitat Jaume I (P1-1B2014-52).

ORCID id: 0000-0002-5386-8968. The views and opinions expressed in
this article are those of the author, not affiliated with any of the projects
mentioned. Enric Cervera is with the Robotic Intelligence Laboratory, Jaume-
I University, 12071 Castelló, Spain. ecervera@uji.es

Digital Object Identifier (DOI): see top of this page.

IEEE International Conference on Robotics and Automation
(ICRA), and tested the source code made available with the
papers.

Our aim is not to replicate the experimental results of the
papers, but to test the usability of the code, as posed in the
following

Question: Can a user build, install, and run the code
without errors, by following the instructions
given in the code repository?

Our results indicate that the shared code and documenta-
tion needs to be improved for a more effective use by the
community. We present a protocol and platform, with minimal
additions over the common practices, to achieve a simpler and
less traumatic experience in the reuse of robotics source code.

II. STATE OF THE ART
Reproducibility of robotics research has gained increasing

attention in recent years [31], and reusing the own authors’
code is possibly the most straightforward way for reproducing
the experiments and results of conference papers.

The robotics community has steadily evolved towards the
use of off-the-shelf programming frameworks which allow the
researchers to share a common development base, some of the
most popular are ROS [32], YARP [33], or OROCOS [34].

Interestingly, the use of such frameworks has not led to
a simplification of the reproduction process: systems have
become increasingly complex, combining different tools, and
a number of dependencies, which are frequently hidden.

Efforts for automating tasks and addressing the above-
mentioned challenges have been proposed: Lier’s Cognitive
Interaction Toolkit [35], [36] is an integrated tool chain that
incorporates the development, reproduction, and refinement
process of robotic systems.

SwarmRob is another toolkit recently proposed [37], which
uses a holistic approach based on operating-system-level vir-
tualization for dealing with the problem of reproducibility and
sharing of experimental artifacts.

Cloud software platforms are used by some robotics jour-
nals, e.g. Code Ocean in Robotics and Automation Magazine
[38]. Besides submitting the article, the authors upload the
complete source code to the cloud, so it can be shared and
run by interested readers.

The ROS build farm is another example of cloud-based
system for automatic builds and deployment [39], continuous
integration and autodocumentation. It is well suited for mature
software packages, but the learning curve is steep, possibly not
worth for experimental code.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/199452764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2018

TABLE I: Platform specifications (Operating System, Middleware, Programming Language, and Software Dependencies) for
the code published in the repositories of ICRA 2017 papers. This information has been extracted from the README files of
the repositories.

Repository OS Middleware Language Dependencies

Self-triggered-mechanism [1] Matlab
PGO-Laginit [2] Matlab mMath, manopt

Fast-SeqSLAM [3] Matlab, C++
EKF-SLAM-on-Manifold [4] Matlab

LT-Algorithm [5] Matlab
lwAnn [6] Java

sun-bcnn [7] Python caffe, lmdb, cv2
delta-execution-models [8] Python, C++ Visual Studio, Unreal Engine

bpvo [9] C++ 11 Eigen 3.2+, OpenCV 2.11
driving-in-the-matrix [10] Linux Python CUDA 8, nvidia docker

learning-forces [11] Linux C++, Python Keras, SciPy, Theano, plotly, PyOpenGL
PUMP [12] Unix CUDA C

rrd slam [13] Ubuntu C++ OpenCV 2.4.8
MSGD [14] macOS Sierra C++

SSM linearArray [15] Ubuntu 14.04 C++ 11 Pangolin, OpenCV, Eigen3, BLAS, LAPACK
crazyswarm [16] Ubuntu 16.04 Python, C, Matlab git, swig, numpy, yaml, matplotlib

jps3d [17] ROS C, C++ Eigen3, yaml-cpp
autonomy hri [18] ROS C++

skimap ros [19] ROS C++ OpenMP, Eigen3, OpenCV 2.4, Boost
atom mapping [20] ROS C++

