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ABSTRACT

Information retrieval addresses the information needs of users by deliv-
ering relevant pieces of information but requires users to convey their
information needs explicitly. In contrast, recommender systems o�er per-
sonalized suggestions of items automatically. Ultimately, both �elds help
users cope with information overload by providing them with relevant
items of information.
¿is thesis aims to explore the connections between information re-

trieval and recommender systems. Our objective is to devise recommen-
dation models inspired in information retrieval techniques. We begin by
borrowing ideas from the information retrieval evaluation literature to an-
alyze evaluation metrics in recommender systems. Second, we study the
applicability of pseudo-relevance feedbackmodels to di�erent recommen-
dation tasks. We investigate the conventional top-N recommendation
task, but we also explore the recently formulated user-item group forma-
tion problem and propose a novel task based on the liquidation of long
tail items. ¿ird, we exploit ad hoc retrieval models to compute neigh-
borhoods in a collaborative �ltering scenario. Fourth, we explore the
opposite direction by adapting an e�ective recommendation framework
to pseudo-relevance feedback. Finally, we discuss the results and present
our conclusions.
In summary, this doctoral thesis adapts a series of information retrieval

models to recommender systems. Our investigation shows that many
retrieval models can be accommodated to deal with di�erent recom-
mendation tasks. Moreover, we �nd that taking the opposite path is also
possible. Exhaustive experimentation con�rms that the proposed models
are competitive. Finally, we also perform a theoretical analysis of some
models to explain their e�ectiveness.
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RESUMEN

La recuperación de información da respuesta a las necesidades de in-
formación de los usuarios proporcionando información relevante, pero
requiere que los usuarios expresen explícitamente sus necesidades de
información. Por el contrario, los sistemas de recomendación ofrecen
sugerencias personalizadas de elementos automáticamente. En última
instancia, ambos campos ayudan a los usuarios a lidiar con la sobrecarga
de información al proporcionarles información relevante.
Esta tesis tiene como propósito explorar las conexiones entre la re-

cuperación de información y los sistemas de recomendación. Nuestro
objetivo es diseñar modelos de recomendación inspirados en técnicas de
recuperación de información. Comenzamos tomando prestadas ideas de
la literatura de evaluación en recuperación de información para analizar
las métricas de evaluación en los sistemas de recomendación. En segundo
lugar, estudiamos la aplicabilidad de los modelos de retroalimentación de
pseudo-relevancia a diferentes tareas de recomendación. Investigamos
la tarea de recomendar listas ordenadas de elementos, pero también ex-
ploramos el problema recientemente formulado de formación de grupos
usuario-elemento y proponemos una tarea novedosa basada en la liq-
uidación de los elementos de la larga cola. Tercero, explotamos modelos
de recuperación ad hoc para calcular vecindarios en un escenario de
�ltrado colaborativo. En cuarto lugar, exploramos la dirección opuesta
adaptando un método e�caz de recomendación a la retroalimentación de
pseudo-relevancia. Finalmente, discutimos los resultados y presentamos
nuestras conclusiones.
En resumen, esta tesis doctoral adapta varios modelos de recuperación

de información para su uso como sistemas de recomendación. Nuestra
investigación muestra que muchos modelos de recuperación de informa-
ción se pueden aplicar para tratar diferentes tareas de recomendación.
Además, comprobamos que tomar el camino contrario también es posible.
Una experimentación exhaustiva con�rma que los modelos propuestos
son competitivos. Finalmente, también realizamos un análisis teórico de
algunos modelos para explicar su efectividad.

xiii





RESUMO

A recuperación de información dá resposta ás necesidades de informa-
ción dos usuarios proporcionando información relevante, pero require
que os usuarios expresen explicitamente as súas necesidades de infor-
mación. Pola contra, os sistemas de recomendación ofrecen suxestións
personalizadas de elementos automaticamente. En última instancia, am-
bos os campos axudan aos usuarios a lidar coa sobrecarga de información
ao proporcionarlles información relevante.
Esta tese ten comopropósito explorar as conexións entre a recuperación

de información e os sistemas de recomendación. O noso obxectivo é de-
señar modelos de recomendación inspirados en técnicas de recuperación
de información. Comezamos tomando prestadas ideas da literatura de
avaliación en recuperación de información para analizar as métricas de
avaliación nos sistemas de recomendación. En segundo lugar, estudamos
a aplicabilidade dos modelos de retroalimentación de seudo-relevancia a
diferentes tarefas de recomendación. Investigamos a tarefa de recomen-
dar listas ordenadas de elementos, pero tamén exploramos o problema
recentemente formulado de formación de grupos de usuario-elemento e
propoñemos unha tarefa nova baseada na liquidación dos elementos da
longa cola. Terceiro, explotamos modelos de recuperación ad hoc para
calcular veciñanzas nun escenario de �ltrado colaborativo. En cuarto
lugar, exploramos a dirección oposta adaptando un método e�caz de
recomendación á retroalimentación de seudo-relevancia. Finalmente,
discutimos os resultados e presentamos as nosas conclusións.
En resumo, esta tese doutoral adapta varios modelos de recuperación

de información para o seu uso como sistemas de recomendación. A nosa
investigación mostra que moitos modelos de recuperación de informa-
ción pódense aplicar para tratar diferentes tarefas de recomendación.
Ademais, comprobamos que tomar o camiño contrario tamén é posible.
Unha experimentación exhaustiva con�rma que os modelos propostos
son competitivos. Finalmente, tamén realizamos unha análise teórica
dalgúns modelos para explicar a súa efectividade.
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Part I

PRELIMINARIES

¿is project is experimental and of course comes
without any warranty whatsoever. However, it
could start a revolution in information access.

—Tim Berners-Lee,
WorldWideWeb wide-area hypertext app available





1
INTRODUCTION

Human history has been shaped by how we have managed information. Information
technologies evolve
increasingly faster:
writing (ca. 3000
BC), the printing
press (ca. 1440),
the �rst computers
(ca. 1930) and the
World Wide Web
(1989).

As societies emerged, the development of writing, more than �ve mil-
lennia ago, was the �rst milestone. We started to compile information
that had only been spread by word of mouth. Driven by pragmatic needs,
we continued to create new forms of storing and processing information.
Libraries, the primary places where written information was stored and
preserved, �ourished. Nevertheless, the amount of data was minimal
because of the high cost of handwriting. However, the invention of the
printing press multiplied the rate of growth of written information ex-
ponentially. More recently, the invention of the computer led to crucial
modern developments such as the design of specialized data structures for
querying digital libraries. Finally, the advent of the World Wide Web in
1989 triggered an unprecedented explosion in the availability of informa-
tion. ¿e creation of Tim Berners-Lee has become a universal repository
of human knowledge that transformed how we access information.
Information retrieval (IR) and information �ltering (IF) are two �elds ¿is thesis

leverages the
similarities
between
information
retrieval and
recommender
systems.

of study that revolve around information processing. ¿e development
of computing and communication technologies has boosted the impor-
tance of these �elds. IR systems deal with the representation, storage and
access of information. ¿eir goal is to expose users to relevant pieces
of information according to their needs (Baeza-Yates and Ribeiro-Neto
2011; Manning et al. 2008). On the other hand, IF systems aim to select
items from an information stream that may be of interest to a given user
(Hanani et al. 2001). Among the di�erent types of information �lters,
recommender systems (RS) are arguably the most prominent nowadays.
¿e goal of a recommender system is to generate personalized suggestions
for items based on the interests of a user (Ricci et al. 2015).
Since the �nal objective of IR and IF systems is to provide users with

relevant information items, some authors consider both �elds as two
sides of the same coin (Belkin and Cro 1992). Nonetheless, despite

3
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the similarities between information retrieval and information �ltering,
there has been little research about applying classic IR techniques to
recommender systems until recently (Bellogín et al. 2013a; Kallumadi
et al. 2018; Parapar et al. 2013). In this doctoral thesis, we aim to bridge
the gap between information retrieval and recommender systems even
more by adapting several IR models to di�erent recommendation tasks
and by establishing new analogies between both �elds.

1.1 motivation

Early work on information retrieval dates back to the 50’s (Kent et al. 1955;RS is a younger
�eld than IR, but it

is growing at a
breakneck pace.

Mooers 1951). Since then, the �eld has evolved tremendously. ¿e �rst
ACM Conference on Information Retrieval (SIGIR) was held in 1971 and
nowadays comprises hundreds of attendees. Additionally, the Web has
brought a new information access paradigm where search has become
crucial. In contrast, recommender systems is a much younger �eld. ¿is
area emerged in the mid-1990s with the explosion of the World Wide
Web and the apparition of e-commerce sites (Resnick and Varian 1997;
Resnick et al. 1994; Shardanand and Maes 1995). Although the �rst ACM
Conference on Recommender Systems (RecSys) took place in 2007, it has
grown very quickly and nowadays attracts hundreds of attendees—many
of them from industry.
As the Web provides increasing amounts of information, information

systems have to face new challenges. ¿e sheer volume of information
available to the public is overwhelming. ¿e di�culty to �nd and select
relevant information increases as more and more content is available.
Without proper tools to the deal with information overload, users may
miss interesting information or consume uninteresting content. For this
reason, information sciences such as information retrieval and informa-
tion �ltering are crucial in the current landscape.
Information retrieval systems are typically oriented towards produc-

ing rankings of relevant documents. Although recommender systems
were initially oriented towards predicting ratings accurately, a paradigm
shi has been brought towards producing a good ranking of items (typi-
cally known as top-N recommendation). ¿erefore, IR and modern RS
techniques seem to have very similar objectives.
Recommender systems have become a pervasive technology to address

the information overload problem. ¿e enormous growth of data has
radically changed thewaywe access information. Additionally, as informa-
tion systems o�er more advanced capabilities, users are becoming more
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and more demanding. In this challenging context, traditional search and
browse features are not enough. Users expect proactive suggestions from
the systems rather than specifying queries that convey their information
needs.
¿e main di�erence between information retrieval and recommender

systems lies in the representation of the information need: while an in-
formation retrieval system typically uses an explicit query prompted by
the user, a recommender system exploits the user’s history as an implicit
query. Nevertheless, in the end, both �elds share the same goal: providing
users with access to relevant pieces of information.

1.2 aim and scope

We believe that cross-pollination between information retrieval and rec- We aim to exploit
the parallelisms
between IR and
RS tasks.

ommender systems �elds can lead to new, useful approaches. In this
doctoral thesis, we go back to the roots of the RS �eld and explore its
relationship with IR. Information retrieval has been around longer than
recommender systems; therefore, we think that we can leverage existing
work and knowledge developed by the IR community to propose new
recommendation models or improve current recommendation meth-
ods. Nonetheless, we also think that we can draw inspiration from RS
techniques to bring fresh air to consolidated IR tasks.
In this doctoral thesis, we focus on the applicability of some informa- In this thesis, we

restrict ourselves to
two IR tasks: ad
hoc retrieval and
pseudo-relevance
feedback.

tion retrieval models to recommender systems. We limit the scope of
this work to two main IR tasks: ad hoc retrieval and pseudo-relevance
feedback. In particular, we explore the adaptation of ad hoc retrieval
models for computing neighborhoods and pseudo-relevance feedback al-
gorithms for di�erent recommendation tasks. On the other hand, to close
the circle, at the end of this thesis we also explore how linear methods
used in recommendation can build e�ective pseudo-relevance feedback
models.
Evaluation plays a crucial role in experimental sciences such as infor-

mation retrieval and recommender systems. In this thesis, we assess the
e�ectiveness and e�ciency of the proposed model using o�ine evalua-
tion. ¿is approach usually constitutes the �rst step in evaluation due to
its reduced costs and high reproducibility. In contrast, online evaluations
require experiments with real users which are expensive and di�cult to
perform in the academy. For these reasons, we run our experiments on
public datasets.
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1.3 structure and contributions of the thesis

¿is doctoral thesis is divided into six parts with thirteen chapters. ¿e
present chapter contains the introduction to this work. Chapter 2 in-
troduces information retrieval and recommender systems concepts and
relevant related work. Although a specialist on the topics may skip it, an
interested readermay �nd it a useful introduction to both �elds. Chapter 3
details the evaluation protocols and common experimental settings used
throughout this research. Chapters 4 to 11 present the novel contributions
of this thesis. Contribution chapters are meant to be as self-contained
as possible. ¿ey can be read and understood with only the background
information provided in Chapter 2. Chapter 12 presents the comparison
and discussion of the �ndings of this thesis. Finally, Chapter 13 contains
the conclusions and future work. Below we present the organization of
the parts and chapters in more detail:

part i ¿e �rst part includes Chapter 1, which is the introduction
to this thesis, and Chapter 2, which discusses the background
work. ¿e introduction presents the context and motivation
of the thesis, the aim and scope of our work and the structure
and contributions of the study. ¿e background chapter, on the
other hand, presents an overview of information retrieval and
recommender systems and introduces the main concepts of
both �elds. Regarding information retrieval, we focus on ad
hoc retrieval and pseudo-relevance feedback which we adapt in
following chapters to recommendation tasks. We also present
previous work that studies or exploits the relationship between
IR and RS.

part ii ¿is part of the thesis describes the research methods in two
chapters. On the one hand, Chapter 3 describes the information
retrieval and recommender systems evaluation methods used
throughout this work. On the other hand, Chapter 4 contains
a novel study of the robustness and discriminative power of
rank-oriented metrics for recommendation. ¿e �ndings of
this study justify the evaluation metrics employed in this thesis.

part iii Wepresent here the adaptation of several pseudo-relevance feed-
back models to di�erent recommendation tasks. In particular,
Chapter 5 improves an existing adaptation of relevance models
to top-N recommendation by exploring smoothing techniques
and prior probability estimators. Chapter 6 proposes a comple-
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mentary item-based adaptation of relevance models which we
use to solve a novel recommendation problem: how to liquidate
long tail items. Chapter 7 employs the item-based adaptation of
relevance models with personalized user prior estimators to ad-
dress the item-driven group formation task. Lastly, we explore
the adaptation of pseudo-relevance feedback techniques pro-
posed within Rocchio framework to top-N recommendation in
Chapter 8.

part iv ¿is part contains two chapters focused on neighborhood-based
recommendation algorithms. Chapter 9 measures the margin
for improvement of di�erent techniques for computing neigh-
borhoods. Based on these �ndings, we propose principledmodi-
�cations of cosine similarity—similar to normalization schemes
used in information retrieval. Chapter 10, on the other hand,
proposes the adaptation of language models from ad hoc re-
trieval to neighborhood computation.

part v In this part, we explore the opposite direction by adapting a
recommendation technique to perform pseudo-relevance feed-
back. Particularly, Chapter 11 describes how sparse linear meth-
ods, successfully used in recommendation, can also be used to
expand queries and improve retrieval e�ectiveness.

part vi In the last part, Chapter 12 discusses the results obtained and
compares them against the state of the art. Finally, Chapter 13
summarizes the contributions of this thesis, presents the con-
clusions and suggests future lines of research.





2
BACKGROUND

¿e �rst two sections of this chapter introduce the fundamental con-
cepts and tasks of information retrieval (IR) and recommender systems
(RS) �elds. Nonetheless, we decided to make the contribution chapters
as self-contained as possible by providing more advanced and speci�c
background information in each chapter. ¿erefore, a reader experienced
with the foundations of IR and RSmay skip these two sections. A erward,
a third section reviews the existing literature that takes inspiration from
previous work in information retrieval to develop new recommendation
models as well as the other way around.

2.1 information retrieval

Information retrieval is a computer science area that focuses on satisfying IR is sometimes
referred to as the
science of search
or the science of
�nding.

the information needs of the users (Baeza-Yates and Ribeiro-Neto 2011;
Manning et al. 2008). Search engines are probably the most prominent
example of information retrieval systems. More formally, we can use the
following de�nition:

Information retrieval deals with the representation, storage,
organization of, and access to information items such as
documents,Web pages, online catalogs, structured and semi-
structured records, multimedia objects. ¿e representation
and organization of the information items should be such as
to provide the users with easy access to information of their
interest. (Baeza-Yates and Ribeiro-Neto 2011)

¿e importance of information retrieval has exploded a er the inven-
tion of the World Wide Web. ¿e exponential growth in the volume of
information has boosted the development of new IR methods to be able
to meet the increasing information needs of the users.

9



10 background

Information retrieval systems such as search engines consist of sev-Retrieval models
are at the heart of

the IR �eld.
eral components such as crawlers, indexers, retrieval models and user
interfaces. Among them, retrieval models are the core of these systems
because they are responsible for producing search results. In this thesis,
we take inspiration from these models to formulate novel recommenda-
tion techniques. In particular, we study models proposed to address two
well-known IR tasks: ad hoc retrieval and pseudo-relevance feedback.
Each is described below.

2.1.1 Ad hoc retrieval

Ad hoc retrieval constitutes the most studied task in information retrievalAd hoc retrieval is
considered the core

task in IR.
(Manning et al. 2008). ¿is task is performed on top of a collection
of documents. Documents such as web pages, news articles, patents,
images, videos or books constitute the retrieval units. ¿is collection
is previously indexed to create data structures called inverted indexes
that allow e�cient retrieval. Ad hoc retrieval consists in �nding those
documents in the collection that are relevant to the information need of
the user. ¿e user has an information need that conveys to the system in
the form of a short textual description called query. ¿e retrieval engine
processes the query against the collection using a retrieval model and
produces a ranked list of documents that is the output that the user
receives. A document is considered relevant when users �nd it valuable
in relation to their information need.
Ad hoc retrieval models must deal with document �ltering and rank-

ing. ¿ese models discard those documents in the collection that are not
relevant to the user’s information need and ranks the remaining ones by
decreasing estimated relevance. ¿ey compare the document represen-
tation against the information need representation to do so. Retrieval
models are one of the most fertile areas of research in IR. ¿erefore,
di�erent mathematical models have been proposed to rank documents
according to a query. Some of the most in�uencing retrieval models have
been the boolean model (Lancaster and Fayen 1973), the vector space
model (Salton et al. 1975), the extended boolean model (Salton et al. 1983),
Okapi BM25 (Spärck Jones et al. 2000a,b), probabilistic models such as
the binary independence model (Robertson et al. 1976) or the language
model (Ponte and Cro 1998; Zhai 2008), and more recent neural models
(Mitra and Craswell 2018). Next, we discuss two of the most important
ad hoc retrieval frameworks—the vector space model and the language
model—that we exploit in later chapters.
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2.1.1.1 Vector space model

¿e vector space model (VSM) constitutes one of the most standard ad
hoc retrieval approaches (Salton et al. 1975). ¿e VSM models queries
and documents as sparse high-dimensional vectors of word frequencies.
¿is representation is known as bag-of-words (Harris 1954).
We denote a document by a vector D⃗with asmany dimensions as terms

in the collection. Each position represents the weight of a speci�c term
in the document. Di�erent weighting schemes have been proposed, but
most of them rely on TF (term frequency) and IDF (inverse document
frequency) heuristics. Likewise, queries are also represented by similar
vectors. Retrieval is performed by computing the vector similarity be-
tween the query and each document in the collection. Cosine similarity
(i. e., the cosine of the angle formed by two vectors) is the most common
similarity metric in the VSM:

cosine(Q⃗ , D⃗) = Q⃗ ⋅ D⃗∥D⃗∥ ∥Q⃗∥ (2.1)

Singhal et al. (1996) introduced a pivoted normalization into this sim-
ilarity metric to improve its retrieval e�ectiveness. We follow a similar
approach in Chapter 9 to modify cosine similarity to account for the
length of the users pro�les.

2.1.1.2 Language models

¿e introduction of probabilistic models represented a breakthrough in
IR.¿ey have been developed following the probability ranking principle
(PRP). ¿is principle states that documents should be ranked in descend-
ing order of probability of relevance (Maron and Kuhns 1960; Robertson
1977). ¿e formal statement of the PRP is:

If a reference retrieval system’s response to each request is
a ranking of the documents in the collection in order of
decreasing probability of usefulness to the user who sub-
mitted the request, where the probabilities are estimated as
accurately as possible on the basis of whatever data has been
made available to the system for this purpose, then the over-
all e�ectiveness of the system to its users will be the best that
is obtainable on the basis of this data. (Robertson 1977)

Language models (LM) are a formal approach with a sound statisti-
cal foundation that follow the PRP (Zhai 2008). Although they do not
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explicitly include the concept of relevance, they can be derived from a gen-
erative relevance model (La�erty and Zhai 2003).¿is framework models
the occurrences of words in the documents and queries as a random
generative process—usually, using a multinomial distribution. In this
way, we can infer a language model for each document in the collection.
To rank those documents according to a query, we estimate the posterior
probability of each document D given the particular query Q:

p(D∣Q) = p(Q∣D) p(D)
p(Q) rank= p(Q∣D) p(D) (2.2)

where p(Q∣D) denotes the query likelihood and p(D) the document¿e query
likelihood model is
the �rst approach
for using language

models in IR.

prior. We can ignore the query prior p(Q) because, for a given query, it
has no e�ect in the ranking. If we take a uniform document prior, we
just need to compute p(Q∣D) to rank documents according to a query.
¿is is the query likelihood model: we assume that a query is a sample
drawn from a language model θD. ¿erefore, to score a document, we
only compute the likelihood of the query given the estimated document
language model p(Q∣θD). ¿e most popular approach to compute the
query likelihood is to use a unigram model:

score(Q ,D) = p(Q∣θD) =∏
t∈Q

p(t∣θD)c(t,Q) (2.3)

where c(t,Q) denotes the count of term t in the queryQ.¿e conditional
probability p(t∣θD) is computed via the maximum likelihood estimate
(MLE) of a multinomial distribution smoothed with a backgroundmodel
(Zhai and La�erty 2004).
In Chapter 10, we establish a connection between ad hoc retrieval

models and neighborhood computation in recommendationwhich allows
us to adapt the query likelihood model to the computation of user and
item neighborhoods.

2.1.2 Pseudo-relevance feedback

¿e retrieval model is crucial in the e�ectiveness of a search engine.
Nevertheless, the quality of the search results can be improved without
modifying the retrieval model. Users o en �nd di�cult to convey their
information needs in the formof a query.¿erefore, query expansion (QE),
which consists in expanding the query with new terms, is an e�ective
way to improve retrieval e�ectiveness (Carpineto and Romano 2012). If
done carefully, the expanded query would likely provide better retrieval
results than the initial one.
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Among QE techniques, relevance feedback is one of the most reliable Relevance
feedback requires
interaction from
users.

query expansion methods (Rocchio 1971; Ruthven and Lalmas 2003). Rel-
evance feedback requires users to indicate which documents from those
presented to them are relevant to their information needs. In this way, the
feedback from the users is combined with the original query to generate
an expanded query that usually yields a better retrieval ranking. However,
obtaining information from the user is expensive and sometimes even
infeasible. One alternative is to use the query logs of previous users in
the system to infer which documents were relevant by their clicks.
Another alternative is to use automatic QE techniques that do not Automatic QE

techniques are
appealing because
they are
transparent to
users.

require feedback from the users (Carpineto and Romano 2012). Given the
utility of these methods, it is not surprising that initial work on automatic
query expansion dates from the sixties (Maron and Kuhns 1960). Pseudo-
relevance feedback (PRF), also known as blind relevance feedback, is an
automatic QE method whose foundations date back to the late seventies
(Cro and Harper 1979), but it is still a hot research area in IR. In fact,
empirical research has shown that PRF is an e�ective method to improve
retrieval (Carpineto et al. 2001; Cro and Harper 1979; Lavrenko and
Cro 2001; Lv and Zhai 2009, 2014; Parapar and Barreiro 2011; Zhai and
La�erty 2001).
PRF does not require interaction from the users because it assumes Pseudo-relevance

feedback assume
that the top
retrieved
documents are
relevant.

that the top documents retrieved with the initial query are relevant.¿ese
documents that are assumed to be relevant form the so-called pseudo-
relevant set. PRF techniques extract terms (with their corresponding
weights) from this set to expand the original query. We then use the
expanded query for a second retrieval and the results of this second
ranking are the ones presented to the user. If the retrieval model provides
decent results, this assumption is not too strong and the expanded query
may provide better retrieval results than the original one.

2.1.2.1 PRF in the vector space model

Rocchio (1971) framework was one of the very early successful query Rocchio
framework is the
most popular
approach for query
expansion in the
VSM.

expansion methods presented in the context of the vector space model.
Rocchio algorithmmodi�es the query vector in a direction which is closer
to the centroid of the relevant documents vectors and further from the
centroid of non-relevant documents vectors.We denote the set of relevant
documentDr and the set of non-relevant document byDnr , the original
query vector by Q⃗ and the expanded query vector by Q⃗ ′.

Q⃗ ′ = αQ⃗ + β∣Dr ∣ ∑D⃗∈Dr

D⃗ − γ∣Dnr ∣ ∑D⃗∈Dnr

D⃗ (2.4)
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When performing pseudo-relevance feedback, we use the pseudo-
relevant set F as an estimate of the set of relevant documents and we
ignore the negative feedback. In this way, we obtain the following simpli-
�ed equation:

Q⃗ ′ = Q⃗ + α∣F∣ ∑⃗D∈F D⃗ (2.5)

Carpineto and Romano (2012) and Carpineto et al. (2001) used the
Rocchio frameworkwith di�erent term scoring functions to performPRF.
Among them, they used Rocchio weights (Rocchio 1971), the Robertson
selection value (Robertson 1990), Chi-square (Carpineto et al. 2001) and
Kullback-Leibler divergence methods (Carpineto et al. 2001).

2.1.2.2 PRF based on language models

Among all the PRF techniques in the literature , those developed within¿e language
modeling

framework has
been a fertile area
of research for PRF

techniques.

the statistical language model framework (Ponte and Cro 1998; Zhai
2008) are arguably the most prominent ones because of their sound theo-
retical foundation and their empirical e�ectiveness (Lv and Zhai 2009).
Relevance-based language models or, for short, relevance models (RM)
are a PRF technique proposed by Lavrenko and Cro (2001) that explic-
itly introduces the concept of relevance in language models. On the other
hand, Zhai and La�erty (2001) proposed the divergence minimization
model (DMM) and later Lv and Zhai (2014) extended it developing the
maximum-entropy divergence minimization model (MEDMM). Both
techniques build a model which is close to the language model of the
documents of the pseudo-relevant set and far away from the background
model. Additionally, other PRF approaches based on language models
use mixture models such as the simple mixture model (Zhai and La�erty
2001) and the regularized mixture model (Tao and Zhai 2006).
¿e di�culty in adding feedback to the query likelihood model has led¿e KLD model

introduces the
query language
model θQ in the

retrieval equation.

to the development of Kullback-Leibler divergence (KLD) retrieval model
(La�erty and Zhai 2001). ¿is model computes the Kullback-Leibler
divergence D(⋅∥⋅) between the query and the document language models,
θQ and θD, which is rank equivalent to the negative cross-entropy:

score(Q ,D) = −D(θQ∥θD) rank= ∑
t∈V

p(t∣θQ) log p(t∣θD) (2.6)

where V denotes the vocabulary of the collection.
To incorporate the feedbackmodel in the retrieval formulation, instead

of using the original query model θQ , we use θ ′Q which is the result of the
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interpolation between θQ and the estimated feedback model θF (Abdul-
Jaleel et al. 2004; Lv and Zhai 2009):

p(t∣θ ′Q) = (1 − α) p(t∣θQ) + α p(t∣θF) (2.7)

where α ∈ [0, 1] controls the relative importance of the feedback model
with respect to the query model. ¿erefore, the task of a PRF technique
under this framework is to provide an estimate of θF given the pseudo-
relevant set F.
In part iii, we study the applicability of di�erent pseudo-relevance feed-

backmodels in diverse recommendation tasks.We analyze the adaptation
of relevance models to user-based recommendation proposed by Parapar
et al. (2013) in Chapter 5. We also propose an item-based adaptation of
relevance models to address the liquidation of long tail items and the
user-item group formation problem in Chapters 6 and 7, respectively.
Finally, in Chapter 8, we explore the adaptation of term scoring functions
used within the Rocchio framework to top-N recommendation.

2.2 recommender systems

Recommender systems (RS) are tools designed to assist users by providing Recommender
systems provide
personalized items
suggestions.

personalized item suggestions (Resnick and Varian 1997; Ricci et al. 2015).
In a world with a growing amount of information, users are demanding
more personalized information systems. ¿ey want to receive items sug-
gestions instead of browsing and explicitly querying the system. In this
landscape, recommender systems have become a pervasive technology
to deal with these increasing information demands.
¿e Net�ix Prize1 stimulated the research in recommender systems. ¿e Net�ix Prize

marked a turning
point in the
development of RS.

¿is open competition held by Net�ix from 2006 to 2009 represented
a major milestone in the �eld. ¿e goal was to improve the accuracy of
CineMatch, their recommender system at the time, by 10% (Bennett and
Lanning 2007). ¿is event led to an explosion of research on di�erent
recommendation models.
It is well known how recommender systems impact Web companies. RS can have a vast

impact in a variety
of domains.

For instance, Sharma et al. (2015) estimated that 30% of page views in
Amazon come from recommendations. Zhou et al. (2010a) also estimated
that YouTube related video recommendation accounts for about 30% of
overall YouTube views. Similarly, Net�ix claimed that more than 80% of
movies plays originated from recommendations and placed the value of
their recommender system atmore than $1 billion per year (Gomez-Uribe

1 ¿e o�cial website of the competition is https://www.netflixprize.com.

https://www.netflixprize.com
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and Hunt 2015). In view of these �gures, it is not surprising that recom-
mender systems have become indispensable tools for many technological
companies.
In a recommendation scenario, we can distinguish two main elements:

users and items. Users are those subjects who interact with the system
and receive recommendations. ¿e set U denotes the users in the system.
Items, on the other hand, are those elements that users interact with and
the system recommends. ¿ey form the set I . Items can be very diverse
in nature because recommender systems are used in many domains to
suggest videos, news, e-commerce products, advertisements, songs or
trips, to name a few.
Users and items are connected through interactions. RecommenderUsers, items and

interactions are
the primary
elements of

recommender
systems.

systems build models from these interactions also known as feedback.
We can distinguish between explicit and implicit feedback. Explicit feed-
back are those interactions that deliberately express the users’ preferences
such as ratings, likes or reviews. In contrast, user actions such as clicks,
reproductions or purchases constitute implicit feedback. We can infer
preferences from these actions, but the users are not directly communi-
cating their preferences.
We denote the interaction of user u ∈ U and item i ∈ I by r(u, i).

If the user u interacted with item i, r(u, i) is equal to the value of the
interaction such as the rating score or the number of purchases.Otherwise,
r(u, i) = 0. Additionally, Iu denotes the set of items that useru interacted
with. Likewise, Ui refers to the set of users that interacted with item i.
¿e ranked list of n recommendations for user u is denoted by Lnu and
we refer to the k-th position of this list by Lnu[k].
User-item interactions are usually represented in the form of a matrix

where rows play the role of users and columns represent the items. Addi-
tional information such as context or time can be included in additional
dimensions, but context-aware recommender systems (Adomavicius and
Tuzhilin 2015) and time-aware recommender systems (Campos et al. 2014)
are out of the scope of this thesis.

2.2.1 Recommendation tasks

¿e classic recommendation problem consists in generating tailored item
recommendations to the users. ¿e typical output of a recommender sys-
tem is a score r̂(u, i) for each user-item pair (u, i). ¿erefore, for a given
user, we can compute the score for each item. However, recommender sys-
tems have evolved in recent years to address di�erent personalized tasks.
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In fact, in Chapters 6 and 7, we study less conventional recommendation
tasks.
One of the �rst approaches to model the classic recommendation prob- Rating predictors

aim to forecast the
rating that a user
would give to an
item.

lem was rating prediction problem. Rating predictors intend to forecast
the ratings that users would give to each item (Gunawardana and Shani
2015; Herlocker et al. 2004). ¿erefore, these systems aim to output a
value that is close to the real rating value: r̂(u, i) ≈ r(u, i).
¿e rationale of modeling the recommendation problem as a rating

prediction task is to recommend those items with the highest predicted
rating. In this way, if the rating predictor is accurate, the user will be
presented with a set of items with high predicted ratings. Nevertheless,
this seemingly reasonable approach to recommendation does not lead to
good recommenders in practice. ¿e reason is that rating predictors aim
to forecast the rating values of those items that the user has decided to
rate (Steck 2013). ¿ese ratings are biased because ratings aremissing not
at random (Marlin et al. 2007; Steck 2010). However, rating predictors
must be able to forecast the rating of any item if they aim to produce good
rankings of items.
In a production environment, recommender systems usually present a ¿e top-N

recommendation
task consists in
�nding the N most
relevant items for
each user.

short list of suggestions where the predicted rating values are not shown.
¿is task is usually referred to as top-N recommendation (Cremonesi et al.
2010; Herlocker et al. 2004). Top-N recommenders focus on providing a
list with good items, not on accurately predicting ratings.Moreover, rating
prediction studies howwell a system can predict the existing ratings while
a top-N recommender only cares about the top relevant items for each
user. All these reasons justify the paradigm shi from rating prediction
to top-N recommendation.
¿e traditional top-N recommendation task can be formulated as

�nding a scoring function s ∶ U × I → R such that, for each user u, we
can generate a ranked list of n items Lnu ∈ In sorted by decreasing score.
When developing a top-N recommender, the score is only used to sort
the recommendations and, thus, we do not care about the exact value,
but the relative order of the items.

2.2.2 Types of recommender systems

We can distinguish multiple approaches to recommendation (Adomavi-
cius and Tuzhilin 2005; Ricci et al. 2015). ¿ey are o en classi�ed in
content-based �ltering and collaborative �ltering systems. Additionally,
we also have a third category of hybrid systems that combine models of
the previous two groups of recommender systems.
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Content-based �ltering or simply content-based approaches generateContent-based
�ltering leverages
information about
the items that the
target user liked.

recommendations based on the user pro�le and the item descriptions:
they exploit the information about the items that the user previously liked
to suggest similar items (Gemmis et al. 2015). Content-based approaches
require accurate and rich itemmetadata to be able to compute similarities
between items.
In contrast, collaborative �ltering (CF) approaches rely on the feed-Collaborative

�ltering exploits
the wisdom of the
crowd to produce
recommendations.

back of other users to produce recommendations (Koren and Bell 2015;
Ning et al. 2015). CF approaches consider items as black boxes: items
are modeled by their interactions to other users. ¿erefore, collaborative
�ltering methods do not require item descriptions. CF techniques are
highly e�ective in scenarios with rich feedback composed of user-item
interactions. Nowadays, collaborative �ltering approaches tend to work
well in several scenarios as they can leverage the increasing amount of
information that is available.
Regarding hybrid systems, one e�ective approach is to combine mul-

tiple recommenders by applying metasearch techniques which we have
done in previous work (Valcarce et al. 2017b). However, this doctoral
thesis is devoted to collaborative �ltering recommenders due to the ad-
vantage of CF in scenarios with a large and growing amount of infor-
mation. For the sake of cohesion, we omit this article and focus on our
collaborative �ltering works. Next, we delve into the taxonomy of this
type of recommender systems.

2.2.2.1 Collaborative �ltering recommenders

We can further classify collaborative �ltering techniques in two groups:Model-based CF
recommenders

build a predictive
model from the

data.

model-based and neighborhood-based approaches. On the one hand,
model-based techniques learn a predictive model from the feedback of
the users (Koren and Bell 2015). ¿ese methods require a training phase
to build the model. Once created, this model is able to score user-item
pairs.
Among the rich area of model-based recommenders,matrix factoriza-

tion (MF) is arguably the most prominent collaborative �ltering approach
as it usually yields high-quality recommendations (Koren and Bell 2015;
Koren et al. 2009).
On the other hand, neighborhood-based (also known as memory-basedNeighborhood-

based approaches
directly use the
feedback of the
users to make

recommendations.

systems) techniques directly use the user-item interactions to compute
recommendations (Ning et al. 2015). ¿ese approaches usually employ
similarities or distance metrics to build neighborhoods. ¿e neighbor-
hood of the user u is formed by similar users in the collection: Vu = {v ∈
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U ∣ v is similar to u}. Likewise, the neighborhood of the item i comprises
a set of similar items: Ji = { j ∈ I ∣ j is similar to i}.
¿e most common practice to compute neighborhoods is the kNN

algorithm (Ning et al. 2015). ¿is technique consists in �nding the k most
similar users to the target user using a pairwise similarity metric such as
Pearson’s correlation coe�cient or cosine similarity.
Neighborhood-based approaches can be categorized in user-based

and item-based techniques. User-based systems recommend items that
like-minded people enjoyed while item-based systems recommend items
that are similar to those the user liked. Similarities are based on the user-
item interactions; no information about the content is used in contrast to
content-based approaches.
Although previous works showed that model-based approaches tend

to perform better than neighborhood-based techniques (Cremonesi et al.
2010; Koren and Bell 2015; Koren et al. 2009; Rendle et al. 2009), model-
based techniques are usually more complex since they involve training a
model and tuning several hyperparameters. Additionally, those models
are usually di�cult to interpret. In fact, there have been some recent
e�orts to make model-based approaches more explainable (Abdollahi
and Nasraoui 2016). In contrast, neighborhood-basedmodels are straight-
forward and e�cient, and their output is more easily explainable than
the one from model-based recommenders (Ning et al. 2015).

2.2.3 Recommender systems challenges

Recommender systems have to face multiple challenges (Ricci et al. 2015).
In this section, we explain some of the challenges addressed in this thesis.
¿e long tail is a term coined by Anderson (2008) to refer to those less Item popularity

follows a
heavy-tail
distribution.

popular items that have a low demand in large catalogs. ¿e popularity
of items follows a power law distribution. Items in the long tail are very
abundant, but user interactions with them are scarce. For these reasons,
recommending long tail items is di�cult for collaborative �lteringmodels.
Additionally, the lack of interactions with unpopular items may bias the
recommendation model towards popular items. ¿e long tail may also
bias the evaluation. In fact, in Chapter 4, we study the e�ect of this bias
in evaluation metrics.
Recommender systems can be applied in many domains; however, they New tasks

continue to appear
as RS become
more
sophisticated.

may require speci�c adaptations. Top-N recommendation is the most
typical problem addressed by RS, but other less traditional tasks may be
useful in certain domains. In Chapters 6 and 7, we present recommenda-
tion models that tackle unconventional recommendation tasks.
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Usually, the primary concern of the designer of a recommender sys-Scalability is
critical when

processing vast
amounts of
information.

tem is to deliver useful recommendations, but, as the number of users
and items increases, scalability becomes a crucial issue. Processing large
amounts of data give the opportunity of satisfying the information needs
of the users with better recommendations at the cost of a much heavier
computation load. Particularly, collaborative �ltering techniques are very
e�ective in these situations where a lot of data is available. Scalability can
be addressed from di�erent perspectives. One way is by developing mod-
els with cheaper computational requirements. In Chapter 8, we propose
alternative techniques to those studied in Chapter 5 that o�er similar
e�ectiveness but at a much lower computational cost. Another path to
tackle scalability is by building distributed platforms and algorithms.
During the doctoral program, we built a distributed platform for produc-
ing recommendations at a large scale (Valcarce et al. 2014, 2015a) and
we also developed a distributed implementation of a recommendation
algorithm (Valcarce et al. 2018a). Nevertheless, for the sake of simplicity
and cohesion, we have decided to leave these works out of the scope of
this document.

2.3 bridging the gap between ir and rs

Information retrieval tasks consist in providing the information that users
demand (Baeza-Yates and Ribeiro-Neto 2011; Manning et al. 2008) while
information �ltering focuses on selecting relevant pieces of information
from a stream of data (Hanani et al. 2001). We can distinguish between
passive and active information �lters. A passive IF system aim to remove
unwanted pieces of information. For example, anti-spam techniques
�lter out unwanted messages and keep useful communications. On the
other hand, active IF systems push relevant information to the users.
Recommender systems are probably the most prominent type of active
information �lters. ¿ese systems deliver suggestions to users based on
their past behavior.¿erefore, they actively push information to the users
instead of just �ltering it out.
Information retrieval and information �ltering are two �elds of theIR usually respond

to explicit
demands while RS
provide proactive

suggestions.

information sciences. Since they share the same ultimate goal—deliver
relevant information—some authors considered them to be sibling �elds.
Belkin and Cro (1992) even called them two sides of the same coin.
We argue that the main di�erence between an IR system and a recom-
mender system lies mainly in the representation of the information need.
A typical IR system begins with an explicit query provided by the user
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while a recommender system actively exploits the user’s pro�le (Valcarce
2015). ¿erefore, in recommendation, the query is implicit and the rec-
ommender must infer it.
As described in Section 2.2.1, rating prediction does not model the

recommendation task e�ectively. Instead, users expect a short ranking of
relevant items. An advantage of IR models is that they are traditionally
focused on generating a ranked list of documents. ¿erefore, they can
be naturally adapted to top-N recommendation. In fact, we can �nd in
the recent recommender systems literature several works that propose
recommendation models inspired in information retrieval ideas. We next
review literature on adapting IR models to recommendation and the
other way around.