VI-MEAN [21] ROS C++ OpenCV, Eigen, Ceres, OpenChisel, camodocal
gps [22] ROS Python 2.7 numpy, matplotlib, scipy, boost, protobuf

team acrv 2016 [23] ROS Indigo C++ MoveIt!, PCL, Baxter SDK
Incremental DuDe ROS [24] ROS Indigo C++ CGAL, Freeglut, MPFR, OpenCV

superquadric-grasping [25] YARP C++ IPOPT, OpenCV
costar stack [26] Ubuntu 14.04 ROS Indigo C++, Python Git, Catkin Build Tools, OpenCV 2.4 nonfree

human robot collaboration [27] Ubuntu 14.04 ROS Indigo gcc-4.9 NLOPT
segmap [28] Ubuntu 14.04 ROS Indigo C++ python-wstool, doxygen, autoconf

bayesian-object-tracking [29] Ubuntu 14.04 ROS Indigo C++ 11 Eigen 3.2.1
smartwatches apps [30] Ubuntu 14.10 ROS Indigo Java, Python

Some of the previous approaches use Docker, a well-
established container technology that has proven useful for
reproducible research in many scientific domains [40]. Inte-
gration of Docker with robotic frameworks (e.g. ROS) has
also been proposed [41].

In this work, we extend the use of Docker to a set of repre-
sentative robotics research papers, illustrating its usefulness in
an academic setting. Unlike other frameworks [35], [37], the
proposed method does not interfere with the common develop-
ment workflow, since it smoothly integrates the authors’ code
repository with the automatic generation of Docker images.
Moreover, it proves to be useful in a wide range of robotic
domains.

Another advantage over cloud-based platforms like Code
Ocean is that the software runs locally on the user’s computer,
performing not only numerical computations, but also rich user
interactions with a full-featured graphical interface (e.g. rviz
in ROS).

III. CASE STUDY

In this work we analyze the source code of 30 papers
listed in Table I, which were selected among the ∼800 papers
published at ICRA2017, including Robotics and Automation
Letters (RA-L), available at IEEE Xplore1. An automatic text

1https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7960754

search was carried out among all the PDFs of the conference,
looking for the keywords of four of the main public reposito-
ries of open source code, namely bitbucket, github, gitlab, and
sourceforge. The hits were then manually revised to confirm
that the source code was available.

The vast majority of source code is published through the
github platform2. Only two papers used bitbucket [42], [43]
and none of them used neither gitlab nor sourceforge. For the
reproducibility of our study, only the github platform has been
considered.

With further inspection, we discarded those papers which
presented datasets [44], [45], [46] or complex hard-
ware/software platforms [47], [48]. We also discarded one
paper that presented a completely empty repository [49], i.e.
without any source code: upon questioning by an interested
reader, the author answered that he was cleaning up the code
before releasing it3.

While this final selection is not exhaustive, nor perhaps
representative, we believe that it is an interesting sample of
the conference papers that make their source code available
for the community. The set consists of 30 papers, 5 of them
being also published in RA-L.

The themes of the papers vary among different robotic
fields, and some of the most frequent keywords are:

2https://www.github.com
3https://github.com/aspek1/JointCurvatureOptimisation/issues/1



CERVERA et al.: TRY TO START IT! 3

collision avoidance [20][48], helicopters [16][42], human-
robot interaction [11][18][30], industrial robots [26][27],
learning [22][43], mapping [4][5][9], mobile robots
[1][6][18][19][20][30][43][48], object detection [3][10],
path planning [12][19], pose estimation [2][25][49], robot
vision [3][6][14][20][21][24][25][48], sensor fusion [18][29],
service robots[8][11], SLAM [2][4][9][13][14][20][24][48],
stereo image processing [20][21][25], and visual tracking
[9][29].

For the software to be used by the community, it must be
properly documented. As shown in Table I, some information
(operating system, dependencies) is not always provided by
the authors, but every paper includes at least a URL to a
public repository, where the source code is stored, along with
additional information that is essential for putting the code at
work.

We now review some of these additional data, specifically
the information regarding the platform (operating system and
other software dependencies). We also discuss some statistics
about the repositories: how recently have been updated and
how much are shared.

A. Platform Specifications

This information has been extracted from the README
files of the repositories.

Firstly, the unambiguous specification of the Operating
System (OS) is not common practice: only 8 repositories state
both the OS name and version (Ubuntu 14.04, Ubuntu 16.04,
macOS Sierra), whereas in 4 cases a more or less generic OS
is mentioned (Linux, Unix, Ubuntu), and 18 repositories do
not provide any information at all.

It can be argued that some application software is multi-
platform and can be run on top of different OS without
modification, e.g. Matlab. In fact, none of the repositories that
use this language mention the OS or any other dependency. In
any case, none of them specifies the Matlab version neither,
which may cause improper functioning, as will be presented
later.

For the rest of specifications (middleware, programming lan-
guage, dependencies) the information is not complete neither:
there are 14 works that use a middleware (ROS in all but
one case) but only half of them specify the ROS distribution
(Indigo). The version of the programming language is men-
tioned in few cases too: only one 1 of 8 cases for the Python
language, and 4 of 18 cases for the C++ language. Libraries
are mostly mentioned without version: for OpenCV, only 4 of
9 works specify some version, but one of them is incorrect
(2.11, which probably refers to 2.4.11).

B. Statistics of Repositories

Some information extracted from the repositories is ana-
lyzed: according to the time of the last update depicted in
Fig. 1.a, 45% of the repositories have not been updated in the
last year, and other 25% have not been updated in the last six
months.

One indicator of the success in sharing a code repository
would be the number of clones (downloads), but the statistic is

only available to the administrators of the repository. A public
indicator is its number of forks, or copies of the repository,
shown in Fig.1.b: more than half of the analyzed repositories
(61.3% ) have less than 10 forks.

The third plot, depicted in Fig. 1.c, combines both mea-
surements: it represents the histogram of update time in three
intervals (days, tens of days, hundreds of days) for three
different classes of repositories, depending on their number of
forks (units, tens, hundreds). Interestingly, this plot indicates
that highly-shared repositories are most likely to be updated:
since more people is using the code, it makes sense that bugs
are detected, and requests for update are sent to the developer.

Nevertheless, the main conclusion is that a majority of code
repositories are not frequently updated, nor shared actively by
other users.

IV. METHODOLOGY

Software installation is a time-consuming process. New
software may generate conflicts with existing applications, and
compatibility issues may arise between the requisites and the
installed configuration.

Isolation between the tested software and the host machine
is a desirable feature. In this study, we rely on Docker, a Linux
container technology [50] for creating isolated execution en-
vironments. Containers can be regarded as lightweight virtual
machines, which run on top of the host operating system,
without the need of a native installation.

Docker is gaining popularity for constructing repeatable and
reproducible environments, enabling any user to run and ship
portable applications [41].

Figure 2 depicts our proposal for the distribution of a
readily-executable version of the code in the ICRA papers: the
source code repositories are forked, generating new snapshots
of the software. Based on these snapshots, Docker images
are automatically generated. A web index is build for easy
accessing the code repository4. Any user can download and
run an image in his/her computer.

There is an exception in this framework: repositories of
Matlab code are not executed in a Docker image, but directly
on a Matlab native install. Though it can be installed in
a Docker image, Matlab is a proprietary platform, hence a
license is necessary and the software cannot be redistributed
without permission.

A. The Matlab platform

Matlab is a software for engineering and mathematics,
working on different Operating Systems, which is extensively
used in robotics [51][52].

We have tested the ICRA source code with the following
Matlab configuration:

• Matlab 8.5.0.197613 (R2015a)
• 64-bit
• Ubuntu 14.04.5
Unfortunately, the code of the five papers that use Matlab

cannot be successfully executed, as listed in Table II.

4https://icra2017.github.io/



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2018

(a) Last update (b) Number of forks (c) Updates and forks

Fig. 1: Histograms of repositories based on (a) the time since the last update, (b) the number of forks, and (c) the order of
magnitude of updates and forks.

Fig. 2: Architecture of the proposed code repository, consisting
of archived forks of the original code, Docker images, and a
web index for easy access.

TABLE II: Problems in the execution of Matlab code.

Repository Problem Fix

Self-triggered-mechanism [1] No instructions Yes
PGO-Laginit [2] No instructions No

Fast-SeqSLAM [3] No instructions Yes
EKF-SLAM-on-Manifold [4] Undefined function or

variable ’so3_log’
Yes

LT-Algorithm [5] Undefined function or
variable ’circ_dist’

Yes

In three cases, the instructions in the repositories do not
explain how to run the code. In other two cases, the execution
was interrupted by the runtime errors listed in Table II.