2.3.1 Ad hoc retrieval models

Breese et al. (1998) studied di�erent collaborative �ltering techniques.
Among them, they used the cosine formula from the IR vector space
model to compute user similarities. A more general framework was pre-
sented by Bellogín et al. (2013a). ¿is framework adapts any ad hoc re-
trieval model as a memory-based collaborative �ltering algorithm. ¿ey
showed that a standard search engine could be used to generate recom-
mendations for the top-N recommendation task.
Wang et al. (2006) introduced a user-based and an item-based col-

laborative �ltering algorithms for implicit feedback. Following the gen-
erative language modeling approach of IR, Wang (2009) also proposed
two item scoring functions and a risk-averse model that penalizes less
reliable scores for implicit feedback. Regarding explicit feedback, Wang
et al. (2008) presented a generative probabilistic CF framework based on
the PRP (Robertson 1977) and derived three models: an item-based, a
user-based and a uni�ed model.

2.3.2 Probabilistic graphical models

To continue with probabilistic models, it is interesting to mention the
work of Barbieri and Manco (2011) and Barbieri et al. (2014) on adapting
probabilistic graphical models to top-N recommendation. ¿ese models,
such as latent Dirichlet allocation (LDA) or probabilistic latent semantic
analysis (PLSA), have extensively been used in information retrieval tasks
(Wei and Cro 2006; Zhai and Massung 2016). LDA is a generative statis-
tical model initially devised by Blei et al. (2003) for topic modeling while
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PLSA was proposed by Hofmann (1999) to address document indexing.
Moreover, Hofmann (2004) also developed speci�c latent semantic mod-
els for collaborative �ltering. Nevertheless, the main practical problem of
probabilistic graphical models is the scalability of the inference methods
with the volume of data and the number of latent factors (Barbieri et al.
2014; Cro et al. 2015).

2.3.3 Query expansion models

Regarding query expansion techniques, pseudo-relevance feedback mod-
els have been adapted to di�erent recommendation tasks with great suc-
cess. More speci�cally, Bellogín et al. (2013b) used relevance models (a
state-of-the-art PRF technique) to compute user neighborhoods and
applied the negative cross entropy ranking principle to generate recom-
mendations. On the other hand, Parapar et al. (2013) presented an analogy
between PRF and CF that allowed them to use relevance models to create
a user-based collaborative �ltering recommender.
Parapar et al. (2013) modeled the top-N recommendation task as a

pseudo-relevance feedback task obtaining high �gures of accuracy. In
fact, Kallumadi et al. (2018) used this approach to address theACMRecSys
2018 Challenge2. ¿eir solution combine several approaches; one of them
is the adaptation of relevance models for collaborative �ltering proposed
by Parapar et al. (2013) to tackle the automatic playlist continuation task.
¿ey achieved competitive performance since they ranked 7 out of 112
and 5 out of 31 in the two di�erent tracks of the challenge.
Given the success of adapting pseudo-relevance feedback models to

collaborative �ltering, we continue this work in part iii. In particular,
Chapter 5 studies the e�ect of smoothing techniques and prior probability
estimates in relevance models for collaborative �ltering. In Chapter 6, we
propose the item-based counterpart of relevance models for CF showing
that it is an e�ective algorithm for tackling a new task: getting rid of
long tail items with recommendations. Finally, Chapter 8 present more
cost-e�ective CF models by adapting cheaper PRF techniques based on
the Rocchio framework.

2 ¿e RecSys Challenge is an annual open competition organized within the ACM Confer-
ence on Recommender Systems. It usually presents a real-world task with a dataset pro-
vided by a company.¿e challenge presented in 2018 consisted in automatic playlist contin-
uation and was organized by Spotify, University of Massachusetts–Amherst and Johannes
Kepler University. More information is available at: http://www.recsyschallenge.
com/2018.

http://www.recsyschallenge.com/2018
http://www.recsyschallenge.com/2018
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2.3.4 Matrix factorization models

Even though there exist multiple approaches to build recommendation
algorithms, matrix factorization techniques are predominant in the �eld
(Koren and Bell 2015). Among di�erent MF techniques, singular value
decomposition (SVD) models are arguably the most popular in the recom-
mender systems literature (Cremonesi et al. 2010; Hu et al. 2008; Koren
2008; Koren et al. 2009). ¿ese algebraic approaches compute low-rank
approximations of the user-item matrix. SVD is also used in information
retrieval under the name of latent semantic analysis (LSA). LSA factorizes
the document-term matrix using a low-rank approximation and retrieval
is performed by using this latent factor representations of documents and
terms (Deerwester et al. 1990).
Non-negative matrix factorization (NMF) is another matrix factoriza-

tion technique commonly used in recommendation (Liu et al. 2010).
NMF decomposes the original matrix in the product of two matrices
with non-negative elements (Lee, Daniel; Seung 2001). Both SVD and
NMF have been used for document clustering tasks in IR (Aggarwal and
Zhai 2012).
¿e main di�erence in the use of matrix factorization techniques in

IR and RS lies in the use of the decomposition. Information retrieval
techniques employ the latent vector representation of documents and
terms to tackle retrieval or clustering tasks. In contrast, recommender
systems literature reconstructs the original matrix with the latent vector
decomposition to obtain an estimate of unknown values of the initial
matrix. ¿ese reconstructed values constitute the output scores of the
recommender.
Matrix factorization has also been applied to query expansion. In par-

ticular, Zamani et al. (2016) presented relevance feedback matrix fac-
torization (RFMF), a pseudo-relevance feedback technique based on
non-negative matrix factorization (NMF). ¿is technique uses the par-
allelism between PRF and CF proposed by Parapar et al. (2013) in the
opposite direction. In part v, we propose a new pseudo-relevance feed-
back framework based on linear methods that takes inspiration from
similar models in recommender systems literature.





Part II

RESEARCH METHOD

Reality continues to ruin my life.

— Bill Watterson,
Calvin & Hobbes





3
EVALUATION

¿is chapter presents the evaluation guidelines followed in this doctoral
thesis to evaluate information retrieval and recommender systemsmodels.
IR and RS are two �elds with a strong empirical focus. Many of these
information systems are employed by millions of users daily. For this
reason, the assessment of retrieval and recommendation models with
rigorous experiments is paramount to meet the information demands of
the users. Evaluation methods must enable us to select the best model
among several competitors.
We can evaluate di�erent models with online or o�ine experiments. ¿is thesis relies on

o�ine evaluation.Online experimentation is expensive because it requires to deploy dif-
ferent models and study real users’ feedback or behavior. Additionally,
online experiments are di�cult, if not impossible, to reproduce in an
academic position since it requires access to the production environment.
Furthermore, online evaluation depends on several variables such as the
domain, the demographics of the users or the user interface. For all these
reasons, o�ine experimentation has its place and usually constitutes
the �rst step before online experimentation. O�ine evaluation usually
exploits datasets collected in real platforms.
Next, we detail information retrieval and recommender systems evalu-

ation methods and protocols. We also describe the datasets and metrics.
We begin with information retrieval models and end with recommender
systems.

3.1 information retrieval evaluation

Evaluation can be carried out from two main perspectives: e�ciency and
e�ectiveness. E�ciency takes into account the time and space require-
ments of a givenmodel.¿ese requirements can bemeasured theoretically,
by a temporal and spatial complexity analysis (Cormen et al. 2009), or
empirically, by monitoring and pro�ling the system. E�ectiveness, on
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the other hand, measures how well the output of the system meets the
information needs of the users. In general, this thesis is more focused on
e�ectiveness than e�ciency. ¿erefore, our primary focus is to compare
the e�ectiveness of the proposedmodels against state-of-the-art baselines.
Nonetheless, there are cases where our main contribution does not con-
sist in outperform the e�ectiveness �gures of the state of the art, but to
provide a more cost-e�ective solution with a slight decrease in e�ciency.
In those cases, we also present the analysis of the e�ciency of the model.
O�ine evaluation in the information retrieval �eld is well-established

by the Cran�eld paradigm and the TREC initiative (Voorhees 2002). Next,
we explain this standard IR evaluation protocol.

3.1.1 Cran�eld paradigm and TREC

¿e Cran�eld paradigm and the TREC initiative provide a standard wayIR has
well-established

evaluation
procedures.

of measuring how a retrieval system meets the information needs of the
users. ¿is evaluation protocol requires the use of test collections that
contain a set of documents, a set of topics and a set of relevance judgments
for those topics (Voorhees 2002). ¿e Cran�eld collection was the �rst
rigorous test collection developed for information retrieval evaluation.
Later, the annual Text Retrieval Conference (TREC) was established by
the US National Institute of Standards. ¿e TREC initiative has released
multiple test collections within di�erent tracks to tackle several IR tasks.
To build these collections, a group of assessors judges the documents
to indicate which ones are relevant to each topic. With these relevance
judgments, we can evaluate retrieval systems by running the queries from
the topics and computing ranking-oriented metrics on the output.
¿e evaluation paradigm relies on three fundamental assumptions:

i) the information need of the user—speci�ed by a topic— can be ap-
proximated by topical similarity, ii) relevance is independent of the users
which implies that a set of relevance judgments is valid for any user and
iii) relevance judgments are complete, that is, all the relevant documents
for a topic are identi�ed are known. Although these assumptions are not
generally true, they are reasonable and some de�ciencies can be compen-
sated (Voorhees 2002).¿erefore, this paradigm has become the standard
systematic approach to the evaluation of retrieval systems.
For a topic, we generate a list of documents sorted by decreasing score.

¿en, ranking-oriented metrics evaluate these rankings using the rel-
evance judgments for that topic. ¿e quality of a retrieval strategy is
measured as the average metric score for all topics.
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¿emain problem of this approach is that the volume of information
in modern test collections is too large to have complete relevance judg-
ments. For this reason, a process called pooling is conducted to select
which documents are evaluated by human assessors (Spärck Jones and
Van Rijsbergen 1975; Voorhees 2002). ¿ose documents that do not ap-
pear in the pool are assumed to be non-relevant. Pooling is based on
the idea that we only use test collections to make relative evaluations
of systems. We are not interested in the absolute values that a metric
gives to the systems. Instead, we want to discriminate if a system is better
than another. To ensure this, relevance judgments should be unbiased.
Since having complete judgments is not feasible, pooling (if performed
correctly) can be a good enough approximation (Voorhees 2002). How-
ever, large-scale datasets such as ClueWeb1 contain hundreds of millions
of documents which are shallow pooled resulting in many potentially
relevant documents unjudged.
Relevance judgments can be either binary (a document is relevant or A consensus of

assessors
determines
relevance.

non-relevant for a given topic) or graded (documents can have di�erent
levels of relevance for a particular topic). Next, we present the most
common metrics used in information retrieval to assess the e�ectiveness
of retrieval models.

3.1.2 Metrics

Most IR metrics range from zero to one. A value of zero represents the
worst possible outcomewhile a value of one indicates perfect e�ectiveness.
Since these metrics are computed on a per-query basis, we compute the
average over all queries to obtain a single aggregated value. It is common
to truncate the ranking of results until certain position n (commonly
known as cut-o� ) and represented by @n at the end of the metric name.
In our IR experiments, if we do not specify the cut-o�, it means n = 1000
which is the standard cut-o� in many TREC tracks. To compute these
metrics, we use trec_eval2, a tool developed to assess the e�ectiveness
inmultiple TREC tracks. Next, we present themost common information
retrieval metrics.

1 More information about ClueWeb collections is available at https://lemurproject.
org/clueweb09.php (ClueWeb09) and https://lemurproject.org/clueweb12.
php (ClueWeb12).

2 ¿e source code is available at: https://github.com/usnistgov/trec_eval.

https://lemurproject.org/clueweb09.php
https://lemurproject.org/clueweb09.php
https://lemurproject.org/clueweb12.php
https://lemurproject.org/clueweb12.php
https://github.com/usnistgov/trec_eval
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3.1.2.1 Precision

¿is metric measures the proportion of retrieved documents that arePrecision and
recall constitute
the fundamental

IR metrics.

relevant:

P@n = #(relevant documents retrieved until position n)
n

(3.1)

3.1.2.2 Recall

Recall measures the proportion of relevant documents that are retrieved
with respect to the total number of relevant documents in the collection:

R@n = #(relevant documents retrieved until position n)
#(relevant documents)

(3.2)

3.1.2.3 Average Precision

¿is metric approximates the area under the precision-recall curve. MoreMAP is arguably
the most popular

IR metric.
speci�cally, it computes the precision at the positions where a relevant
document is found. In contrast to precision and recall, this metric use
positional information. We denote the indicator function (which returns
1 when the argument is true and 0 otherwise) by I. ¿is metric receives
the name of mean average precision (MAP) when it is averaged over the
set of topics.

AP@n = ∑n
k=1 I(document at position k is relevant) P@k

#(relevant documents)
(3.3)

3.1.2.4 Normalized Discounted Cumulative Gain

¿is metric considers graded relevance as well as positional informa-When it comes to
graded relevance,
nDCG is the most
common choice.

tion (Järvelin and Kekäläinen 2002). First, we need to de�ne discounted
cumulative gain (DCG) which discounts the graded relevance value of
the retrieved documents by the position they appear at. We denote the
relevance value of the document at position k by rel(k).

DCG@n = n∑
k=1

rel(k)
log2(k + 1) (3.4)

To allow comparing distinct models, we need to normalize the values
of DCG. To this end, we calculate the ideal DCG (IDCG) which is the
DCG score of the perfect ranking of documents. ¿en, we can simply
compute normalized discounted cumulative gain as follows:

nDCG@n = DCG@n
IDCG@n

(3.5)
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collection #docs avg doc
length

training
topics

test
topics

AP88-89 165k 284.7 51 − 100 101 − 150
TREC-678 528k 297.1 301 − 350 351 − 400
Robust-04 528k 28.3 301 − 450 601 − 700
WT10G 1, 692k 399.3 451 − 500 501 − 550
GOV2 25, 205k 647.9 701 − 750 751 − 800

Table 3.1: Statistics of information retrieval test collections.

3.1.2.5 Reliability of improvement

RI is a metric proposed by Sakai et al. (2005) to assess query expansion.
¿e reliability of improvement measures if the expanded queries tend to
outperform the original ones (usually in terms of MAP). It ranges from−1 to 1 and is computed as follows:

RI = #(topics improved by QE) − #(topics hurt by QE)
#(topics)

(3.6)

3.1.3 Datasets

In this thesis, we use �ve di�erent TREC test collections: AP88-89, TREC-
678, Robust-04, WT10G and GOV2. ¿e �rst one is a subset of the Asso-
ciated Press collection from years 1988 and 1989. ¿e second collection is
based on TREC disks 4 and 5. ¿e third dataset was used in the TREC
Robust Track 2004 and consists of poorly performing topics. ¿e fourth
one, theWT10G collection, is a general web crawl used in the TRECWeb
track 2000-2001. Finally, we also ran our experiments on a large dataset,
the GOV2 collection, which is a web crawl of .gov websites from 2004
(used in the TREC Terabyte track 2004-2006 and the Million query track
2007-2008). Table 3.1 shows the main statistics of each collection.
We applied training and test evaluation on all collections. We use the

training topics to tune the hyperparameters of the retrieval models and
the test topics for assessing the e�ectiveness of the models. We tune our
models to maximize mean average precision on the training topics of
each collection.
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3.2 recommender systems evaluation

Compared to information retrieval, there are more controversial issues
and open problems in the evaluation of recommender systems. As ex-
plained in Section 2.2.1, recommender systems used to be de�ned as
rating predictors: their aimed to forecast the ratings that users would give
to each item. Nonetheless, it has been acknowledged that the assessment
of RS models based on rating prediction does not lead to good recom-
menders. For this reason, recommender systems evaluation now focus
on top-N recommendation.
O�ine evaluation of recommender systems is typically focused onAccuracy is

measured in terms
of error or ranking
metrics depending

on the task.

accuracy (Gunawardana and Shani 2015; Herlocker et al. 2004). In the
rating prediction task, accuracy is measured with error metrics between
the predicted score and the actual score. In contrast, in the top-N rec-
ommendation task, accuracy is measured with ranking accuracy metrics
that assess how a model places relevant items in the recommendations
rankings.
In addition to accuracy , there is an increasing interest in evaluating di-Novelty, diversity

or serendipity are
also important
aspects of RS.

verse recommendation properties such as diversity and novelty (Castells
et al. 2015) or serendipity (Kotkov et al. 2016).Diversitymeasures whether
a recommender system suggests di�erent items or, on the contrary, rec-
ommends mostly the same items. On the other hand, novelty is usually
measured as how unusual the recommended items are. Both properties,
novelty and diversity, are closely connected and, to some degree, com-
plementary (Castells et al. 2015). An accurate recommendation model
can be useless if the user already knows the suggested items or if all the
recommendations look the same. Recommender systems should also try
to suggest items that users would not have discovered by themselves.¿is
property, called serendipity, is di�cult to measure and is usually approxi-
mated by novelty and relevance (Castells et al. 2015; Kotkov et al. 2016).
Somehow, novelty is a similar concept to serendipity but weaker: novel
recommendations provide the users with information about uncommon
items, although these items could have been discovered eventually.
Recommender systems that strongly focus on accuracy may give poor

results on diversity and novelty metrics and vice versa. Intuitively, we can
see that if we recommend to the users the most popular items within their
neighborhood, the suggestions will be accurate but diversity and novelty
will su�er. On the contrary, recommending unusual items can improve
novelty and diversity at the risk of making some mistaken suggestions.
¿is balance between accuracy and diversity/novelty is perhaps the most
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prominent trade-o� in the �eld of recommender systems (Castells et al.
2015; Kunaver and Požrl 2017; Landin et al. 2018; Zhou et al. 2010b).
We can say that a recommendation is accurate when the user likes the

item being suggested. Recommender systems test collections do not rely
on pooling. Instead, they exploit a dataset of previously collected user-
item interactions (such as ratings or clicks) (Gunawardana and Shani
2015). ¿is dataset is usually divided into two splits: the training split
is used as input to the recommendation algorithm and the test split is
employed for measuring the performance of the recommender system
using di�erent evaluation metrics. An extra validation split for tuning
the hyperparameters can also be used.

3.2.1 Evaluation protocols

In the rating prediction task, the only possible evaluation protocol consists
in predicting the score of the items that the user rated in the test set.
However, this protocol only assesses the quality of the model for those
items that the user has deliberately chosen to rate (Steck 2013). In contrast,
in the top-N recommendation task, several o�ine evaluation protocols
have been proposed (Bellogín et al. 2011; Cremonesi et al. 2010; Steck
2013).
In this doctoral thesis , we decided to follow the TestItems approach TestItems protocol

allows reliable
evaluation of RS.

which has been regarded as a fair evaluation protocol (Bellogín et al. 2011).
TestItems protocol consists in ranking, for each user, all the items in the
test set that have not been rated by that user in the training set. In this
way, an ideal recommender system will be able to achieve a perfect score.
Note that this evaluation procedure is highly correlated to other variants
(Bellogín et al. 2011).
When evaluating recommender systemswith explicit feedback datasets, ¿e relevance

threshold speci�es
when a rating
indicates
relevance.

we need to select a relevance threshold. All the items rated by the target
user u in the test set with a value below the certain relevance threshold
are considered non-relevant items and form the set Nu. Likewise, Ru
represents the set of relevant items for user u, i.e., those items rated by u
in the test set with a score greater than or equal to the relevance threshold.
When using datasets with ratings ranging from 1 to 5, it is common to set
this threshold to 4.¿erefore, in this thesis, we set the relevance threshold
to that value.
¿ose items that the target user did not rate are considered unjudged

(their relevance is unknown). Most ranking metrics ignore unjudged
elements and treat them as non-relevant, but some metrics explicitly
consider them separately. It has been acknowledged that considering
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non-rated items as non-relevant may underestimate the true metric value
(since non-rated items can be of interest to the user); however, it provides
a better estimation of the recommender quality (Bellogín et al. 2011;
McLaughlin and Herlocker 2004).

3.2.2 Metrics

Now, we present the metrics we use in this thesis to measure the e�ec-
tiveness of di�erent recommender systems. ¿e following metrics range
from zero to one where the higher the value, the better. We measure
three properties: ranking accuracy, diversity and novelty. Except for the
diversity metric, the rest are computed on a per-user basis (denoted with
the subscript u). To compute a single aggregated value, we compute the
average over all users. If a recommendation model cannot provide recom-
mendations for a particular user, we assign a value of zero to all metrics
for that user to penalize low user coverage (i.e., not being able to generate
recommendations for some users). We denote the ranking cut-o� by @n
at the end of the metric name.
¿e ranking accuracy metrics presented here are equivalent to their

counterparts in information retrieval.We use rec_eval3, our own fork of
trec_eval extended for RS evaluation, to compute the ranking accuracy
metrics.

3.2.2.1 Precision

Precision measures how well a method puts relevant items in the �rst
n recommendations regardless of the rank. Precision is usually more
important than recall in RS because we aim to generate relevant recom-
mendations.

Pu@n = ∣Lnu ∩Ru ∣
n

(3.7)

3.2.2.2 Normalized Discounted Cumulative Gain

¿is metric exploits the values of the ratings and the position of the items
in the ranking (Järvelin and Kekäläinen 2002). As in IR, this metric is
computed as DCG divided by ideal DCG:

nDCGu@n = DCGu@n
IDCGu@n

(3.8)

3 ¿e source code is available at: https://github.com/dvalcarce/rec_eval.

https://github.com/dvalcarce/rec_eval
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and the discounted cumulative gain (DCG) is de�ned as:

DCGu@n = n∑
k=1

r(u, Lnu[k])
log2(k + 1) (3.9)

where the gain value at each position is given by the rating that the user
gave to the item in that position in the test set.

3.2.2.3 Gini index

¿e Gini index or Gini coe�cient measures the diversity of the recom- Gini is a global
metric of diversity.mendations.¿is coe�cient was initially proposed for quantifying wealth

distribution inequalities, but it has also been utilized for measuring rec-
ommendation diversity (Castells et al. 2015; Fleder and Hosanagar 2009;
Gunawardana and Shani 2015). Note that we use the complement of this
metric (one minus the value of the index) for convenience. In this way,
when the index is zero, it indicates that a single item is recommended for
every user which corresponds to the minimum diversity scenario. On the
contrary, a value of onemeans that all the items are equally recommended
across the users. We compute this metric as follows:

Gini@n = 1 − 1∣I ∣ − 1
∣I∣∑
j=1

(2 j − ∣I ∣ − 1) p(i j∣rec@n) (3.10)

where i1 ,⋯, i∣I∣ is the list of items sorted by increasing p(i j∣ rec@n).¿is
term refers to the probability that item i j is being recommended in some
recommendation list of length n and is given by:

p(i∣ rec@n) = ∣{u ∈ U ∣i ∈ Lnu}∣∑u∈∣U ∣ ∣Lnu ∣ (3.11)

Note that the Gini index is a global metric that is computed using all
the recommendation lists.¿erefore, it cannot be calculated on a per-user
basis.

3.2.2.4 Mean Self-Information

MSI is an information theoretic metric. Zhou et al. (2010b) proposed to MSI measures the
surprisal of the
recommendations.

use the mean self-information to quantify the ability of a recommender
system to generate unexpected recommendations. ¿is metric is also
called surprisal because it measures the improbability of an outcome. To
quantify the probability of an outcome, we use the concept of popularity,
that is, the proportion of users that interacted with the item.

MSIu@n = ∑
i∈Ln

u

log ∣U ∣∣Ui ∣ (3.12)
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Dataset Users Items Ratings Density

MovieLens 100k 943 1682 100 000 6.305%
MovieLens 1M 6040 3706 1 000 209 4.468%
MovieLens 10M 71 567 10 681 10 000 054 1.308%
R3-Yahoo 15 400 1000 365 703 2.375%
Library¿ing 7279 37 232 749 401 0.277%
BeerAdvocate 33 388 66 055 1 571 808 0.071%

Table 3.2: Statistics of recommendation datasets with explicit feedback.

3.2.3 Datasets

In this thesis, we evaluate recommender systems on datasets with explicitRating-based
datasets are

commonly used in
the assessment of

collaborative
�ltering

recommenders.

feedback in the form of ratings. We use the MovieLens datasets4 which
come in di�erent sizes (100k, 1M and 10M ratings) and contain movie
ratings. We use the R3-Yahoo! Music5 dataset which comprises music
ratings.We also use the Library¿ing and the BeerAdvocate6 datasets that
contain book and beer ratings, respectively. Table 3.2 shows the number
of users, items and ratings, as well as the density (percentage of user-item
pairs that have a rating) of the datasets with explicit feedback. ¿ese
datasets contain ratings supplied by users of a platform during normal
interaction. However, the R3-Yahoo test set is composed of randomly
selected songs collected during a survey. For the rest of the datasets, we
created the training and test splits by taking 80% of the ratings of each
user for the training set and the remaining data is used as the test set. ¿e
rationale of this decision is to avoid certain biases by having the same
proportion of training and test data for each user.
In Chapter 6, we also use the Ta-Feng dataset which contains ChineseTa-Feng dataset

contains purchase
information.

grocery store transaction data from November 2000 to February 2001.
¿is collection with 32 266 users and 23 812 has 817 741 transactions
(density of 0.106%).
Finally, in Chapter 7, we conduct experiments on datasets collectedWe use these

LBSN datasets to
evaluate the group

formation task.

from four location-based social networks (LBSN). We use a dataset from
Foursquare7 containing users check-ins, ratings, venues and the social
links connecting users (Levandoski et al. 2012; Sarwat et al. 2014). Stem-
ming from this dataset, which is called from now on FS, we built a second

4 Available at: https://grouplens.org/datasets/movielens.
5 Available at: https://webscope.sandbox.yahoo.com/catalog.php?datatype=r.
6 Available at: https://snap.stanford.edu/data/web-BeerAdvocate.html.
7 Available at: https://archive.org/details/201309_foursquare_dataset_umn.

https://grouplens.org/datasets/movielens
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
https://snap.stanford.edu/data/web-BeerAdvocate.html
https://archive.org/details/201309_foursquare_dataset_umn
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Dataset Users Items Links Check-ins Ratings

FS 2 138 367 83 999 27 098 472 1 021 966 2 809 580
FS-NYC 103 663 7813 1 890 844 157 064 330 043
Gowalla 196 591 1 280 969 1 900 654 6 442 892 −
Brightkite 58 228 772 966 428 156 4 747 281 −
Weeplaces 15 799 971 307 114 131 7 369 712 −

Table 3.3: Statistics of LBSN datasets.

dataset by selecting only the check-ins that fall in New York City8. We
called this second dataset FS-NYC. We take this subset to evaluate models
in a less sparse scenario where all the information is concentrated in a
single location. Additionally, we used two other datasets, collected from
Brightkite9 and Gowalla10 made available by Cho et al. (2011). ¿ese data-
sets record user check-ins and the social links connecting users, but they
lack ratings of the visited venues. Finally, we used the Weeplaces data-
set11 which contains check-ins and friendship relationships of Foursquare
users who used the Weeplaces application. Table 3.3 shows the main
statistics of these datasets.

8 We used the geographical information from: https://www.flickr.com/places/
info/2459115.

9 Available at: https://snap.stanford.edu/data/loc-Brightkite.html.
10 Available at: https://snap.stanford.edu/data/loc-Gowalla.html.
11 Available at: https://www.yongliu.org/datasets.

https://www.flickr.com/places/info/2459115
https://www.flickr.com/places/info/2459115
https://snap.stanford.edu/data/loc-Brightkite.html
https://snap.stanford.edu/data/loc-Gowalla.html
https://www.yongliu.org/datasets




4
STUDY OF RANK ACCURACY METRICS
FOR RECOMMENDER SYSTEMS

In the previous chapter, we described the IR and RS evaluation methods
used in this thesis.We presented the evaluation protocols, themetrics and
the datasets. Compared to information retrieval, recommender systems
evaluation methods are not well-established yet.
Selecting the appropriate metric is still an open issue in o�ine eval- We aim to �nd the

most reliable rank
accuracy metrics
for RS evaluation.

uation. Ranking accuracy metrics are commonly used in information
retrieval and recommender systems evaluation. ¿ese metrics have been
thoroughly studied in IR; in particular, their robustness and the discrimi-
native power. In this chapter, we aim to shed light on the advantages of
di�erent ranking metrics in RS evaluation and �nd the most reliable ones.
To this end, we conduct a robustness and discriminative power analysis
of ranking accuracy metrics in the top-N recommendation task.
¿e �ndings of this chapter have shaped aspects of RS evaluation meth-

ods used throughout this thesis. More speci�cally, the choice of ranking
accuracy metrics and their cut-o� is motivated by the results presented
here. ¿e contributions of this chapter have been published recently (Val-
carce et al. 2018f).

4.1 an ir perspective for evaluating rs metrics

O�ine evaluation is standardized in IR by the Cran�eld paradigm and
the TREC initiative (Voorhees 2002). ¿e Cran�eld paradigm (described
in Section 3.1.1) measures how a retrieval system meets the information
needs of the users using ranking-oriented metrics. Many of these metrics
have also been used for assessing the e�ectiveness of recommender sys-
tems in the top-N recommendation task. Since RS lack proper relevance
judgments, researchers use a hold-out data from the collection to assess

39
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the quality of the recommendations.¿ese judgments are incomplete and
obtained in a very di�erent way compared to the IR relevance judgments.
Since the assumptions of the Cran�eld paradigm are substantially dif-

ferent from those of the recommender systems evaluation, we may ask:
should IR metrics be applied to RS? Although most of these metrics are
already being used in RS evaluation, they have not been thoroughly stud-
ied in this �eld. Previous work has analyzed the robustness to incomplete
relevance judgments and the discriminative power of ranking accuracy
metrics in the context of the Cran�eld paradigm. We say that a metric is
robust when it shows the same behavior when fewer relevance judgments
are available. Likewise, a metric is discriminative when changes in its
values indicate statistically signi�cant di�erences. To answer the former
question, we study the robustness and discriminative power of several
ranking accuracy metrics for top-N recommendation.

4.2 related work

¿e limitations and biases of the Cran�eld paradigm have been exten-
sively studied. ¿ere have been e�orts to overcome the bias produced
by pooling (Buckley et al. 2007; Büttcher et al. 2007). Also, Buckley and
Voorhees (2004) studied in IR how the number of relevance judgments
a�ects di�erent precision-oriented metrics. ¿ey de�ned the robustness
of a metric with respect to incomplete judgments as how well the met-
ric correlates with itself when the relevance judgments are incomplete.
¿ey also designed a new metric for using with incomplete judgments,
bpref, that correlates with itself with all judgments and with AP better
than other standard IR metrics. ¿ey also found that bpref preserves the
absolute scores and the relative ranking of systems better than MAP or
precision. Yilmaz and Aslam (2008) later proposed three estimates of
AP for the incomplete judgments scenario. ¿eir proposals showed a
better correlation between themselves and AP than bpref. ¿ese corre-
lations between system rankings were measured in terms of Kendall’s
tau correlation (Kendall 1938). Among the three proposals, inferred aver-
age precision was the metric that provided the best results (Yilmaz and
Aslam 2008). To measure the robustness to incomplete judgments in
these experiments, the metrics were calculated using random subsets
of relevance judgments. Buckley and Voorhees (2004) used strati�ed
random sampling while Yilmaz and Aslam (2008) employed random
sampling. However, both samplings are identical in expectation (Yilmaz
and Aslam 2008). Additionally, Lu et al. (2016) thoroughly studied the
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e�ect of the pooling depth in several IR metrics providing a list of advice
for IR evaluation.
Besides robustness to incompleteness, discriminative power is another

attractive property of evaluationmetrics that has been thoroughly studied
in IR (Buckley and Voorhees 2000; Lu et al. 2016; Sakai 2006; Sakai
and Kando 2008). ¿is property indicates the capability of a metric to
discriminate among systems. We should note that the discriminative
power not only depends on the metric but also on the test collection
and the set of systems being compared. Buckley and Voorhees (2000)
proposed a �rst attempt to study the discriminative power of a metric
using a fuzziness value. Later, Sakai (2006) introduced a more formal
method based on the bootstrap test. Given a signi�cance level (e.g., p =
0.05), he computed the ratio of system pairs for which a statistical test
�nds a signi�cant di�erence. More speci�cally, Sakai (2006) employed
the bootstrap test with Student’s t statistic for this purpose. To avoid
�xing a particular signi�cance level, Lu et al. (2016) proposed to report
the median system-pair p-value as a measure of discriminative power
where lower values are better. Sakai and Kando (2008) also studied how
incomplete judgments also a�ect the discriminative power in IR.

4.3 ir metrics for recommendation

We can establish a parallelism between the Cran�eld paradigm and rec- IR and RS
evaluation
assumptions are
quite di�erent.
¿erefore, the best
metrics for each
scenario may
di�er.

ommender systems evaluation. If users play the role of queries (since
both are associated with an information need), then we only need to
evaluate item rankings instead of document rankings. Cran�eld evalua-
tion makes use of relevance judgments to decide whether a document is
relevant for a given query. In RS, we lack those judgments, but we can
approximate them with hold-out data from the user. ¿e problem with
this parallelism is that Cran�eld assumptions do not generally hold in
recommender systems evaluation. In Table 4.1, we present a comparison
of IR and RS evaluation assumptions. In particular, the main di�erence is
that relevance in RS is highly dependent on the users: the same item may
not be relevant to two di�erent people. Moreover, relevance judgments
are far from complete. Since relevance is personal, we cannot build a
set of relevance judgments using a group of experts. Furthermore, since
we build the test dataset with hold-out data, the incompleteness of the
relevance judgments is intrinsic to the recommendation task.
Another di�culty with recommender systems evaluation is that the

community lacks consensus about which metric is the most reliable to
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Table 4.1: Comparison between information retrieval and recommender sys-
tems evaluation assumptions.

Information retrieval Recommender Systems

Topical similarity can approximate
the user’s information need.

User’s information need may be esti-
mated in several di�erent ways.

Relevance is independent of users. Relevance is dependent of users.
Relevance judgments are almost com-
plete (subject to pooling).

Relevance judgments are far from
complete.

measure the ranking quality of recommendations. In contrast, AP is tra-
ditionally considered the reference metric in IR although recent criticism
(Fuhr 2018) advocates for the use of nDCG. In addition, when approxi-
mating relevance judgments with a hold-out test set, how much data is
used for the training and test splits should be balanced. A larger training
subset (at the expense of a reduced test subset) will allow better modeling,
but it would provide worse evaluation reliability and vice versa. Finally,
the long tail distribution of items in RS impacts the recommendation
process. In contrast, IR evaluation does not have to deal with such a great
imbalance in the popularity of documents.
In light of these di�erences between IR and RS evaluation, we propose

to study the suitability of the following ranking accuracy metrics that
have been widely used in IR and are now being used in RS. In addition
to the ranking accuracy metrics presented in Section 3.2.2 (precision and
nDCG), we study the following ones:

recall measures the proportion of relevant items that are included
in the recommendation list with respect to the total number of relevant
items for a given user:

Recallu@n = ∣Lnu ∩Ru ∣∣Ru ∣ (4.1)

average precision computes precision at the positions where a rele-
vant item is found. Recall that I is the indicator function.

APu@n = 1∣Ru ∣
n∑
k=1

I (Lnu[k] ∈Ru) Pu@k (4.2)
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reciprocal rank is computed as the inverse of the position of the �rst
relevant element in the ranking. As AP, when averaged over a set of topics,
this metric is called mean reciprocal rank (MRR).

RRu = 1
mink {Lnu[k] ∈Ru} (4.3)

bpref was designed to be highly correlated with AP but more robust
to incomplete relevance judgments (Buckley and Voorhees 2004). Bpref
is inversely related to the number of judged non-relevant items that are
located above each relevant item in the ranking list:

bprefu@n = 1∣Ru ∣
n∑
k=1

rel (Lnu[k]) (1 − min(∣Lku ∩Nu ∣, ∣Ru ∣)
min(∣Nu ∣, ∣Ru ∣) ) (4.4)

inferred average precision yields the same score MAP provides
when the relevance judgments are complete; however, it is also a statistical
estimate of AP when using incomplete judgments (Yilmaz and Aslam
2008). InfAP has shown a better correlation with AP than bpref under
this scenario. ¿is metric is given by:

infAPu@n = 1∣Ru ∣
n∑
k=1

I (Lnu[k] ∈Ru) E[P@k] (4.5)

where the expected precision at position k is de�ned as:

E[P@k] = 1
k
+ k − 1

k
∣Lk−1u ∩Ru ∣ + ε∣Lk−1u ∩Ru ∣ + ∣Lk−1u ∩Nu ∣ + 2ε (4.6)

and ε is a small constant (we set ε to 0.00001 in our experiments).

4.4 methodologies to study rs metrics

In this section, we propose methodologies to analyze the robustness to
incompleteness and the discriminative power of the aforementioned met-
rics in the evaluation of top-N recommenders. We take inspiration from
previous work of these properties in IR. We start with the analysis on ro-
bustness to incompleteness because relevance judgments are very scarce
in the recommendation scenarios which hinders a reliable assessment
of recommender systems. On the other hand, when preferring one rec-
ommendation model over another, we need to have statistically sound
guarantees—the discriminative power of a metric measures this desirable
property.
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4.4.1 Robustness to incompleteness

When evaluating recommender systems, incompleteness is pervasive.¿eIncompleteness is
intrinsic to the

recommendation
scenario.

ratings in the test set form the relevance judgments which are incomplete.
In fact, this is an intrinsic property of the recommendation task: if the
information is complete, we would know everything about the scenario
and no recommendations could be made. ¿erefore, a desirable metric
for recommendation should be robust to incompleteness in the test set.
Incompleteness in an IR scenario has been simulated using unbiased
random sampling techniques (Buckley and Voorhees 2004; Yilmaz and
Aslam 2008). We propose a similar approach to induce incompleteness
when evaluating recommender systems. However, RS evaluation has
two types of sources of incompleteness (Bellogín et al. 2017). When we
use ranking accuracy metrics to assess recommender systems, two well-
di�erentiated biases arise: the sparsity bias and the popularity bias. For
this reason, next, we analyze the robustness to the sparsity bias and the
robustness to the popularity bias independently.

4.4.1.1 Sparsity bias

¿e sparsity bias arises in RS evaluation when we lack known relevanceRecommenders
have to deal with

sparse data.
for all the user-items pairs (Bellogín et al. 2017). In recommendation,
users’ pro�les are incomplete by de�nition: we build the test set as a
hold-out subset of the users pro�le. Moreover, in a scenario without
incompleteness, we would be unable to recommend anything because
nothing unknown would be available to suggest. Note that the sparsity
bias causes the absolute values of the metrics to lose meaning, but the
relative values can still be valid for comparative purposes (Bellogín et al.
2017).
We propose to measure the robustness of di�erent metrics to the spar-

sity bias by evaluating those metrics using random samples of the test
set. We create test sets by removing relevance judgments randomly. For
each test set size, we take di�erent random samples. Given a set of rec-
ommender systems, we evaluate those systems according to a particular
metric and compute the ranking of systems. ¿en, we measure the corre-
lation of this ranking with respect to the ranking obtained by evaluating
those systems using the original test set. We also use Kendall’s tau coe�-
cient as rank correlation measure (Kendall 1938). Finally, by averaging
the rank correlation for each sample of the same size, we obtain a �nal
estimate of the robustness of a metric for each test size. A highly robust
metric will yield higher average correlation values.
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4.4.1.2 Popularity bias

In contrast to IR , missing relevance judgments are not uniformly dis- ¿e long tail
distribution of
data introduces
another bias into
the RS.

tributed: this has been referred to asmissing not at random (Marlin et al.
2007; Steck 2010, 2013). ¿e distribution of ratings in a recommendation
scenario follows a heavy skewed long-tail distribution. Bellogín et al.
(2017) studied this popularity bias and found that it strongly a�ects the
reliability of several ranking accuracy metrics .
Since previous works in RS remove popular items to deal with the

popularity bias (Bellogín et al. 2017; Cremonesi et al. 2010), we propose
to build progressively smaller test sets removing ratings from the most
popular items to measure the robustness of a metric to this bias. ¿en,
we can study the change in the correlation between systems rankings of
di�erent subsets of the test set and the original test set. ¿e higher the
value of the rank correlation, the higher the robustness of such metric to
the popularity bias. We use again Kendall’s tau coe�cient to measure the
correlation between ranking of systems (Kendall 1938).