After some debugging, we have succeeded in fixing four of
the five repositories: some demonstration scripts were identi-
fied in [1][3]; a proper definition of the path was necessary
in [4]; and a missing dependency (Circular Statistics Toolbox)
was installed in [5].

The remaining repository [2] consists of the code of a func-
tion, without any demonstration script or any other information
about how to run it.

The fixed repositories with examples, including figures, are
available at https://icra2017.github.io/.

B. The Docker platform

Building a Docker image requires the definition of a Dock-
erfile, a text document that contains all the commands a user
could call on the command line to assemble an image.

Docker images are not built from scratch, but from standard
base images, e.g. Debian, Ubuntu, or ROS installs.

On top of the base image, the user installs the libraries and
other dependencies, then compiles and builds the code, and the
result is a complete image that can be executed on the Docker
runtime in any supported host (Windows, Linux, Mac). An
example of Dockerfile is shown in Fig. 3.

Fig. 3: Dockerfile for the MSGD repository [14].

Automated building of Docker images from GitHub can be
configured, in such a way that a commit to the code repository
triggers the generation of the Docker image. The success or fail
of the process is displayed automatically with badges, enabling
the user to continuously monitor the proper development of the
software cycle.

Upon success, the image is stored in the DockerHub cloud
for further downloading by users5. Figure 4 shows an example
of execution in a terminal: the image icra2017/msgd is
downloaded and executed; inside the container the commands
for running the demonstration are executed, and the results are
generated.

It must be emphasized that the user only needs to install the
Docker software in her computer, which is free and available in
Windows, Mac, and Linux6. All the libraries and research code

5https://hub.docker.com/u/icra2017/
6https://www.docker.com/community-edition



CERVERA et al.: TRY TO START IT! 5

Fig. 4: Execution of MSGD code [14] in Docker.

runs inside the container, transparently, without interferences
with the host.

V. PROTOCOL AND RESULTS
We consider a protocol of three phases in the process of

executing the code in a repository. Each of these phases has to
be adequately documented for allowing the correct installation
and execution of the code:
1. Prerequisites Setting up the operating system and in-

stalling the library dependencies.
2. Build Building the software, i.e. compiling, link-

ing, and generating a executable program.
3. Run Running the executable.

In the repositories of this study, some phases are more
documented than others: only 30% of the repositories include
the instructions for installing the prerequisites; 60% of the
works include building instructions; and only 33% explain how
to run the software.

According to our review, there are only 4 works
[14][16][17][22] providing the interested reader with all the
necessary information.

On the other side, half of the published repositories can
be extremely hard to use due to the partial documentation. In
fact, in a few cases, there is absolutely no information at all
[18][30].

Figure 5 depicts the result for each repository. Those with
insufficient documentation are marked in yellow: in most
cases, a library dependency is mentioned but the installation

process is not described, and only a link to the library
developer is included. In many cases, installing a library is
not straightforward, as it may have additional dependencies.
In addition, the choice of version is not trivial since the success
of the building procedure may depend on the use of a specific
version.

The existence of instructions is a necessary yet not sufficient
condition for a successful building process. The experimental
software is frequently updated, and the documentation may
lag behind the latest software changes.

In addition, some aspects may not be documented because
they are taken for granted in the developer’s platform. In many
repositories using ROS, the operating system is not indicated,
possibly because the default option (Ubuntu) is used. The ROS
distribution is not specified neither: in this case, one could
assume that a Long-Term Support (LTS) distribution is used,
but such distributions are launched on a 2-year basis.

In summary, the building process is likely to fail due to the
differences between the platforms of the code developer and
the user. Figure 5 depicts a diagram of the progress in the test
of the repositories: 8 repositories failed to build, and only in 1
of 3 repositories a documented example could be run without
errors.

Fig. 5: Setup and execution phases: result of each repository.