4.4.2 Discriminative power

In addition to robustness to an incomplete test set, discriminative power A metric should
allow us to
distinguish which
model is better
than the rest.

is another desirable property of an evaluation metric. When we compare
two recommendation techniques, we expect the variation in the values of
a metric to indicate a statistically signi�cant di�erence. Otherwise, if the
di�erence is not signi�cant, we would not be able to conclude anything
with that metric.
Wepropose tomeasure the discriminative power of several information

retrieval metrics on di�erent datasets. We follow a procedure similar to
themethod presented by Sakai (2006), althoughwe propose to change the
statistical test. Instead of using Bootstrap with the Student’s t statistic, we
can employ the permutation test (also known as Fisher’s randomization
test) with the di�erence in means as test statistic (Efron and Tibshirani
1993). ¿e reason is that the permutation test provides a better estimation
of the p-value with a high number of permutations. Since computing
the exact p-value requires the computation of 2n permutations (where
n is the number of test users), we can approximate the result of this test
using Monte Carlo sampling. With 100,000 samples, we can compute
a two-sided p-value of 0.05 with an estimated error of ±0.0007 and a
p-value of 0.01 with an error of ±0.000315 according to the coe�cient
of variation of the estimated p-value (Efron and Tibshirani 1993).
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For each metric, we plot the p-values of the statistical test between
all possible system pairs sorted by decreasing value (Sakai 2006). We
call each of those curves the p-value curve of a metric. Since a highly
discriminative metric must yield low p-values, we prefer metrics with p-
value curves close to the origin. Furthermore, we also propose to compute
a single value that summarizes the discriminative power of a metric. For
this purpose, we use the sum of the p-values between all system pairs
as an approximation of the area under the p-value curve. We call this
value DP (discriminative power). ¿e lower the value of DP, the higher
the discriminative power of the metric. Note that DP is only intended to
comparemetrics when using the same set of systems on the same datasets:
the absolute values are not comparable across di�erent experimental
settings.

4.5 experimental settings

We use three datasets from di�erent domains: MovieLens 1M, Library-
¿ing and BeerAdvocate. On the one hand, to assess the robustness
to incompleteness, we follow the approach proposed in Section 4.4.1.1
sweeping from samples with 100% of the ratings of the original test set
to samples with 5% of the ratings in steps of 5% to simulate the sparsity
bias. We compute the average of 50 samples of each test set size which
provides a good estimate in our experiments. On the other hand, when
using the methodology for analyzing the popularity bias, proposed in
Section 4.4.1.2, we start from using the ratings of 100% of items to using
only the ratings of the 80% least popular items in steps of 1%.
When examining ranking accuracy metrics, we need recommender

systems to compare. Previous works in IR studying di�erent metrics em-
ployed the runs submitted to TREC (Buckley and Voorhees 2004; Lu
et al. 2016; Yilmaz and Aslam 2008). Since we do not have an equiva-
lent in RS, we implemented 21 recommendation techniques and used
their outputs to study the properties of several IR metrics1. Note that we
have chosen multiple types of algorithms to have a representative set of
recommendation techniques.

● Random: produces random suggestions for each user.

● Popularity: non-personalized algorithm. Its output is the list of
items ranked decreasingly by the number of ratings.

1 We provide the source code of the experiments and the complete output of the recom-
mender systems at https://www.dc.fi.udc.es/~dvalcarce/metrics.html.

https://www.dc.fi.udc.es/~dvalcarce/metrics.html
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● RW, RSV, CHI2 and KLD: neighborhood-based techniques that
stem from Rocchio’s feedback model (Valcarce et al. 2016c). We
present them in Chapter 8.

● RM1 and RM2: neighborhood-based techniques based on rele-
vance models (Parapar et al. 2013; Valcarce et al. 2016a). We exten-
sively study them in Chapter 5.

● LM-WSR-UB and LM-WSR-IB: user-based and item-based rec-
ommendation approaches that use language models to compute
neighborhoods (Valcarce et al. 2016b,e). We present them in Chap-
ter 10.

● NNCosNgbr-UB andNNCosNgbr-IB: user-based and item-based
versions of a neighborhood-based recommendation model (Cre-
monesi et al. 2010).

● SLIM: neighborhood-learning recommendation technique based
on sparse linear methods (Ning and Karypis 2011).

● HT: model-based technique designed to deal with long tail items
modeling the recommendation task as a random walk in a graph
(Yin et al. 2012).

● BPRMF: matrix factorization technique based on Bayesian proba-
bilistic ranking (Rendle et al. 2009).

● SVD: matrix factorization approach based on using singular value
decomposition (Takács et al. 2009).

● PureSVD: matrix factorization technique that computes the SVD
over all the entries of the user-item rating matrix (Cremonesi et al.
2010).

● WRMF: matrix factorization technique that weights the missing
information in the rating matrix (Hu et al. 2008).

● LDA: model-based recommender that uses latent Dirichlet alloca-
tion (Blei et al. 2003).

● PLSA: model-based recommender that uses probabilistic latent
semantic analysis (Hofmann 2004).

● UIR-IB: probabilistic technique that builds a probabilistic user-
item relevance model (Wang et al. 2006).
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4.6 choosing among cut-offs

When applying a ranking metric, we have to select the cut-o�. Recom-We study the same
metric using

di�erent cut-o�s.
menders usually show only a few suggested items because users seldom
consider more than the top ones. For this reason, recommender systems
literature usually employ shallow cut-o�s such as 5 or 10 (Gunawardana
and Shani 2015). However, the selection of the exact value of the cut-o�
in some research papers is somewhat arbitrary. Although RS typically
present few recommendations to their users, deeper cut-o�s may provide
a more reliable assessment of the recommenders o�ine evaluation.¿ere-
fore, next, we analyze which cut-o�s are preferable regarding robustness
and discriminative power.

4.6.1 Correlation among cut-o�s

We study Kendall’s correlation between systems when using the same
metric with di�erent cut-o�s.We �nd high correlations between rankings
when studying cut-o�s from 5 to 100. Overall, the correlation between
cut-o�s above 20 is very high.¿ose correlations are almost always higher
than 0.9 on the Library¿ing and BeerAdvocate datasets. Note that previ-
ous work has considered that two rankings with a correlation above 0.9
are almost equivalent (Voorhees 2001). On the MovieLens dataset, most
of the correlations are above 0.85 and the lowest found correlation was
between P@5 and P@100 and Recall@5 and Recall@100 with a value of
0.76. For the sake of space, we choose a representative example: Figure 4.1
shows the correlation between di�erent cut-o�s of nDCG on MovieLens
1M.
¿e largest discrepancy is between the cut-o� at 5 and the rest of cut-

o�s. However, all the correlations are at least 0.9 which represents a very
strong correlation. ¿erefore, we can conclude from this experiment that
the choice of the cut-o� does not a�ect the ranking of the systems severely;
however, it may a�ect the robustness or the discriminative power, which
we analyze next.

4.6.2 Robustness among cut-o�s

We test the robustness to sparsity and popularity of di�erent cut-o�s from
5 to 100 of each metric following the procedure explained in Section 4.4.1.
¿e results con�rm that larger cut-o�s yield better �gures of robustness
when increasing the sparsity and the popularity bias of the test set. As
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@5 @10 @20 @30 @40 @50 @60 @70 @80 @90 @100

@5
@10
@20
@30
@40
@50
@60
@70
@80
@90
@100

1.00 0.95 0.93 0.92 0.92 0.92 0.92 0.91 0.90 0.90 0.90
0.95 1.00 0.98 0.97 0.97 0.97 0.97 0.96 0.95 0.95 0.95
0.93 0.98 1.00 0.99 0.99 0.99 0.99 0.98 0.97 0.97 0.97
0.92 0.97 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.98
0.92 0.97 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.98
0.92 0.97 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.98
0.92 0.97 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.98
0.91 0.96 0.98 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99
0.90 0.95 0.97 0.98 0.98 0.98 0.98 0.99 1.00 1.00 1.00
0.90 0.95 0.97 0.98 0.98 0.98 0.98 0.99 1.00 1.00 1.00
0.90 0.95 0.97 0.98 0.98 0.98 0.98 0.99 1.00 1.00 1.00

Figure 4.1: Correlation between di�erent cut-o�s of nDCGmetric on theMovie-
Lens 1M dataset.
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Figure 4.2: Kendall’s correlation of di�erent cut-o�s of nDCG with respect to
themselves using the full test set when increasing the sparsity bias
on the MovieLens 1M dataset.

a representative example, Figure 4.2 plots the robustness to the sparsity
bias of di�erent cut-o�s of nDCG onMovieLens 1M. Likewise, Figure 4.3
plots the robustness to the popularity bias of di�erent cut-o�s of nDCG.
In both �gures, we can see that robustness increases as we use deeper
cut-o�s. ¿is phenomenon also occurs in the other studied metrics on
the three datasets with slight variations. For the sake of brevity, we omit
them.
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Figure 4.3: Kendall’s correlation of di�erent cut-o�s of nDCG with respect to
themselves using the full test set when increasing the popularity bias
on the MovieLens 1M dataset.
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Figure 4.4: Analysis of the discriminative power of nDCG at di�erent cut-o�s
on the MovieLens 1M dataset.

4.6.3 Discriminative power among cut-o�s

Finally, we study the discriminative power of each metric using cut-o�s
from 5 to 100. Using the procedure described in Section 4.4.2, we plot the
p-values of the paired statistical tests sorted by decreasing value on the
MovieLens 1M (see Figure 4.4).We observe that deeper cut-o�s (above 50)
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consistently provide better �gures of discriminative power than shallower
cut-o�s. Di�erent metrics on the three datasets present similar results.

4.6.4 Implications

In light of these results, we can conclude that the studied metrics with
deeper cut-o�s are more robust to the sparsity and popularity biases
and have better discriminative power. Additionally, since the ranking of
systems produced by ametric when varying the cut-o� from 5 to 100 does
not change notably, we should prefer deeper cut-o�s. ¿erefore, if there
is no strong reason to choose a shallow cut-o� such as 5 or 10, calculating
the metric over a larger ranking (let say n = 100 recommendations)
should be preferred in o�ine experiments. Note that such deep cut-o�s
provide better properties even though we may (and generally will) lack n
relevance judgments for each user.

4.7 choosing among metrics

In the previous section, we compared each metric against themselves
using di�erent cut-o�s and we found that a cut-o� of n = 100 is a good
choice due to its robustness and discriminative properties. Now, we �x
the cut-o� to 100 and compare the previous metrics among each other
to study which have more desirable properties: robustness and discrimi-
native power.

4.7.1 Correlation among metrics

Herlocker et al. (2004) have previously studied the correlation among
some metrics (some of them barely used anymore) using only variants of
one collaborative �ltering algorithm on one dataset and recommended
further investigation. ¿erefore, we study the correlation among the sys-
tem orderings according to di�erent modern ranking metrics on three
datasets. Figure 4.5 shows Kendall’s correlation among metrics on the
MovieLens 1M, Library¿ing and BeerAdvocate datasets. On the Library-
¿ing collection, all correlations are above 0.9 threshold which indicates
that the metrics produce almost identical rankings. On the other two
datasets, we observed stronger di�erences with some correlations below
0.8.
We can see that MRR di�er noticeably from the rest, especially on the

MovieLens 1M and the Library¿ing datasets. Bpref also shows a low
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correlation with the other metrics on the BeerAdvocate collection. It is
worth remarking that bpref is poorly correlated with MAP on this dataset
which is a surprising result since bpref was designed to do so (Buckley
and Voorhees 2004). We suspect that this may be produced by the highly
skewed long tail of this dataset. Instead, MAP is strongly correlated with
nDCG on the three datasets. Nevertheless, the ranking produced by the
rest of the metrics showed a fairly strong correlation among them.

4.7.2 Robustness among metrics

Figure 4.6 depicts the results of the experiments of robustness to the
sparsity bias. We can see that all the metrics are fairly robust to this
bias since the correlation is above 0.9 even when removing half of the
test set. Precision and nDCG showed very good �gures of robustness
to sparsity on the three datasets (precision especially on BeerAdvocate).
In contrast, bpref, and to a lesser extent InfAP and MRR, show poor
robustness to sparsity.¿is result is interesting because it is di�erent from
what happens in IR. On the one hand, bpref and InfAP are techniques
proposed for dealing with incomplete judgments in IR (Buckley and
Voorhees 2004; Yilmaz and Aslam 2008), but in top-N recommendation
they are less robust than other metrics. We should note that bpref and
InfAP were designed for approximating average precision in scenarios
with incomplete judgments while this metric is not such gold standard in
recommendation. Still, it is surprising thatMAP showed better robustness
�gures than bpref and InfAP on Library¿ing and BeerAdvocate. On the
other hand, utility-based metrics such as MRR were found to be more
resilient to changes in pooling depth which is related to the sparsity bias
in recommendation (Lu et al. 2016).
Additionally, we report the results of the experiments of robustness to

the popularity bias in Figure 4.7. On the BeerAdvocate dataset, the correla-
tions quickly drop a er removing a small percentage of the most popular
items even reaching negative correlation values. ¿is phenomenon is
likely caused by the highly skewed long tail distribution of this dataset.
¿erefore, it is di�cult to draw conclusions from this collection. Overall,
precision is the best metric in terms of robustness to popularity whereas
MRR is the worst one. ¿e robustness to the popularity bias of the rest of
the metrics depends heavily on the dataset.
We can claim that MRR is the least robust metric. ¿is utility-based

metric su�ers heavily from sparsity and popularity biases. In contrast,
precision is the most robust metric. More sophisticated metrics such as
nDCG also present good �gures of robustness; however, their additional
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Precision Recall MAP nDCG MRR Bpref InfAP

Precision

Recall

MAP

nDCG

MRR

Bpref

InfAP

1.00 0.89 0.87 0.89 0.71 0.89 0.91

0.89 1.00 0.87 0.90 0.72 0.90 0.92

0.87 0.87 1.00 0.96 0.84 0.92 0.92

0.89 0.90 0.96 1.00 0.82 0.94 0.96

0.71 0.72 0.84 0.82 1.00 0.80 0.80

0.89 0.90 0.92 0.94 0.80 1.00 0.96

0.91 0.92 0.92 0.96 0.80 0.96 1.00

Precision Recall MAP nDCG MRR Bpref InfAP

Precision

Recall

MAP

nDCG

MRR

Bpref

InfAP

1.00 0.99 0.96 0.97 0.91 0.95 0.96

0.99 1.00 0.95 0.96 0.90 0.96 0.97

0.96 0.95 1.00 0.99 0.95 0.95 0.96

0.97 0.96 0.99 1.00 0.94 0.96 0.97

0.91 0.90 0.95 0.94 1.00 0.90 0.90

0.95 0.96 0.95 0.96 0.90 1.00 0.99

0.96 0.97 0.96 0.97 0.90 0.99 1.00

Precision Recall MAP nDCG MRR Bpref InfAP

Precision

Recall

MAP

nDCG

MRR

Bpref

InfAP

1.00 0.85 0.89 0.90 0.83 0.76 0.84

0.85 1.00 0.85 0.88 0.83 0.91 0.95
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Figure 4.5: Correlation of Precision, Recall, MAP, nDCG, MRR, bpref and
InfAP (using a cut-o� of 100) with each other on the MovieLens 1M
(top), Library¿ing (middle) and BeerAdvocate (bottom) datasets.
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Table 4.2: Values ofDP of precision, recall,MAP, nDCG,MRR, bpref and InfAP
(using a cut-o� of 100) on the MovieLens 1M, Library¿ing and
BeerAdvocate datasets. Lower values are better.

Dataset P Recall MAP nDCG MRR Bpref InfAP

MovieLens 1M 2.6 7.0 2.8 1.4 15.5 9.9 8.4
Library¿ing 1.5 5.9 3.6 0.2 2.9 5.4 3.8
BeerAdvocate 1.9 8.3 10.7 4.4 5.8 12.7 4.8

complexity may be the reason why they are less robust than simple binary
metrics such as precision.

4.7.3 Discriminative power among metrics

Figure 4.8 reports our �ndings in terms of discriminative power of the
di�erent studied metrics. We also present the values of DP (an approxi-
mation of the area under the p-value curve) in Table 4.2. Although the
results vary across datasets, we can �nd some general trends. We can
see that bpref, and to a lesser extent InfAP, presents low discriminative
power across all datasets. In contrast, nDCG and precision (in this order)
present the highest discriminative power on the test collections with great
di�erence to the rest of the metrics. Finally, MAP, Recall and MRR show
an erratic performance in terms of discriminative power depending on
the dataset.

4.8 conclusions

In this chapter, we studied the robustness and discriminative power of
several ranking accuracy metrics, originally used in IR, when applied to
the top-N recommendation task. To this end, we adapted and extended
previous methodologies developed in IR for studying robustness against
incompleteness and discriminative power.
We found that deeper cut-o�s o�er better robustness to sparsity andDeeper cut-o�s are

more reliable in
terms of robustness

to sparsity and
popularity biases.

popularity biases than shallower cut-o�s which are traditionally used
in recommender systems evaluation. ¿erefore, in this thesis, we use
a cut-o� of 100 for the ranking accuracy metrics. Although only a few
recommendations are usually displayed to the users, our investigation
showed that deep cut-o�s allow us to perform more robust and discrimi-
native evaluations of recommender systems.
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Figure 4.6: Correlation of Precision, Recall, MAP, nDCG, MRR, bpref and
InfAP (using a cut-o� of 100) with respect to themselves using the
test set when increasing the sparsity bias on the MovieLens 1M (top),
Library¿ing (middle) and BeerAdvocate (bottom) collections.
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Figure 4.7: Correlation of Precision, Recall, MAP, nDCG, MRR, bpref and
InfAP (using a cut-o� of 100) with respect to themselves using the
test set when increasing the popularity bias on the MovieLens 1M
(top), Library¿ing (middle) and BeerAdvocate (bottom) collec-
tions.
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Figure 4.8: Analysis of the discriminative power of Precision, Recall, MAP,
nDCG,MRR, bpref and InfAP (using a cut-o� of 100) on the Movie-
Lens 1M (top), Library¿ing (middle) and BeerAdvocate (bottom)
datasets.
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Our �ndings also suggest that precision, a simple binary metric, isPrecision and
nDCG o�er the
best robustness

and discriminative
power.

very robust to sparsity and popularity biases. Normalized discounted
cumulative gain also presents high robustness to the sparsity bias and
moderate robustness to the popularity bias.Moreover, in terms of discrim-
inative power, nDCG and to a lesser degree precision showed the best
�gures of all the tested metrics. For these reasons, we use these metrics
for evaluating recommender systems in this thesis.
Surprisingly, we found that bpref and InfAP—which were proposed

to address incompleteness in IR— as well as MRR perform poorly in RS
evaluation and, therefore, we discourage the use of these metrics.



Part III

PSEUDO-RELEVANCE FEEDBACK
MODELS FOR RECOMMENDER SYSTEMS

May, in spite of all distractions generated by technol-
ogy, all of you succeed in turning information into
knowledge, knowledge into understanding, and un-
derstanding into wisdom.

— Edsger W. Dijkstra,
Edsger Dijkstra on universities





5
RELEVANCE MODELS FOR USER-BASED
RECOMMENDATION

¿e work of Parapar (2013) and Parapar et al. (2013) constitutes one of
the most e�ective adaptations of information retrieval models to recom-
mender systems. In this work, they established a parallelism between
pseudo-relevance feedback and user-based collaborative �ltering. In par-
ticular, they used relevance models (RM), a state-of-the-art PRF tech-
nique based on the language modeling framework, as a neighborhood-
based recommender.
In this chapter, we thoroughly study the possibilities of relevance mod- We examine the

e�ectiveness of
relevance models
as user-based
collaborative
�ltering
recommenders.

els as user-based CF recommenders. Smoothing is a central issue in the
estimation of language models (which RM are based on). Probability
estimators require smoothing methods to compensate for data sparsity.
On the other hand, the probabilistic modeling of recommender systems
using relevance models naturally introduces the concept of user and item
prior probabilities into the recommendation task.
Neither the in�uence of di�erent smoothing methods nor prior prob-

ability estimators have been studied in the context of recommender
systems. ¿erefore, in this chapter, we explore di�erent smoothing ap-
proaches from a theoretical and empirical point of view. We also study
the e�ect of di�erent estimators for the item and user prior probabilities
under this framework.
¿e contributions presented in this chapter have been previously pub-

lished. Valcarce et al. (2015c) presents an empirical study of three smooth-
ing methods for relevance models applied to recommendation. Later,
Valcarce et al. (2015b) conducts an empirical study of di�erent prior esti-
mators. Finally, Valcarce et al. (2016a) performs a theoretical study based
on axiomatic analysis with the three previous smoothing methods and
another one.

61
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Pseudo-relevance feedback User-based collaborative filtering

Query Target user: u
Query terms Items rated by the target user: Iu

Pseudo-relevant set User neighborhood: Vu

Candidate terms for expansion Candidate items for recommendation

Table 5.1: Parallelism between pseudo-relevance feedback and user-based col-
laborative �ltering.

5.1 relevance models as recommenders

Parapar (2013) and Parapar et al. (2013) drew a parallelism between
pseudo-relevance feedback and user-based collaborative �ltering. ¿e
connection between these tasks from di�erent �elds allowed them to
adapt relevance-based language models or, simply, relevance models
(RM) to user-based collaborative �ltering recommendation. ¿e authors
showed that the task of recommending items to a user could be assimi-
lated to the task of expanding a query with new terms. Instead of a query,
we have a user whose pro�le (i.e., the set of items that the user has rated)
has to be expanded with new relevant items. Since PRF models exploit
a set of pseudo-relevant documents to extract terms, we can use the
neighborhood of the target user as the pseudo-relevant set. In this way,
users play a dual role: they act as queries when they are the target user
of the recommendation process, but they also act as documents of the
pseudo-relevant set when they are neighbors. On the other hand, items
only play the role of terms. Note that the last step of pseudo-relevance
feedback (performing a second retrieval with the expanded query) is not
needed because the expansion items for the users’ pro�les are our objec-
tive. Table 5.1 summarizes the parallelism between PRF and user-based
CF.
Lavrenko and Cro (2001) proposed two methods for estimating the

relevance models in IR: RM1 and RM2. ¿e �rst method uses i.i.d. sam-
pling whereas the second is based on conditional sampling. To use RM
as a recommendation model, we need to assume that, for all pairs of
target user u and neighborhood Vu, an underlying relevance model Ru
exists. ¿e recommendations for a user u are generated by computing
the relevance model of that user, Ru , and estimating the relevance of each
item i under it as follows:

RM1: p(i∣Ru)∝ ∑
v∈Vu

p(v)p(i∣v)∏
j∈Iu

p( j∣v) (5.1)
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RM2: p(i∣Ru)∝ p(i)∏
j∈Iu

∑
v∈Vu

p(i∣v)p(v)
p(i) p( j∣v) (5.2)

Recommendations are presented to the user ordered according to de- RM2 outperforms
RM1 in top-N
recommendation.

creasing estimated relevance, that is, decreasing values of p(i∣Ru). Parapar
et al. (2013) and Valcarce et al. (2015c) showed that RM2 is superior to
RM1 in recommendation e�ectiveness. Conversely, RM1 outperforms
RM2 in query expansion (Lavrenko and Cro 2001). ¿erefore, in this
chapter, we focus on RM2 model alone.
¿e neighborhoodVu is the set of similar users to u.¿emost common Neighborhoods are

typically computed
using the kNN
algorithm.

practice in the literature is to use the kNN algorithm (Ning et al. 2015).
¿is method �nds the k most similar users to the target user using a
pairwise metric. Parapar et al. (2013) used kNNwith Pearson’s correlation
coe�cient as the pairwise metric to compute user neighborhoods for RM.
However, Cremonesi et al. (2010) showed that cosine similarity is better
suited for top-N recommendation while Pearson’s correlation works best
in the rating prediction task. In fact, we veri�ed that the kNN algorithm Cosine similarity

yields better results
than Pearson’s in
top-N
recommendation.

with cosine similarity provides better neighborhoods than with Pearson’s
correlation coe�cient with the RM2 recommendation model (Valcarce
et al. 2016a). ¿erefore, to compute similarities between users u and v,
we use the cosine similarity as follows:

cos(u, v) = ∑i∈Iu∩Iv r(u, i) r(v , i)√∑i∈Iu r(u, i)2√∑i∈Iv r(v , i)2 (5.3)

¿e probability of an item i given a user u, p(i∣u), can be computed by
the maximum likelihood estimate (MLE) of a multinomial distribution
of ratings:

pmle(i∣u) = r(u, i)∑ j∈Iu r(u, j) (5.4)

¿e problem of the maximum likelihood estimate stems from its high
sparsity: if a user did not rate an item, the estimate yields a value of zero.
For this reason, language models are smoothed. In Section 5.2, we study
di�erent smoothing methods for the maximum likelihood estimate of
relevance models applied to recommendation.
Finally, we need to specify how to calculate item prior probability

p(i) and user prior probability p(v) estimates. Parapar et al. (2013) used
uniform estimates, but in Section 5.3, we present di�erent alternatives.
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5.2 study of smoothing methods

Language models use smoothed probability estimates to achieve highSmoothing
improves the

e�ectiveness by
avoiding zeros in

the MLE.

e�ectiveness.¿e selection of the smoothingmethod is crucial for the per-
formance of language models both in ad hoc retrieval (Zhai and La�erty
2004) and in top-N recommendation (Valcarce et al. 2015c, 2016a). ¿e
main e�ects of smoothing in information retrieval are: on the one hand,
preventing the apparition of zeros due to the data sparsity and, on the
other hand, adding the e�ect of the IDF (inverse document frequency)
(Zhai and La�erty 2004). Additionally, some smoothing techniques also
provide the e�ect of length normalization (Losada and Azzopardi 2008a).
Next, we present di�erent smoothingmethods to use in recommendation.

5.2.1 Smoothing methods

In ad hoc retrieval, the most common practice is to smooth the MLE
with the collection model (Zhai and La�erty 2004). Using a collection-
based smoothing method, the probability of an item given a user p(i∣u)
is calculated by smoothing the maximum likelihood estimate pmle(i∣u)
with the backgroundmodel of the collection p(i∣C).¿is collectionmodel
is given by:

p(i∣C) = ∑v∈U r(v , i)∑ j∈I ∑v∈U r(v , j) (5.5)

Next, we present three collection-based smoothing methods: Jelinek-
Mercer (JMS), Dirichlet priors (DPS) and absolute discounting smooth-
ing (ADS) (Zhai and La�erty 2004). Additionally, we present additive
smoothing (AS) which is collection-agnostic. Collection-based smooth-
ing methods have in common that they substitute part of the probability
mass provided by the MLE with probability mass obtained from the
collection model. ¿is reallocation of probability is performed to avoid
zeros in non-rated items (Zhai and La�erty 2004). Conversely, collection-
agnostic smoothing methods reallocate the probability mass in a way that
is independent of the collection.

5.2.1.1 Jelinek-Mercer smoothing (JMS)

¿ismethod performs a linear interpolation between the maximum likeli-
hood estimator and the collectionmodel (Jelinek andMercer 1980) which
is regulated by the parameter λ ∈ [0, 1]:

pλ(i∣u) = (1 − λ) pmle(i∣u) + λ p(i∣C) (5.6)
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5.2.1.2 Dirichlet priors smoothing (DPS)

Derived from a Bayesian analysis using Dirichlet priors (MacKay and
Peto 1995), this method has a parameter µ > 0 to control the amount of
smoothing applied:

pµ(i∣u) = r(u, i) + µ p(i∣C)
µ +∑ j∈Iu r(u, j) (5.7)

5.2.1.3 Absolute discounting smoothing (ADS)

¿is method subtracts a value of δ > 0 from the count of the rated items
(Ney et al. 1994). ¿is discount is compensated with the background
collection:

pδ(i∣u) = max[r(u, i) − δ, 0] + δ ∣Iu ∣p(i∣C)∑ j∈Iu r(u, j) (5.8)

5.2.1.4 Additive smoothing (AS)

Additive smoothing (also known as Laplace smoothing) is a collection-
agnostic method. ¿is smoothing method increases all the ratings by a
parameter γ > 0. If the user u has not rated the item i, that item will
receive a rating value of γ. ¿e probability estimate with this method is
computed as follows:

pγ(i∣u) = r(u, i) + γ∑ j∈Iu r(u, j) + γ ∣I ∣ (5.9)

5.2.2 ¿eoretical analysis of smoothing methods

An axiomatic analysis is an e�ective tool for studying language models
formally (Fang et al. 2004; Hazimeh and Zhai 2015; Valcarce et al. 2016a).
Hazimeh and Zhai (2015) presented an axiomatic analysis of smoothing
methods for di�erent pseudo-relevance feedback techniques. ¿ey found
that applying collection-based smoothing methods to RM1 demotes the
IDF e�ect—a desired property of a retrieval system. Instead, they pro-
posed the use of relevance models with additive smoothing.
We claim that the IDF, which is a fundamental term measure in IR, is

related to novelty in RS. Next, we study the connection between these
two concepts and its implications in recommendation.
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5.2.2.1 IDF e�ect and novelty

In information retrieval , the inverse document frequency (IDF) is a mea-IDF is the
fundamental term
speci�city measure.

sure of term speci�city that has become a cornerstone of term weighting
(Robertson 2004; Spärck Jones 1972). It is de�ned as the inverse of the
number of documents in the collection that contains the target term. For
example, stopwords are terms that appear in many document but do not
provide much information. In contrast, those terms that only appear in a
few documents tend to be highly informative and help in discriminating
which documents are relevant. ¿us, the IDF e�ect gives more impor-
tance to those query terms that are more speci�c (i.e., those terms with a
higher IDF).
IDF was not born from a formal analysis; however, it was consid-

ered a useful and robust heuristic (Spärck Jones 1972). Later, Robertson
(2004) provided a theoretical justi�cation for this term weighting func-
tion. Mostly all the text retrieval algorithms introduce the IDF e�ect to
weight query terms (Spärck Jones 1972). ¿is property can be included
in the retrieval model either explicitly (e. g., the vector space model or
BM25) or implicitly (e. g., the probabilistic model or language models).
We claim that when adapting the relevance modeling framework to

collaborative �ltering, term speci�city is related to item novelty. ¿e
IDF e�ect promotes speci�c terms over popular—and to some extent
meaningless—ones. Since items play the role of terms when using rele-
vance models as recommender systems, promoting uncommon terms
should be bene�cial for improving novelty �gures.
Previous work has explored di�erent estimations of RM that promote

divergent terms with great success (Carpineto et al. 2001; Parapar and
Barreiro 2011). In particular, Hazimeh and Zhai (2015) performed an
axiomatic analysis of the IDF e�ect in several pseudo-relevance feedback
methods. ¿ey found that collection-based methods penalize the IDF
e�ect on RM1. To overcome this problem, they proposed to use additive
smoothing which does not rely on a background collection model. ¿eir
analysis showed that this type of smoothing neither promotes nor demotes
the IDF e�ect. However, it is not clear whether this conclusion applies to
RM2. For this reason, we perform an axiomatic analysis of the IDF e�ect
on RM2 in the context of recommender systems.

5.2.2.2 Formalization of the IDF e�ect in recommendation

Our goal is to examine di�erent smoothing methods for RM2 in the
context of RS. In recommendation, given two items with the same ratings
in the neighborhood, the IDF e�ect promotes the item that is less popular
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in the collection. ¿e popularity of an item is measured as its probability
in the collection as Equation (5.5) de�nes. ¿is property is desirable in
order to enhance the novelty of the recommendations while keeping high
accuracy. ¿is e�ect does not con�ict with accuracy because uncommon
items are preferred over common items only when they have the same
ratings. Formally, we can de�ne the IDF e�ect in recommender systems
as follows:

De�nition (IDF e�ect). Let u be a user from the set of users U and Vu be
her/his neighborhood. Given two items i1 and i2 with the same ratings
r(v , i1) = r(v , i2)∀ v ∈ Vu and di�erent popularity p(i1∣C) < p(i2∣C), a
recommender system that outputs p(i1∣Ru) > p(i2∣Ru) is said to support
the IDF e�ect.

Now we proceed to analyze RM2 axiomatically. If we assume that i1
and i2 are two items as in the previous de�nition, studying the sign of
∆ = p(i1∣Ru) − p(i2∣Ru) allows to check whether RM2 supports the IDF
e�ect. If ∆ > 0, the recommender system supports this property. On the
contrary, if ∆ < 0, the algorithm violates the de�nition of the IDF e�ect.
Finally, ∆ = 0 means that the system neither promotes nor demotes the
IDF e�ect. Given the formula of RM2, ∆ is computed as follows:

∆ = p(i1∣Ru) − p(i2∣Ru)
= p(i1)∏

j∈Iu

∑
v∈Vu

p(i1∣v)p(v)
p(i1) p( j∣v)

− p(i2)∏
j∈Iu

∑
v∈Vu

p(i2∣v)p(v)
p(i2) p( j∣v) (5.10)

If we suppose that item priors are uniform, we obtain:

∆ = p(i)∏
j∈Iu

∑
v∈Vu

p( j∣v)p(v)
p(i) p(i1∣v)

− p(i)∏
j∈Iu

∑
v∈Vu

p( j∣v)p(v)
p(i) p(i2∣v) (5.11)

We can observe that the sign of ∆ depends on the sign of p(i1∣v) −
p(i2∣v) which may vary among smoothing methods. ¿erefore, we need
to analyze each smoothing technique one by one. Next, present an ax-
iomatic analysis for each smoothing method.
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5.2.2.3 Analysis of Jelinek-Mercer smoothing

We apply Jelinek-Mercer smoothing method from Equation (5.6) to Equa-
tion (5.11):

∆ = p(i)∏
j∈Iu

∑
v∈Vu

p( j∣v)p(v)
p(i) [(1 − λ)pml(i1∣v) + λp(i1∣C)]

− p(i)∏
j∈Iu

∑
v∈Vu

p( j∣v)p(v)
p(i) [(1 − λ)pml(i2∣v) + λp(i2∣C)]

< 0 (5.12)

and we obtain that the di�erence is negative because λ ∈ [0, 1], all the
probabilities are positive and p(i1∣C) < p(i2∣C) from de�nition. Note
that pml(i1∣u) = pml(i2∣u) because both items have the same ratings.
¿us, Jelinek-Mercer demotes the IDF e�ect for RM2 as it does for RM1
in pseudo-relevance feedback (Hazimeh and Zhai 2015).

5.2.2.4 Analysis of Dirichlet priors smoothing

We plug the expression of DPS from Equation (5.7) into Equation (5.11)
as follows:

∆ = p(i)∏
j∈Iu

∑
v∈Vu

p( j∣v)p(v)
p(i) r(v , i1) + µp(i1∣C)

µ +∑k∈Iu r(v , k)
− p(i)∏

j∈Iu

∑
v∈Vu

p( j∣v)p(v)
p(i) r(v , i2) + µp(i2∣C)

µ +∑k∈Iu r(v , k)< 0 (5.13)

and we obtain that the di�erence is also negative because µ > 0, all the rat-
ings and probabilities are positive and, by de�nition, p(i1∣C) < p(i2∣C).
We can conclude that Dirichlet priors smoothing violates the IDF ef-
fect for RM2. ¿is also happens for RM1 in pseudo-relevance feedback
(Hazimeh and Zhai 2015).

5.2.2.5 Analysis of absolute discounting smoothing

ADS was not studied in the context of pseudo-relevance feedback; how-
ever, since we found that is preferred collection-based smoothingmethod
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for RM2 in recommendation (Valcarce et al. 2015c), we analyze if it sup-
ports the IDF e�ect:

∆ = p(i)∏
j∈Iu

∑
v∈Vu

p( j∣v)p(v)
p(i) rδ(v , i1) + δ∣Iv ∣p(i1∣C)∑k∈Iv r(u, k)

− p(i)∏
j∈Iu

∑
v∈Vu

p( j∣v)p(v)
p(i) rδ(v , i2) + δ∣Iv ∣p(i2∣C)∑k∈Iv r(u, k)< 0 (5.14)

where rδ(v , i) = max[rδ(v , i) − δ, 0]. We can observe that the di�erence
∆ is negative taking into account that δ > 0, ∣Iv ∣ > 0, all the ratings are
positive and, by de�nition, p(i1∣C) < p(i2∣C).
We can observe that the three collection-based smoothing methods

demote the IDF e�ect on RM2 for recommendation. For this reason, next,
we also explore additive smoothing as a collection-agnostic smoothing
method.

5.2.2.6 Analysis of additive smoothing

Since thismethod is collection-agnostic, it does not rely on the probability
of an item in the collection, p(i∣C), which is a measure of item popularity
and, thus, opposed to novelty. Applying the same axiomatic analysis as
before:

∆ = p(i)∏
j∈Iu

∑
v∈Vu

p( j∣v)p(v)
p(i) r(u, i1) + γ∑ j∈Iu r(u, j) + γ∣I ∣

− p(i)∏
j∈Iu

∑
v∈Vu

p( j∣v)p(v)
p(i) r(u, i2) + γ∑ j∈Iu r(u, j) + γ∣I ∣= 0 (5.15)

we �nd that this method neither supports nor violates the IDF e�ect.¿is
result coincides with the analysis of RM1 for pseudo-relevance feedback
(Hazimeh and Zhai 2015).

5.2.2.7 Discussion of the axiomatic analysis

Our axiomatic analysis proves that the aforementioned collection-based
smoothing methods (JMS, DPS and ADS) demote the IDF e�ect on RM2
in recommendation as it does on RM1 for pseudo-relevance feedback.
Moreover, we �nd that additive smoothing neither promotes nor de-
motes the IDF e�ect on RM2. ¿us, if the IDF heuristic is valuable for
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recommendation, additive smoothing should work better than the other
methods. Next, we conduct an empirical study of the smoothing methods
to verify this hypothesis.

5.2.3 Experimental evaluation of smoothing methods

We test experimentally the quality of the recommendations generated by
RM2 with di�erent smoothing methods. We used the MovieLens 100k
and 1M, R3-Yahoo and Library¿ing datasets. We tuned the smoothing
parameters γ ∈ {0.001, 0.01, 0.1, 1, 10}, δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0}, λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1} and µ ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} of the
AS, ADS, JMS and DPS methods, respectively. We used kNN algorithm
with cosine similarity for computing neighborhoods. We found that the
optimal values with respect to nDCG@100were k = 50 for theMovieLens
100k, k = 75 for the MovieLens 1M, k = 150 for the R3-Yahoo and
k = 50 for the Library¿ing dataset. ¿e results in terms of nDCG@100,
Gini@100 and MSI@100 for each dataset are presented in Figures 5.1
to 5.4.
As we can observe, smoothing is a crucial aspect of RM2: the choice

of the smoothing method, as well as its correct parameter optimization,
a�ects the �nal quality of the recommendations notably. Although the
absolute values of performance vary, the trends in both datasets are very
similar. ¿is supports the generalization of these results to other collec-
tions.
Overall, additive smoothing provides the best recommendations in

terms of precision, diversity and novelty followed by absolute discounting
smoothing. In recommendation, there is always a trade-o� between accu-
racy and diversity or novelty (Zhou et al. 2010b). It is straightforward to
improve the diversity or novelty of the recommendations at the expense
of a reduction of accuracy (e.g., recommending very unpopular items
to di�erent users). ¿erefore, simultaneous improvements in accuracy
and in novelty or diversity are highly valuable. Additive smoothing ob-
tains notable improvements on these three aspects. ¿is supports the
importance of the IDF e�ect in recommendation.
An important property of Additive smoothing is the stability to the

changes in its parameter. We used a logarithmic scale to visualize very
large variations of the parameter γ. ¿is method only showed a small
decrease in accuracy, novelty and diversitywhenweused enormous values
of γ. Absolute Discounting Smoothing (ADS) also showed quite stable
results, but the method deteriorates with a high amount of smoothing.
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Figure 5.1: Values of nDCG@100 (top), Gini@100 (middle) and MSI@100 (bot-
tom) for RM2 using AS, ADS, JMS and DPS methods on the Movie-
Lens 100k dataset varying the smoothing parameters. Neighbor-
hoods are computed taking the 50 closest users according to cosine
similarity.
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Figure 5.2: Values of nDCG@100 (top), Gini@100 (middle) and MSI@100 (bot-
tom) for RM2 using AS, ADS, JMS and DPS methods on the Movie-
Lens 1M dataset varying the smoothing parameters. Neighborhoods
are computed taking the 75 closest users according to cosine similar-
ity.
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Figure 5.3: Values of nDCG@100 (top), Gini@100 (middle) and MSI@100 (bot-
tom) for RM2 using AS, ADS, JMS and DPS methods on the R3-
Yahoo dataset varying the smoothing parameters. Neighborhoods
are computed taking the 150 closest users according to cosine simi-
larity.
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Figure 5.4: Values of nDCG@100 (top), Gini@100 (middle) and MSI@100 (bot-
tom) for RM2 using AS, ADS, JMS andDPSmethods on the Library-
¿ing dataset varying the smoothing parameters. Neighborhoods are
computed taking the 50 closest users according to cosine similarity.
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In contrast, the performance of Jelinek-Mercer and Dirichlet priors is
far lower than the rest. Additionally, the computational complexity of the
three collection-based methods is the same. ¿us, there is no reason to
consider using these smoothing methods with RM2 for recommendation.
Additive smoothing also presents another advantage over ADS (and

also over JMS and DPS): it does not depend on collection statistics. ¿is
fact not only preserves the IDF e�ect but also reduces the memory con-
sumption since we do not require to maintain global statistics of the
collection.
To conclude our study of smoothing methods, we wish to emphasize

that these empirical results agree with the axiomatic analysis: additive
smoothing is the preferred method for smoothing the MLE in RM2.