The errors in the building and running process are listed
in Table III. In most cases, the error is produced during
the configuration process (Cmake) because a library depen-
dency was not documented. In two other cases (costar-stack,
team acrv 2016), the error is caused by a wrong order of the
installation instructions.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2018

Regarding the runtime errors, in the first case [22] some
running dependencies for the graphical output (PyQt4) were
not mentioned in the documentation, hence not installed.
Moreover, the default version of one of the libraries (mat-
plotlib) had some deprecated functions that caused a run error.
For fixing this issue, an older version (1.5.3) needs to be
installed.

In the second case [16] the name of the file in the documen-
tation example did not correspond to any file in the installed
source code. The issue can be solved by replacing it with
the most similar file name in the folder (figure8_csv.py
instead of figure8_canned.py).

TABLE III: Errors in the build and run phases.

Repository Problem Fix

gps [22] ImportError: No
module named PyQt4

Yes

crazyswarm [16] Python: no such file Yes
human robot collaboration [27] apt: command

[apt-get install -y
ros-indigo-tf-conversions]
failed

No

jps3d [17] fatal error:
Eigen/Geometry: No
such file

Yes

segmap [28] [CMakeFiles/segmatch_ros
.dir/src/
segmatch_worker.cpp.o]
Error 1

No

costar-stack [26] Cannot locate rosdep
definition for
[objrecransac]

No

SSM linearArray [15] Cmake error: Could
NOT find CSPARSE

Yes

atom mapping [20] CMake error: Could
not find PCL

Yes

team acrv 2016 [23] ˜/ros_ws/src/apc_docs/
pcl_patch: No such
file or directory

No

bayesian-object-tracking [29] Cmake error: could
not find cv_bridge

Yes

Figure 6 shows an example of graphical user
interaction in a Docker running image of the
repositories bayesian-object-tracking[29] and
skimap-ros[19]. For example, the user can move a marker
for the initialization of the tracker. Such interaction is not
possible in cloud-based environments like Code Ocean7.

Regarding the partially documented code, we have suc-
ceeded in building working images for 5 repositories listed
in Table IV. For each repository, we have chosen an appro-
priate base image in order to ease the installation process.
The choices for available images is immense, ranging from
Java to CUDA environments, and different ROS distributions.
Our choice was guided by the available documentation, our
previous knowledge, and trial-and-error.

As for the repositories not yet working, Table V summarizes
the current situation. In two cases, the development platforms
(Android, Windows) are not supported yet. The other reposi-

7https://codeocean.com/

(a) bayesian-object-tracking[29]

(b) skimap-ros[19]

Fig. 6: RViz tool running in Docker with the code of two
repositories.

TABLE IV: Working images for the partially documented
repositories.

Repository Base Image

bpvo [9] ubuntu:14.04

PUMP [12] nvidia/cuda:8.0-
cudnn6-devel-ubuntu16.04

lwAnn [6] openjdk:7

skimap ros [19] nvidia/opengl:1.0-
glvnd-devel-ubuntu16.04

Incremental DuDe ROS [24] ros:indigo-perception

tories fail due to wrong or missing dependencies, which cause
compilation and linking errors.

VI. CONCLUSION

Documentation is one of the main concerns in software
engineering: the three severest problems are ambiguity, incom-
pleteness, and incorrectness of content [53]. Robotics software
is no exception, and the main conclusion of this study is that
most of the failures are caused by incomplete or inconsistent
documentation of the software.



CERVERA et al.: TRY TO START IT! 7

TABLE V: Ongoing work on images for the partially docu-
mented repositories.

Repository Problem

sun-bcnn [7] /opt/caffe/include/caffe/util/
cudnn.hpp(112): error: too few
arguments in function call

VI-MEAN [21] chisel_ros: Missing resource
pcl

rrd slam [13] [CMakeFiles/lsdslam.dir/src/
DataStructures/Frame.cpp.o]
Error 1

learning-forces [11] make: *** No targets specified
and no makefile found. Stop.

autonomy hri [18] Could not find the required
component ’hark_msgs’

driving-in-the-matrix [10] make: *** No rule
to make target
’/root/mxnet/ps-lite/make/ps.mk’

smartwatches apps [30] Android platform
delta-execution-models [8] Windows platform
superquadric grasping [25] CMakeFiles/superquadric-grasping.

dir/build.make:96:
recipe for target
’CMakeFiles/superquadric-grasping.
dir/src/main.cpp.o’ failed

The fact that only one code repository could be built and
run off-the-shelf is discouraging. The good news is that in
most cases the software can be fixed, but the required time
for finding a solution can increase exponentially with the
complexity of the system.

We have succeeded in building and executing the software
in roughly half of the cases (16 of 30 repositories — 4 of 5
with Matlab, 12 of 25 in other cases). In the end, we believe
that all the repositories can be fixed but our time and human
resources were limited. Feedback from the authors would help,
specially for obtaining datasets and better defining the runtime
environments. The endeavor is open and collaboration from the
community is indeed necessary and welcome.

Nevertheless, our automated workflow for creating Docker
images of the source code repositories, with all the required
dependencies, allows any interested user to execute the code
without the need of a time-consuming installation and config-
uration procedure.

The repositories of source code and Docker images are
freely available at https://icra2017.github.io/.

While the presented experiment has demonstrated that
Docker is a great technology for reproducing experiments in
academic settings, it is not a replacement for proper software
packaging technologies (apt, homebrew, pip, ...). Indeed, by
means of such technologies, the installation of several pack-
ages is straightforward, yet combining two or more Docker
images in a single one is not a trivial task.

The outcome of our work is two-fold: 1) it has signaled
the deficient specifications of most published source code in
a prestigious conference like ICRA, and 2) it has proven
the feasibility of Docker (a well-established technology in
industry) for running robotics software in a wide variety of
academic settings.

In future steps, we aim to make further experiments for
quantifying the time effort invested in the reproducibility of
experiments, and the user satisfaction of docker-based vs.
native approaches.

REFERENCES

[1] L. Zhou and P. Tokekar, “Active target tracking with self-triggered
communications,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), May 2017, pp. 2117–2123.

[2] J. Briales and J. Gonzalez-Jimenez, “Initialization of 3D pose graph
optimization using lagrangian duality,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), May 2017, pp. 5134–
5139.

[3] S. M. Siam and H. Zhang, “Fast-SeqSLAM: A fast appearance based
place recognition algorithm,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), May 2017, pp. 5702–5708.

[4] T. Zhang, K. Wu, J. Song, S. Huang, and G. Dissanayake, “Conver-
gence and consistency analysis for a 3-D Invariant-EKF SLAM,” IEEE
Robotics and Automation Letters, vol. 2, no. 2, pp. 733–740, April 2017.

[5] V. H. Bennetts, T. P. Kucner, E. Schaffernicht, P. P. Neumann, H. Fan,
and A. J. Lilienthal, “Probabilistic air flow modelling using turbulent and
laminar characteristics for ground and aerial robots,” IEEE Robotics and
Automation Letters, vol. 2, no. 2, pp. 1117–1123, April 2017.

[6] J. Young, L. Kunze, V. Basile, E. Cabrio, N. Hawes, and B. Caputo,
“Semantic web-mining and deep vision for lifelong object discovery,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA), May 2017, pp. 2774–2779.

[7] V. Peretroukhin, L. Clement, and J. Kelly, “Reducing drift in visual
odometry by inferring sun direction using a bayesian convolutional
neural network,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), May 2017, pp. 2035–2042.

[8] A. Mitrevski, A. Kuestenmacher, S. Thoduka, and P. G. Plöger, “Im-
proving the reliability of service robots in the presence of external
faults by learning action execution models,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), May 2017, pp. 4256–
4263.

[9] H. Alismail, M. Kaess, B. Browning, and S. Lucey, “Direct visual
odometry in low light using binary descriptors,” IEEE Robotics and
Automation Letters, vol. 2, no. 2, pp. 444–451, April 2017.

[10] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen, and
R. Vasudevan, “Driving in the matrix: Can virtual worlds replace human-
generated annotations for real world tasks?” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), May 2017, pp. 746–
753.

[11] Z. Erickson, A. Clegg, W. Yu, G. Turk, C. K. Liu, and C. C. Kemp,
“What does the person feel? learning to infer applied forces during robot-
assisted dressing,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), May 2017, pp. 6058–6065.