5.3 study of prior estimators

Information retrieval algorithms o en include the notion of a document A prior is a
probability
distribution that
expresses the
beliefs about a
quantity before
considering
evidence.

prior which encodes the importance of a document independently of
the user’s query. ¿ese priors can be used for improving the document
ranking e�ectiveness (Blanco and Barreiro 2008; Brin and Page 1998;
Kraaij et al. 2002; Peng and Ounis 2007). Probably, the most famous
example of a document prior in IR is PageRank, a web-based document
prior that measures the relative importance of a website (Brin and Page
1998).
¿e use of probabilistic models such as RM for recommendation pro-

vides several advantages. One of them is the possibility of introducing
prior probabilities into the recommendation process. In fact, the most
e�ective estimation of relevance models in recommendation is RM2,
which includes a user prior and an item prior. Previous works on the
relevance modeling of recommender systems considered those priors
uniform (Bellogín et al. 2013b; Parapar et al. 2013; Valcarce et al. 2015c,
2016a,d) leaving open the possibility of further studying this aspect. For
this reason, we analyze here the e�ects of the user and the item priors
in the RM2 model. First, we adapt two e�ective document length priors
from IR to RS (Blanco and Barreiro 2008; Kraaij et al. 2002). ¿en, we
propose two new variants of the probabilistic length prior devised by
Blanco and Barreiro (2008). Finally, we conduct a series of experiments
that show that the use of a linear length prior for the users and a proba-
bilistic length prior based on Dirichlet smoothing for the items leads to
signi�cant improvements in terms of ranking accuracy.
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5.3.1 Prior estimators

Equation (5.2) shows the recommendation formula that results from
adapting RM2 to user-based recommendation. ¿is probabilistic model
involves a user prior for each neighbor and an item prior for each candi-
date item to be recommended. In the following, we study the di�erent
prior estimators.

5.3.1.1 Uniform prior (U)

¿is prior is drawn from a uniform distribution. ¿at is to say, every
user/item in the population has the same prior probability. We use this
prior as our baseline.

pU(u) = 1∣U ∣ (5.16)

pU(i) = 1∣I ∣ (5.17)

5.3.1.2 Linear prior (L)

¿e linear document length prior was previously used in information
retrieval (Blanco and Barreiro 2008; Kraaij et al. 2002). Its adaptation to
recommendation boosts those users/items with larger pro�les. In this
way, we are promoting the recommendations that came from the power
users of the system or items with high popularity.

pL(u) = p(u∣C) = ∑i∈Iu r(u, i)∑v∈U ∑ j∈Iv r(v , j) (5.18)

pL(i) = p(i∣C) = ∑u∈Ui r(u, i)∑ j∈I ∑v∈U j r(v , j) (5.19)

5.3.1.3 Probabilistic prior using Jelinek-Mercer smoothing (PJMS)

An e�ective IR prior is the probabilistic document length prior proposed
by (Blanco and Barreiro 2008). It is indirectly based on the document
length. In recommendation, this estimator computes the prior probability
of the users as a function of the statistics of the items they rated. Likewise,
the prior probability of an item is a function of the statistics of the users
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who rated them.¿e original formulation of this prior employs Jelinek-
Mercer smoothing:

pPJMS(u)∝ ∑
i∈Iu

pλ(i∣u)
= ∑
i∈Iu

[(1 − λ) r(u, i)∑ j∈Iu r(u, j) + λp(i∣C)]= (1 − λ) + λ ∑
i∈Iu

p(i∣C)
(5.20)

pPJMS(i)∝ ∑
u∈Ui

pλ(u∣i)
= ∑
u∈Ui

[(1 − λ) r(u, i)∑v∈Ui r(v , i) + λp(u∣C)]= (1 − λ) + λ ∑
u∈Ui

p(u∣C)
(5.21)

5.3.1.4 Probabilistic prior using Dirichlet priors smoothing (PDPS)

In this work, we also propose to explore the previous probabilistic prior
using Dirichlet smoothing:

pPDPS(u)∝ ∑
i∈Iu

pµ(i∣u)
= ∑
i∈Iu

r(u, i) + µp(i∣C)
µ +∑ j∈Iu r(u, j)

= ∑i∈Iu r(u, i) + µ∑i∈Iu p(i∣C)
µ +∑i∈Iu r(u, i)

(5.22)

pPDPS(i)∝ ∑
u∈Ui

pµ(u∣i)
= ∑
u∈Ui

r(u, i) + µp(u∣C)
µ +∑v∈Ui r(v , i)

= ∑u∈Ui r(u, i) + µ∑u∈Ui p(u∣C)
µ +∑u∈Ui r(u, i)

(5.23)
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5.3.1.5 Probabilistic prior using absolute discounting smoothing (PADS)

¿e same prior as before but using absolute discounting smoothing:

pPADS(u)∝ ∑
i∈Iu

pδ(i∣u)
= ∑
i∈Iu

max(r(u, i) − δ, 0) + δ∣Iu ∣p(i∣C)∑ j∈Iu r(u, j)
= ∑i∈Iu max(r(u, i) − δ, 0) + δ∣Iu ∣∑i∈Iu p(i∣C)∑ j∈Iu r(u, j)

(5.24)

pPADS(i)∝ ∑
u∈Ui

pδ(u∣i)
= ∑
u∈Ui

max(r(u, i) − δ, 0) + δ∣Ui ∣p(u∣C)∑v∈Ui r(v , i)
= ∑u∈Ui max(r(u, i) − δ, 0) + δ∣Ui ∣∑u∈Ui p(u∣C)∑v∈Ui r(v , i)

(5.25)

5.3.1.6 Probabilistic prior using additive smoothing (PAS)

Finally, we also test additive smoothing in the probabilistic prior:

pPAS(u)∝ ∑
i∈Iu

pγ(i∣u)
= ∑
i∈Iu

r(u, i) + γ∑ j∈Iu r(u, j) + γ∣I ∣
= ∑i∈Iu r(u, i) + γ∣Iu ∣∑ j∈Iu r(u, j) + γ∣I ∣

(5.26)

pPAS(i)∝ ∑
u∈Ui

p(u∣i)
= ∑
u∈Ui

r(u, i) + γ∑v∈Ui r(v , i) + γ∣U ∣
= ∑u∈Ui r(u, i) + γ∣Ui ∣∑v∈Ui r(v , i) + γ∣U ∣

(5.27)

5.3.2 Experimental evaluation of prior estimators

In these experiments, we use RM2 with the optimal hyperparameters
found in Section 5.2.3. In particular, we use the kNN algorithm with co-
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RM2 Metric ML 100k ML 1M R3-Yahoo LibraryThing

U-U
nDCG 0.4936 0.4242 0.0706 0.2206
Gini 0.2470 0.1352 0.3006 0.0390
MSI 175.94 172.14 303.87 331.05

U-PJMS
nDCG 0.4953* 0.4296* 0.0717* 0.2385*
Gini 0.2637 0.1637 0.4769 0.0319
MSI 180.45* 182.75* 339.65* 417.57*

Table 5.2: Comparison of RM2 method using uniform user and item priors (U-
U) or a uniform user prior and a probabilistic item prior estimate
with Jelinek-Mercer smoothing (U-PJMS) onMovieLens 100k and 1M,
R3-Yahoo and Library¿ing. Statistically signi�cant improvements in
nDCG@100 and MSI@100 according to permutation test (p < 0.05)
are indicated with a star.

sine similarity to compute the user neighborhoods and additive smooth-
ing to smooth the maximum likelihood estimates. We run the experi-
ments on theMovieLens 100k and 1M, theR3-Yahoo and the Library¿ing
datasets and we optimize for nDCG@100.
Our experiments show that the uniform estimator gives the best esti-

mate of the user prior probability. ¿us, giving more importance to some
neighbors and demoting others in the recommendation formula does not
improve the e�ectiveness of the recommendations. ¿is result indicates
that the probabilistic modeling of RM2 is able to tackle the importance
of the feedback of each user with the conditional probability estimates.
Regarding the item prior, we found that the probabilistic item prior

estimate using Jelinek-Mercer smoothing provides the best values of
nDCG@100 on all the datasets. We plot in Figure 5.5, the values of
nDCG@100, Gini@100 and MSI@100 when varying the parameter λ
of the probabilistic item prior. We observe that the optimal λ in terms of
nDCG@100 is around 0.5 and 0.7 which also provides good �gures of
diversity and novelty.
We compare in Table 5.2 the values of nDCG@100, Gini@100 and

MSI@100 between using uniform estimators for the user and item priors
or using a uniform user prior and a probabilistic item prior with Jelinek-
Mercer smoothing. According to the permutation test (p < 0.05), the
improvements in ranking accuracy and novelty are statistically signi�cant
on all datasets. We cannot perform paired statistical tests on Gini because
it is not a pairwise metric, but a global one. Accuracy, diversity and



80 relevance models for user-based recommendation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

nD
CG

@
10

0

λ

MovieLens 100k
MovieLens 1M

R3-Yahoo
Library¿ing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

G
in

i@
10

0

λ

MovieLens 100k
MovieLens 1M

R3-Yahoo
Library¿ing

200

300

400

500

600

700

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M
SI

@
10

0

λ

MovieLens 100k
MovieLens 1M

R3-Yahoo
Library¿ing

Figure 5.5: Values of nDCG@100 (top), Gini@100 (middle) and MSI@100 (bot-
tom) for RM2 using a uniform user prior and a probabilistic item
prior using Jelinek-Mercer smoothing on MovieLens 100k and 1M,
R3-Yahoo and Library¿ing datasets. We vary the parameter λ of
the item prior probability estimator.
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novelty �gures increase when using a probabilistic item prior except on
the Library¿ing dataset where diversity is slightly reduced.
In the light of the results, we can expect small but signi�cant improve-

ments in ranking accuracy, diversity and novelty when using a probabilis-
tic item prior using Jelinek-Mercer smoothing.

5.4 conclusions

We studied the impact of smoothing methods and prior probability esti-
mators in the ranking accuracy, diversity and novelty of relevance models
for recommender systems. In particular, we established a connection
between the IDF e�ect from information retrieval to the concept of nov-
elty in recommendation. ¿en, we analyzed axiomatically how di�er-
ent smoothing methods a�ect the IDF e�ect on RM2. We found that
collection-based methods penalize this e�ect while additive smoothing
neither promotes nor demotes this property. Our experiments con�rmed
that additive smoothing provides better results than collection-based
smoothing methods improving accuracy, diversity and novelty �gures.
We also explored di�erent user and item prior probability estimates.

We identi�ed the uniform estimator as the optimal one for modeling
neighbors prior probabilities. Additionally, the probabilistic estimator
based on Jelinek-Mercer smoothing is an excelent choice for computing
the item prior probability. We found that the use of this prior estimator
can signi�cantly improve the ranking accuracy, diversity and novelty in
most scenarios.
In summary, in this chapter, we studied thoroughly the e�ectiveness

of relevance models to address the top-N recommendation task and
proposed improvements to the original proposal. In the next chapter, we
introduce a di�erent adaptation of relevance models to deal with a novel
recommendation problem.





6
ITEM-BASED RELEVANCE MODELS FOR
LONG TAIL LIQUIDATION

Typically, recommenders tend to promote certain products or services
of a company that are kind of popular among their users. An important
research concern is how to formulate recommender systems centered
on those items that are not very popular, that is, around the long tail
products. A special case of those items are the ones that are the result
of overstocking by the vendor. ¿e excess of inventory or overstock is a
source of revenue loss.
In the previous chapter, we studied the adaptation of relevance models

as a user-based collaborative �ltering technique proposed by Parapar et al.
(2013). ¿is adaptation provides high e�ectiveness �gures in the top-N
recommendation task. We propose a di�erent adaptation of relevance
models to deal with a novel recommendation task. We claim that rec-
ommender systems can also be used to liquidate long tail products and
maximize the business pro�t. ¿us, we formalize this recommendation
task and propose an evaluation protocol. ¿en, we present a method to
tackle this task based on relevance models. Instead of creating user-based
models as in the previous chapter, we build item relevance models that
are able to tackle the long tail liquidation task e�ectively.
¿e formulation of the long tail liquidation task and the solution based

on item relevance models presented in this chapter have been published
(Valcarce et al. 2016d). In this chapter, we present the results of this article
and improve our proposal by using additive smoothing instead of absolute
discounting smoothing.

6.1 introduction

Many e-commerce companies have started to use recommender systems
with the intention of increasing the number of sales. From the business

83
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perspective, recommenders are e�ective tools to improve user satisfaction
and, thus, sales revenue. ¿ere exist several aspects of RS that impact
sales. For instance, Fleder and Hosanagar (2009) analyzed the e�ect of
recommender systems in sales diversity thoroughly. ¿ese authors con-
cluded that recommenders could increase sales if they discount popularity
appropriately generating more diverse suggestions. ¿e key idea is that
recommender systems should not focus solely on popular products but
also on long tail items. Anderson (2008) coined the term long tail to refer
to those less popular products that have a low demand in large catalogs.
In the current context of e-commerce, he declared that promoting long
tail items is crucial for both the user and the business: customers may
discover new and unexpected relevant products while the companies
may sell the majority of their stock. He claimed that a retailing strategy
based on selling a large number of products in small quantities is more
pro�table than a business centered on selling large amounts of a small set
of popular products.
Traditionally, recommendation approaches in the long tail have ex-

plored ways of promoting long tail items in the recommendation process
(Park and Tuzhilin 2008; Yin et al. 2012). However, addressing the long tail
problem in that way is not particularly novel because a high-performance
recommender should recommend both popular and long tail items ac-
cording to what �ts best to the users’ tastes. A growing body of literature
has focused on improving the diversity of recommender systems (Ado-
mavicius and Kwon 2012; Vargas and Castells 2014). Since more diverse
recommendations are expected to lead to larger catalog coverage, more
long tail products are likely to be recommended. In the same way, many
studies have analyzed the importance of novelty in RS. A recommenda-
tion is considered novel when the recommended item is unpopular—long
tail items are, by de�nition, unpopular. Although enhancing diversity
and novelty may increase the number of recommended long tail items,
we argue that there will still be items that vendors will be unable to sell.
Very di�erent factors can produce the long tail nature of a product: it

is rarely sold and therefore has very few ratings, it is sold but it has almost
no ratings given its delicate nature (e. g., sex toys) or the existing recom-
mender barely recommends it. All these aspects make recommending
in the long tail a challenging task. For this reason, e�ectively suggesting
all the products of companies’ catalogs is almost impossible following a
uni�ed approach.
In business terminology, the items from the inventory of a company

that cannot be successfully sold are called excessive stock or overstock.
Overstock can be the result of poor prediction of product demand, but
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it can also be a consequence of market �uctuations. ¿us, an e�ective
process management and a diverse recommender may minimize over-
stock e�ects. However, as we stated before, despite the e�orts oriented
towards improving sales of long tail products, there will be situations
when companies will not be able to sell some items. In this case, we think
that a recommender tailored to the speci�c task of getting rid of long tail
products may provide interesting bene�ts. ¿erefore, in this paper, we
develop a formal recommender model for dealing with these products
which may help companies to liquidate their excessive stock.
First, we state the overstock clearance problem formally, we study

how to evaluate this task and how this process di�ers from the classic
recommendation problem. Next, we propose three methodologies for
estimating which items are part of the excessive stock of businesses given
a standard recommendation dataset. ¿en, we propose to use an item-
based adaptation of relevance models to tackle the overstock liquidation
problem. ¿is approach builds a statistical relevance model of each of
the long tail items which enables the identi�cation of target users for
selling those particular items. Finally, we conduct a series of thorough
experiments to analyze and compare the performance of our proposal
with other collaborative �ltering algorithms. ¿e results con�rm our
intuition that a probabilistic item-based relevance model enables to build
an e�ective recommender to get rid of the long tail products.

6.2 long tail liquidation

¿e objective of a recommender system is to elaborate personalized rank- We propose a novel
recommendation
task applicable to
e-commerce.

ings of products for each user. Every recommendation task involves a set
of products or items (we will use these two terms interchangeably) and
a set of possible customers or users. Recommendation in the long tail
refers to the generation of item recommendations to users including not
only popular products but also long tail ones. However, here we propose
a di�erent approach: for those items in the long tail we want to get rid of,
we want to identify those potential users that will buy the product, even
when that item is not on the top of the users’ preferences. Of course, this
approach does not replace the classic top-N recommendation task. On
the contrary, it is especially designed to address a business concern and
should be used as a complement to current methods in an operational
setting. More speci�cally, we claim that recommenders may help to get
rid of long tail products which can be seen as a proxy representation of
the overstock phenomena.
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Content-based algorithms are usually preferred for improving nov-
elty because they �nd similar items based on content, not on popularity
(Mooney and Roy 2000). However, sometimes the available information
about items is not adequate for using this family of methods. Additionally,
content-based recommenders may lead to over-specialization suggesting
only items that are very similar to those rated by the target user (Ning et al.
2015). ¿erefore, we propose a collaborative �ltering approach specially
designed for the task of getting rid of the long tail.

6.2.1 Problem formulation

We propose a novel recommendation problem: instead of generating
the best item suggestions for each user, we aim to �nd the best users
for each long tail product. ¿e inversion of the classic recommendation
task (recommending users to items in the place of suggesting items to
users) was recently studied to improve sales diversity. Vargas and Castells
(2014) explored the inverted task and proposed a probabilistic approach
that enhances sales diversity. Still, in the end, they intended to improve
the original recommendation problem (suggesting items to users). In
contrast, our intention is to address a very di�erent problem: how to get
rid of the excessive stock suggesting the most suitable users for each item.
¿e traditional top-N recommendation task can be expressed as �nding

a scoring function s ∶ U × I → R such that, for each user u, we can
generate a ranked list of n items, Lnu ∈ In, sorted by decreasing score
order. In contrast, we de�ne the long tail liquidation task as follows:

De�nition (Long tail liquidation). Let I ′ ⊂ I be the subset of items that
are the part of the catalog that forms the products we want to liquidate.
¿e objective of the long tail liquidation task is to �nd a scoring function
s ′ ∶ I ′ ×U → R such that, for each item i ∈ I ′, we can build to a ranked
list of n users, Lni ∈ Un, that are most likely interested in such item i.

Note that in the long tail liquidation task the recommendermay use the
ratings emitted to all the items, but we are only interested in generating
recommendations for the overstock products.
Sales on e-commerce sites depend on multiple factors. Seasonality is

especially relevant because some products become outdated while new
items appear. Additionally, other factors such as price �uctuations or
changes in the users’ needs may a�ect sales numbers. To avoid these
issues which are out of the scope of this chapter, we propose to liquidate
stock at the end of the season.¿erefore, the recommendation algorithms
should use the available data of the season to generate stock liquidation
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suggestions at the end of this period. ¿e interests and needs of the users
should not change extremely during the season and price should be
managed according to the liquidation policy of the company. In this way,
we can e�ectively apply a collaborative �ltering approach without using
outdated information from past seasons.

6.2.2 Long tail estimation

To the best of our knowledge, there is no public dataset available for We propose three
strategies to
estimate overstock
items from a
rating a dataset.

research that speci�es excessive stock. Since we lack of datasets with such
kind of information, we designed three approaches to estimate the subset
of overstock items. We should note that, for this purpose, we use all the
information in the datasets (without training and testing splits) because
we are merely designating which items are excessive stock. ¿e splits of
the collections will be used to train and evaluate the recommenders. Next,
we present three strategies to discriminate long tail products.

6.2.2.1 Least Rated Products

We can argue that the least rated items conform the set of overstock prod-
ucts we want to get rid o� because few users have shown interest in them.
¿is is the most common approach used in recent studies (Cremonesi
et al. 2010; Yin et al. 2012). ¿us, given the threshold c1 we can select a
subset of items that have less than c1 ratings:

I ′ = {i ∈ I ∣ ∣Ui ∣ < c1} (6.1)

We use a �xed threshold instead of relying on a percentage (e. g., taking
the 5% of least rated products) because in this way we can assure that
the selected items are rarely sold (if we choose a proper threshold). In
contrast, there will always be items in the bottom percentiles, but we
cannot assure that those are long tail items, only that they are the least
sold in the dataset.

6.2.2.2 Lowest Rated Products

Another approach to the estimation of the overstock products is to sup-
pose that the items with the lowest ratings are the ones that cannot be
sold by the company. We only need to choose a value for c2 to specify the
threshold of what is a low rating.

I ′ = {i ∈ I ∣ ∑u∈Ui ru,i∣Ui ∣ < c2} (6.2)
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Again, the same motivation as in the previous strategy favors the use
of a �xed threshold instead of a percentage. Note that it is not advisable
for a traditional recommender system to recommend low-quality items
(probably those with low ratings) to their users. However, in this paper, we
are tackling a very di�erent problem: we want to get rid of long tail items,
no matter the cost. ¿us, we are devising a recommendation technique
that is able to select which users are the potential buyers of a long tail item.
We leave up to the manager to decide whether liquidating items with very
low ratings is a good idea (perhaps o�ering a substantial discount). In
this work, our objective is to present a recommendation algorithm that is
capable of doing so if needed.

6.2.2.3 Least Recommended Products

Finally, according to Fleder and Hosanagar (2009) who have pointed
out the e�ect of recommendations diversity in e-commerce sales, we can
argue that those products that a standard recommender system does not
suggest are not going to be sold. ¿us, given a particular threshold c3, we
can construct a set of items that are not present in the top c3 results of
any user recommendation list:

I ′ = {i ∈ I ∣ i ∉ Lc3
u , ∀u ∈ U} (6.3)

6.3 item liquidation using relevance models

Recently, Parapar et al. (2013) adapted relevance models to collaborative
�ltering achieving high accuracy �gures. ¿e key idea is to adapt the
pseudo-relevance feedback paradigm to recommendation. ¿is involves
mapping a triadic space (queries, documents and terms) to a dyadic one
(user and items). Queries and documents are both mapped to users while
terms play the role of items. ¿us, instead of expanding a query with new
terms, user pro�les are expanded with items from a pseudo-relevant set.
We can compute this set by calculating the neighborhood of the target
user.
In this section, we propose the construction of a relevance model for

each long tail product. We intend to expand item pro�les with relevant
users using information from similar items. ¿e objective is to estimate
the probability of a user u under the relevancemodel of an item i, p(u∣Ri).
Note that our approach to collaborative �ltering recommendation using
RM is not just the item-based version of the model proposed by Parapar
et al. (2013). In that model, the authors built a relevance model for each
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user and estimated the probability of relevance of each item, p(i∣Ru).
We cannot apply this model directly to the long tail liquidation task
because probabilistic relevance estimates across users are not comparable.
Given two users u and v and the long tail item i we cannot generate
recommendations of users to liquidate that item sorting p(i∣Ru) and
p(i∣Rv) sincewe are comparing estimates fromdi�erent relevancemodels.
Likewise, we cannot apply Bayes’s ¿eorem to get the Bayesian inversion
because the estimation of p(Ri ∣u) o p(R j∣u) does not make sense within
this probabilistic framework. ¿erefore, we need to build a relevance
model for each item if we want to model long tail items and choose the
best users for them.
Lavrenko and Cro (2001) proposed two methods for approximating

a relevance model: assuming independent and identically distributed
sampling (RM1) or conditional sampling (RM2). In this paper, we focus
on the latter because it has shown better results in our experiments. We
refer to the adaptation of the Relevance Model 2 (RM2) model to the long
tail liquidation problem as IRM2 (Item Relevance Modeling 2).

6.3.1 IRM2 derivation

IRM2 aims to build a relevance model Ri for each long tail product i ∈ I ′ We construct an
item-based
relevance
probabilistic
model.

of the collection. In this way, we can estimate the relevance of each user
for a given long tail product. ¿us, in our stock liquidation task, we can
de�ne an item relevance model as a formalism that enables to compute the
probability that a user u rates a long tail item i, p(u∣Ri). We ignore which
users will rate a particular item, but we can use the history of ratings of
that item and other relevant items to estimate it.
We assume that the relevance model Ri generates the long tail item

i but also a set of relevant items Ji . Figure 6.1 illustrates how the item i
and the set of relevant items Ji are random samples from an unknown
relevance model Ri . However, the sampling process for the target item
i can be di�erent from the sampling for the relevant products Ji . With
these assumptions, we can estimate p(u∣Ri) for each user u ∈ U .
First, we sample the item i from the underlying relevance model

Ri . ¿is process consists in repeatedly sampling k users v1 . . . vk from
Ri . ¿ese users correspond to the clients that bought the item: Ui ={v1 . . . vk}. Since we sample k users for item i, k = ∣Ui ∣. To estimate
p(u∣Ri), which is unknown, we rely on what we observed before: the
set of users Ui . We need to answer what is the probability that the next
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Ri

i

Ji

Figure 6.1:¿e item i and the set of relevant items to that item J i are samples of
the same model R i (although the sampling process may vary).

user we sample from the relevance model will be u. Formally, we can
formulate this question in the following way:

p(u∣Ri) ≈ p(u∣v1 . . . vk) (6.4)

Applying the de�nition of conditional probability, we can reformulate
the previous equation in terms of the joint probability of observing the
user u along with users v1 . . . vk divided by the joint probability of ob-
serving users v1 . . . vk . Note that we can safely ignore the denominator
because it remains constant for the same item i (it would not a�ect the
�nal ranking):

p(u∣Ri) ≈ p(u, v1 . . . vk)
p(v1 . . . vk) ∝ p(u, v1 . . . vk) (6.5)

Following on the conditional sampling method proposed by Lavrenko
and Cro (2001), we estimate the joint probability of observing the user
u along with the users v ∈ Ui based on the ratings distribution of the
relevant items j ∈ Ji . We present a diagram of this sampling scheme in
Figure 6.2.
First, to estimate the relevance model of the item i, Ri , we pick a user u

given the prior probability p(u). ¿is user u will condition the selection
of item distributions from which we will sample the users v1 . . . vk :

p(u∣Ri)∝ p(u, v1 . . . vk) = p(u)∏
v∈Ui

p(v∣u) (6.6)

To estimate the conditional probability p(v∣u), we repeat the following
process k times: we pick an item distribution j according to p( j∣u) and,
then, we sample a user v ∈ Ui from the item distribution jwith probability
p(v∣ j). Note that this sampling strategy considers that users v1 . . . vk
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v1 vk
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Figure 6.2: Conditional sampling used in IRM2.

are sampled independently of each other, but they are dependent on u.
Applying the law of total probability we obtain the following:

p(v∣u) =∑
j∈J i

p(v∣ j, u) p( j∣u) (6.7)

If we assume that users v ∈ Ui become independent of u a er choosing
an item distribution j ∈ Ji , we can simplify Equation (6.7) obtaining the
following estimate:

p(v∣u) =∑
j∈J i

p(v∣ j) p( j∣u) (6.8)

Applying Bayes’ ¿eorem, we can estimate p( j∣u) as follows:
p( j∣u) = p(u∣ j) p( j)

p(u) (6.9)

Finally, plugging Equations (6.8) and (6.9) into Equation (6.6), we
obtain the �nal IRM2 estimate:

p(u∣Ri)∝ p(u)∏
v∈Ui

∑
j∈J i

p(v∣ j) p(u∣ j) p( j)
p(u) (6.10)

To estimate the probability of user u under the relevance model Ri ,
IRM2 iterates over the users who rated that item, Ui , and over the set
of relevant items to that item, Ji . For the sake of simplicity, we consider
prior probability estimates, p(u) and p( j), uniform. However, these
priors open the door to explore new estimations that may improve the
performance or even include business aspects.
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With the estimate from Equation (6.10) we can generate the list of n
recommendations Lni for each long tail item i ∈ I ′ by sorting users u ∈ U
by decreasing estimated relevance p(u∣Ri).
Additionally, we need to provide two �nal estimation details. ¿e �rst

question is which items conforms the set of relevant items Ji . We explain
this issue in Section 6.3.2. ¿e other issue is how to calculate the probabil-
ity of a user u given the item distribution j, p(u∣ j). We use the maximum
likelihood estimate of a multinomial distribution over the ratings:

pml(u∣ j) = ru, j∑v∈U j rv , j
(6.11)

Since this estimate su�ers from data sparsity, we need to use a smooth-
ing method. We discuss smoothing strategies in Section 6.3.3.

6.3.2 Computing the set of pseudo-relevant items

In Equation (6.10), we can observe that IRM2 leverages the information
from a set of relevant items to estimate the users’ relevance. Since we
ignore which items are relevant to some item i and we do not have explicit
relevance feedback information,we need to compute approximation using
the available data. We assumed that the similar items to the item i are
the pseudo-relevant items for the relevance model Ri . We use the term
pseudo-relevant because we want to emphasize that these items are an
approximation of the real relevant items.
We employ clustering techniques for computing the set of pseudo-

relevant items based on the ratings. In our case, we used the k-NN algo-
rithm with cosine similarity. ¿e cosine similarity s between two items i
and j is given by the following equation:

cosine(i , j) = ∑u∈Ui∩U j r(u, i) r(u, j)√∑u∈Ui r(u, i)2√∑u∈U j r(u, j)2 (6.12)

6.3.3 Smoothing method

To avoid zeros in Equation (6.11), we smooth the maximum likelihood es-
timate with a backgroundmodel which, in our case, is the user probability
in the collection:

p(u∣C) = ∑ j∈I ru, j∑v∈U , j∈I rv , j
(6.13)
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¿e impact of smoothing methods for RM has been studied before in
the context of the top-N recommendation task Valcarce et al. 2015c, 2016a.
Among collection-based methods, absolute discounting smoothing tends
to work best in top-N recommendation (Valcarce et al. 2015c); however,
additive smoothing (a collection-agnostic method) provides better results
because of its theoretical properties (Valcarce et al. 2016a). In previous
work, we used absolute discounting smoothing to deal with the long tail
liquidation task (Valcarce et al. 2016d). In contrast, in this chapter, we
use additive smoothing which provides better e�ectiveness �gures in the
long tail liquidation task.

pγ(u∣i) = r(u, i) + γ∑v∈Ui r(v , i) + γ ∣U ∣ (6.14)

We use the above estimator to calculate p(u∣ j) and p(v∣ j) in the com-
putation of the item relevance model in Equation (6.10).

6.4 experiments

We conducted a series of experiments to analyze the performance of
our proposal, IRM2, for the novel task of liquidating long tail items. In
this section, we describe the set-up of the experiments and present and
discuss the results.

6.4.1 Datasets

We conducted our experiments on three di�erent collections. On the one
hand, we used the MovieLens 1M and the Library¿ing datasets with
explicit feedback in the form of ratings. On the other hand, we employed
the Ta-Feng dataset with purchase information over a four-month period
(from November 2000 to February 2001 inclusive).
Each collection was divided into training and test subsets. For the

MovieLens and Library¿ing datasets, we included for each item 80%
of its ratings in the training subset. ¿is partition scheme ensures that
each item has ratings both in the training and the test sets enabling to
evaluate the performance of the recommendation algorithms on all the
long tail items. For the Ta-Feng dataset, we used the data from the three
�rst months to train the recommendation algorithms and the last month
as the test set.
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6.4.2 Baselines

To assess the performance of our proposed algorithm, we must compareWe adapt top-N
recommenders to
the long tail item

liquidation task as
baselines.

it with a set of representative baseline recommender systems. To the best
of our knowledge, no speci�c algorithm exists for the novel task we are
proposing. ¿erefore, we use standard collaborative �ltering algorithms
from the state of the art. Since these methods are designed for computing
item recommendations for users, we adapt them to the task of long tail
liquidation. We describe these adaptations together with the method.
Recommending long tail items is di�cult, and the collections we built
are estimations of the excessive stock. ¿erefore, facing this novel task, it
is important to use a great variety of algorithms which employ di�erent
strategies in order to make a complete comparison between our proposal
and very diverse approaches. We describe the baselines below.

6.4.2.1 Random

¿is strategy is not a recommender, but a basic baseline since it should
yield the worst performance.¿is algorithm simply recommends random
users to long tail items.

6.4.2.2 Popularity

Again, this is not a proper recommender algorithm, but a naïve approach
to compare more sophisticated methods. ¿is strategy chooses the most
popular users for all the items. In other words, for each item, we rec-
ommend the same set of users: the ones who have more ratings in the
training set.

6.4.2.3 User-based and item-based kNN

A classic collaborative �ltering technique consists in computing a set
of k nearest neighbors for each user or item (Ning et al. 2015). ¿ese
neighborhood relationships are computed using pairwise similarities. We
used Pearson’s correlation coe�cient for this purpose because it is the
most common similarity for this method Ning et al. 2015. Once we have
calculated the neighborhood, the recommender aims to predict the rating
that the target user would emit based on the ratings of the neighbors.
User-based (kNN-UB) and item-based (kNN-IB) versions are presented
in Equations (6.15) and (6.16), respectively.

r̂(u, i) = ∑v∈Vu ρ(u, v) r(v , i)∑v∈Vu ∣ρ(u, v)∣ (6.15)
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r̂(u, i) = ∑ j∈J i ρ(i , j) r(u, j)∑ j∈J i ∣ρ(i , j)∣ (6.16)

where ρ(i , j) is the Pearson’s correlation coe�cient between items i and
j and Ji indicates the neighborhood of item i. Likewise, ρ(u, v) is the
Pearson’s similarity between users u and v and Vu represents the neigh-
borhood of user u.
To recommending users to long tail items, we generate a recommenda-

tion list Li for each i ∈ I ′. ¿is list contains those users u ∈ U with the
largest predicted rating, r̂(u, i).
6.4.2.4 User item relevance (UIR)

UIR is a probabilistic recommendation technique (Wang et al. 2006).
Although it was proposed for implicit feedback datasets, their use with
explicit feedback is straightforward. We used the item-based version
(UIR-IB) because it outperformed the user-based counterpart in all our
experiments. Despite being an item-based approach, UIR-IB still com-
putes an estimate of the relevance of an item given a user model. ¿e
formula for estimating the score of the item i for the user u under the
UIR-IB model is given by:

score(u, i)∝ ∑
j∈Iu

Ui∩U j≠∅

log(1 + (1 − λ) pml( j∣i , r)
λ p( j∣r) )+log p(i∣r) (6.17)

where the sum is over the items rated by the target user that were rated
by other users who also rated the target item i. ¿e probability of an item
i assuming relevance is computed as the number of users that rated that
item:

p(i∣r)∝ ∣Ui ∣ (6.18)

and the maximum likelihood estimate of an item j given the target item i
and assuming relevance is proportional to the number of users that rated
both items:

p( j∣i , r)∝ ∣Ui ∩ U j∣∣Ui ∣ (6.19)

¿e list of recommendations for each long tail item i ∈ I ′, Li , is gener-
ated sorting all the users u ∈ U by decreasing value of score(u, i).
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6.4.2.5 Hitting time (HT)

Yin et al. (2012) designed this recommender system to deal with the long
tail. ¿e authors argued that most collaborative �ltering algorithms are
not able to recommend long tail items due to data sparsity. ¿e authors
overcame this problem modeling the recommendation task as a random
walk in a graph. HT builds an edge-weighted undirected graph where
the nodes are items and users. Each rating is a weight connecting two
nodes (the corresponding user and item). Given that graph, the authors
compute the hitting time from the item i to the target user q, H(q∣i),
which is the average number of steps that a random walker starting from
the node i will take to reach the node q.
Given the target user q, hitting time is initialized for each node x with

HT0(q∣x) = 0. ¿en, for each user node u and each item node i, the
following is computed iteratively (τ iterations):

HTt+1(q∣i) = 1 + ∑
u∈Ui

HTt(q∣u) pi ,u (6.20)

HTt+1(q∣u) = 1 + ∑
i∈Iu

HTt(q∣i) p(u, i) (6.21)

where:

p(u, i) = r(u, i)∑ j∈Iu r(u, j) (6.22)

pi ,u = r(u, i)∑v∈Ui r(v , i) (6.23)

¿ose items whose hitting time with respect to q is the smallest are
the candidates for recommendation for the target user q. In the long tail
liquidation task, we build the list of recommendations with those users
with the smallest hitting times to the target long tail item.

6.4.2.6 PureSVD

Matrix factorization techniques are a very fertile area of research.Multiple
approaches to collaborative �ltering based on low-rank approximations
have been developed (Koren and Bell 2015). Here, we chose PureSVD
as a representative method of this family because it a simple technique
specially oriented to the top-N recommendation problem which has
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achieved high values of accuracy (Cremonesi et al. 2010). Also, it has
demonstrated to be capable of recommending long tail items e�ectively
(Cremonesi et al. 2010). PureSVD computes the standard singular value
decomposition of the ratings matrix. We estimate the score for a user
u and an item i as the dot product between the u-th user latent vector
and the i-th item latent vector. With these scores, we can build recom-
mendation lists for the long tail liquidation task in the same way as we
have done for the neighborhood methods. Section 12.1.2.1 describes this
technique in more detail.

6.4.2.7 Sparse linear methods (SLIM)

Finally, we selected a method that learns an item-item similarity matrix
to generate recommendations. More speci�cally, SLIM computes a sparse
aggregation coe�cient matrix (Ning and Karypis 2011). ¿e score of the
item i for the user u is estimated as the dot product between the user
vector of ratings and the i-th column vector of the item-item similarity
matrix. For the long tail liquidation task, the predicted score r̂(u, i) can
be used for generating recommendation lists in the same way as we
have done for the neighborhood and PureSVD methods. Section 12.1.1.1
contains the details of this recommendation method.

6.4.3 Evaluation protocol

Since in this paper we are dealing with a novel recommendation task, we
need to discuss the evaluation protocol. In this task, we focus on ranking-
oriented metrics for assessing the performance of recommenders because
our primary concern is to liquidate excess inventories. We consider that
a recommendation is accurate if and only if it leads to a purchase. ¿e
evaluation in this scenario demands data about sales and stocking in-
formation that unfortunately is not always available. ¿erefore, on the
ratings-based datasets, we derive purchase information assuming that
each rating represents an acquisition: the user u bought the item i if there
exists a rating r(u, i).
We propose the TestUsers protocol stemming from the TestItems ap-

proach (Bellogín et al. 2011). TestUsers consists in recommending, for
each long tail item, all the users who have rated some item in the test set
but have not rated the target long tail item.
In the long tail liquidation task, we are concerned about precision-

oriented metrics.¿erefore, in the next experiments, we report the values
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Dataset Least rated Lowest rated Least recommended

MovieLens 1M 329 (8.88%) 502 (13.55%) 1003 (27.06%)
Library¿ing 6865 (18.44%) 165 (0.44%) 16496 (44.31%)

Table 6.1:Number and ratio of items identi�ed as long tail products on the
MovieLens 1M and Library¿ing datasets with the three proposed
strategies.

of nDCG@100. Since the trends are the same, for the sake of brevity we
do not report the values of precision at 100.

6.4.4 Experiment with ratings

We evaluate IRM2 against the baselines on the MovieLens 1M and Li-We �rst estimate
overstock items

from ratings-based
datasets.

brary¿ing datasets. We choose the long tail items following the three
approaches described in Section 6.2.2. In particular, we take those items
with less than 6 ratings (least rated strategy), those with less than a 2.5
average rating in a scale from 1 to 5 (lowest rated strategy) and those who
do not appear in the top 50 list of the user-based neighborhood recom-
mender using 100 nearest neighbors according to Pearson’s correlation
coe�cient (least recommended strategy). Table 6.1 shows the number
of items selected in each approach. We consider that this selection of
items is reasonable as well as diverse which may be useful to assess the
recommendation approaches in the stock liquidation task.
We optimize the parameters of all the recommendation algorithms

with respect to nDCG@100. For the neighborhoods approaches (kNN-
UB, kNN-IB and IRM2), we tuned k from 50 to 500 in steps of 50. ¿e
parameter λ in UIR-IB was tuned from 0.0 to 1.0 in steps of 0.1. ¿e
number of iterations τ in the HT algorithm was tuned from 5 to 35 in
steps of 10. ¿e number of dimensions d in PureSVD was tuned from 50
to 500 in steps of 50. ¿e parameters α and β in SLIM were tuned from
0 to 5 in steps of 0.25. Finally, for IRM2, we selected the best smoothing
parameter γ from {0.001, 0.01, 0.1, 1}.
Tables 6.2 and 6.4 show the nDCG@100 values following the three long

tail strategies on the MovieLens and Library¿ing datasets, respectively.
We use the permutation test to determine whether the improvements in
terms of nDCG@100 were statistically signi�cant at a signi�cance level
of 0.05. Additionally, for the sake of reproducibility, Tables 6.3 and 6.5
gather the best values of the parameters of the di�erent recommendation
approaches.
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Method Least rated Lowest rated Least recommended

Random 0.0025 0.0065 0.0045
Pop 0.1335acd 0.1216acd 0.1331acd

kNN-UB 0.0000 0.0072 0.0067
kNN-IB 0.0000 0.0134ac 0.0083a

UIR-IB 0.1418acd 0.1234acd 0.1348abcd

HT 0.1473acd 0.1406abcd e 0.1479abcd e

PureSVD 0.1043acd 0.2573abcd e f 0.2070abcd e f

SLIM 0.1948acd g 0.3231abcd e f g 0.2468abcd e f g

IRM2 0.2355abcd e f g 0.3151abcd e f g 0.2524abcd e f g

Table 6.2: Values of nDCG@100 for each recommender approach on the Movie-
Lens 1M dataset considering the long tail items those products with
less than 6 ratings (least rated), those with an average rating less than
2.5 (lowest rated) and those that are not recommended in the top 50
(least recommended). Statistically signi�cant improvements accord-
ing to Wilcoxon signed-rank test (p < 0.05) with respect to Random,
Popularity, kNN-UB, kNN-IB, UIR-IB, HT, PureSVD, SLIM and
IRM2 are superscripted with a, b, c, d, e, f , g, h and i, respectively.
Best value for each strategy is printed in bold.

Even though the results vary among strategies and datasets, we can �nd
some general patterns. Although all the tested baselines are designed for
dealing with the traditional recommendation task—suggesting items to
users—the results show that some techniques are good approaches to the
task of recommending users to long tail items. However, our proposed
method IRM2 is, in general, the best option for the long tail liquidation
task.
As it was expected, Random and Popularity methods behave poorly in

this task. Nevertheless, the classic neighborhood methods (kNN-UB and
kNN-IB) perform worse than these naïve strategies in some experiments.
¿is result may indicate that traditional neighborhood algorithms are not
suitable for the task we are proposing in this chapter.¿e reason lies in the
fact that computing neighborhoods for long tail items is di�cult because
they have very few ratings. Pairwise similarities, such as Pearson’s corre-
lation coe�cient, provide bad results when only a few co-occurrences
between vectors are available. ¿e item-based approach (kNN-IB) per-
form equal or better than the user-based counterpart (kNN-UB) in all
the tested scenarios. ¿us, not only �nding neighborhoods for long tail
items is challenging in this scenario; �nding user neighborhoods who
have information about long tail items is even more problematic. It has
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Method Least rated Lowest rated Least recommended

Random − − −
Pop − − −
kNN-UB k = − k = 500 k = 450
kNN-IB k = − k = 50 k = 50
UIR-IB λ = 0.1 λ = 0.1 λ = 0.1
HT τ = 15 τ = 15 τ = 15
PureSVD l = 50 l = 150 l = 100
SLIM β = 5, α = 0.25 β = 5, α = 1 β = 5, α = 0.25
IRM2 k = 150, γ = 10−3 k = 50, γ = 10−3 k = 150, γ = 10−3

Table 6.3:Hyperparameters of each recommender system reported in Table 6.2
on MovieLens 1M.

Method Least rated Lowest rated Least recommended

Random 0.0024 0.0002 0.0030
Pop 0.0408acd 0.0499acd 0.0455acd

kNN-UB 0.0018 0.0039 0.0026
kNN-IB 0.0255ac 0.0061 0.0169ac

UIR-IB 0.0890abcd 0.0894abcd 0.0876abcd

HT 0.1431abcd e g 0.1451abcd e g 0.1477abcd e g

PureSVD 0.0879abcd 0.0919abcd 0.1065abcd e

SLIM 0.2004abcd e f g 0.2029abcd e f g 0.2495abcd e f g

IRM2 0.2120abcd e f gh 0.2108abcd e f g 0.2522abcd e f g

Table 6.4: Values of nDCG@100 for each recommender approach on the Li-
brary¿ing dataset with the same notation used in Table 6.2.

been acknowledged that for the traditional recommendation task, item-
based approaches tend to achieve better accuracy �gures (Cremonesi
et al. 2010; Ning et al. 2015). Under this new paradigm, where we want to
recommend users to items, we observed that the item-based approaches
are also desirable.
UIR-IB performance is acceptable compared to the aforementioned

baselines. ¿is may happen because UIR is based on the probability
ranking principle, as RM and our method IRM2. Additionally, UIR also
uses smoothing to deal with data sparsity which may explain the good
results in the tested scenarios. However, their performance is much lower
than IRM2.¿is result was expected because UIR ignores the value of the
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Method Least rated Lowest rated Least recommended

Random − − −
Pop − − −
kNN-UB k = 50 k = 350 k = 400
kNN-IB k = 450 k = 100 k = 50
UIR-IB λ = 0.1 λ = 0.1 λ = 0.1
HT τ = 15 τ = 15 τ = 15
PureSVD l = 500 l = 300 l = 500
SLIM β = 2.5, α = 1 β = 2.5, α = 0.5 β = 2.5, α = 1
IRM2 k = 150, γ = 10−3 k = 150, γ = 0.1 k = 150, γ = 10−3

Table 6.5:Hyperparameters of each recommender system reported in Table 6.4
on Library¿ing.

ratings since it was originally designed for dealing with implicit feedback
modeling the co-occurrences of ratings. We also tested the user-based
version of UIR (Wang et al. 2006), but the results were unsatisfactory, as
with kNN-UB.
Hitting time shows good values of nDCG@100 in the experiments. We

think that this is motivated by the fact that HT computes the average
number of steps that a randomwalker needs to go from one node to other
in the graph (Yin et al. 2012). ¿is algorithm can generate recommenda-
tions for both users and items because all of them are nodes of the same
graph connected by ratings—this model does not establish any di�erence
between users and items. ¿e symmetry of this algorithm between both
entities is crucial in the quality of the recommendations for this novel
task.
Even though HT outperforms PureSVD in four out of the six scenar-

ios, the MF method shows high �gures of nDCG@100. ¿is approach
computes a full singular value decomposition of the user-item matrix
(Cremonesi et al. 2010). If we transpose this matrix and calculate a new
decomposition, we will obtain the same user and item latent factors, but
in switched places. ¿us, this technique is also symmetric with respect
to users and items. We consider that this property is responsible for the
good results of this method for the stock liquidation task.
¿e strongest baseline is SLIM. In fact, in one scenario (MovieLens

1M considering long tail items those with a low average rating), SLIM
outperformed IRM2. ¿is method produces scores for user and items.
¿us, the creation of a recommendation list in this task is done by sorting
users by decreasing score according to one item. We think that SLIM



102 item-based relevance models for long tail liquidation

produces very good recommendations since the method needs no adap-
tation to the stock liquidation task. Additionally, we can consider SLIM
as an item-based recommender because, in the end, it is based on com-
puting an item-item similarity matrix (Ning and Karypis 2011). Again,
item-based approaches demonstrate superior performance compared to
user-based ones. Although each column of the item-item similarity ma-
trix can be computed independently, the learning process uses the global
information of the user-item rating matrix. In contrast, IRM2 employs
local information relying solely on the ratings of the item neighborhoods.
¿is di�erence becomes crucial when scalability is a necessity.
Finally, IRM2 shows the best results in all the experiments except for

the lowest rated scenario on the MovieLens dataset. Still, in this case, it
was the second bestmethod for the long tail liquidation task.We observed
that the smoothing parameter γ is very stable within collections while
the number of neighbors k is more dependent on the recommendation
situation. However, the perfect optimization of these parameters is not
crucial because the di�erences in terms of nDCG@100 are very slight
with nearly-optimal parameters.
¿e notable �gures of IRM2 can be explained studying the roots of

the algorithm. For each long tail item, this method computes an item
relevance model based on the item neighbors. ¿en, we can estimate the
relevance of each user for a given itemmodel. Within this Bayesian frame-
work, the relevance of an item given a user is di�erent of the relevance of
a user given an item.¿e best baselines were those that are item-based
methods or symmetric between users and items (i. e., they produce the
same result if we switch users and items). IRM2 yields better results than
these methods because it copes with the new task by building a relevance
model in the item space.

6.4.5 Experiment with purchases

In the previous experiment, we treated user ratings as purchases. ¿isWe now use a
dataset of
purchases.

may raise doubts about the applicability of our approach. ¿us, we also
tested IRM2 and the baselines on a sparser dataset that contains purchase
information: the Ta-Feng dataset. We used the data from the three �rst
months to train the recommendation algorithms and the last month
as the test set. ¿is temporal split also helps to model a more realistic
scenario: we use the information from a short period to liquidate the least
sold products at the end of this period.
Since we have sales information, we designed our experiment with the

objective of liquidating those products with a small number of sales. We
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Figure 6.3: Values of nDCG@100 on the Ta-Feng dataset for liquidating long tail
items using Random, Popularity, kNN-UB, kNN-IB, UIR-IB, HT,
PureSVD, SLIM and IRM2 algorithms. Long tail items are those
with no more than n buyers with n ∈ [1, 10].

took those items with no more than n purchases where n ranged from 1
to 10. Instead of using user-item ratings, the recommendation algorithms
used the number of purchases as training data.
Figure 6.3 shows the nDCG@100 values of IRM2 and the baselines on

this dataset for liquidating those items that have no more than n buyers
(n ∈ [1, 10]). To avoid over�tting, we used the optimal parameters for
n = 10. We report their values in Table 6.6.
No algorithm provided valid recommendations for those items that

were bought by only one customer except for the Random approach.
¿e reason is that collaborative �ltering techniques need training data
of an item to be able to recommend it. In the case of products bought
once, we either have a purchase in the training set or the test set. If the
purchase is in the training set, there is no relevance judgment le to
evaluate the recommendation. In contrast, if the purchase is in the test
set, we have no training data to generate recommendations. ¿us, only
the Random technique was able to generate recommendations in this
scenario. ¿e Popularity approach might also have worked because it is
not a collaborative �ltering technique; however, in this very sparse dataset
popularity was not a useful approach.
Disregarding the singular point of only one buyer, IRM2 outperforms

the rest of baselines consistently.¿e relative performance of some recom-
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Method Ta-Feng

Random −
Pop −
kNN-UB k = −
kNN-IB k = 50
UIR-IB λ = 0.1
HT τ = 15
PureSVD l = 300
SLIM β = 2.5, α = 0.25
IRM2 k = 300, γ = 0.1

Table 6.6:Hyperparameters of each recommender system reported in Figure 6.3
on the Ta-Feng dataset.

menders varies when we change the threshold of the number of buyers.
For instance, SLIM and HT are the next best algorithms. However, IRM2
can deal e�ectively with either a high sparsity scenario or a more un-
complicated one. ¿is is even more remarkable given the fact that in this
scenario we do not have ratings. ¿erefore, our proposal is not in optimal
conditions because IRM2 exploits this graded information meanwhile
strong baselines such as SLIM and UIR-IB ignore that.

6.5 related work

While previous research has studied the e�ect of recommender systems
in sales, to the best of our knowledge, there is no previous work on the
explicit task of recommending users to long tail items. For addressing the
long tail phenomenon, some research e�orts have focused on developing
e�ective recommendation algorithms that are capable of suggesting long
tail items to users (Cremonesi et al. 2010; Yin et al. 2012). However, there
is no previous work on how to deal with those items that recommender
systems are unable to sell.¿ese long tail items are key to increase revenue
(Anderson 2008; Yin et al. 2012). In this chapter, we have formulated the
problem of stock liquidation within a recommendation framework with
the aim of maximizing income. A considerable amount of literature has
focused on improving revenue from di�erent perspectives. We describe
some of the most representative works in this area below.
Several authors have insisted on the importance of sales diversity for

maximizing pro�t (Anderson 2008; Fleder and Hosanagar 2009; Vargas
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and Castells 2014) and this is currently a very active topic of research
within the �eld of recommender systems. Fleder and Hosanagar (2009)
simulated the e�ects of recommenders and concluded that classic sys-
tems reduce sales diversity reinforcing the “blockbuster nature” of media
(i.e., promoting popular products) . ¿ey also studied whether person-
alization may create segregation and they �nd out that recommenders
can help users widen their interests and create commonality (Hosanagar
et al. 2014). Although users can discover new products thanks to recom-
menders, they tend to �nd the same popular items. ¿is fact is especially
present in collaborative �ltering approaches where the system cannot
recommend items for which it has no information (Mooney and Roy
2000). ¿ese algorithms �nd popular items in the user neighborhood (or
popular users across similar items). ¿us, niche products or new items
are hard to recommend.
In the last years, several authors have focused on improving sales diver-

sity as well as novelty in recommender systems. ¿e probabilistic frame-
work proposed by Vargas and Castells (2014) is especially relevant to our
paper because they also examined the inversion of the recommendation
task although with a di�erent goal in mind. Other approaches reorder the
output ranking of standard recommenders taking into account diversity
at the expense of a reduced loss in accuracy (Adomavicius and Kwon
2012). However, for the proposed task, diversity in the recommendations
will not help to increase the success rate in the suggestion of users to
items. In this task, we are interested in searching for users that would
buy surfeit products (i.e., producing high precision recommendations)
because we are interested in selling those speci�c items.
Instead of boosting diversity and novelty in the recommenders trying

to improve sales, Azaria et al. (2013) developed techniques for maximiz-
ing pro�t directly. ¿ese methods modify the original ranking of any
recommender system improving the business revenue. Also, Azaria et al.
(2013) discovered that the percentage of users that wanted to watch a �lm
again is surprisingly high. ¿is may lead to changing the way recommen-
dation is performed because, in some scenarios, it would be acceptable
to suggest products that users have already bought.

6.6 conclusions

We proposed a new unstudied problem in the �eld of recommender sys-
tems: how to liquidate long tail items. Vendors usually have remaining
products in their catalog they wish to get rid of. We described this task
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formally and designed an item-based adaptation of relevance models,
IRM2, to cope with this problem.¿is model builds a relevance model
for each long tail item. We also proposed three strategies to estimate the
long tail items from a recommendation dataset based on the number of
ratings, on the average value of the ratings or the recommendation fre-
quency. Additionally, we used a dataset with purchase information. IRM2
outperformed a set of representative state-of-the-art recommendation
algorithms in our experiments. We also found that traditional item-based
approaches worked better than user-based ones.
¿is chapter presented a di�erent adaptation of relevance models to

recommendation. Parapar et al. (2013) showed how RM could be used as
e�ective top-N recommenders, and we show here that they can also be
adapted to tackle novel recommendation tasks such as long tail liquida-
tion. In the next chapter, we use this item-based adaptation of relevance
models to address another novel recommendation problem.



7
ITEM-BASED RELEVANCE MODELS FOR
GROUP FORMATION

In the previous chapter, we presented IRM2, an item-based adaptation of
relevance models for recommendation. We have seen how this model can
address the long tail item liquidation task e�ectively using uniform prior
probability estimates. In contrast, in this chapter, we exploit di�erent user
prior estimators to address a recent recommendation task: the user-item
group formation problem.
Several daily activities are better enjoyed with a group of friends. Rec-

ommender systems can assist in �nding the best companions for a given
item. However, this task involves two objectives: we need to maximize
the relations among the group as well as their interest in the proposed
item.¿is task is called the item-driven group formation (UIGF) problem.
Given a target user and a recommended item, we aim to �nd the best
group of friends of the target user with whom to enjoy such item.
In this chapter, we present a collaborative �ltering solution based on

item-based relevance models. In this scenario, we design speci�c user
prior probability estimators to tackle the UIGF problem e�ectively. Bril-
hante et al. (2016) presented the UIGF task and a graph-based approach
to address it. Valcarce et al. (2018d) extended that work by proposing the
adaptation of IRM2 to the UIGF task. In this chapter, we describe the
user-item group formation problem and present the adaptation of IRM2
to this task.

7.1 introduction

Recommender systems are a pervasive technology supporting several
daily activities. In some domains, recommended items are better enjoyed
with travel companions. Traditional recommender systems focus on iden-
tifying relevant items to single individuals. When the recommendation

107
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targets groups of users, it is referred to as group recommendation, whose
goal consists in identifying items that a given group of users may like
(Mastho� 2015). ¿e group recommendation problem is hard to solve as
users have diverse preferences and �nding a trade-o� among these pref-
erences may bring to unsatisfactory or even unsettling recommendations
for some of the users involved.
In this chapter, we address a complementary and evenmore challenging

problem: given a user and a recommended item, we want to suggest the
best group of friends with whom to enjoy the item. ¿is task is known
as the user-item group formation (UIGF) problem (Brilhante et al. 2016).
In this task, we need to take into account both the social relationships
and the preferences of the user and the group. ¿is task is particularly
relevant in the context of location-based social networks (LBSN). In
these networks, users can establish bidirectional friendship relations as
well as check-in in di�erent venues and emit ratings. Venues can be
places such as restaurants, cinemas or tourist attractions among others.
Brilhante et al. (2016) formalized the UIGF problem and proposed a
graph-based solution. More speci�cally, they reduced the UIGF problem
to the problem of �nding the densest k-subgraph in a graph obtained by
enriching the user social network with item relevance information. In
contrast, we propose a probabilistic collaborative �ltering method based
on relevance models. In particular, we use the IRM2 model with speci�c
prior probability estimators to introduce the constraints of the UIGF
problem.

7.2 user-item group formation

¿e user-item group formation problem comprises a set of users U and aWe address a new
recommendation

task: the user-item
group formation

problem.

set of items I . In this scenario, we may have user-item interactions in the
form of ratings or check-ins. Additionally, we model the social network
connecting users as a graph S = {U , E} where U is the set of users and
E is the set of undirected edges representing the friendship relationship
between pairs of users inU .We assume that each edge euv ∈ E has aweight
w(u, v) indicating the strength of the friendship between u and v. Given
the target user u, we call Su = {Fu , Eu} the subgraph of S representing
the social network of u.¿e nodes Fu ⊆ U constitute the set of friends of u
and Eu ⊆ E are the edges modeling the friendship relationships between
these users.
UIGF is a recent recommendation problem that takes a user u and

an item i as input and aims to �nd the best group of friends of the user
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u for enjoying the item i. ¿is task considers two di�erent dimensions:
friendship and item relevance in the group. On the one hand, the best
group to enjoy an item should be formed by people that have strong ties
among them. On the other hand, the item should be interesting for all the
members of the proposed group individually. More formally, Brilhante
et al. (2016) de�ned the UIGF problem as follows:

De�nition (User-item group formation). Given a user u, the social net-
work Su and an item i relevant to u, the UIGF problem seeks to �nd the
group of k friends of u, Fku ⊆ Fu, that maximizes their “satisfaction”, i. e.,
a measure that takes into account both the relevance of item i for all the
members of the group and the intra-group friendship.

Brilhante et al. (2016) formulated theUIGF task as a densest k-subgraph
problem over an enriched graph built from Su and propose two algo-
rithms to address it: one based on a greedy approach and another based
on kNN algorithm. Next, we present our approach to the UIGF task using
item-based relevance models (Valcarce et al. 2018d).

7.3 item-based relevance models for uigf

We formulate the user-item group formation as an item relevance model-
ing task. We employ the IRM2 model presented in the previous chapter.
Since we assess the proposed solutions in the context of LBSN, venues

play the role of items. Some of these social networks allow users to emit
a rating for the venue; others only admit check-ins. When ratings are
available, ru,i represents the rating that the user u gave to an item i. If not,
we rely on the normalized count of check-ins to estimate ru,i .
Relevance models are a state-of-the-art PRF technique (Lavrenko and

Cro 2001). Even though these methods have originated in IR, Parapar
et al. (2013) adapted the relevance modeling framework to the collabo-
rative �ltering scenario. Recently, we proposed an item-based relevance
modeling framework for collaborative �ltering to deal with a novel recom-
mendation task: the liquidation of long tail items (Valcarce et al. 2016d).
¿is task consists in identifying the most suitable users for o�ering them
a given long tail product. Our proposal, IRM2, creates a relevance model
for every long tail item and estimates the probability of relevance of each
user under these models.¿is technique, which achieved excellent results
in the task of liquidating long tail items, can also be used to tackle the
UIGF problem.
We propose to use IRM2 to solve the UIGF problem because, both

in the long tail liquidation and in the group formation tasks, we aim to
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recommend the most appropriate users for a target item. However, its
use is not straightforward because both tasks possess their own pecu-
liarities. In particular, when addressing the UIGF problem, we have to
deal with all types of items, not only with long tail ones. ¿is is not a
di�culty since recommending for long tail items is, in principle, harder
than recommending for regular ones. ¿e main di�erence between the
long tail liquidation task and the UIGF problem is that the latter exploits
the friendship relationships among users whereas the former does not
deal with this kind of information.
¿e recommendation for the target user u and the recommended item

i can be addressed by estimating the probability of relevance of each
friend v ∈ Fu under the relevance model of the target item Ri using
Equation (6.10). ¿e recommended group consists of the k users with the
highest estimated relevance. Formally, UIGF can be de�ned as follows:

De�nition (UIGF as an Item Relevance Modeling problem). Given the
target user u ∈ U , the recommended item i ∈ I and an integer k, the
user-item group formation problem asks to �nd the set FGu,i ⊆ U where∣FGu,i ∣ = k whose users v ∈ FGu,i maximize the probability of relevance
under the model of the recommended item i:

FGu,i = argmax
F∗u

∑
v∈F∗

p (v∣Ri)
s.t. F∗ ⊆ U , ∣F∗∣ = k (7.1)

We consider Fu as the candidate set of users which consists of only
those users who are friends of the target user u. We build the set of most
similar items, Ji , by taking the most similar items to i according to cosine
similarity. We also use the additive smoothing to smooth the maximum
likelihood estimate. To introduce the social relationships into IRM2, we
extend the model by de�ning novel prior probability estimators that take
into account the social information.

7.3.1 Prior estimators

One of the advantages of this relevance modeling framework is its soundWe encode
information about
group dynamics in

the priors.

statistical foundation which enables us to introduce di�erent types of
information in the probability estimates.
For the UIGF task, we use a uniform prior estimator for items while

we explore di�erent priors for users because we want to consider also the
social graph generated by the friendship relationships to maximize the
group satisfaction. With the proposed user priors, IRM2 is able to model
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a satisfaction function that takes into account both the strength of the
relationship between users and the relevance of the target item for those
users.

7.3.1.1 Uniform prior (U)

As a baseline, we studied the uniform estimator for the user prior. Since
the set of candidate users of the group recommendation task is Fu (the
friends of the target user u), the formulation of this prior is the following:

pU(v) = 1∣Fu ∣ (7.2)

7.3.1.2 Common Friends (CF)

¿is prior promotes users who share many common friends with the
target user. Since the user prior is in the denominator of Equation (6.10),
we formulate a prior which is inversely proportional to the number of
common friends.

pCF(v)∝ 1∣Fu ∩ Fv ∣ (7.3)

7.3.1.3 Common group friends (CGF)

¿is estimator boosts those users who have more common friends with
the members of the current group Gu,i . Initially, the group is constituted
by the target user, and this prior behaves as the CF prior. However, as
more users are added to the candidate group, the estimate varies.

pCGF(v)∝ 1
∣(⋃w∈FG

u , i
Fw) ∩ Fv ∣ (7.4)

7.3.1.4 Group closeness (GC)

¿is estimator pushes those users who have more friends in the current
group Gu,i .

pGC(v)∝ 1∣FGu,i ∩ Fv ∣ (7.5)
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7.4 experiments

We use �ve publicly available datasets collected from four popular LBSN:
FS, FS-NYC, Brightkite, Gowalla and Weeplaces. Table 3.3) shows de-
tailed statistics about these collections. ¿ese datasets record informa-
tion about the users registered in these social networks and the venues
where the users checked-in. All datasets contain entertainment places
such as restaurants, cinemas or tourist attractions among other venues.
¿e social links between users are bidirectional friendship relationships.
Foursquare-based datasets (FS and FS-NYC) contain not only check-ins
but also user-item ratings.
All the datasets are extremely sparse in terms of check-ins and ratings.

¿e rating/check-in density is below 0.01%.¿is poses a challenge for any
recommender system. In particular, Foursquare collections have an espe-
cially low density of ratings and check-ins while the other datasets have
very sparse social networks. ¿ese particularities a�ect the performance
of our proposals as reported in Section 7.4.3.
Since we are dealingwith a novel problem, we propose a new evaluation

protocol based on ground truth groups. Next, we detail the baselines and
the metrics used for evaluation. Finally, we describe and discuss the
results of the experiments.

7.4.1 Evaluation protocol and metric

To assess the quality of the groups produced by UIGF models, we buildWe used ground
truth groups to
evaluate UIGF

approaches.

ground truth groups (i. e., groups of friends that enjoyed a speci�c venue
together). We extracted these ground truth groups from the �ve datasets.
We looked for sets of users who checked in the same place within a �xed
temporal window. We considered a user to be a member of a group only
if this person is a friend of at least one of the other group members. In
this way, we obtained groups of users who enjoyed the place where they
checked-in, together with their friends.
As previous work (Brilhante et al. 2016; Valcarce et al. 2018d), we set

the temporal window to 4 hours. Di�erent values of the temporal window
a�ect the number (and the size) of the ground truth groups mined. In our
experiments we consider only groups with at least four members. ¿e
4-hour window produces 1495 ground truth groups on FS, 258 on FS-
NYC, 24 996 on Brightkite, 27 997 on Gowalla and 39 148 onWeeplaces.
Weeplaces has the largest number of ground truth groups as it also has
the largest number of check-ins.
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Our evaluation protocol uses these ground truth groups in the follow-
ing way: for each of these groups, we select a random member as the
target user and the venue where the group registered as an item. ¿en,
we ask the UIGF model to form a group of k friends for this speci�c user
and venue. ¿e members of the ground truth group are those whom we
would like to �nd in the group suggested by the algorithmic solution.
We evaluate our proposals by exploiting these ground truth groups.

We denote the ground truth group for user u and venue i by F̂u,i and the
recommended group FGu,i . We evaluate the quality of the recommenda-
tions using precision because we have binary relevance judgments. We
averaged the metric over all the ground truth groups in each dataset. In
this scenario, precision is computed as the fraction of members in FGu,i
that also appear in the ground truth group F̂u,i :

P (FGu,i) = ∣F̂u,i ∩ FGu,i ∣∣FGu,i ∣ (7.6)

7.4.2 Baselines

We compare the performance of our solution with four graph-based
approaches presented by Brilhante et al. (2016). ¿e simplest baseline is
k-Top which is a heuristic that computes a dense k-subgraph without
considering the relationships among the users.We also use DkSP which is
awell-knownheuristic that aims at approximating the densest k-subgraph
of a graph (Feige et al. 2001). We also employ Greedy and kNN, two
approaches that exploit a user-item ego network (Brilhante et al. 2016).
DkSP, Greedy and kNN approaches use di�erent pairwise satisfaction
metrics. We use pairwise aggregated voting (PAV) and pairwise least
misery (PLM) as Brilhante et al. (2016) proposes.

7.4.3 Results

We show in Figures 7.1 and 7.2 the results in terms of precision of IRM2
with the di�erent prior estimators and the baselines on the �ve datasets.
We varied the group size of the solution from 4 to 12 people. We tuned the
hyperparameters of all methods. For IRM2, we set the number of similar
items to 400 and the additive smoothing parameter to 0.001.
Regarding the baselines, both Greedy and kNN outperform k-Top

and DkSP in terms of precision for both PAV and PLM metrics. On
average Greedy achieves better results on Foursquare datasets, while
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Figure 7.1: Values of precision of the di�erent algorithms for the UIGF problem
on FS (top) and FS-NYC (bottom) datasets.

kNN demonstrates a better performance on the Brightkite, Gowalla and
Weeplaces datasets. It is worth highlighting that the improvement is
higher for smaller values of k, while for larger groups the di�erence
decreases. Moreover, Greedy and kNN are able to suggest more precise
groups when using the PLM user-item relevance.
On the other hand, IRM2 outperforms all the algorithms on the Bright-

kite and Weeplaces datasets using any prior. ¿e proposed priors demon-
strate better performance than the original uniform prior. In particular,
group closeness constitutes the best estimate and also outperforms all
the algorithms on the Gowalla dataset. Also, it provides a signi�cant im-
provement in performance on the Foursquare datasets. Nevertheless, on
the Foursquare datasets, Greedy is a better option.
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Figure 7.2: Values of precision of the di�erent algorithms for the UIGF prob-
lem on Gowalla (top), Brightkite (middle) and Weeplaces (bottom)
datasets.



116 item-based relevance models for group formation

By relating these results to the properties of the datasets, we can argue
that IRM2 works better on datasets with sparser social networks but
with denser check-in data while graph-based approaches such as Greedy
and kNN perform very well on Foursquare datasets which present high
sparsity on the ratings and check-ins but a higher number of links among
users. A possible explanation of this phenomenon relies on the robustness
of graph-based approaches in capturing group dynamics analyzing the
user-item ego network. In contrast, the original formulation of IRM2
does not consider social relationships among users (Valcarce et al. 2016d).
We introduced this information into the model by de�ning novel user
prior estimators. Additionally, Greedy and kNN exploit the user-item
relevance scores computed by a content-based technique meanwhile
IRM2 is a collaborative �ltering approach. ¿is result is consistent with
RS literature: content-based approaches tend to work better on sparser
collections whereas collaborative �ltering algorithms perform very well
on less sparse datasets (Ricci et al. 2015).

7.5 related work

Basu Roy et al. (2015) discussed the problem of group formation from
a group recommendation perspective. ¿ey indeed consider a problem
that is complementary to UIGF: how to build groups such that their mem-
bers are mostly satis�ed with the top-N provided recommendations. ¿e
problem consists in building non-overlapping groups of users by consid-
ering the similarity between their top-N recommended items. Di�erent
methods are proposed to measure group satisfaction. Although groups
are built by considering items recommendations, this proposal ignores
the social relationships between the users and do not restrict the size of
the group which might lead to very large groups.
Some other relevant research topics are related to this work. In partic-

ular, group recommendation, team formation, community discovery and
spatial social networks. Next, we summarize some results in these �elds.

7.5.1 Group recommendation

¿is task consists in recommending a tailored list of items to a group of
users considering the interests of each member of the group (Cantador
and Castells 2012; Mastho� 2015). Cantador and Castells (2012) classi�ed
group recommendation techniques in model aggregation, prediction
aggregation, group formation and cooperative consensus.
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Hu et al. (2014) proposed a group recommender system that accom-
modates both individual choices and group decisions in a joint model
through a model built with collective deep belief networks and dual-wing
restricted Boltzmann machines. ¿e authors claimed that traditional
methods aggregating users preferences or predictions are very sensitive
to noise in the data and that they might fail to learn group preferences
when the data are slightly inconsistent due to strict aggregation assump-
tions.
Garcia et al. (2011) introduced a recommender system for tourism

able to provide suggestions to groups. Authors designed a recommender
system taking into account the tastes of the users, their demographic
classi�cation and the places they have visited on former trips. ¿e group
recommendation was built from individual recommendations through
the application o aggregation and intersection mechanisms. While inter-
section considers the user preferences that are shared by all the members
in the group, aggregation takes into account the union of preferences of
users in the group, weighted by average user-interest.
Anagnostopoulos et al. (2017) studied the algorithmic implications of

suggesting the best set of places that a group of people could perform to-
gether in the city.¿e authors addressed the problem by providing several
formulations that take into account the overall group preferences as well
as the individual satisfaction and the length of the tour recommended.
¿ey studied the computational complexity of these formulations and
proposed solutions that were evaluated on datasets constructed from real
city data.
In group recommendation, the group of users is assumed to be known

in advance.¿is task deals with recommending a list of items to that group.
In contrast, we address a di�erent scenario where given a recommended
item and a user, we have to compute the group that maximizes the intra-
group social relationships and the relevance of the recommended item
for each group member.

7.5.2 Team formation

¿e team formation problem asks to build a group o�ering an optimal
match between its members and a set of functional requirements. Chen
and Lin (2004) proposed a model to build multifunctional design teams
in concurrent engineering. ¿eir approach is based on representing the
multifunctional knowledge of team members; their teamwork capability
by taking their experience, communication skills and �exibility and their
collegiality as it directly a�ects team performance. On the other hand,
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Lappas et al. (2009) formulated the team formation problem as follows.
Given a social graph where nodes are labeled with a set of skills that each
node possesses and given a task that requires a certain set of skills to be
satis�ed, the objective is to �nd a subgraph in which all skills are present
and the communication cost is small.
Although both team formation and UIGF exploit a weighted social

graph and the selection process requires group members to be socially
close, the team formation problemdeals with the �nding of a set of experts
that satis�es certain skills.

7.5.3 Community discovery

¿e community discovery problem aims at �nding, at the global level,
groups (communities) of users with greater ties internally than to the
rest of the network. In contrast, our approach focuses on �nding the
group that maximizes the relevance of the recommended item for every
member of the group and the intra-group social relationships, based on
social network.
Sozio and Gionis (2010) studied a query-dependent variant of the

community discovery problem, which they call the community search
problem: given a graph and a set of query nodes in the graph, the authors
proposed to �nd a subgraph that contains the query nodes and is densely
connected. However, this problem does not consider information about
items as it only relies on the network structure of the graph.
Coscia et al. (2011) classi�ed community discovery methods based on

di�erent de�nitions of communities in the literature. Communities may
involve several features like overlapping, weighted and directed links and
social dynamics.
Communities have been exploited in the recommendation process.

For example, Lee and Brusilovsky (2017) presented a recommendation
technique that leverage community membership of the users as a useful
information source for dealing with cold-start users, i. e., users for whom
the system do not have enough personal information to provide useful
recommendations. However, the authors focused on regular user-item
recommendations and do not explore group recommendations.

7.5.4 Spatial social networks

Some approaches from the spatial social networks literature are also
related to UIGF. ¿ose approaches try to �nd groups of users with social
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relations among them that satisfy a given spatial constraint. In contrast,
in this work, we model social networks with relevance information about
items. Nevertheless, in some cases, we can argue that we can substitute
the spatial distance with a metric based on item relevance to tackle a
similar problem to UIGF.
Yang et al. (2012) proposed a socio-spatial group query to select a

group of nearby people with tight social relations. ¿ey showed that
the problem is NP-hard and designed an e�cient algorithm to solve
it. Although we can replace the spatial distance with a notion of item
relevance, the approach is di�erent from the one proposed here. First,
their model allows specifying the average number of unfamiliar people
an invitee may have. In our proposal, the notion of familiarity is explicitly
enforced by a probability model that takes into account both the social
relationship and item relevance for the group members. Second, Yang et
al. (2012) aimed at minimizing the total spatial distance while we address
the problem from a user-item relevance point of view.
Liu et al. (2012) proposed another similar socio-spatial approach to

allow �nding a group of people that are close to the target user in terms of
physical distance and in terms of social distance.¿e authors showed that
the problem is NP-Hard and propose an є-approximation for that. How-
ever, in contrast to our proposal, Liu et al. (2012) aimed to minimize the
maximum distance between every two vertices of the group. Moreover,
they used as the distance the weighted average between the geographical
distance and the closeness, in terms of social information while we maxi-
mize the density of the formed group. As they try to minimize a di�erent
function, this may lead to important di�erences in the resulting groups
formed by the two approaches.

7.6 conclusions

In this chapter, we proposed to use item-based relevance models to ad-
dress the UIGF problem, i. e., �nding the best group of companions with
whom to enjoy an item. We introduced the concept of group satisfac-
tion into IRM2 through di�erent user prior probability estimators. Our
experiments showed that our proposal provides better solutions than
state-of-the-art techniques for the UIGF task in denser datasets. ¿is
shows the potential of probabilistic modeling in tackling unconventional
recommendation tasks.
In the previous chapter, we have seen how item-based relevancemodels

can address the long tail item liquidation task, and here, in this chapter,
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we have seen how these models can also tackle the item-driven group
formation task by exploiting the potential of user priors. In the next
chapter, we explore simpler pseudo-relevance feedback techniques based
on Rocchio’s algorithm to address the classic top-N recommendation
problem.



8
THE ROCCHIO FRAMEWORK FOR
USER-BASED RECOMMENDATION

We thoroughly studied the use of relevancemodels in di�erent recommen-
dations tasks in the previous chapters. Nevertheless, relevance models
can be computationally expensive and di�cult to adapt to large scale
scenarios. In fact, in earlier work, we developed a distributed implementa-
tion of RM2 to alleviate e�ciency issues (Valcarce et al. 2018a). Moreover,
relevance models may use complex probability estimates with smoothing
parameters that we need to tune.
In this chapter, we return to the top-N recommendation problem. We

adapt term scoring functions used within the Rocchio framework, the
standard query expansion method in the vector space model, to user-
based recommendation.
¿e adaption of the term scoring functions presented in this chapter

has been previously published (Valcarce et al. 2016b,e). However, instead
of using Pearson’s correlation for computing neighborhoods with kNN
algorithm, we update our previous work by using cosine similarity which
provides better results.

8.1 introduction

An e�ective approach to collaborative �ltering is the adaptation of rel-
evance models, a pseudo-relevance feedback technique (Lavrenko and
Cro 2001), to user-based recommendation (Parapar et al. 2013). ¿e
e�ectiveness of relevance models can be understood if we look at their
sound statistical foundations since they are designed for generating a
ranking of terms (or items in the top-N recommendation task) following
the probability ranking principle.
Nevertheless, relevance models can be a computationally demand-

ing probabilistic framework. ¿erefore, in this chapter, we aim to �nd
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techniques with a better trade-o� between e�ectiveness and e�ciency. Ad-
ditionally, we seek parameter-free approaches that do not require hyper-
parameter tuning. In particular, we explore four term scoring functions
used within the Rocchio framework: Rocchio weights (Rocchio 1971),
Robertson selection value (Robertson 1990), Chi-square (Carpineto et al.
2001) and Kullback-Leibler divergence (Carpineto et al. 2001).
We follow the analogy between PRF and user-based collaborative �lter-

ing proposed by Parapar et al. (2013). Target users play the role of queries,
and their ratings act as query terms. ¿e neighborhoods of the target
users play the role of pseudo-relevant sets. ¿erefore, similar users are
used to extract items that are candidates to expand users pro�les. ¿ese
candidate items conform the recommendation list.

8.2 scoring functions in the rocchio framework

We adapt four information-theoretic term scoring functions used within
the Rocchio framework for query expansion (Carpineto et al. 2001). ¿is
adaptation results in four simple and e�cient neighborhood-based ap-
proaches.

8.2.1 Neighborhoods

Neighborhood-based approaches are collaborative �ltering techniques
that exploit the interactions from a set of similar users or items (Ning
et al. 2015). In particular, user-based approaches rely on a set of similar
users, called user neighborhood. ¿e adaptation of term scoring func-
tions to collaborative �ltering requires the computation of these user
neighborhoods.
We denote the neighborhood of the user u by Vu and its size by ∣Vu ∣.

In previous work, we used the kNN algorithm with Pearson’s correlation
coe�cient (Valcarce et al. 2016e). In this work, we use cosine similarity
as it provides better results. In the following, we use C to denote the
collection.

8.2.2 Scoring functions

Next, we present the adaptation of Rocchio weights (RW), Robertson se-
lection value (RSV), Chi-square (CHI2) and Kullback-Leibler divergence
(KLD) term scoring functions to user-based collaborative �ltering. ¿e
complexity of these parameter-free methods is notably smaller than RM2.
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¿ese item ranking functions (except Rocchio Weights) use probability
estimates such as p(i∣Vu) and p(i∣C). We compute these probabilities
using the maximum likelihood estimate (MLE) of a multinomial distri-
bution of ratings. We represent by UX the set of users that rated the items
from the set X. Likewise, IX denotes the set of items that were rated by
the users of the set X. In this way, the MLE is computed as follows:

pmle(i∣X) = ∑u∈UX r(u, i)∑u∈UX ∑ j∈IX r(u, j) (8.1)

8.2.2.1 Rocchio weights (RW)

¿ismethod is based on the Rocchio’s formula (Rocchio 1971).¿e score is
computed as the sum of the weights for each term of the pseudo-relevant
set. In recommender systems, this approach promotes highly rated items
in the neighborhood.

pRW(i∣u) = ∑
v∈Vu

r(v , i)∣Vu ∣ (8.2)

8.2.2.2 Robertson selection value (RSV)

¿e Robertson selection value technique computes a weighted sum of
the item probabilities in the neighborhood (Robertson 1990).

pRSV(i∣u) = p(i∣Vu) ∑
v∈Vu

r(v , i)∣Vu ∣ (8.3)

8.2.2.3 Chi-square (CHI2)

¿is method roots in the Chi-square statistic (Carpineto et al. 2001). ¿e
probability in the neighborhood plays the role of the observed frequency,
and the probability in the collection is the expected frequency.

pCHI2(i∣u) = (p(i∣Vu) − p(i∣C))2
p(i∣C) (8.4)

8.2.2.4 Kullback-Leibler divergence (KLD)

KLD is a non-symmetric measure for assessing the relative entropy be-
tween two probability distributions. Carpineto et al. (2001) proposed its
use for PRF obtaining good results. ¿e idea behind this method is to
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choose those terms of the pseudo-relevant set which diverge more from
the collection in terms of entropy.

pKLD(i∣u) = p(i∣Vu) log p(i∣Vu)p(i∣C) (8.5)

8.3 neighborhood size normalization

When we use a hard clustering algorithm to compute neighborhoods,Neighborhoods
size can be a good
indicator of users’
uncommonness.

the number of users in each cluster is variable. Even algorithms such as
kNN can lead to neighborhoods with di�erent sizes: a similarity measure
based on the common occurrences among users may not be able to �nd
k neighbors for all users when k is too high or when the collection is very
sparse. In these cases, the information provided by the neighborhood is
evenmore important since the user di�ers strongly from the collection. In
IR, this situation would be associated with di�cult queries that returned
a very limited amount of documents. ¿erefore, the information of the
relevant set should be promoted while the global collection information
should be demoted.
We incorporate this intuition into the recommendation framework by

biasing the probability estimate. We can normalize the MLE by dividing
the estimate by the number of users in the population (neighborhood or
collection) as follows:

pnmle(i∣X) rank= 1∣UX ∣ ∑u∈UX r(u, i)∑u∈UX , j∈IX r(u, j) (8.6)

¿is normalizedmaximum likelihood estimate (NMLE) does not a�ect
RSV because this scoring function does not rely on the probability in
the collection. ¿erefore, the resulting score would only be rescaled by
a constant and the ranking would remain the same. However, we argue
that NMLE can improve the e�ectiveness of CHI2 and KLD functions as
we experimentally see in the next section.