[12] B. Ichter, E. Schmerling, A. a. Agha-mohammadi, and M. Pavone,
“Real-time stochastic kinodynamic motion planning via multiobjective
search on gpus,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), May 2017, pp. 5019–5026.

[13] J. H. Kim, Y. Latif, and I. Reid, “RRD-SLAM: Radial-distorted rolling-
shutter direct SLAM,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), May 2017, pp. 5148–5154.

[14] C. Gao and R. Harle, “MSGD: Scalable back-end for indoor magnetic
field-based GraphSLAM,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), May 2017, pp. 3855–3862.

[15] D. Su, T. Vidal-Calleja, and J. V. Miro, “Towards real-time 3D sound
sources mapping with linear microphone arrays,” in 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), May 2017, pp.
1662–1668.

[16] J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm:
A large nano-quadcopter swarm,” in 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), May 2017, pp. 3299–3304.

[17] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor,
and V. Kumar, “Planning dynamically feasible trajectories for quadrotors
using safe flight corridors in 3-d complex environments,” IEEE Robotics
and Automation Letters, vol. 2, no. 3, pp. 1688–1695, July 2017.

[18] S. Pourmehr, J. Thomas, J. Bruce, J. Wawerla, and R. Vaughan, “Robust
sensor fusion for finding hri partners in a crowd,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May
2017, pp. 3272–3278.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2018

[19] D. D. Gregorio and L. D. Stefano, “Skimap: An efficient mapping
framework for robot navigation,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), May 2017, pp. 2569–2576.

[20] D. Fridovich-Keil, E. Nelson, and A. Zakhor, “Atommap: A prob-
abilistic amorphous 3D map representation for robotics and surface
reconstruction,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017, pp. 3110–3117.

[21] Z. Yang, F. Gao, and S. Shen, “Real-time monocular dense mapping on
aerial robots using visual-inertial fusion,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), May 2017, pp. 4552–
4559.

[22] W. Montgomery, A. Ajay, C. Finn, P. Abbeel, and S. Levine, “Reset-
free guided policy search: Efficient deep reinforcement learning with
stochastic initial states,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), May 2017, pp. 3373–3380.

[23] J. Leitner, A. W. Tow, N. Sünderhauf, J. E. Dean, J. W. Durham,
M. Cooper, M. Eich, C. Lehnert, R. Mangels, C. McCool, P. T. Kujala,
L. Nicholson, T. Pham, J. Sergeant, L. Wu, F. Zhang, B. Upcroft,
and P. Corke, “The acrv picking benchmark: A robotic shelf picking
benchmark to foster reproducible research,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), May 2017, pp. 4705–
4712.

[24] L. Fermin-Leon, J. Neira, and J. A. Castellanos, “Incremental contour-
based topological segmentation for robot exploration,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May
2017, pp. 2554–2561.

[25] G. Vezzani, U. Pattacini, and L. Natale, “A grasping approach based
on superquadric models,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), May 2017, pp. 1579–1586.

[26] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager, “Costar:
Instructing collaborative robots with behavior trees and vision,” in 2017
IEEE International Conference on Robotics and Automation (ICRA),
May 2017, pp. 564–571.

[27] A. Roncone, O. Mangin, and B. Scassellati, “Transparent role assign-
ment and task allocation in human robot collaboration,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May
2017, pp. 1014–1021.

[28] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena,
“Segmatch: Segment based place recognition in 3D point clouds,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA), May 2017, pp. 5266–5272.

[29] C. G. Cifuentes, J. Issac, M. Wüthrich, S. Schaal, and J. Bohg,
“Probabilistic articulated real-time tracking for robot manipulation,”
IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 577–584, April
2017.

[30] E. Coronado, J. Villalobos, B. Bruno, and F. Mastrogiovanni, “Gesture-
based robot control: Design challenges and evaluation with humans,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA), May 2017, pp. 2761–2767.

[31] F. Bonsignorio and A. P. del Pobil, “Toward replicable and measurable
robotics research,” IEEE Rob. Aut. Mag., vol. 22, no. 3, 2015.

[32] S. Cousins, B. Gerkey, and K. Conley, “Sharing software with ROS
[ROS topics],” IEEE Robotics & Automation Magazine, vol. 17, no. 2,
pp. 12–14, 2010.