8.4 experiments

We �rst compare the e�ciency of the techniques proposed in this chapter
with the relevance modeling approach to recommender systems. ¿en,
we evaluate the e�ectiveness in terms of ranking accuracy, diversity and
novelty.
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Figure 8.1: Recommendation time per user (in logarithmic scale) using RM2,
RW, RSV, CHI2 and KLD algorithms on the MovieLens 100k, 1M
and 10M datasets.

8.4.1 E�ciency experiment

¿e principal motivation for this work was to propose more e�cient
recommendation techniques based on PRF methods than relevance mod-
els (RM2). To assess the e�ciency of our proposals, we measured the
user recommendation times on the MovieLens 100k, 1M and 10M da-
tasets. ¿e neighborhoods are precomputed using the kNN algorithm
with cosine similarity (k = 100). Since computing the neighborhoods is
a common phase for each method, we disregard this stage. We measured
the running time of the algorithms in a desktop computer with an Intel
i7-4790 @3.60GHz and 16 GB DDR3 1600 MHz.
Figure 8.1 illustrates the recommendation times on the three datasets. Our proposal are

orders of
magnitude faster
than RM2.

We report times (in logarithmic scale) for RM2, RSV, RW, CHI2 and
KLD. ¿ese results demonstrate that the proposed approaches are dra-
matically faster than RM2 (our proposals obtain speed-ups up to 100x)
meanwhile the variations in time among our proposed methods are small.
We reported the running times for the normalized maximum likelihood
estimate, but the di�erences in time between both probability estimates
(MLE and NMLE) were insigni�cant.
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Method ML 100k ML 1M R3-Yahoo LibraryThing

RM2 50 75 150 50
RW 50 50 150 50
RSV 50 50 150 50
CHI2-MLE 100 225 150 600
CHI2-NMLE 175 550 500 300
KLD-MLE 350 200 575 175
KLD-NMLE 50 75 300 50

Table 8.1:Optimal number of neighbors for the kNN algorithm with cosine
similarity to maximize the value of nDCG@100 on the MovieLens
100k and 1M, R3-Yahoo and Library¿ing datasets for the RM2, RW,
RSV, CHI2-MLE, CHI2-NMLE, KLD-NMLE and KLD-NMLE rec-
ommenders.

8.4.2 E�ectiveness experiment

Wepresent now the results of ourmethods on theMovieLens 100k,Movie-
Lens 1M, R3-Yahoo and Library¿ing collections. We use the kNN algo-
rithm with cosine similarity to compute the neighborhoods and tuned
k from 25 to 700 neighbors (in steps of 25) to maximize the value of
nDCG@100. For the sake of reproducibility, we report the optimal value
of k in Table 8.1. As the baseline, we use the optimal version of RM2 with
tuned smoothing and prior parameters (see Table 5.2).
¿e values of nDCG@100, Gini@100 and MSI@100 are reported in

Table 8.2. Regarding ranking accuracy, on theMovieLens datasets, RM2 is
the best recommender algorithm. However, on the R3-Yahoo and Library-
¿ing datasets, CHI2-NMLEoutperformsRM2.On the R3-Yahoo dataset,
RM2 is not statistically better than CHI2-NMLE, KLD-MLE and KLD-
NMLE. On Library¿ing, CHI2-MLE, CHI2-NMLE and KLD-MLE are
statistically better than RM2. ¿ese results may indicate that RM2 tends
to work better in denser collections while the proposed scoring functions
work better in sparser scenarios. However, among the proposed tech-
niques, there is no clear winner and experiments should be carried out
to select the best scoring function in a particular scenario.
Regarding the proposed neighborhood size normalization, the experi-

ments show that NMLE outperforms the regular MLE in accuracy except
for the KLD technique on the Library¿ing dataset. For CHI2, this im-
provement is statistically signi�cant on three out of four datasets while,
for KLD, it is signi�cant on the MovieLens datasets. ¿is empirical evi-
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Method Metric ML 100k ML 1M R3-Yahoo LibraryThing

RM2
nDCG 0.4953bcd e f g 0.4296bcd e f g 0.0717bcd 0.2385bc g

Gini 0.2637 0.1637 0.4769 0.0319
MSI 180.45 182.75 339.65 417.57

RW
nDCG 0.4827cd e f 0.4114cd e f 0.0704d 0.2182c

Gini 0.2341 0.1331 0.2937 0.0348
MSI 172.72 171.87 302.82 326.95

RSV
nDCG 0.4825d e f 0.4112d e f 0.0703d 0.2180
Gini 0.2338 0.1329 0.2940 0.0346
MSI 172.60 171.80 302.91 326.69

CHI2
MLE

nDCG 0.2916 0.2775 0.0628 0.2605abc f g

Gini 0.3745 0.3895 0.4429 0.1496
MSI 233.63 262.21 333.12 442.55

CHI2
NMLE

nDCG 0.4639d f 0.3966d f 0.0726bcd f 0.2610abc f g

Gini 0.2947 0.1677 0.4136 0.1128
MSI 190.77 188.34 327.74 400.18

KLD
MLE

nDCG 0.4207d 0.3393d 0.0709d 0.2543abc g

Gini 0.3168 0.3190 0.6064 0.0891
MSI 199.23 237.88 371.56 396.31

KLD
NMLE

nDCG 0.4839d e f 0.4195bcd e f 0.0715bcd 0.2337bc

Gini 0.2806 0.1540 0.3037 0.0669
MSI 185.27 179.59 306.48 359.25

Table 8.2: Values of nDCG@100, Gini@100 and MSI@100 for each recom-
mender approach on the MovieLens 100k and 1M, R3-Yahoo and
Library¿ing datasets. Statistically signi�cant improvements in
nDCG@100 according to permutation test (p < 0.05) with respect to
RM2, RW, RSV, CHI2-MLE, CHI2-NMLE, KLD-NMLE and KLD-
NMLE are superscripted with a, b, c, d, e, f and g, respectively. High-
est value of nDCG@100 for each dataset is indicated in bold.

dence supports the idea that the size of the neighborhoods is an important
factor to model in recommender systems.
We also �nd that the recommendation approaches with the highest

values of nDCG present lower �gures of diversity and novelty than the
other techniques on each dataset except on the Library¿ing collection.
¿is result is in line with the accuracy-diversity trade-o� (Zhou et al.
2010b).
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8.5 conclusions

Since relevance models are an e�ective tool for top-N recommendation,
this work aimed to assess whether we could adapt other simpler PRF
methods to the same task. ¿e results of this investigation revealed that,
indeed, more e�cient PRF techniques constitute e�ective recommender
approaches.¿e experiments showed that the proposed recommendation
algorithms (RW, RSV, KLD and CHI2) are orders of magnitude faster
than RM2 for recommendation. ¿ese alternatives o�er important im-
provements in terms of computing time while incurring, in some cases,
in a modest decrease of accuracy.
Since these methods lack parameters and only rely on the neighbor-

hood information, their e�ectiveness depends heavily on the quality of
the neighborhoods. In previous work, we used the kNN algorithm with
Pearson’s correlation similarity (Valcarce et al. 2016b,e). In this chapter,
we used cosine similarity which resulted in improved accuracy. ¿ere-
fore, exploring other techniques for building neighborhoods may lead to
important improvements. In the next part, we address how to compute
better neighborhoods in a collaborative �ltering scenario.



Part IV

IMPROVING NEIGHBORHOODS

¿ere is nothing like looking, if you want to �nd
something. You certainly usually �nd something, if
you look, but it is not always quite the something
you were a er.

— J. R. R. Tolkien,
¿e Hobbit





9
FINDING AND ANALYZING
NEIGHBORHOODS

In the previous part, we studied the adaptation of pseudo-relevance feed-
back techniques to di�erent recommendation tasks which led us to the
formulation of neighborhood-based collaborative �ltering techniques.
¿is family of recommender systems (also known as memory-based rec-
ommenders) tends to be simple, e�ective and interpretable, but their
performance is strongly tied to the clustering strategies used to compute
the neighborhoods.
In this chapter, we show that there is room for improvement in neigh- Neighborhood

computation is an
area with potential
for improvement.

borhood computation process. We �rst propose a very e�cient memory-
based algorithm called weighted sum recommender (WSR) a er studying
a state-of-the-art neighborhood-based approach. We then build an oracle
forWSRwhich yields approximately optimal neighborhoods for this tech-
nique and �nd that there is a large gap in e�ectiveness. By considering
the output of the oracle as ground truth data, we perform an analytical
study of these neighborhoods to characterize them. Our goal is to �nd
those properties that the ground truth neighborhoods satisfy to improve
the recommendations produced by WSR.
As a result of our analysis, we propose to change the user pro�le size

normalization that cosine similarity uses to improve the neighborhoods
computed with the kNN algorithm. In addition, we present a simpler
oracle which leads us to include the IDF e�ect on the cosine formulation.
¿is work sheds light on the bene�ts of this type of analysis and paves the
way for future research in the characterization of good neighborhoods
for collaborative �ltering.
¿e contributions presented in this chapter have been previously pub-

lished. On the one hand, we derived the formulationWSR and studied its
e�ectiveness (Valcarce et al. 2016e). On the other hand, we also designed
the oracle strategies and proposed improvements in cosine similarity
(Valcarce et al. 2018c).
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9.1 introduction

Neighborhood-based techniques are straightforward and e�cient and
their output is more easily explainable than the one frommodel-based rec-
ommenders (Ning et al. 2015). Nevertheless, model-based techniques are
regarded as the most e�ective ones (Koren and Bell 2015). Although these
model-based recommenders tend to attract more attention nowadays, we
believe that there is still room for improvement in neighborhood-based
systems. We devote this chapter to investigating this claim further.
¿e performance of a neighborhood-based recommender dependsWhile obvious, it

is important to
remark that the
e�ectiveness of
neighborhood-
based methods

depends largely on
the quality of

neighborhoods.

heavily on the quality of the neighborhood (Bellogín and Parapar 2012;
Cremonesi et al. 2010; Ning et al. 2015). ¿erefore, we seek to study how
much we can increase the quality of the recommendations by improving
the neighborhoods. To study the scope for improvement of these recom-
menders, we propose a simple neighborhood-based recommender called
weighted sum recommender (WSR). Our proposal provides better results
than NNCosNgbr in top-N recommendation which has been regarded
as an e�ective neighborhood-based approach (Cremonesi et al. 2010).
To obtain an upper bound of the performance of WSR, we can build

an oracle that produces ideal neighborhoods. ¿en, we can measure
the maximum scope for improvement by comparing the neighborhoods
computed with a state-of-the-art technique against those calculated by
the oracle. We choose the kNN algorithm with cosine similarity as the
neighborhood technique. However, creating this oracle poses a challenge
since obtaining the optimal neighborhood is an NP-hard task. To tackle
this problem, we propose a greedy heuristic which can �nd an approxi-
mation of the ground truth neighborhoods. We also propose a second
oracle that, although it shows a more modest performance, is more ap-
propriate for current grouping strategies which are based principally on
co-occurrences of ratings.
¿e large gap in the quality of the recommendations motivates the

development of an analytical methodology to characterize the neighbor-
hoods produced by the oracles. We aim to �nd those features that cosine
similarity is missing or incorrectly exploiting. Our methodology provides
with the tools to design two variants of cosine similarity that improve
the original formulation of this similarity measure. Extensive experimen-
tation on four datasets con�rms that our new formulations of cosine
similarity generate neighborhoods that produce better recommendations
regarding ranking quality, diversity and novelty.
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9.2 neighborhood-based recommender systems

Neighborhood-based collaborative �ltering techniques are also known
as memory-based recommenders. Henceforth, we will use both terms
interchangeably. We can distinguish either user-based or item-based
approaches within the neighborhood-based techniques. User-based sys-
tems emit recommendations using the feedback from like-minded users
(known as neighbors) while item-based approaches recommend items
that are similar to those the target user liked (Ning et al. 2015). Since both
are collaborative �ltering approaches, the similarity among users or items
is always computed in terms of the user-item interactions.
Item-based approaches are usually preferred (Cremonesi et al. 2010; ¿ere is no silver

bullet: item-based
and user-based
approaches have
their own
advantages.

Deshpande and Karypis 2004; Ning et al. 2015) because the number of
items is usually smaller than the users. ¿is enables the e�cient compu-
tation of the neighborhoods. Also, they have been shown to report better
results in terms of accuracy than user-based approaches (Deshpande
and Karypis 2004; Ning et al. 2015). Also, item-based recommendations
are easy to justify with explanations such as “you would like item B be-
cause you liked item A”. However, item-based methods may generate
less serendipitous recommendations because they tend to recommender
similar items to those rated by the user (Ning et al. 2015). In contrast,
user-based approaches recommend items that similar users enjoyed. In
fact, it is possible to suggest items that strongly di�er from the ones rated
by the target user.
We can usually di�erentiate two phases in neighborhood-based rec- Neighborhoods are

computed by
means of
clustering
algorithms.

ommenders: �rst, the construction of the neighborhoods (i. e., the set of
neighbors) and, second, the computation of recommendations employing
those neighborhoods. Previous works have emphasized the importance
of the �rst phase in the quality of the recommendations (Cremonesi et al.
2010; Ning et al. 2015; Valcarce et al. 2016e). Although strict partition-
ing clustering techniques such as k-means (Xue et al. 2005), posterior
probability clustering (Parapar et al. 2013) or normalized cut (Bellogín
and Parapar 2012) have been used with memory-based recommenders,
the k nearest neighbors (kNN) algorithm is the dominant technique for
computing neighborhoods in a collaborative scenario (Ning et al. 2015).
In the case of user-based recommenders, kNN computes a speci�c neigh-
borhood for each user consisting of the top k users with higher similarity
to the target user. In contrast to partitioning clustering algorithms, kNN
is an overlapping technique because a user may appear in more than one
neighborhood.
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In the following, we present non-normalized cosine neighborhood
(NNCosNgbr), a popular neighborhood-based approach, and our pro-
posal weighted sum recommender (WSR).

9.2.1 Non-normalized cosine neighborhood

Cremonesi et al. (2010) proposed non-normalized cosine neighborhood
(NNCosNgbr), an e�ective item-based neighborhood technique. To com-
pute the k nearest neighbors, this method uses cosine similarity instead
of Pearson’s correlation coe�cient because the former is computed over
all the ratings while the latter relies only on the shared ratings. Moreover,
Cremonesi et al. (2010) introduced a shrinking factor based on common
ratings into the similarity metric (Koren 2008). ¿is shrunk similarity
penalizes very sparse vectors. Additionally, NNCosNgbr removes user-
item biases according to the de�nition in (Koren 2008). ¿e resulting
formulation to predict the score r̂(u, i) for the user u and the item i is
given by the following expression:

r̂(u, i) = b(u, i) +∑
j∈J i

sim(i , j) [r(u, j) − b(u, j)] (9.1)

where b(u, i) denotes the bias for the user u and the item i (Koren 2008);
sim(i , j), the shrunk cosine similarity between items i and j (Cremonesi
et al. 2010), and Ji , the neighborhood of the item i.
¿e major di�erence between this method and the standard neigh-

borhood approach (Ning et al. 2015) is the absence of the normalizing
denominator. Since we are not interested in predicting ratings, we do not
worry about getting scores in a �xed range. On the contrary, this method
fosters those items with high ratings by many neighbors (Cremonesi et al.
2010; Deshpande and Karypis 2004; Koren 2008).

9.2.2 Weighted sum recommender

Our recommendation algorithm stems from NNCosNgbr. First, we de-WSR stems from
NNCosNgbr. cide to keep the biases, instead of eliminating them. Removing user-item

biases produces notable improvements in rating prediction because it
provides more accurate rating estimates (Koren 2008; Ning et al. 2015).
Nevertheless, on the top-N recommendation, this is ine�ective and may
decrease the quality of the rankings that top-N recommenders are con-
cerned about. Moreover, this process adds an extra hyperparameter to
the model (Koren 2008).
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Next, we focus on the similarity metric. Cremonesi et al. (2010) in-
troduced a shrinking factor into the cosine metric to promote those
similarities that are based on many shared ratings. ¿is shrinkage proce-
dure has shown good results in previous studies based on error metrics
(Koren 2008; Ning et al. 2015) at the expense of adding a hyperparam-
eter to the model. However, we found that its inclusion is detrimental
and plain cosine similarity works better. ¿is is reasonable because the
main advantage of cosine similarity over other metrics such as Pearson’s
correlation coe�cient is that it considers non-rated values as zeros. In
this way, cosine already takes into account the amount of co-occurrence
between vectors of ratings which makes unnecessary the use of a shrunk
similarity.
Finally, we also propose a user-based variant of this algorithm. Depend-

ing on the characteristics of the dataset, a user-based or an item-based
version may work better than the other. In the end, the �nal formula-
tion of our proposal is a weighted sum of the ratings of the neighbors,
which we call weighted sum recommender (WSR). Next, we present the
user-based and item-based variants:

r̂(u, i) = ∑
v∈Vu

cos(u, v) r(v , i) (9.2)

r̂(u, i) =∑
j∈J i

cos(i , j) r(u, j) (9.3)

where cos(⋅, ⋅) is the cosine similarity between a pair of users or items.
¿e cosine similarity between two users is given by Equation (5.3); the
item-based similarity is calculated as in Equation (6.12). Vu denotes the
neighborhood of user u as Ji represents the neighborhood of item i.
We can use the kNN algorithm with cosine similarity to compute the

neighborhoods. Note, in this case, two di�erent uses of cosine similarity.
On the one hand, we can use this similaritymeasure in the kNNalgorithm
to compute the neighborhoods. On the other hand, this similarity is the
weight in the scoring function of WSR.

9.2.3 Comparing WSR with NNCosNgbr

Now we compare the e�ectiveness of WSR and NNCosNgbr algorithms
on theMovieLens 100k and 1M, R3-Yahoo and Library¿ing datasets. We
compare NNCosNgbr against the user-based and the item-based variant
of WSR in Table 9.1. We tuned the number of neighbors from 25 to 200
is steps of 25 and the shrinking factor from 25 to 150 in steps of 25.
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Method Metric ML 100k ML 1M R3-Yahoo LibraryThing

NNCosNgbr
nDCG 0.2227 0.1980 0.0567 0.0852
Gini 0.3438 0.2407 0.2341 0.0659
MSI 230.14 228.00 386.78 546.47

WSR-UB
nDCG 0.4857* 0.4138* 0.0705* 0.2213*
Gini 0.2375 0.1356 0.3208 0.0768
MSI 173.86 172.76 309.52 364.70

WSR-IB
nDCG 0.4833* 0.4035* 0.0727* 0.3085*
Gini 0.2560 0.1516 0.3356 0.2768
MSI 177.34 178.95 315.05 461.73

Table 9.1: Values of nDCG@100, Gini@100 andMSI@100 for the neighborhood-
based recommenders on MovieLens 100k and 1M, R3-Yahoo and
Library¿ing. Statistically signi�cant improvements in nDCG@100
according to permutation test (p < 0.05) with respect to NNCosNgbr
are indicated with a star. Highest value of nDCG@100 for each dataset
is indicated in bold.

Both user-based and item-based versions of WSR signi�cantly outper-WSR is a simple
yet e�ective

recommender.
form NNCosNgbr on all datasets in ranking accuracy. ¿e user-based
approach reported the best �gures on the MovieLens datasets while the
item-based algorithm yielded the best results on the sparser songs and
books collections. ¿is result agrees with the literature about neighbor-
hoods methods (Cremonesi et al. 2010; Deshpande and Karypis 2004;
Ning et al. 2015): item-based approaches tend to work well on sparse data-
sets because they compute similarities among items which o en contain
denser information than users. Additionally, on the R3-Yahoo and Li-
brary¿ing datasets,WSR produces evenmore diverse recommendations
than NNCosNgbr in spite of the accuracy improvement.

9.3 a greedy neighborhood oracle

¿is chapter is devoted to studying the room for improvement of neigh-
borhoods. In particular, we aim to �nd to what extent we can increase
the quality of the recommendations of memory-based approaches by im-
proving the neighborhoods. We take WSR-UB as a neighborhood-based
recommender and seek to improve the similarity measure used in �nding
neighborhoods using the kNN algorithm. Nonetheless, the proposed
analysis can be performed to improve other neighborhood computation
approach. We focus on user-based methods and leave the exploration of
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item-based models as future work. Nevertheless, the presented approach
can be easily extended to the item-based scenario.
We propose to build an oracle that produces the optimal neighbor-

hoods for each user to measure how much we can improve the selection
of neighbors.¿is oracle would provide an upper bound of the maximum
performance that we can achieve. Nevertheless, the construction of this
oracle is challenging: there exist 2n−1 possible neighborhoods for each
user where n represents the number of users in the dataset. A brute force
approach for �nding the best neighborhood for a particular user consists
in testing all the possible neighborhoods and return the one that produces
the recommendations with the highest nDCG@100 value.¿is algorithm
would require Θ(2n) evaluations. In fact, �nding the best neighborhood
is analogous to the subset selection problem for regression. Subset selec-
tion is the problem of �nding the subset of variables for learning a linear
regression model that minimizes the prediction error (Miller 2002). Un-
fortunately, subset selection is an NP-hard problem in general (Welch
1982) and so is building our oracle.
Since computing an exact solution is infeasible, we propose to use a Building a perfect

oracle is infeasible,
but we can
approximate one.

greedy heuristic to �nd an approximated solution. We took inspiration
from forward selection, a strategy that is used to deal with the subset
selection problem (Miller 2002). Our greedy oracle computes the best
neighborhood for a user u up to a size k. ¿e algorithm begins by testing
all the possible neighborhoods of the user u of size 1. It chooses the
neighborhood that gives the best performance in terms of an objective
functionwe call eval (more details in Section 9.3.1).¿is function takes the
input user u and the candidate neighborhoodV and returns the goodness
of the given neighborhood. ¿en, we take the best neighborhood of size
1 as input for building the neighborhood of size 2 by selecting a user such
that when added to the previous neighborhood obtains the best value for
the eval function.We repeat this procedure until we reach neighborhoods
of size k. We use a greedy approach in each step because we stem from the
best neighborhood of size k to obtain the best neighborhood of size k + 1.
In the same way that forward selection chooses the best feature in each
step, we choose the best neighbor to be added to the neighborhood in
each step. At this point, given a user u, we have the best neighborhoods of
sizes 1 up to k. Finally, we return the smallest neighborhood that achieves
the highest score.
¿is algorithm follows a greedy approach since it searches the best

neighborhood of size k from the solution for k − 1 and thus returns a
suboptimal solution. ¿e oracle requires Θ(nk) calls to the eval function
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where n represents the number of users and k the size of the neighbor-
hood. Next, we de�ne the evaluation procedure of the eval function.

9.3.1 Evaluation function

To measure the goodness of a neighborhood for a particular user, we
use the eval function which assesses the quality of the recommendations
produced for a particular user with the given neighborhood. To assess the
quality of the recommendations, we employed normalized discounted
cumulative gain with a cut-o� at 100 (nDCG@100).
In spite of the decrease in computing complexity from the brute force

approach to the greedy heuristic, the greedy oracle algorithm is still com-
putationally expensive because each call to the eval function requires
ranking almost all items in the collection. Additionally, the oracle algo-
rithm should be executed for each user of the collection. For this reason,
we introduced the parameter k into the algorithm that limits the maxi-
mum size of the neighborhoods.

9.3.2 Upper Bound of Accuracy

With the devised oracle, we can approximate the upper bound of the
ranking accuracy of a neighborhood-based recommender system. We
can only get an approximated upper bound because the oracle follows
a greedy heuristic. Due to its computational cost, we employed a small
collection, the MovieLens 100k dataset, to test this oracle.
We compared the accuracy of the recommendations produced byWSR

when using the greedy oracle strategy and the kNN algorithmwith cosine
similarity.We varied the value of k from 10 to 300. In the case of the oracle,
k denotes the maximum amount of users in the neighborhood and, in the
case of kNN, the number of neighbors. Figure 9.1 shows the results of this
experiment. We observe a huge gap in terms of nDCG@100 between the
oracle and kNN with cosine similarity. Since our oracle strategy provides
only an approximation of the optimal neighborhood, the actual gap will
be even higher than the one shown in Figure 9.1.
¿e optimal value of k for kNN with cosine similarity is around 50.

As we increase the size of the neighborhoods, the quality of the recom-
mendations decreases because we are introducing more noise into the
model. In contrast, as expected, the performance of the oracle is always
increasing with k because this strategy selects the best neighborhood up
to size k. We can explain now the reason why the greedy oracle does not
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Figure 9.1: Values of nDCG@100 of the recommendations generated by WSR
using the neighborhoods produced by the greedy oracle and by k-NN
using cosine similarity when varying the parameter k.

Method k nDCG@100 Gini@100 MSI@100

kNN Cosine 50 0.4857 0.2375 173.86
Greedy Oracle 300 0.8631 0.2664 168.08

Table 9.2: Values of nDCG@100, Gini@100 and MSI@100 using WSR with the
greedy oracle and k-NN with cosine similarity on MovieLens 100k.

�x the size of the neighborhoods to be exactly k. ¿e rationale is that it
might produce undesired results. For example, let k be the forced size of
the neighborhood and l the optimal size when k > l the oracle will pro-
duce l good neighbors and k − l spurious neighbors. To avoid punishing
the recommendation a er �nding l good neighbors, the oracle selects
users whose ratings di�er from those of the rest of the neighborhood.
¿ose spurious neighbors are chosen not because they are valuable to the
recommendation but because they do not hurt or hurt the quality of the
recommendations minimally.
As we can see in Figure 9.1, although the accuracy of the oracle in-

creases with higher values of k, the improvements are very slight. Due to
computational resources, we set k to 300 to establish an approximated
upper bound. We also measure diversity and novelty (see Table 9.2), but
the oracle shows that there is only a small room for improvement in terms
of diversity.
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In the next section, we present an analysis of the neighborhoods that the
oracle produces with the objective of designing more e�ective techniques
for �nding neighborhoods.

9.4 neighborhood analysis

We argue that the oracle designed in the previous section not only pro-We can gain
important insights

from studying
ground truth

neighborhoods.

vides an upper bound of the maximum performance of a neighborhood-
based recommender but also provides ground truth neighborhoods. In
this section, we seek to characterize those ideal neighborhoods through
an analytical study of their features. To the best of our knowledge, this
is the �rst exploratory analysis of its kind. To allow comparisons, we
compared the ground truth neighborhoods with those obtained using
kNN with cosine similarity. We aim to gain insights into what features
a good neighbor possesses. In this way, we may be able to improve the
original formulation of cosine similarity.
We compared several features between the neighbors produced by

the oracle and by kNN with cosine similarity such as the sum of ratings,
the number of rated items, the average rating, the overlap in rated items
between the target user and the neighbor or the popularity of the rated
items. In particular, we found the size of the user pro�les an interesting
feature to analyze carefully.

9.4.1 User Pro�le Size

In a collaborative �ltering scenario, the users’ pro�les are made of ratings.
However, there is high diversity among them. It is common to �nd highly
active users and users with little involvement due to several reasons (such
as age, seniority or interest in the service). We argue that the size of the
user pro�les is an in�uential variable in the selection of neighbors. We
can measure the size of a user pro�le as the sum or as the number of the
ratings emitted by that user. We can use either metric because both of
them are strongly correlated (Pearson’s ρ > 0.97 in the MovieLens 100k
dataset). We studied the distributions of the sizes of the user pro�les of
neighborhoods provided by the oracle and the ones produced by kNN
with cosine similarity and discovered that those distributions are sub-
stantially di�erent. We illustrate them in Figure 9.2. ¿e oracle selects
neighbors with a notably smaller pro�le than kNN with cosine similarity.
Large user pro�les may contain more noise and according to Figure 9.2,
cosine similarity does not penalize them properly.
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Figure 9.2: Distribution of the sizes of the user pro�les (measured as the sum of
ratings) of the ground truth neighborhoods produced by the oracle
and the ones provided by k-NN with cosine and penalized cosine
similarities when k = 50 and α = 1.3 on theMovieLens 100k dataset.

9.4.2 Penalized Cosine

In light of these �ndings, we seek to adapt cosine similarity to penalize
users with large pro�les. As the formulation of this measure shows, cosine
already penalizes the similarity by the product of the norms of both
pro�les. If we represent a user pro�le as a vector of ratings, the ℓ2-norm
of a user pro�le is given by the square root of the sum of the squared
ratings. When computing the neighbors for a particular user u, we can
simplify the formulation of cosine similarity removing the norm of the
target user u because all the similarities would be scaled by a constant
which do not a�ect the ranking procedure of kNN.¿e formula of this
rank-equivalent cosine similarity is the following:

cos ′(u, v) = ∑i∈Iu∩Iv r(u, i) r(v , i)√∑i∈Iv r(v , i)2 (9.4)

To penalize more those users with larger pro�les, we must increase the
normalization in the denominator of cosine similarity. To this end, we
draw inspiration from information retrieval techniques. ¿e process of
computing neighbors using cosine similarity is analogous to the docu-
ment ranking procedure in the vector space model (Salton et al. 1975)
where the target user plays the role of the query, and the rest of the users
are the documents in the collection. In this way, choosing the k nearest
neighbors is the same as taking the top k results using the user as the
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query. Following this analogy, we apply the pivoted length normalization
procedure (Singhal et al. 1996).
In ad hoc retrieval, Singhal et al. (1996) found that cosine similarityPivoted length

normalization is a
state-of-the-art
retrieval model.

demotes large document too much. ¿erefore, they modi�ed the normal-
ization scheme of cosine similarity to reduce the penalty controlled by a
parameter α between zero and one. ¿is document length normalization
term led to notable e�ectiveness improvements in the vector space model
(Zhai and Massung 2016). In this normalization approach, a value of zero
would imply no penalty at all while a value of 1 would yield the original
cosine normalization. Although Singhal et al. (1996) did not consider
increasing the cosine normalization (as we seek to do), we can set α to a
value higher than 1 to produce this e�ect. ¿e penalized formulation of
cosine similarity is given by:

penalized_cos(u, v) = ∑i∈Iu∩Iv r(u, i) r(v , i)
(1 − α) + α √

∑i∈Iv r(v ,i)2

1
∣U ∣ ∑w∈U

√
∑i∈Iw r2

w , i

(9.5)

We can easily see that when α = 1, we obtain a similarity measure
which is rank-equivalent to cosine similarity. ¿e di�erence is that the
values are scaled by a constant which is the average user pro�le size in the
collection 1

∣U ∣ ∑w∈U
√∑i∈Iw r2w ,i . Note that if we precompute the average

user pro�le size, the computational complexity of the penalized cosine
remains the same compared to the original formulation.
Figure 9.2 shows that the distribution of the sizes of the user pro�les

of penalized cosine is much more similar to the distribution of the or-
acle than cosine similarity on the MovieLens 100k dataset. ¿erefore,
the proposed penalty for cosine similarity is an e�ective technique to
promote neighbors with small pro�les. Nevertheless, we still need to ver-
ify if this approach produces better recommendations than the original
cosine formulation. To this end, we evaluated the recommendations pro-
duced by WSR with neighborhoods computed using kNN with cosine
and penalized cosine similarities on four di�erent datasets. In addition
to MovieLens 100k, we use MovieLens 1M, R3-Yahoo and Library¿ing
datasets. We tuned the values of k from 25 to 200 in steps of 25 and α
from 0.5 to 2.0 in steps of 0.05 to maximize the value of nDCG@100. We
report the values of nDCG@100, Gini@100 and MSI@100 in Table 9.3.
For the sake of reproducibility, we also report the values of the parameters
in Table 9.6. We used the permutations test (p < 0.05) to analyze whether
the improvements in terms of nDCG@100 and MSI@100 are statistically
signi�cant. We cannot apply a paired test to Gini because it is a global
metric.
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Similarity Metric ML 100k ML 1M R3-Yahoo LibraryThing

Cosine
nDCG 0.4857 0.4138 0.0705 0.2255
Gini 0.2375 0.1356 0.3208 0.0417
MSI 173.86 172.76 309.52* 333.50

Penalized
Cosine

nDCG 0.4889* 0.4194* 0.0709 0.2266
Gini 0.2516 0.1446 0.2863 0.0471
MSI 177.97* 176.41* 302.39 339.05*

Table 9.3: Values of nDCG@100, Gini@100 and MSI@100 on MovieLens 100k,
MovieLens 1M, R3-Yahoo and Library¿ing using di�erent similarity
measures with k-NN and WSR as recommender algorithm. Statis-
tically signi�cant improvements in nDCG@100 or MSI@100 using
permutations test (p < 0.05) are indicated with a star.

¿e results show that penalized cosine outperforms cosine similarity
in ranking accuracy, diversity and novelty on all the datasets except for
diversity and novelty on R3-Yahoo. ¿e improvements in novelty are
statistically signi�cant in the three collections although the improvements
on accuracy are only signi�cant on the MovieLens datasets. Table 9.6
shows that the value of α that maximizes nDCG@100 is always greater
than 1 except for the R3-Yahoo dataset where it is strictly less than 1.
¿ese �ndings support the idea that pro�le size normalization may be
bene�cial in some recommendation scenarios. However, the amount of
normalization (regulated by the hyperparameter α) is domain-dependent.
¿is �nding has been brought to light as a result of characterizing ¿e analysis of the

ground truth
neighborhoods led
us to the bene�cial
pro�le length
normalization.

the neighborhoods produced by our proposed oracle. ¿erefore, these
results show that the analysis of the features of the ground truth neighbor-
hoods computed with the greedy oracle is an e�ective tool for improving
neighborhood techniques. In particular, we have found that pro�le size
normalization can be tuned to improve the neighborhoods retrieved with
cosine similarity. However, we can do better. In the next section, we pro-
pose a simpler oracle which leads us to another improvement of cosine
similarity which does not require any extra parameter.

9.5 a cosine-based oracle

¿e oracle presented in Section 9.3 is a useful tool for approximating We develop a
simpler and more
realistic oracle
based on cosine
similarity.

an upper bound of a neighborhood-based recommender. Nevertheless,
in practice, obtaining such neighborhoods may be infeasible with sim-
ilarity techniques that solely exploit co-occurrence of ratings among
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Method nDCG@10 Gini@10 MSI@10

kNN Cosine 0.4857 0.2375 173.86
Cosine-based Oracle 0.5298 0.2508 174.97

Table 9.4: Values of nDCG@100, Gini@100 and MSI@100 using WSR with co-
sine similarity and the cosine-based oracle on the MovieLens 100k
dataset. We set k to 50 neighbors.

user pro�les. Cosine similarity but also many other similarity measures
(such as Pearson’s correlation) or clustering algorithms di�erent to kNN
are based on the notion of co-occurrence. ¿ere is no guarantee that
co-occurrence alone is su�cient to compute the ideal neighborhoods
that the greedy oracle provides. ¿e greedy oracle may be surpassing
the so-calledmagic barrier (Bellogín et al. 2014b; Herlocker et al. 2004)
for this kind of algorithms. For this reason, we propose a cosine-based
oracle that simply outputs the best neighborhood that cosine similarity
can provide by varying the size of the neighborhood up to value k for
each user in the collection. As we did with the greedy oracle, we chose
the neighborhood that maximizes an evaluation metric—nDCG@100 in
our case. ¿is cosine-based oracle can also be seen as an adaptive kNN
algorithm which employs the optimal k for each user.
We compared the quality of the recommendations produced using

WSR with cosine similarity using 50 nearest neighbors against this cosine-
based oracle with up to 50 neighbors per user. We present the results in
terms of nDCG@100, Gini@100 and MSI@100 in Table 9.4. ¿e cosine-
based oracle provided better results than the baselines; however, its e�ec-
tiveness seems much more achievable compared to the greedy oracle (see
Table 9.2). As we did before with the greedy oracle, we seek to characterize
the neighborhoods obtained by the cosine-based oracle to develop new
formulations of cosine similarity.

9.5.1 User Pro�les Overlap

We studied some features related to the neighborhoods as we did beforeWe measure the
overlap between

two users with the
Jaccard index.

with the greedy oracle. We found the overlap between the target user
pro�le and each of the neighbors to be an interesting feature as previous
studies have shown (Liu et al. 2014). We de�ne the overlap between the
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Figure 9.3: Distribution of user pro�les overlap in the neighborhoods produced
by the oracles and the ones provided by k-NN with penalized co-
sine and penalized cosine with IDF similarities when k = 50 on the
MovieLens 100k dataset.

target user u and the neighbor v using the Jaccard index, i.e., the ratio
between the intersection and the union of rated items by those users:

Jaccard(u, v) = ∣Iu ∩ Iv ∣∣Iu ∪ Iv ∣ (9.6)

Using the Jaccard index, we studied the distribution of the overlap
among user and neighbors pro�les. We did not employ the Jaccard in-
dex for computing neighborhoods directly because, in our experiments,
it produced worse neighborhoods than cosine similarity. We used the
cosine-based oracle and kNN with penalized cosine similarity and set k
to 50 on theMovieLens 100k dataset.We illustrate the results in Figure 9.3.
We observe that penalized cosine similarity chooses neighbors with a
low overlap with the target user. ¿e penalty introduced to favor users
with short pro�les provokes this e�ect. However, if the overlap between
user and neighbor ratings is small, we may not be selecting like-minded
users and thus producing bad recommendations. For this reason, we
seek to modify penalized cosine similarity to improve the quality of the
neighborhoods further.

9.5.2 Penalized Cosine with IDF

A er analyzing the distribution of the sizes of the greedy oracle, we
increased the pro�le size normalization of cosine to improve the plain
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cosine similarity. However, Figure 9.3 shows that this penalty can alsoWe improve the
cosine similarity

by introducing the
IDF e�ect in its

formulation.

hurt the overlap between the target user and the neighbors. A low overlap
may dri the topics of the recommendations producing an undesirable
outcome. To avoid selecting users with divergent interests, we propose to
emphasize our focus on the items which are less popular. ¿e rationale
for this approach is based on the IDF e�ect, a well-known heuristic in
information retrieval.
¿e inverse document frequency (IDF) measures the speci�city of

a term (Baeza-Yates and Ribeiro-Neto 2011). ¿e IDF of a term is pro-
portional to the inverse of the number of documents in the collection
that contains that term. ¿e idea is that terms that appear in a few docu-
ments aremore informative than those that occur several times.¿erefore,
the IDF e�ect assumes that speci�c terms are more discriminative than
generic ones. In Section 5.2.2.1, we established a connection between the
IDF e�ect and item novelty. Promoting the IDF e�ect should increase
the focus on less common items which are more discriminative than the
popular ones. Since penalizing lengthy user pro�le reduces the overlap,
we introduce the notion of IDF into the similarity measure to promote
those users with more co-occurrence in unpopular items.
To introduce the IDF e�ect, we used the inverse frequency smooth

weighting scheme as de�ned in (Baeza-Yates and Ribeiro-Neto 2011).
We adapted its formulation from information retrieval to recommender
systems. ¿e resulting penalized cosine similarity with IDF is given by:

penalized_cos_IDF(u, v) = ∑i∈Iu∩Iv t(u, i) t(v , i)
(1 − α) + α √

∑i∈Iv r(v ,i)2

1
∣U ∣ ∑w∈U

√
∑i∈Iw r2

w , i

(9.7)

where:

t(u, i) = r(u, i) idf(i) = r(u, i) log(1 + ∣U ∣∣Ui ∣) (9.8)

where ∣Ui ∣ refers to the number of users who rated the item i. Note that
the computational complexity does not change a er introducing the IDF
heuristic. We need to compute this IDF term for each rating which can
be done in constant time if we have cached the number of users that rated
any item. ¿erefore, the scalability of our proposal is not compromised.
We compared the penalized cosine with IDF against the version with-

out IDF. Figure 9.3 shows that the IDF version presents a higher overlap
and is more similar to the cosine-based oracle.
To evaluate if the IDF e�ect also provides improvements in the quality

of the recommendations, we tested penalized cosine with IDF on the
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four datasets. We compare against a representative set of neighborhood
computation techniques as baselines:

pearson We use the kNN algorithm with Pearson’s correlation coe�-
cient as the pairwise similarity is the traditional approach to com-
pute neighborhoods in the rating prediction task (Ning et al. 2015).

ppc Posterior probabilistic clustering (PPC) is a clustering technique
based on non-negative matrix factorization (Ding et al. 2008) used
by Parapar et al. (2013) in recommendation. It has two hyperparam-
eters to tune: the number of clusters c from 25 to 200 in steps of 25
and the number of training epochs e. We found that 100 training
epochs are enough for convergence on the four datasets.

nc Normalized cut is a spectral clustering algorithm which has been
recognized as an e�ective technique for computing neighborhoods
in user-based collaborative �ltering (Bellogín and Parapar 2012).
We tuned two hyperparameters of NC: the number of clusters c
and the number of eigenvectors λ from 25 to 150 in steps of 25.

shrunk cosine We use the kNN algorithm with the shrunk cosine sim-
ilarity used in NNCosNgbr (Cremonesi et al. 2010).¿is shrinking
factor is controlled by δ. We tuned this hyperparameter by grid
search from 25 to 150 in steps of 25.

We measure the results with nDCG@100, Gini@100 and MSI@100 in
Table 9.5. We also report the tuned values of the parameters in Table 9.6.
¿e experiments showed that penalized cosine with IDF outperforms
all baselines in terms of nDCG@100 on the four datasets. Additionally,
these improvements are always statistically signi�cant according to the
permutations test (p < 0.05). Regarding diversity and novelty, only nor-
malized cut provided better results than penalized cosine with IDF on
R3-Yahoo and Library¿ing. Note that it is easy to improve diversity and
novelty �gures by reducing the accuracy due to the accuracy-diversity
trade-o� (Castells et al. 2015; Kunaver and Požrl 2017; Zhou et al. 2010b).
Additionally, if we compare penalized cosine with and without IDF (see
Table 9.3), we observe that the IDF e�ect provides better �gures in all the
metrics on the four datasets.
¿erefore, the experiments support the introduction of the IDF heuris-

tic into cosine similarity. ¿e IDF e�ect is compatible with the pro�le
size normalization added to the penalized version of cosine. As we can
see in Table 9.6, the optimal value of α that maximizes nDCG@100 is
not 1 on any dataset either including the IDF or not. ¿is fact con�rms



148 finding and analyzing neighborhoods

Method Metric ML 100k ML 1M R3-Yahoo LibraryThing

Pearson
nDCG 0.4079 0.2252 0.0607 0.1518
Gini 0.1189 0.0480 0.1642 0.0142
MSI 136.57 139.20 273.81 281.33

PPC
nDCG 0.4049 0.3056a 0.0652a 0.1702ac

Gini 0.1859 0.0775 0.2764 0.0308
MSI 155.18a 150.60a 297.91a 315.08a

NC
nDCG 0.4270ab 0.3581ab 0.0666a 0.1662a

Gini 0.2842 0.1821 0.3318 0.0376
MSI 182.81abd e f 188.03abd e f 309.04abe 333.02ab

Shrunk
Cosine

nDCG 0.4717abc 0.3891abc 0.0705abc 0.2206abc

Gini 0.2111 0.1098 0.3208 0.0503
MSI 165.83ab 163.73ab 309.52abe 342.54abce

Cosine
nDCG 0.4857abcd 0.4138abcd 0.0704abc 0.2255abcd

Gini 0.2375 0.1356 0.3107 0.0417
MSI 173.86abd 172.76abd 305.26ab 333.50ab

Penalized
Cosine

nDCG 0.4889 0.4194 0.0709 0.2266
Gini 0.2516 0.1446 0.2863 0.0471
MSI 177.97 176.41 302.39 339.05

Penalized
Cosine
with IDF

nDCG 0.4927abcd e 0.4281abcd e 0.0721abcd e 0.2422abcd e

Gini 0.2517 0.1551 0.3376 0.0596
MSI 178.65abd e 180.41abd e 312.08abcd e 354.46abcd e

Table 9.5: Values of nDCG@100, Gini@100 and MSI@100 on the MovieLens
100k,MovieLens 1M,R3-Yahoo andLibrary¿ing datasets using di�er-
ent neighborhood computation techniques andWSR as recommenda-
tion algorithm. Statistically signi�cant improvements in nDCG@100
and MSI@100 according to permutation test (p < 0.05) with respect
to Pearson, PPC, NC, shrunk cosine, cosine and penalized cosine
with IDF are superscripted with a, b, c, d and e, respectively. Highest
value for each metric on each dataset is indicated in bold.

that pro�le size normalization is important by itself. However, adding the
IDF heuristic to the cosine formula provides a boost in ranking accuracy,
diversity and novelty at no extra cost—we do not need to add any new
parameter to the similarity measure.
Again, we observed that the optimal value of α is greater than 1 except

on the R3-Yahoo where a value below the unit provides better recommen-
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Method ML 100k ML 1M R3-Yahoo LibraryThing

Pearson k = 475 k = 500 k = 475 k = 500
PPC c = 25 c = 50 c = 150 c = 100
NC c = 25,

λ = 25
k = 100,
λ = 25

c = 75,
λ = 100

c = 75,
λ = 150

Shrunk
Cosine

k = 50,
δ = 25

k = 50,
δ = 25

k = 50,
δ = 50

k = 25,
δ = 25

Cosine k = 50 k = 50 k = 125 k = 25
Penalized
Cosine

k = 50,
α = 1.30

k = 75,
α = 1.3

k = 150,
α = 0.90

k = 25,
α = 1.15

Penalized
Cosine
with IDF

k = 75,
α = 1.45

k = 100,
α = 1.35

k = 150,
α = 0.95

k = 75,
α = 1.65

Table 9.6: Parameters of neighborhood techniques when using WSR as recom-
mender algorithm on the MovieLens 100k and 1M, R3-Yahoo and
Library¿ing datasets.

dations. ¿erefore, this parameter should be appropriately tuned on the
collection since it is domain-dependent.
¿is analysis of the cosine-based oracle has improved the previously

penalized cosine similarity. However, the possibilities of improving neigh-
borhood techniques are manifold. We think that exploring and charac-
terizing the neighborhoods produced by these oracles regarding other
features is a promising avenue for future work.

9.6 related work

Traditionally, in collaborative �ltering, it has been accepted that the more
similar a neighbor is to the target user, the more her preferences can help
in the recommendation process. Due to this rationale, much e�ort has
been carried out in the �eld of neighborhood-based recommenders for
improving the similarities and algorithms for clustering users or items.
Probably, the most common clustering algorithm consists in using kNN
with Pearson’s correlation as the similarity measure (Resnick et al. 1994).
However, many works have addressed the selection of both similarities
and clustering algorithms.
Regarding similarities, di�erent measures have been studied in collab-

orative �ltering. As commented before, Pearson’s correlation has been
the most used. However, other correlations measures such as Spearman’s
(Ekstrand et al. 2011) or Kendall’s (Su and Khoshgo aar 2009) have also
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been explored. Studies showed di�erent behaviors when evaluating rating
prediction or top-N recommendation. In fact, Pearson’s correlation pro-
duces e�ectiveness �gures similar to a normalized version of the cosine
similarity that operates on user-mean centered ratings (Ekstrand et al.
2011).
Of course, the well-known cosine similarity and adjusted variances of

it (Sarwar et al. 2000, 2001) have also been tested for this job. Cremonesi
et al. (2010) showed that non-normalized cosine similarity is a better sim-
ilarity measure than Pearson’s correlation for the top-N recommendation
task. Other authors also explored other traditional distances in collab-
orative �ltering. Goldberg et al. (2001) used the Euclidean distance for
implementing some of their baselines. More recently, Wang et al. claimed
that the utilization of the Hamming distance improves the mean average
error �gures of the k-means algorithm (Wang et al. 2015). In the nineties,
Shardanand and Maes (1995) studied the use of mean squared di�erences
and compared the performance of rating prediction with Pearson’s cor-
relation showing similar results but lower coverage values. Apart from
traditional measures, some works also explored similarity measures that
consider the ratings as probability distributions. In previous work, we
also proposed the adaptation of term association measures from IR as
alternatives to cosine similarity, but these measures did not consistently
outperform cosine similarity on diverse datasets (Suárez-García et al.
2018). Deshpande and Karypis (2004) showed how, for item-based rec-
ommendations, the use of the normalized conditional probability could
obtain small improvements over the normalized version of the cosine. It
is important to note that the existing works always coupled the similarity
metric with speci�c scoring methods. Hence, the generalization of the
results is limited to the speci�c scoring formulas (typically a weighted
sum).
Another important point to achieve better neighborhoods is the clus-

tering algorithm itself. Regarding these grouping strategies, as previously
commented those based on choosing the nearest neighbors are the more
popular (Ning et al. 2015). Twomain approaches are commonly employed
for limiting the number of users to avoid noise: restricting the number of
users to k neighbors or use a similarity threshold t and selecting all the
users with similarity over t. Additionally, other approaches such as using
the k furthest neighbors (Said et al. 2013), selecting k neighbors following
a probabilistic distribution (Adamopoulos and Tuzhilin 2014) or building
inverted neighborhoods (Vargas and Castells 2014) have been proposed
to improve the diversity �gures of memory-based collaborative �ltering
techniques. In previous work, we also compared some of these clustering
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algorithms with a focus on diversity and novelty metrics (Landin et al.
2018).
¿e well-known k-means (Xue et al. 2005), or its variants such as bi-

secting k-means (Sarwar et al. 2002), are probably the second clustering
algorithm in popularity. Pitsilis et al. (2011) compared the use of the
a�nity propagation algorithm with traditional k-means, but, unfortu-
nately, the results regarding mean average error and coverage were worse
than previous alternatives. Truong et al. (2007) presented an item-based
method for producing uniform clusters of items by minimizing the vari-
ance between the items within every cluster. George and Merugu (2005)
proposed a weighted co-clustering algorithm that involves simultane-
ous clustering of users and items; however, the advantages are mainly
centered on the e�ciency of the algorithm. More recently, other strict
partitioning clustering techniques have been tested. Bellogín and Parapar
(2012) explored the use of a spectral clustering algorithm, normalized cut,
for producing the neighbors showing important improvements regarding
precision but lower coverage values than the nearest neighbor approach.
Parapar et al. (2013) used posterior probabilistic clustering for the same
task obtaining higher coverage values.
It is interesting to note that IDF heuristic was previously used in rec-

ommendation. Bellogín et al. (2013a) adapted the most prominent text
retrievalmodels to collaborative �ltering.¿emajority of the text retrieval
models exploit the IDF e�ect. However, the authors used these models
for computing directly the list of recommendations. In contrast, in our
work, we introduce the IDF heuristic into the neighborhood selection
phase.
Finally, some works addressed the goodness of the neighbors directly

and how to predict that goodness or adapt the recommendation algorithm
to some speci�c conditions. Herlocker et al. (2002) conducted the �rst
thorough analysis of di�erent choices for similarity metrics, weighting
schemes and other collaborative �ltering decisions. However, the analysis
is limited to the study of the performance of di�erent choices for every step
without actually addressing which is the ideal performance at every one
of those steps. Another line of research is to address this topic in a similar
fashion to the performance prediction and adaptive (or selective) pseudo-
relevance feedback in Information Retrieval. Bellogín and Castells (2009)
and Bellogín et al. (2014a) adapted di�erent query performance predictors
from the text retrieval �eld to estimate how good is a neighbor. ¿ey
modi�ed the recommendation formula to weight the in�uence of every
neighbor by its predicted goodness. In a similar line to this adaptive
method, Baltrunas and Ricci (2008) presented an improved framework
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for neighborhood selection where they adjust the similarity between user
to the sub-set of co-rated items more related to the target item achieving
improvements regarding error metrics.

9.7 conclusions

In this chapter, we showed that we are still far away from the maximum
performance we can achieve with neighborhood-based recommenders.
We designed a greedy strategy for building an oracle that yields nearly
optimal neighborhoods in a particular collaborative �ltering scenario.
¿is oracle showed that there is a big scope for improvement regarding
ranking quality for neighborhood techniques. We proposed an analytical
approach to characterize these ground truth neighborhoods.¿is analysis
showed that user pro�le size plays a key role in clustering users. We
proposed a penalized version of cosine similarity inspired in the pivoted
document length normalization model from IR. We studied empirically
that tuning this normalization term leads to e�ectiveness gains.
We also presented a simpler oracle that selects the ideal number of

neighbors for each user using cosine similarity. ¿e characterization
of the neighborhoods produced by this cosine-based oracle led us to
introduce the IDF e�ect in the cosine formulation. Our experiments
showed that this variant generates better neighborhoods than the original
formulation of cosine similarity. ¿ese �ndings support our analytical
approach as a useful approach to analyze and develop new techniques
within the �eld of memory-based recommendation based on the ground
truth neighborhoods.
In the next chapter, we propose a di�erent approach to computing

neighborhoods inspired in the language modeling framework, a state-of-
the-art ad hoc retrieval technique.



10
LANGUAGE MODELS FOR
NEIGHBORHOODS

We have shown that we can enhance the e�ectiveness of neighborhood-
based recommenders by improving the neighborhood computation pro-
cess. In the previous chapter, we characterized ground-truth neighbor-
hoods built from two oracles and proposed improvements in the cosine
similarity.
In this chapter, we follow a di�erent approach. We propose to compute We propose to use

language models
to compute
neighborhoods.

neighbors using the language modeling framework. Language models
constitute one of the most successful models in information retrieval.
¿eir sound statistical foundation and high ranking e�ectiveness in sev-
eral retrieval tasks are key to their current success. Here, we explore how
to adapt these language models to address the computation of user and
item neighborhoods in a collaborative �ltering scenario. Our experiments
show that this approach is superior to cosine similarity. In addition to the
empirical study, we perform an axiomatic analysis that shows that our
proposal satis�es two desirable properties that cosine similarity does not.
We have previously published the contributions included in this chap-

ter. On the one hand, we presented the adaptation of language models
to compute neighborhoods (Valcarce et al. 2016b,e). On the other hand,
we performed the axiomatic analysis of cosine similarity and language
models for neighborhood computation (Valcarce et al. 2017a). We extend
here these works by conducting a more exhaustive experimentation.

10.1 introduction

Multiple approaches to generate neighborhoods exist in the RS literature
because this phase is crucial for neighborhood-based approaches (Ning
et al. 2015). ¿e e�ectiveness of these type of recommenders depends
largely on how we calculate the neighborhoods. A popular approach

153
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consists in computing the k nearest neighbors according to a pairwise
similarity metric.
Previous work has found that the cosine similarity yields better resultsAd hoc retrieval

and neighborhood
computation are
analogous tasks.

than Pearson’s correlation in terms of accuracy metrics in the neighbor-
hood computation process (Cremonesi et al. 2010).¿inking about cosine
similarity in terms of retrieval models, we can note that it is the basic
distance measure used in the vector space model, a traditional ad hoc
retrieval model (Salton et al. 1975). We can, thus, establish a parallelism
between ad hoc retrieval and neighborhood computation. In the case
of user-based recommendation, the target user would play the role of
the query and the candidate user neighbors the role of documents. In
an item-based approach, the target item would act as the query and the
candidate item neighbors as documents.
Following this analogy between ad hoc retrieval and neighborhood

computation, we can argue the following. If the cosine similarity is a
great metric for computing neighborhoods as it is for computing query-
document similarities in the VSM, it sounds reasonable to apply more
sophisticated ad hoc retrieval models to the task of �nding user and item
neighborhoods. ¿erefore, in this chapter, we model the computation of
user and item neighborhoods as an ad hoc retrieval task. In particular, we
propose an adaptation of language models to compute neighborhoods.
Our proposal leverages the advantages of this state-of-the-art retrieval
technique to calculate neighborhoods in a collaborative �ltering scenario.

10.2 language modeling of neighborhoods

Language models (LM) represent a successful framework in informationLM achieve
state-of-the-art

�gures in several
IR tasks.

retrieval. Ponte and Cro (1998) used language models for the �rst time
in the ad hoc retrieval task. Nowadays, language models have become
so popular in the �eld that they have been improved to address several
IR tasks achieving state-of-the-art performance (Zhai 2008). Compared
to previous techniques, the main contributions of these models are their
solid statistical foundation and their interpretability (Ponte and Cro 
1998; Zhai 2008).
We adapted the LM framework to the task of �nding neighborhoods

in a user or item-based manner. In the user-based scenario, we model the
generation of ratings by users as a random process given by a probability
distribution. In this way, we can see documents and queries as users and
terms as items.¿us, the retrieval procedure results in �nding the nearest
neighbors of the target user (i.e., the query). Analogously, we can �ip to
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the item-based approach. In this case, we model the generation of ratings
by items as a random process where the query plays the role of the target
item while the rest of items play the role of the documents. In this way, a
retrieval returns the most similar items to the target item.
We have already used the aforementioned analogy between retrieval

and user-based recommendation in the adaptation of pseudo-relevance
feedback techniques to top-N recommendation (see Chapters 5 and 8).
Additionally, we used the analogy between item-based recommendation
and pseudo-relevance feedback in Chapters 6 and 7.
Within the language modeling framework, we adapt the query likeli- We adapt the

query likelihood
model to
neighborhood
computation.

hood model from Equation (2.3) to the computation of neighborhoods.
In the user-based scenario, we estimate the probability of generating the
target user u given the language model of the candidate neighbor v as
follows:

p(u∣v) = ∏
i∈Iu

p(i∣v)r(u,i) (10.1)

¿e item-based counterpart for a target item i and a candidate item
neighbor j is analogous:

p(i∣ j) = ∏
u∈Ui

p(u∣ j)r(u,i) (10.2)

We compute the conditional probabilities on the right side of Equa-
tions (10.1) and (10.2) by smoothing the MLE of a multinomial distribu-
tion of ratings. We explore the same smoothing methods we used with
relevance models: Jelinek-Mercer (JMS), Dirichlet priors (DPS), absolute
discounting (ADS) and additive smoothing (AS). We presented the user-
based smoothed estimates in Section 5.2.1. ¿e item-based estimates are
analogous as shown in Section 6.3.3.
We can use Equations (10.1) and (10.2) as user-based and item-based Language models

provide document
length
normalization and
incorporate the
IDF e�ect.

similarity metrics and plug these equations into kNN algorithm as a re-
placement of cosine similarity. In the previous chapter, we saw that the
document length normalization and the IDF e�ect could improve the
e�ectiveness of cosine similarity in the neighborhood computation pro-
cess. Language models also incorporate document length normalization
and the IDF e�ect (Zhai and La�erty 2004).

10.3 experiments

We run our experiments on four datasets: MovieLens 100k and 1M, R3-
Yahoo Music and Library¿ing. In this section, we compare our lan-
guage modeling approach for computing neighborhoods against cosine
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similarity. We compute recommendations using the user-based and the
item-based versions of WSR (see Section 9.2.2) and the user-based rec-
ommender RM2 (see Chapter 5).

10.3.1 Comparing smoothing methods

To compare the di�erent methods for smoothing the query likelihood
model when computing neighborhoods, we show in Figures 10.1 to 10.4
the values of nDCG@100, Gini@100 and MSI@100 of our proposals on
each dataset. We tuned the smoothing parameters γ ∈ {0.001, 0.01, 0.1,
1, 10}, δ and λ from 0.1 to 1.0 in steps of 0.05, and µ from 400 to 4000
in steps of 200 of the AS, ADS, JMS and DPS methods, respectively. We
also compare against cosine similarity as a baseline. In our previous work
(Valcarce et al. 2016e), we also compared against RM1Sim (Bellogín et al.
2013b) and Pearson’s correlation similarity. For brevity, we omit these
baselines since they are weaker than cosine similarity.
Our previous experiments in Section 9.2.3 using cosine similarity with

kNN algorithm showed that the user-based formulation of the weighted
sum recommender (WSR-UB) works better on the MovieLens datasets
than the item-based one (WSR-IB). In contrast, on the R3-Yahoo and
Library¿ing collections, WSR-IB outperformed WSR-UB. We repeated
the experiments with our language modeling approach instead of using
cosine similarity obtaining the same trends: user-based approaches work
better than item-based on the movie datasets and the other way around
on the other two collections. For this reason, we run the user-based query
likelihood model on the MovieLens datasets and the item-based version
on the other two collections.
¿e experiments showed that DPS and JMS smoothing methods pro-

duced the best results on the MovieLens datasets. ¿is also happens in
ad hoc retrieval where DPS and JMS are the favorite methods (Zhai and
La�erty 2004). On R3-Yahoo and Library¿ing, JMS and AS were the
best methods. However, only JMS can outperform cosine similarity in
ranking accuracy, diversity and novelty on all datasets. Accuracy �gures
of JMS increase with a high amount of smoothing; however, we can ob-
serve a signi�cant drop at λ = 1 which is expected because the estimate
degenerates to the background model. Finally, ADS is not competitive on
any dataset. In light of these results, we disregard the rest of methods and,
from now on, only use Jelinek-Mercer for smoothing the query likelihood
model when computing neighborhoods.
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Figure 10.1: Values of nDCG@100 (top), Gini@100 (middle) andMSI@100 (bot-
tom) for WSR-UB on MovieLens 100k varying the smoothing pa-
rameters. Neighborhoods are computed taking the 50 closest users
according to the query likelihood model smoothed by AS, ADS,
JMS and DPS methods as well as cosine similarity.
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Figure 10.2: Values of nDCG@100 (top), Gini@100 (middle) and MSI@100
(bottom) for WSR-UB on the MovieLens 1M dataset varying the
smoothing parameters. Neighborhoods are computed taking the
75 closest users according to the query likelihood model smoothed
by AS, ADS, JMS and DPS methods as well as cosine similarity.
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Figure 10.3: Values of nDCG@100 (top), Gini@100 (middle) andMSI@100 (bot-
tom) for WSR-IB on the MovieLens r3 dataset varying the smooth-
ing parameters. Neighborhoods are computed taking the 125 closest
users according to the query likelihood model smoothed by AS,
ADS, JMS and DPS methods as well as cosine similarity.
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Figure 10.4: Values of nDCG@100 (top), Gini@100 (middle) andMSI@100 (bot-
tom) for WSR-IB on the MovieLens lt dataset varying the smooth-
ing parameters. Neighborhoods are computed taking the 25 closest
users according to the query likelihood model smoothed by AS,
ADS, JMS and DPS methods as well as cosine similarity.
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10.3.2 Comparing neighborhood-based methods

We now compare user-based and item-based WSR and RM2 with cosine
similarity and the query likelihoodmodel with Jelinek-Mercer smoothing.
Table 10.1 shows the values of nDCG@100, Gini@100 and MSI@100 on
the four datasets. For the sake of reproducibility, we show the optimal
values of the hyperparameters in Table 10.2.
¿e language modeling approach improves the ranking accuracy of all

the neighborhood-based recommenders compared to cosine similarity
in all cases. Additionally, on all datasets except for RM2 on R3-Yahoo,
our approach also improves the diversity and novelty �gures. In many
scenarios, these improvements are statistically signi�cant. ¿is a notable
result considering the di�culty of improving these three aspects of the
recommendations at the same time.
RM2 using the neighborhoods computed with language models shows

the highest �gures of ranking accuracy except on the Library¿ing dataset
where the item-based version ofWSRwith the same neighborhoods is bet-
ter. It is interesting to note that RM2 outperforms WSR-IB on R3-Yahoo
although item-based techniques tend to work better than user-based
models on this dataset. In general, there is no large di�erence between
item-based and user-based methods in terms of ranking accuracy except
on the Library¿ing dataset whereWSR-IR signi�cantly outperforms the
rest of methods.
Regarding diversity and novelty, the item-based version of WSR using

the neighborhoods produced by the query likelihood model obtains the
best �gures on three out of four datasets. Only on R3-Yahoo, RM2 with
cosine similarity can outperform the rest of methods in terms of Gini
and Mean Self-Information (MSI). Overall, we can see that item-based
models tend to produce more diverse and novel recommendations than
user-based recommender systems.
Table 10.2 shows that the optimal number of neighbors vary across

datasets, but it is quite stable amongmethods on the same collection.¿is
indicates that the optimal size of the neighborhoods depends more on
the dataset than on the neighborhood computation model. Additionally,
regarding the Jelinek-Mercer parameter λ of the query likelihood model,
we can see that its optimal value, when combined with RM2, is slightly
smaller than when using WSR. ¿erefore, this hyperparameter needs to
be tuned when using di�erent neighborhood-based approaches.



162 language models for neighborhoods

Method Metric ML 100k ML 1M R3-Yahoo LibraryThing

Cosine
WSR-UB

nDCG 0.4857b 0.4138b 0.0703 0.2255
Gini 0.2375 0.1356 0.3107 0.0417
MSI 173.86 172.76 305.26 333.50

Cosine
WSR-IB

nDCG 0.4790 0.4035 0.0727a 0.3085acd f

Gini 0.2738 0.1516 0.3309 0.2768
MSI 181.59ac 178.95a 314.12a 461.74acd f

Cosine
RM2

nDCG 0.4953ab 0.4322abe 0.0717a 0.2384a

Gini 0.2637 0.1533 0.4769 0.1278
MSI 180.45a 179.39a 339.64abd e f 417.56ad

LM-JMS
WSR-UB

nDCG 0.4990abc 0.4329abe 0.0719a 0.2370a

Gini 0.2645 0.1731 0.3566 0.0570
MSI 180.59a 186.15abc 314.23a 352.80a

LM-JMS
WSR-IB

nDCG 0.4989abc 0.4232ab 0.0731a 0.3118abcd f

Gini 0.2952 0.1854 0.3520 0.3368
MSI 190.23abcd f 191.34abcd f 318.00abd 499.73abcd f

LM-JMS
RM2

nDCG 0.5021abcd 0.4392abcd e 0.0731acd 0.2406ad

Gini 0.2794 0.1825 0.4281 0.1285
MSI 184.29abcd 189.27abcd 332.49abd e 418.39ad

Table 10.1: Values of nDCG@100, Gini@100 and MSI@100 for each recom-
mender approach on the MovieLens 100k and 1M, R3-Yahoo and
Library¿ing datasets. Statistically signi�cant improvements in
nDCG@100 and MSI@100 according to permutation test (p < 0.05)
with respect to Cosine-WSR-UB, Cosine-WSR-IB, Cosine-RM2,
LM-JMS-WSR-IB, LM-JMS-WSR-IB and LM-JMS-RM2 are super-
scripted with a, b, c, d, e and f , respectively. Highest value for each
metric on each dataset is indicated in bold.

10.4 axiomatic analysis of language models for
neighborhoods

To further study why the query likelihood model with Jelinek-Mercer
smoothing outperforms cosine similarity, we perform an axiomatic analy-
sis of these two models. Axiomatic analysis has proven to be a useful tool
for studying language models formally (Fang et al. 2004; Hazimeh and
Zhai 2015; Valcarce et al. 2016a). We enunciate two desirable properties
that a good neighborhood technique should satisfy, namely user speci-
�city and item speci�city, and perform an axiomatic analysis to verify
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Method ML 100k ML 1M R3-Yahoo LibraryThing

Cosine-WSR-UB k = 50 k = 50 k = 125 k = 50
Cosine-WSR-IB k = 75 k = 100 k = 150 k = 25
Cosine-RM2 k = 50 k = 100 k = 150 k = 50
LM-JMS
WSR-UB

k = 50,
λ = 0.90 k = 75,

λ = 0.95 k = 125,
λ = 0.80 k = 50,

λ = 0.95
LM-JMS
WSR-IB

k = 50,
λ = 0.95 k = 50,

λ = 0.95 k = 125,
λ = 0.90 k = 25,

λ = 0.95
LM-JMS
RM2

k = 50,
λ = 0.80 k = 100,

λ = 0.85 k = 150,
λ = 0.50 k = 50,

λ = 0.85
Table 10.2:Optimal number of neighbors k for the kNN algorithm and optimal

value of λ for the Jelinek-Mercer smoothing of the language model
used in Table 10.1 on the MovieLens 100k and 1M, R3-Yahoo and
Library¿ing datasets for the Cosine-WSR-UB, Cosine-WSR-IB,
Cosine-RM2, LM-JMS-WSR-IB, LM-JMS-WSR-IB and LM-JMS-
RM2 recommenders.

whether the query likelihood model and cosine similarity meet these
properties.

10.4.1 Neighborhood properties

Next, we present the two proposed properties for neighborhood computa- We propose user
and item
speci�city
properties as
bene�cial
recommendation
properties.

tion: user speci�city and item speci�city. We claim that a good neighbor
similarity should enforce them. For the sake of simplicity, we use the
notation ∣u∣ to refer to the sum of ratings of user u: ∣u∣ = ∑i∈I r(u, i).
Likewise, ∣i∣ denotes the sum of ratings of item i: ∣i∣ = ∑u∈U r(u, i).
We analyze the user-based versions of cosine similarity and the query

likelihood model with Jelinek-Mercer smoothing. Similar properties for
the item-based formulations could be formulated, and the proofs would
be analogous to those presented here.

10.4.1.1 User speci�city

When calculating the similarity between users to compute a user neigh-
borhood, we o en �nd users with very broad tastes and many ratings.
¿ese users are very similar to many other users concerning standard
similarity metrics because they have several items rated in common to
almost every user. However, these users are not very informative—they
like almost everything—and their contribution to the �nal recommenda-
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tion is noisy. In other words, we prefer candidate neighbors that have in
common with the target user a greater part of their pro�le. Formally, we
can state this property as follows:

De�nition. User speci�city. Given three users u, v and w from the set
of users U such that Iu ∩ Iv = Iu ∩ Iw , r(u, i) = r(v , i) = r(w , i) for
each i ∈ Iu ∩ Iv and ∣v∣ < ∣w∣, the user speci�city property enforces
sim(u, v) > sim(u,w).
10.4.1.2 Item speci�city

¿e previous property gives the highest importance to those candidate
users whose tastes mainly agree with the target user and avoids those
users that have rated many other non-relevant items with respect to the
target user. Now we address a di�erent property related to the items
that users have in common. If we have two candidate users v and w
with the same common ratings with the target user u except for two
items j and k which are rated by only one of these users, we prefer the
user who has the most speci�c item. With this property, we seek to give
more importance to highly speci�c items rather than general and popular
items. We believe that the former kind of items is more informative
than the latter. Additionally, we believe that this property may help to
provide more diverse neighborhoods improving the novelty and diversity
of recommendations. Formally, we can de�ne our property as follows:

De�nition. Item speci�city. Let u be the target user and v and w be
two candidate users from the set of users U such that ∣v∣ = ∣w∣ and let
j and k be two items from the set of items I such that j ∈ Iu ∩ Iv and
k ∈ Iu ∩ Iw . Given that (Iu ∩ Iv) ∖ { j} = (Iu ∩ Iw) ∖ {k}, r(u, j) =
r(v , j) = r(u, k) = r(w , k) and r(u, i) = r(v , i) = r(w , i) for each
i ∈ Iu ∩ Iv ∩ Iw , if ∣ j∣ < ∣k∣, then the item speci�city property enforces
sim(u, v) > sim(u,w).
10.4.2 ¿eoretical analysis of cosine similarity

Cosine similarity measures the cosine of the angle between two vectors.
¿e user-based formulation is as follows:

cos(u, v) ∑i∈Iu∩Iv r(u, i) r(v , i)√∑i∈Iu r(u, i)2√∑i∈Iv r(v , i)2 (10.3)
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10.4.2.1 User speci�city in cosine similarity

Assuming the users u, v and w as in the de�nition of the user speci�city
property, if the sign of cos(u, v) − cos(u,w) is positive, then cosine en-
forces this property. For simplicity, we refer to the root of the squared
sum of the ratings of a user u by ∥u∥ = √∑i∈Iu r(u, i)2.

cos(u, v) − cos(u,w) =
=∑i∈Iu∩Iv r(u, i) r(v , i)∥u∥ ∥v∥ − ∑i∈Iu∩Iw r(u, i) r(w , i)∥u∥ ∥w∥
=∑i∈Iu∩Iv r(u, i) r(v , i) (∥w∥ − ∥v∥)∥u∥ ∥v∥ ∥w∥>0 if ∥w∥ > ∥v∥

(10.4)

We can see that cosine similarity only enforces the user speci�city
property when ∥w∥ > ∥v∥, but this is not guaranteed. We know that∣w∣ > ∣v∣, that is, ∑i∈Iw r(w , i) > ∑i∈Iv r(v , i), but this does not imply√∑i∈Iw r(w , i)2 > √∑i∈Iv r(v , i)2. ¿erefore, in general, we cannot say
that cosine enforces this property.

10.4.2.2 Item speci�city in cosine similarity

Assuming the users u, v and w as in the de�nition of the item speci-
�city property, if the sign of cos(u, v)− cos(u,w) is positive, then cosine
enforces this property.

cos(u, v) − cos(u,w) =
=∑i∈Iu∩Iv r(u, i) r(v , i)∥u∥ ∥v∥ − ∑i∈Iu∩Iw r(u, i) r(w , i)∥u∥ ∥w∥
=∑i∈Iu∩Iv∩Iw r(u, i) r(v , i) (∥w∥ − ∥v∥)∥u∥ ∥v∥ ∥w∥

+ r(u, j)r(v , j)∥u∥ ∥v∥ − r(u, k)r(w , k)∥u∥ ∥w∥>0 if ∥w∥ > ∥v∥

(10.5)

Taking into account that r(u, j) = r(v , j) = r(u, k) = r(w , k), we can
see that cosine similarity only enforces the item speci�city property when∥w∥ > ∥v∥ which is a condition based on the users’ ratings and not on the
speci�city of the items. ¿erefore, in general, cosine similarity does not
enforce this property.
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10.4.3 ¿eoretical analysis of the query likelihood model

We take logarithms in the query likelihood model to ease the computa-
tion. Applying logarithms to Equation (10.1) and using Jelinek-Mercer
smoothing from Equation (5.6), the log-likelihood is given by:

qljms(u, v) = log p(u∣v) = ∑
i∈Iu

r(u, i) log((1 − λ) r(v , i)∣v∣ + λ ∣i∣∣C∣)
(10.6)

¿e above formula needs to be computed over all the items rated by
the target user u. However, we can use a more convenient rank equivalent
expression that only needs to be computed over the items rated by both
users u and v (Zhai and La�erty 2004):

log p(u∣v) = ∑
i∈Iu∩Iv

r(u, i) log⎛⎜⎝1 +
(1 − λ) r(v ,i)

∣v∣

λ ∣i∣∣C∣

⎞⎟⎠ (10.7)

10.4.3.1 User speci�city e�ect in the query likelihood model

Assuming the users u, v and w as in the de�nition of the user speci-
�city property, if the sign of log p(u∣v) − log p(u∣w) is positive, then the
query likelihood model (using Jelinek-Mercer smoothing) supports this
property.

log p(u∣v) − log p(u∣w) =
= ∑
i∈Iu∩Iv

r(u, i) log(1 + (1 − λ) r(v , i) ∣C∣
λ ∣i∣ ∣v∣ )

− ∑
i∈Iu∩Iw

r(u, i) log(1 + (1 − λ) r(w , i) ∣C∣
λ ∣i∣ ∣w∣ )

= ∑
i∈Iu∩Iv

r(u, i) [log(1 + (1 − λ) r(v , i) ∣C∣
λ ∣i∣ ∣v∣ )

− log (1 + (1 − λ) r(w , i) ∣C∣
λ ∣i∣ ∣w∣ )]

>0

(10.8)

We can see that log p(u∣v) − log p(u∣w) > 0 because ∣v∣ < ∣w∣ and
r(v , i) = r(w , i) for each i ∈ Iv ∩ Iw . ¿erefore, the query likelihood
model using Jelinek-Mercer smoothing supports the user speci�city ef-
fect.
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10.4.3.2 Item speci�city e�ect in the query likelihood model

Assuming the users u, v and w as in the de�nition of the item speci-
�city property, if the sign of log p(u∣v) − log p(u∣w) is positive, then the
query likelihood model (using Jelinek-Mercer smoothing) supports this
property.

log p(u∣v) − log p(u∣w) =
= ∑
i∈Iu∩Iv

r(u, i) log(1 + (1 − λ) r(v , i) ∣C∣
λ ∣i∣ ∣v∣ )

− ∑
i∈Iu∩Iw

r(u, i) log(1 + (1 − λ) r(w , i) ∣C∣
λ ∣i∣ ∣w∣ )

= r(u, j) log(1 + (1 − λ) r(v , j) ∣C∣
λ ∣ j∣ ∣v∣ )

− r(u, k) log(1 + (1 − λ) r(w , k) ∣C∣
λ ∣k∣ ∣w∣ )

>0

(10.9)

First, we get rid of the sums using (Iu ∩ Iv) ∖ { j} = (Iu ∩ Iw) ∖ {k}
and r(u, i) = r(v , i) = r(w , i) for each i ∈ Iu ∩ Iv ∩ Iw . Since r(u, j) =
r(u, k) = r(v , k) = r(w , k) and ∣v∣ = ∣w∣, we can see that the di�erence
is positive when ∣ j∣ < ∣k∣. ¿erefore, we conclude that the query likeli-
hood model with Jelinek-Mercer smoothing enforces the item speci�city
property.

10.5 conclusions

We presented a novel approach to �nd user or item neighborhoods based
on the query likelihood model of the language modeling framework.¿is
method, combined with neighborhood-based recommenders, such as
WSR or RM2, yields highly accurate recommendations.We also proposed
two properties (user speci�city and item speci�city) that may be useful for
computing neighborhoods. Our axiomatic analysis of cosine similarity
and the query likelihood model showed that the former does not enforce
these properties while the latter does.
Moreover, in this chapter, we established a parallelism between ad hoc

retrieval and neighborhood computation. ¿is allowed us to adapt the
query likelihood model to this recommendation task, but it also enables
us to adapt any other retrieval model.





Part V

RECOMMENDER SYSTEMS MODELS FOR
PSEUDO-RELEVANCE FEEDBACK

As if there could be true stories: things happen in
one way, and we retell them in the opposite way.

— Jean-Paul Sartre,
Nausea





11
LINEAR METHODS FOR
PSEUDO-RELEVANCE FEEDBACK

¿us far, we have adapted information retrieval models to di�erent rec- We turn the tables
by adapting a
recommendation
model to
pseudo-relevance
feedback.

ommendation tasks. In this chapter, we explore the opposite direction:
adapting recommendation models to retrieval tasks. In particular, we
seek to adapt linear methods that are very e�ective recommender systems
to pseudo-relevance feedback.
We propose two linear methods for pseudo-relevance feedback, one

document-based and another term-based, that models the PRF task as
a matrix decomposition problem. ¿ese factorizations involve the com-
putation of an inter-document or inter-term similarity matrix which is
used for expanding the original query.¿ese decompositions can be com-
puted by solving a least squares regression problem with regularization
and a non-negativity constraint. We �nd that the term-based formula-
tion outperforms the state of the art whereas the document-based model
constitutes a cost-e�ective technique.
¿e pseudo-relevance feedback models presented in this chapter have

been previously published. First, we proposed the PRF framework based
on linear methods and the term-based approach (Valcarce et al. 2018a).
Later, we extended that work by developing the document-based linear
method for pseudo relevance feedback (Valcarce et al. 2018b).

11.1 introduction

We propose a novel framework for the PRF task which is not based on We propose a
document-based
and a term-based
PRF models based
on linear methods.

language models, but in linear methods, which we call LiMe. In particu-
lar, we propose two modelings of the PRF task as matrix decomposition
problems called DLiMe (document-based linear methods) and TLiMe
(term-based linear methods). Zamani et al. (2016) proposed RFMF, the
�rst adaptation of a matrix factorization technique to PRF. ¿ey com-

171
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pute a latent factor representation of documents/queries and terms us-
ing non-negative matrix factorization. In contrast, in this chapter, we
propose a di�erent decomposition that stems from the computation of
inter-document or inter-term similarities. Previous work on translation
models has exploited this concept of inter-term similarities (Berger and
La�erty 1999; La�erty and Zhai 2001); however, to the best of our knowl-
edge, no state-of-the-art PRF approach directly leverages inter-document
or inter-term similarities. Our matrix formulations enable to compute
these similarities that yield within the query and the pseudo-relevant
set. We use the information of these relationships between documents or
terms to expand the original query.
Since producing a good rank of expansion terms is critical for a success-

ful PRF technique, we claim that modeling inter-term similarities should
be a desirable property. Additionally, computing good weights for those
expansion terms is a critical factor in the performance of a PRF technique.
We also think that modeling the relationship between pseudo-relevant
documents can be a faster way to produce expansion terms because the
number of documents is much smaller than the number of terms in the
pseudo-relevant set. In fact, our experiments show that the computation
of inter-term similarities produces high-quality rankings of expansion
terms and weights. In contrast, our proposal based on inter-document
similarities is computationally very cheap at the expense of slightly worse
expansion terms.
Additionally, LiMe is a general framework for PRF that can be plugged

on top of any retrieval engine. Although we can use retrieval-dependent
features within LiMe framework, we explore here only well-known infor-
mation retrieval heuristics.
LiMe modeling of the PRF task paves the way for developing multiple

PRF algorithms since the proposed formulations of the matrix decom-
positions can be calculated in various ways. We use a method based on
regularized linear least squares regression. We employ a ℓ2 regulariza-
tion scheme to avoid over�tting and ℓ1 regularization to enforce sparsity
into the learned inter-document or inter-term similarities. ¿is method
provides an automatic feature selection which gives us a more compact
solution with the corresponding e�ciency gains. ¿e combination of ℓ1
and ℓ2 regularization for linear least squares problems is also known as
an elastic net regression in statistics (Zou and Hastie 2005). Additionally,
we add non-negativity constraints to force the computed similarities to
be positive to increase the interpretability of the models.
We thoroughly evaluate DLiMe and TLiMe on �ve TREC collections.