[33] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: yet another robot
platform,” International Journal of Advanced Robotic Systems, vol. 3,
no. 1, p. 8, 2006.

[34] H. Bruyninckx, “Open robot control software: the OROCOS project,”
in Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, vol. 3. IEEE, 2001, pp. 2523–2528.

[35] F. Lier, J. Wienke, A. Nordmann, S. Wachsmuth, and S. Wrede,
“The cognitive interaction toolkit–improving reproducibility of robotic

systems experiments,” in International Conference on Simulation, Mod-
eling, and Programming for Autonomous Robots. Springer, 2014, pp.
400–411.

[36] F. Lier, M. Hanheide, L. Natale, S. Schulz, J. Weisz, S. Wachsmuth,
and S. Wrede, “Towards automated system and experiment reproduction
in robotics,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct 2016, pp. 3298–3305.

[37] A. Pörtner, M. Hoffmann, and M. König, “Swarmrob: A toolkit for re-
producibility and sharing of experimental artifacts in robotics research,”
arXiv preprint arXiv:1801.04199, 2018.

[38] F. Bonsignorio, “A new kind of article for reproducible research in intel-
ligent robotics [from the field],” IEEE Robotics Automation Magazine,
vol. 24, no. 3, pp. 178–182, Sept 2017.

[39] T. Foote, D. Thomas, D. Pangercic, D. Di Marco, and A. Hamann,
“Docker-based build farm for ROS,” in ROSCon, 2015.

[40] C. Boettiger, “An introduction to docker for reproducible research,” ACM
SIGOPS Op Sys Rev, vol. 49, no. 1, pp. 71–79, 2015.

[41] R. White and H. Christensen, “ROS and docker,” in Robot Operating
System (ROS). Springer, 2017, pp. 285–307.

[42] V. Dugar, S. Choudhury, and S. Scherer, “A kite in the wind: Smooth
trajectory optimization in a moving reference frame,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May
2017, pp. 109–116.

[43] S. Choudhury, A. Kapoor, G. Ranade, and D. Dey, “Learning to gather
information via imitation,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), May 2017, pp. 908–915.

[44] K. A. Skinner, E. Iscar, and M. Johnson-Roberson, “Automatic color
correction for 3D reconstruction of underwater scenes,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May
2017, pp. 5140–5147.

[45] M. Fehr, F. Furrer, I. Dryanovski, J. Sturm, I. Gilitschenski, R. Siegwart,
and C. Cadena, “Tsdf-based change detection for consistent long-term
dense reconstruction and dynamic object discovery,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May
2017, pp. 5237–5244.

[46] B. Pfrommer, N. Sanket, K. Daniilidis, and J. Cleveland, “Penncosyvio:
A challenging visual inertial odometry benchmark,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May
2017, pp. 3847–3854.

[47] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and
M. Egerstedt, “The robotarium: A remotely accessible swarm robotics
research testbed,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), May 2017, pp. 1699–1706.

[48] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap, Y. F.
Chen, C. Choi, J. Dusek, Y. Fang, D. Hoehener, S. Y. Liu, M. Novitzky,
I. F. Okuyama, J. Pazis, G. Rosman, V. Varricchio, H. C. Wang,
D. Yershov, H. Zhao, M. Benjamin, C. Carr, M. Zuber, S. Karaman,
E. Frazzoli, D. D. Vecchio, D. Rus, J. How, J. Leonard, and A. Censi,
“Duckietown: An open, inexpensive and flexible platform for autonomy
education and research,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), May 2017, pp. 1497–1504.

[49] A. Spek and T. Drummond, “Joint pose and principal curvature re-
finement using quadrics,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), May 2017, pp. 3968–3975.

[50] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[51] P. I. Corke, “A robotics toolbox for matlab,” IEEE Robotics & Automa-
tion Magazine, vol. 3, no. 1, pp. 24–32, 1996.

[52] P. Corke, “Matlab toolboxes: robotics and vision for students and
teachers,” IEEE Robotics & automation magazine, vol. 14, no. 4, 2007.

[53] G. Uddin and M. P. Robillard, “How API documentation fails,” IEEE
Software, vol. 32, no. 4, pp. 68–75, July 2015.