¿e obtained results show that TLiMe outperforms state-of-the-art base-
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lines regarding several common e�ectiveness metrics. Moreover, TLiMe
achieved high values of robustness compared to the baselines. ¿ese �nd-
ings highlight the applicability of TLiMe as a pseudo-relevance feedback
technique. In contrast, DLiMe provides a computationally cheaper alter-
native with a slight decrease in e�ectiveness. It is important to note that
the LiMe framework can exploit di�erent features allowing the explo-
ration of further features schemes.

11.2 linear methods

Linear methods are a simple but successful collection of techniques that
have been commonly used for regression and classi�cation tasks, but also
in recommender systems. SLIM is a state-of-the-art recommendation
model that learns an item-item similarity matrix using linear methods
(Ning and Karypis 2011; Ning et al. 2015). ¿e main problem of this
recommender system is its scalability because the size of the matrix grows
quadratically with the number of items. However, in this scenario, the
number of terms tend to be small because typical PRF models use a
pseudo-relevant set formed of only a few documents (Li 2008). Moreover,
in Section 11.4.4, we show that our proposal also works best using a few
pseudo-relevant documents.
We propose a PRF method called LiMe inspired in SLIM. We devise a

framework that learns inter-document (DLiMe) or inter-term similari-
ties (TLiMe). Given n features and m data points, y⃗ = (y1 , . . . , ym)T is
the column vector which contains the response and x⃗1 , . . . , x⃗n are the
m-dimensional vectors that contain each of the n features of the m ob-
servations. A linear method tries to predict the response y⃗ using a linear
combination of x⃗1 , . . . , x⃗n. ¿e vectors of features can be arranged in the
form of a matrix X of m rows and n columns. Linear regression aims
to �nd the optimal values of the coe�cients w⃗ = (w1 , . . . ,wn)T that
minimize the error є⃗:

y⃗ = Xw⃗ + є⃗ = w1 x⃗1 + ⋅ ⋅ ⋅ +wn x⃗n + є⃗ (11.1)

In particular, ordinary linear least squares models try to �nd the best
approximate solution of this system of linear equations where the sum
of squared di�erences between the data and the prediction made by the
model serves as the measure of the goodness of the approximation:

w⃗∗ = argmin
w⃗

∥є⃗∥22 = argmin
w⃗

∥ y⃗ − Xw⃗∥22 (11.2)
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Linear least squares loss is strictly convex; thus, it has a unique min-
imum. Moreover, the simplicity of the model favors its explainability
and interpretability. However, this model su�ers from over�tting. For
tackling this problem, it is common to add ℓ2 or Tikhonov regularization
(this model is also known as ridge regression in Statistics (Hoerl and
Kennard 1970)). Imposing a penalty based on the squared ℓ2-norm of
the coe�cients w⃗ produces a shrinking e�ect which is controlled by the
non-negative parameter β2:

w⃗∗ = argmin
w⃗

∥ y⃗ − Xw⃗∥22 + β2 ∥w⃗∥22 (11.3)

An alternative strategy to ridge regression is imposing a penalty based
on the ℓ1-norm of the coe�cient vector. ¿is approach is commonly
known as lasso regression in Statistics (Tibshirani 1996). ¿is approach
performs automatic feature selection as the value of the non-negative
parameter β1 grows:

w⃗∗ = argmin
w⃗

∥ y⃗ − Xw⃗∥22 + β1 ∥w⃗∥1 (11.4)

Since both, ridge and lasso regressions, have bene�cial properties,
Zou and Hastie (2005) developed a technique combining both ℓ1 and ℓ2
regularization: the elastic net, which is a generalization of ridge and lasso
regression. ¿is approach can perform shrinkage and feature selection at
the same time controlled by the non-negative parameters β1 and β2:

w⃗∗ = argmin
w⃗

∥ y⃗ − Xw⃗∥22 + β1 ∥w⃗∥1 + β2 ∥w⃗∥22 (11.5)

11.3 lime framework for prf

LiMe is designed for ranking the candidate terms for producing an ex-LiMe jointly
models the query

and the
pseudo-relevant

documents.

panded queryQ ′. As it is usual in PRF, LiMe uses only information about
the original queryQ and the pseudo-relevant set F.¿e set F is composed
of the top-k documents retrieved using the original query Q. We should
note that LiMe treats the query as another document. ¿us, for conve-
nience, we de�ne the extended feedback set F ′ as the pseudo-relevant
set plus the original query (F ′ = {Q} ∪ F) and denote its cardinality by
m = ∣F ′∣ = k + 1. We consider as candidate terms the subset of words
from the collection vocabulary V that appear in F ′. We refer to this set
by VF ′ and we denote its cardinality by n = ∣VF ′ ∣.
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11.3.1 LiMe formulations

We can de�ne LiMe using amatrix or a vector formulation. To understand ¿e matrix
formulation is
more intuitive, the
vector formulation
is more convenient
to implement.

better the idea behind LiMe, we initially present the matrix formulation
of our technique. Later, we introduce the vector representation which
allows us to optimize the implementation.
Considering the query as another pseudo-relevant document, we de-

�ne the matrix X = (xi j) ∈ Rm×n. ¿e �rst row represents the original
query Q while the rest rows correspond to the k documents from F. Each
column of X corresponds to a term from VF ′ . Each element xi j represents
a feature between the document (or query) corresponding to the i-th
position and the term t j represented with the j-th column of X. ¿ere-
fore, each row of X is a sparse feature vector representing the query or a
pseudo-relevant document.
¿e objective of LiMe is to factorize this matrix X into the product of

itself and another matrix. In the case of TLiMe, we build an inter-term
matrixW = (wi j) ∈ Rn×n

+ whereas, in the case of DLiMe, we build an
inter-document matrix Z = (zi j) ∈ Rm×m

+ .

11.3.1.1 Term-based approach

In our term-based approach (TLiMe), the matrixW represents the inter- TLiMe models the
similarity between
every pair of
terms.

term similarity between pairs of words in VF ′ . In particular, each entry
wi j symbolizes the similarity between terms ti and t j. To increase the
interpretability of the model, we constrain the similarities to be non-
negative. Moreover, to avoid the trivial solution (W equal to the identity
matrix), we enforce that the main diagonal ofW is all zeros. Formally, we
de�ne TLiMe as an algorithm that computes the following decomposition:

X ≈ XW
s.t. diag(W) = 0,W ≥ 0 (11.6)

We formulate this matrix decomposition task as a constrained linear
least squares optimization problem. We want to minimize the residual
sum of squares of the factorization. Additionally, to avoid over�tting
and to enforce a sparse solution we apply the elastic net penalty which
combines ℓ1 and ℓ2 regularization. In this way, the objective function of
LiMe is the following one:

W∗ = argmin
W

1
2
∥X − XW∥2F + β1 ∥W∥1,1 + β2

2
∥W∥2F

s.t. diag(W) = 0, W ≥ 0 (11.7)
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Note that the matrix ℓ1,1-norm (denoted by ∥⋅∥1,1) is equivalent to
the sum of the ℓ1-norm of the columns. On the other hand, the squared
Frobenius norm (denoted by ∥⋅∥2F) is calculated as the sum of the squares
of each matrix element which is equivalent to the sum of the squared ℓ2-
norm of the columns. Using these equivalences between the matrix and
vector norms, we can split this matrix formulation by columns rewriting
the optimization problem in the following vector form:

w⃗∗⋅ j = argmin
w⃗⋅ j

1
2
∥x⃗⋅ j − Xw⃗⋅ j∥22 + β1 ∥w⃗⋅ j∥1 + β2

2
∥w⃗⋅ j∥22

s.t. w j j = 0, w⃗⋅ j ≥ 0
(11.8)

where the non-negativity constraint is applied to the elements of w⃗⋅ j vector
which is the j-th column of theW matrix. Similarly, x⃗⋅ j represents the
j-th column of the X matrix. For each term j in VF ′ , we train an elastic
net (Zou and Hastie 2005) with an equality constraint to zero in one
coe�cient and non-negativity constraints on the rest of the coe�cients.
We merge the solutions of the regression problems depicted in Equa-

tion (11.8) to build the inter-term similarity matrixW∗. We use the com-
puted matrix decomposition to reconstruct the �rst row of X (which we
will denote by x̂1⋅) as follows:

x̂1⋅ = x⃗1⋅W∗ (11.9)

Note that, by construction, X is a sparse matrix (hence also the row
vector x⃗1⋅) andW∗ will be a sparse matrix due to the ℓ1 regularization.
¿us, the product between the row vector x⃗1⋅ and the matrixW∗ is highly
e�cient. We use the pseudo-relevant documents for learning the inter-
term similarities, but we reconstruct the �rst row of X because we want
to expand only the query.

11.3.1.2 Document-based approach

DLiMe, the document-based linear method, computes the matrix Z =DLiMe models the
similarity between
pseudo-relevant

documents
(including the

query).

(zi j) ∈ Rm×m
+ . ¿is matrix represents the inter-document similarity be-

tween pairs of elements from the extended pseudo-relevant set F ′ (i. e.,
the query and the pseudo-relevant documents). ¿e matrix formulation
of DLiMe is analogous to TLiMe:

X ≈ Z X
s.t. diag(Z) = 0, Z ≥ 0 (11.10)

We also constrain Z to be non-negative to foster interpretability and
enforce the diagonal to be zero to avoid the trivial solution. Since we
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are only interested in reconstructing the �rst row of X, we only need
to compute the �rst row of Z. ¿erefore, DLiMe factorization can be
reduced to a single constrained linear least squares optimization problem
as follows:

z⃗∗1⋅ = argmin
z⃗1⋅

1
2
∥z⃗1⋅ − z⃗1⋅X∥22 + β1 ∥z⃗1⋅∥1 + β2

2
∥z⃗1⋅∥22

s.t. z11 = 0, z⃗1i ≥ 0
(11.11)

Note that compared to TLiMe, where n least squares problems have to
be solved, DLiMe is much more e�cient because it only involves solving
one least squares problem. To reconstruct the �rst row of X we simply
need to perform the following vector-matrix multiplication:

x̂1⋅ = z⃗∗1⋅X (11.12)

11.3.2 LiMe feedback model

LiMe feedback model is created from x̂1⋅, which can be reconstructed
using either DLiMe or TLiMe. We can normalize this vector to obtain a
probability estimate. In this way, the probability of the j-th term given
the feedback model is given by:

p(t j∣θF) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̂1 j∑tv∈VF ′ x̂1v
if t j ∈ VF ′ ,

0 otherwise
(11.13)

We only rank those terms that appear in the pseudo-relevant set or
the query. Although some PRF techniques can rank all the terms in the
collection, in practice, it is common to only rank those appearing in the
pseudo-relevant set or the query (Lavrenko and Cro 2001; Zamani et al.
2016). In fact, scoring terms that do not appear in F ′ would contradict
the foundations of PRF since this approach is based on local information
(i. e., the pseudo-relevant set and the query).
Although both LiMe and RFMF decomposes a similar matrix, they use

di�erent objective functions and optimization algorithms. Additionally,
LiMe employs elastic net regularization. In contrast, RFMF is based on
non-negative matrix factorization which can deal with non-negative and
sparse data while LiMe deals with this data by enforcing non-negativity
constraints in the optimization problem. Additionally, LiMe discovers
inter-document (DLiMe) or inter-term similarities (TLiMe) that yield
within the pseudo-relevant set and the query while RFMF learns docu-
ment and term latent factor representations.
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Next, we discuss how we �ll the matrix X = (xi j) with features relating
query/documents i with terms j.

11.3.3 Feature schemes

One advantage of LiMe is its �exibility: we can use any feature scheme
to build matrix X. To foster sparsity in the matrix X, we decided to �ll
with zeros all those entries that correspond to terms that do not appear in
the current document. ¿is approach will provide a quite sparse matrix
which can be more e�ciently decomposed than a dense one.
Let s(w ,D) be the function that assigns a score to the termw given the

document D and let f (w ,D) be the frequency of occurrence of the term
w in the document D, the matrix X is �lled in the following manner:

xi j =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
s(w j ,Q) if i = 1 and f (w j ,Q) > 0,
s(w j ,Di−1) if i > 1 and f (w j ,Di−1) > 0,
0 otherwise

(11.14)

We explored several strategies based on well-known weighting func-It is remarkable
that TF-IDF

heuristic is still
valid today in
many IR tasks.

tions used in information retrieval. We studied several term frequency
measures: raw frequency counts, binarized counts and logarithmic ver-
sions. Additionally, we tried di�erent TF-IDF formulations. We achieved
the best results using the following TF-IDF weighting function proposed
by Salton (Salton 1971):

st f -id f (w ,D) = (1 + log2 f (w ,D)) × log2 ∣C∣
df (w) (11.15)

where ∣C∣ is the number of documents in the collection and df (w) repre-
sents the document frequency of the term w (i. e., the number of docu-
ments in the collection where the term w occurs).
In any case, other alternatives may be possible. In fact, in previous

work, we also reported the performance for the logarithmic TF heuristic
(Valcarce et al. 2018e). Additionally, it may be worth exploring features
related to the �rst retrieval such as the contribution of an individual term
to the document score within a particular retrieval model; however, in
that case, LiMe would not be independent of the retrieval technique. Also,
we could derive probabilistic weighting functions (as RFMF does) at the
expense of introducing a few new parameters to tune into the model. We
leave for future work the investigation of additional features schemes.
Nevertheless, the ability of LiMe for performing well with simple and
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well-known features such as TF-IDF is remarkable. Also, this weighting
function is supported by decades of research in information retrieval.

11.3.4 Implementation details

Equation (11.8) shows that the computation of matrixW∗ can be divided
into multiple linear regression problems, one for each vector w⃗∗⋅ j which
represents a term in VF ′ . ¿us, each column of the matrixW∗ can be
computed separately and, if needed, in parallel without any dependencies
among them. In contrast, DLiMe only requires to solve one least squares
problem as it can be seen in Equation (11.11). To solve these regression
problems, we used the highly e�cient BCLS1 library, which implements
a two-metric projected-descent method for solving bound-constrained
least squares problems.
An additional optimization for TLiMe is to drop part of the matrix

W∗. ¿is matrix is used for computing expansion terms when multiplied
by the vector x⃗1⋅ as shown in Equation (11.9). ¿erefore, we only need
those rows that correspond to a term in the original query. If we only
store those similarities, we save much space since the number of terms in
a query prompted by a user is tiny compared to the number of rows.

11.4 experiments

In this section, we assess the performance of LiMe against state-of-the-art
techniques. ¿e experiments are performed using Terrier (Macdonald
et al. 2012) on �ve TREC collections commonly used in PRF literature (Lv
and Zhai 2009, 2014; Zamani et al. 2016): AP88-89, TREC-678, Robust-04,
WT10G and GOV2 (details are shown in Table 3.1). We apply training and
test evaluation on all collections.We optimize themodel hyperparameters
to maximize MAP using the training topics, and we use the test topics to
evaluate the performance of the methods.
Weproduce a rank of 1000 documents per query.We evaluateMAPand

nDCG using trec_eval2 at a cut-o� of 1000. Additionally, we measure
the reliability of improvement (RI). We employ the permutation test at a
signi�cance level of 0.05 to measure if the improvements regarding MAP
and nDCG are statistically signi�cant. We cannot apply a paired statistic
to RI because it is a global metric.

1 ¿e Bound-Constrained Least Squares library is available at: https://www.cs.ubc.
ca/~mpf/bcls.

2 ¿e trec_eval is available at: https://trec.nist.gov/trec_eval.

https://www.cs.ubc.ca/~mpf/bcls
https://www.cs.ubc.ca/~mpf/bcls
https://trec.nist.gov/trec_eval
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We use title queries from TREC topics. We preprocess the collections
with the standard Terrier stopwords removal and Porter stemmer since
previouswork recommended the use of stemming and stopwords removal
(Lv and Zhai 2009).

11.4.1 Baselines

We use the state-of-the-art language modeling framework for performing
the �rst and second stage retrievals (Ponte and Cro 1998). In particular,
we used the Kullback-Leibler divergence retrieval model presented in
Equation (2.6) which allows us to introduce a feedback model (La�erty
and Zhai 2001). For smoothing the document language models, we used
Dirichlet priors smoothing with the parameter µ = 1000 (Zhai and
La�erty 2004). To compare the e�ectiveness of our proposals, we use the
following state-of-the-art baselines. All the feedback models produced
by these PRF baselines are interpolated with the original query as shown
in Equation (2.7). Finally, they interpolate the feedback model with the
original query model.

11.4.1.1 Language models (LM)

First, we should always compare a PRF technique against the performance
of a retrieval model without feedback information. We used the query
likelihood retrieval model (LM) with Dirichlet priors smoothing (µ =
1000) (Ponte and Cro 1998; Zhai 2008; Zhai and La�erty 2004).

11.4.1.2 Relevance feedback matrix factorization (RFMF)

RFMFwas the �rst technique that appliedmatrix factorization to the PRF
task (Zamani et al. 2016). ¿is approach builds a document-term matrix
X from the query and the pseudo-relevant set. ¿ey built this matrix
using TF-IDF or weights derived from the languagemodeling framework.
RFMF reconstructs, through non-negative matrix factorization (NMF),
the document-termmatrix and use the new weights as a scoring function
to rank candidates terms for expansion. ¿is approach is inspired by the
recommender systems literature where matrix factorization techniques
are commonplace (Koren and Bell 2015). To have a fair comparison, we
build the document-term matrix using the same TF-IDF weights we use
in LiMe.
Formally, NMF is a matrix factorization algorithm which decomposes

the matrix X ∈ Rm×n
+ in two matrices U ∈ Rm×d

+ and V ∈ Rd×n
+ such that
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X ≈ UV . U represents the latent factors of the query and the pseudo-
relevant documents whereas V represents the latent factors of the terms.

11.4.1.3 Maximum-entropy divergence minimization model (MEDMM)

¿e maximum-entropy divergence minimization model (Lv and Zhai
2014) is a PRF technique based on the divergence minimization model
(DMM) which stems from the language modeling framework (Zhai and
La�erty 2001). It is similar to the Rocchio algorithm from the vector space
model if we use the pseudo-relevant set to compute the relevant docu-
ments vectors and the collection model for the non-relevant documents
vectors (Rocchio 1971).MEDMMaims to �nd a feedbackmodel θF which
minimizes the distance to the language models of the documents of the
pseudo-relevant set and, at the same time, maximizes the distance to the
collection model θC (the assumed non-relevant model). ¿is model has
a parameter λ to control the IDF e�ect and a parameter β to regulate the
entropy of the feedback language model:

θF = argmin
θ

∑
D∈F

αD H(θ , θD) − λ H(θ , θC) − β H(θ) (11.16)

where H(⋅, ⋅) denotes the cross entropy and H(⋅) denotes the entropy.
MEDMM also gives a weight αD for each document based on the

posterior of the document language model:

αD = p(θD ∣Q) = p(Q∣θD)∑D ′∈F p(Q∣θ ′D) = ∏t∈Q p(t∣θD)∑D ′∈F∏t ′∈Q p(t ′∣θ ′D) (11.17)

¿e analytic solution to MEDMM, obtained with Lagrange multipliers,
is given by (Lv and Zhai 2014):

p(t∣θF)∝ exp( 1
β ∑D∈F αD log p(t∣θD) −

λ
β
log p(t∣θC)) (11.18)

where p(t∣θD) is the smoothed MLE of the term t under the language
model θD using additive smoothing with the parameter γ. On the other
hand, p(t∣θC) represents the MLE of the term t in the collection.

11.4.1.4 Relevance models (RM)

Relevance-based language models or, for short, Relevance Models (RM)
are a state-of-the-art PRF technique that explicitly introduces the concept
of relevance in languagemodels (Lavrenko and Cro 2001).¿ere are two
models for estimating the relevance: RM1 (which uses i.i.d. sampling)
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and RM2 (based on conditional sampling); however, RM1 model has
shown to be more e�ective than RM2 (Lv and Zhai 2009). RM1 estimates
can be computed as follows when assuming uniform document prior
probabilities:

p(t∣θF)∝ ∑
D∈F

p(t∣θD)∏
q∈Q

p(q∣θD) (11.19)

where p(t∣θD) is the smoothed maximum likelihood estimate (MLE) of
the term t under the language model of the document D with Dirichlet
priors as the preferred smoothing technique (Lavrenko and Cro 2001;
Zhai and La�erty 2004). RM1 is typically called RM3 when it is inter-
polated with the original query (see Equation (2.7)) (Abdul-Jaleel et al.
2004). We set the Dirichlet priors smoothing parameter µ ′ to 1000 as it
is typically done (Lv and Zhai 2009, 2014; Zamani et al. 2016).
For all the PRF models, we swept the number of top k documents

retrieved in the �rst stage among {5, 10, 25, 50, 75, 100} and the number
of expansion terms e among {5, 10, 25, 50, 75, 100}. We swept the query
interpolation parameter α from 0 to 1 in steps of 0.1. Regarding LiMe,
we trained the β1 and β2 parameters. We tuned the values of β1 among{0.01, 0.1, 1.0} and parameter β2 among {10, 25, 50, 100, 150, 200, 250,
300, 350, 400, 450}. We select those parameters that maximize the values
of MAP in the training set.

11.4.2 E�ectiveness analysis

¿e results of the experiments regarding MAP, nDCG, and RI are sum-
marized in Table 11.1. Overall, all the PRF techniques outperform the
language modeling baseline without query expansion. However, TLiMe
is the only method that o�ered signi�cant improvements over LM in
MAP and nDCG on all collections. DLiMe showed competitive e�ective-
ness concerning MEDMM and RM3.
To further analyze if PRF techniques are bene�cial, we measured the

robustness index. ¿is value is positive for all the methods on every
collection.¿is valuemeans that, on average,more queries were improved
rather than worsened due to the PRF techniques. Either DLiMe or TLiMe
achieved the highest �gures in RI on every dataset except for MEDMM
on theWT10G collection. Additionally, RM3 achieve the same robustness
index as TLiMe does on the Robust-04 collection.
On all datasets, TLiMe achieved the highest results regarding MAP

and nDCG. No baseline outperformed TLiMe on any dataset. TLiMe
signi�cantly surpassed RFMF on four out of �ve datasets regarding MAP
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Method Metric AP88-89 TREC-678 Robust-04 WT10G GOV2

LM
MAP 0.2349 0.1931 0.2914 0.2194 0.3310
nDCG 0.5637 0.4518 0.5830 0.5212 0.6325
RI − − − − −

RFMF
MAP 0.2774a 0.2072 0.3130a 0.2389a 0.3580a

nDCG 0.5749a 0.4746 0.5884 0.5262 0.6453
RI 0.42 0.23 0.07 0.30 0.42

MEDMM
MAP 0.3010ab 0.2327abd e 0.3447ab 0.2472a 0.3790ab

nDCG 0.5955ab 0.5115abd e 0.6227ab 0.5324 0.6653ab

RI 0.42 0.26 0.32 0.36 0.66

RM3
MAP 0.3002ab 0.2235ab 0.3488ab 0.2470a 0.3755ab

nDCG 0.6005ab 0.4987ab 0.6251ab 0.5352 0.6618ab

RI 0.50 0.40 0.37 0.20 0.60

DLiMe
MAP 0.3112ab 0.2206ab 0.3435ab 0.2368a 0.3731ab

nDCG 0.6058ab 0.4936ab 0.6247ab 0.5290 0.6588ab

RI 0.52 0.44 0.32 0.26 0.72

TLiMe
MAP 0.3149abc 0.2357abd 0.3517a 0.2476 0.3830a

nDCG 0.6085a 0.5198abd 0.6294a 0.5398 0.6698ab

RI 0.52 0.46 0.37 0.30 0.62

Table 11.1: Values ofMAP, nDCG and RI for each technique on AP88-89, TREC-
678, Robust-04, WT10G and GOV2 datasets. Statistically signi�cant
improvements according to permutation test (p < 0.05) with respect
to LM, RFMF,MEDMM, RM3, DLiMe and TLiMe are superscripted
with a, b, c, d, e and f , respectively. Highest value of each metric for
each dataset is indicated in bold.

and nDCG. Regarding RM3, TLiMe signi�cantly outperformed RM3 on
three collections (concerning MAP or nDCG). ¿e strongest baseline,
MEDMM, was only signi�cantly surpassed by TLiMe on the AP88-89
collection. However, on all datasets, TLiMe showed higher �gures of
nDCG and MAP than MEDMM. Although no baseline signi�cantly out-
performed TLiMe, MEDMM signi�cantly surpassed RM3 and DLiMe
regarding nDCG and MAP on the TREC-678 collection. Also, DLiMe,
RM3, and MEDMM signi�cantly improved RFMF in terms of MAP and
nDCG on several datasets.
It is interesting to remark that the PRF techniques achieved the small-

est improvements in the WT10G collection. ¿is small improvement is
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probably due to the nature of the web which is a noisy media. Also, the
values of RI on this dataset are the lowest.
Regarding the di�erences between DLiMe and TLiMe, the latter ap-

proach showed better �gures of MAP and nDCG on all datasets. Never-
theless, the di�erences are signi�cant only on the TREC-678 collections.
In contrast, DLiMe provided higher RI than TLiMe on GOV2 and the
same �gure on AP88-89 collections.

11.4.3 Query analysis

To provide insights into the good results achieved by DLiMe and TLiMe,We perform a
qualitative

analysis of the
query expansion

methods.

we manually studied the expanded queries produced by the tested PRF
methods. As a representative example, Table 11.2 shows the top 10 expan-
sion terms for the TREC topic 664 (“American Indian Museum”) on the
Robust-04 collection.
RM3 provided bad expansion terms by adding very common unin-

formative terms such as “will”, “1” or “new”. ¿ose terms seem to be a
problem of low IDF e�ect. In contrast, MEDMM yielded much better
expansion terms. However, some of them are of dubious utility such as
“live” or “part”. RFMF provided speci�c terms, but some of them are com-
pletely unrelated to the topic (e. g., “dolphin” or “rafaela”). Hence, the
inferior performance of RFMF is likely to be due to the introduction of
noisy terms. Regarding our methods, we can see than DLiMe provided
good expansion terms. Still, this approach included the term “hey” which
we think is uninformative. In this case, TLiMe yielded the best expansion
terms. All of them are speci�c and related to the topic.
In the light of the results, we can claim that RM3 andMEDMM tend to

foster those terms that appear in themajority of the pseudo-relevant set in
contrast tomatrix factorization approaches. LiMewas capable of selecting
very speci�c and relevant terms such as “smithsonian” or “chumash”.
RFMF was also able to include relevant terms such as “professor” but it
also added non-related terms.¿erefore, themain advantage of thematrix
formulation is its ability to select discriminative words without being
biased to popular and non-informative terms in the pseudo-relevant
set. However, our approach based on inter-term or inter-doc similarities
can select relevant terms while RFMF factorization approach based on
document and term latent factors is incapable of �ltering non-related
terms.
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(a) RFMF.

term weight

indian 0.1725
museum 0.1685
american 0.1505
professor 0.0193
tribal 0.0160
ancient 0.0155
dolphin 0.0153
rafaela 0.0140
activist 0.0137
racist 0.0137

(b)MEDMM.

term weight

indian 0.1511
museum 0.0802
american 0.0780
cultur 0.0210
year 0.0177
live 0.0153
nation 0.0148
artifact 0.0146
part 0.0139
tribal 0.0127

(c) RM3.

term weight

indian 0.1285
american 0.0895
museum 0.0874
year 0.0219
will 0.0209
west 0.0182
1 0.0167
tribal 0.0158
time 0.0149
new 0.0147

(d)DLiMe.

term weight

indian 0.1392
museum 0.1365
american 0.1257
smithsonian 0.0394
artifact 0.0307
hey 0.0272
tribal 0.0271
cultur 0.0250
chumash 0.0219
tribe 0.0213

(e) TLiMe.

term weight

indian 0.1392
museum 0.1364
american 0.1256
tribe 0.0393
artifact 0.0306
cultur 0.0272
tribal 0.0271
nation 0.0249
chumash 0.0219
smithsonian 0.0212

Table 11.2: Top 10 expansion terms for the TREC topic 664 (“American Indian
Museum”) when using the di�erent PRF methods on the Robust-04
collection.

11.4.4 Sensitivity analysis

Regarding the parameters of LiMe, we observed that the di�erences in
e�ectiveness between DLiMe and TLiMe when we changed the value
of β1 were minor. ¿us, we can set β1 to 0.01 reducing the number of
parameters to tune and obtaining good results. Nevertheless, the inclusion
of ℓ1 regularization into LiMe models is still bene�cial since it provides
sparsity to the learned matrixW with the corresponding space savings.
Regarding β2, we plot the values of MAP achieved by DLiMe and TLiMe
with di�erent amount of ℓ2 regularization in Figure 11.1. Except for the
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Figure 11.1: Sensitivity of DLiMe (top) and TLiMe (bottom) techniques to β2
on each collection. ¿e rest of the parameters were �xed to their
optimal values.

WT10G collection, the parameter β2 is relatively stable among the values
150 and 400 for both DLiMe and TLiMe.
We also studied how DLiMe and TLiMe behave varying the size of

the pseudo-relevant set k, the number of expansion terms e and the
interpolation parameter α. Figures 11.2 and 11.3 present the results of
the sensitivity analysis regarding MAP. ¿e sensitivity analysis of the
baselines (RFMF, MEDMM and RM3) is reported in our previous work
(Valcarce et al. 2018a,b) and is omitted here for the sake of brevity.
¿e general trend is that a high number of pseudo-relevant documents

hurts the performance of the PRF techniques. LiMe is quite stable and
behaves optimally with 5-10 documents. LiMe methods are robust to
noisy collections and work well with a high number of terms on WT10G.
Regarding the interpolation parameter α, except for the GOV2 collection,
we observed that the optimal values for DLiMe and TLiMe lie within a
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Figure 11.2: Sensitivity of DLiMe to the number of feedback documents (top),
the number of expansion terms (middle) and the interpolation
parameter of the original query with the expansion terms (bottom)
on each collection. ¿e rest of the parameters were �xed to their
optimal values.
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Figure 11.3: Sensitivity of TLiMe to the number of feedback documents (top),
the number of expansion terms (middle) and the interpolation
parameter of the original query with the expansion terms (bottom)
on each collection. ¿e rest of the parameters were �xed to their
optimal values.
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narrow interval. Nevertheless, we can see that α has a notable impact on
any PRF technique and should be tuned adequately.

11.5 related work

Pseudo-relevance feedback is a fertile area of research in information
retrieval (Carpineto et al. 2001; Cro andHarper 1979; Lavrenko andCro 
2001; Lv and Zhai 2009, 2014; Rocchio 1971; Zamani et al. 2016). Among
the PRF techniques, those based on the language modeling framework
have showed great e�ectiveness (Lv and Zhai 2009). ¿erefore, we used
them as baselines and described them in Section 11.2. Additionally, we
included RFMF as a baseline because it was the �rst work that modeled
the PRF task as a matrix factorization problem (Zamani et al. 2016).
PRF methods have been adapted to collaborative �ltering recommen-

dation with great success (Parapar et al. 2013). In particular, relevance
models (see Chapters 5 to 7) and techniques used within the Rocchio
framework (see Chapter 8). Conversely, RFMF is a case of a recommen-
dation technique applied to PRF (Zamani et al. 2016).
Following this analogy between PRF and collaborative �ltering, we

can �nd a state-of-the-art recommendation technique, SLIM (Ning and
Karypis 2011), which is also based on linear methods. SLIM decomposes
the full user-item feedback producing an item-item similarity matrix
using ℓ1 and ℓ2 regularization.With this decomposition, they reconstruct
the full user-item feedback matrix to generate recommendations. In con-
trast, we only need to predict the �rst row of X since we only have to
expand the query. As SLIM does, LiMe �lls with zeros all the missing val-
ues of the input matrix. In the beginning, in recommender systems, those
unknown values were not set to zero. Instead, the objective function was
optimized only for the known elements. However, later research found
that this procedure produces worse rankings than dealing with the whole
matrix considering all missing values as zeros Cremonesi et al. 2010.
Although RFMF and LiMe are PRF techniques based on matrix fac-

torization, they compute di�erent decompositions. ¿e di�erences in
performance are explained by the use of di�erent objective functions and
optimization algorithms. LiMe minimizes the elastic net loss and RFMF
minimizes the KL-divergence of the NMF decomposition. ¿is diversity
in performance is also found in collaborative �ltering where approaches
such as SLIM outperforms several alternative matrix factorization tech-
niques (Ning and Karypis 2011).
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Linear methods have also been used in other information retrieval
tasks. For example, (Metzler and Cro 2007) proposed a learning to rank
approach based on linear models that directly maximize MAP. Moreover,
linear methods have been applied to other tasks such a query di�culty
prediction (Carmel and Yom-Tov 2010). In the context of PRF, (Raman
et al. 2010) used logistic regression (a linear classi�cation method) to
discriminate between relevant and non-relevant terms. However, to the
best of our knowledge,multiple elastic netmodels have never been applied
before to the PRF task.

11.6 conclusions

In this chapter, we presented LiMe, a framework where the PRF task is
modeled as a matrix decomposition problem which involves the compu-
tation of inter-term or inter-document similarities. TLiMe and DLiMe
factorizations are solved as linear least squares problems with ℓ1 and
ℓ2 regularization and non-negativity constraints. For that purpose, we
use not only the information from the pseudo-relevant set but also the
original query before expansion. ¿e experimental evaluation showed
that TLiMe outperforms state-of-the-art baselines on �ve TREC data-
sets whereas DLiMe presents competitive e�ectiveness with a reduced
computational cost.
In part iii, we adapted pseudo-relevance feedback models to di�erent

recommendation tasks. In this chapter, we close the circle by showing
that recommendation models can also be e�ectively adapted to address
the pseudo-relevance feedback task. Next, we discuss the �ndings of this
thesis and present the conclusions and future work.



Part VI

CLOSING

We can only see a short distance ahead, but we can
see plenty there that needs to be done.

—Alan Turing,
Computing Machinery and Intelligence





12
COMPARISON

Along the previous chapters, we proposed di�erent recommendation
models for the top-N recommendation task. We studied these mod-
els both empirically and theoretically regarding accuracy, diversity and
novelty. Here, in this closing chapter, we compare the e�ectiveness of
these approaches against several state-of-the-art collaborative �ltering
recommenders.We assess a representative set of neighborhood-based and
model-based algorithms using the evaluation protocol followed through-
out this thesis (see Section 3.2). We also discuss the advantages and dis-
advantages of our proposals against the characteristics of the baselines.

12.1 recommendation baselines

In this section, we brie�y describe the recommendation baselines.We can
distinguish between neighborhood-based and model-based collaborative
�ltering techniques.

12.1.1 Neighborhood-based techniques

Among the neighborhood-based or memory-based recommender sys-
tems, NNCosNgbr is considered a good baseline (Cremonesi et al. 2010).
Since we have already studied it in Section 9.2 and our proposal WSR
outperformed it, we omit this recommendation approach. Instead, we
use as a baseline the following neighborhood-learning technique.

12.1.1.1 Sparse linear method (SLIM)

Traditional neighborhood-based approaches compute neighborhoods
using similarity measures. However, some recent memory-based recom-
menders learn neighborhoods automatically from the data, instead of
using a prede�ned similarity measure (Ning et al. 2015).
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Sparse linear method (SLIM) is a state-of-the-art item-based neighbor-
hood learning recommender (Ning and Karypis 2011). ¿is technique
learns an item-item similaritymatrix to generate recommendations.More
speci�cally, SLIM computes a sparse aggregation coe�cient matrixW
solving the following optimization problem with regularization (Ning
and Karypis 2011):

minimize
W

1
2
∥R − RW∥2F + β

2
∥W∥2F + α∥W∥1,1

subject to W ≥ 0
diag(W) = 0

(12.1)

where R ∈ R∣U ∣×∣I∣ is the ratings matrix andW ∈ R∣I∣×∣I∣ represents the
item-item similarity matrix. ¿e score of the item i for the user u is
estimated as the dot product between the user vector of ratings, r⃗u, and
the i-th column vector ofW , w⃗i :

r̂(u, i) = r⃗u w⃗i (12.2)

SLIM is a highly e�ective recommendation technique; however, its
main drawback is scalability.¿e size of thematrixW grows quadratically
with the number of items. ¿erefore, this technique cannot be applied in
scenarios with many items.

12.1.2 Model-based techniques

Regarding model-based techniques, we use several matrix factorization
methods as well as two very recent techniques based on neural models.

12.1.2.1 Pure singular value decomposition (PureSVD)

Pure singular value decomposition (PureSVD) is a factorization tech-
nique oriented to the top-N recommendation problemwhich has achieved
high values of accuracy (Cremonesi et al. 2010). PureSVD computes the
standard singular value decomposition of the ratings matrix R ∈ R∣U ∣×∣I∣
of rank d:

R ≈ U ΣQT = P QT (12.3)

where U ∈ R∣U ∣×d , Σ ∈ Rd×d and QT ∈ Rd×∣I∣. ¿is algorithm aims to
minimize the factorization error in terms of the Frobenius norm:

min ∥R − P QT∥F (12.4)
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We estimate the score for a user u and an item i as the dot product
between the corresponding u-th latent vector of matrix P, p⃗u, and the
i-th latent vector from matrix QT , q⃗i T :

r̂(u, i) = p⃗u q⃗i T (12.5)

12.1.2.2 Bayesian probabilistic ranking matrix factorization (BPRMF)

Bayesian probabilistic ranking matrix factorization (BPRMF) learns a
matrix factorization based on Bayesian probabilistic ranking, a pairwise
ranking loss (Rendle et al. 2009). ¿e decomposition is the same as
PureSVD (R ≈ P QT) and the score for a user and an item is the dot
product between the corresponding user and item latent vectors as shown
in Equation (12.5). ¿e optimization problem is as follows:

max ∑
u∈U , i∈Ru , j∈Nu

log σ (r̂(u, i) − r̂(u, j))− λ(∥P∥2F + ∥Q∥2F) (12.6)

whereRu denotes the set of relevant items for user u andNu refers to the
set of non-relevant items for that user. ¿e logistic function is denoted
by σ(⋅) and λ controls the ℓ2 regularization.
12.1.2.3 Weighted regularized matrix factorization (WRMF)

Weighted regularized matrix factorization (WRMF) is a state-of-the-art
matrix factorization technique that gives more importance to the ob-
served ratings (Hu et al. 2008).¿e decomposition and the rating estimate
is the same as in PureSVD and BPRMF, but the optimization problem is
di�erent:

min ∑
u∈U , i∈I

cu,i (r(u, i) − r̂(u, i))2 + λ (∥P∥2F + ∥Q∥2F) (12.7)

where cu,i = 1+α r(u, i). ¿e hyperparameter α controls the importance
given to the ratings and λ adjusts the ℓ2 regularization.

12.1.2.4 Neural matrix factorization (NeuMF)

¿e irruption of deep learning in RS has fostered the development of new
recommendation approaches. As a representative baseline, we propose
to use neural matrix factorization (NeuMF) which is a state-of-the-art
neural collaborative �ltering approach (He et al. 2017).¿e architecture of
NeuMF combines matrix factorization (a linear model) and a multilayer
perceptron (a non-linear model) using a logistic function in the output
layer. Further information about this model can be found in the original
article (He et al. 2017).
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12.1.2.5 Probabilistic recommender with item priors and neural model
(PRIN)

We recently published a new probabilistic recommender with item pri-
ors and neural model (PRIN) which is an e�ective model-based recom-
mender (Landin et al. 2019). ¿is recommender exploits the continuous
bag-of-words neuralmodel: a fully connected feed-forward network takes
as input the item pro�le and produces as output the conditional probabil-
ities of the users given the item. With that information, PRIN produces
item recommendations through Bayesian inversion. ¿e inversion re-
quires the estimation of item priors that are computed using di�erent
graph-based centrality measures. More details about this algorithm can
be found in the original article (Landin et al. 2019).

12.2 evaluation against the state of the art

We tuned the hyperparameters of all the baselines tomaximize the �gures
of nDCG@100. We report the best value for each recommender system
in Table 12.1. We compare these baselines against our best proposals: LM-
JMS-WSR-IB and LM-JMS-RM2. Both approaches use language models
smoothed with Jelinek-Mercer smoothing for computing neighborhoods
(see Chapter 10). ¿e recommendations are computed using the item-
based version of weighted sum recommender (see Section 9.2.2) and
RM2 (see Chapter 5).
Overall, we can see that our methods provide competitive �gures of

accuracy, diversity and novelty. Regarding ranking accuracy, SLIM and
PRIN o�er the best �gures. However, our proposals present higher values
of nDCG than NeuMF on all datasets. Additionally, LM-JMS-WSR-IB
can outperform all the matrix factorization baselines on R3-Yahoo and
Library¿ing. On the other hand, LM-JMS-RM2 outperforms PureSVD
on MovieLens 1M and all the MF baselines on R3-Yahoo.
Regarding diversity and novelty, their values are tightly related to the

�gures of accuracy. In general, we �nd that any pair of recommendation
techniques with similar values of ranking accuracy also present similar
values of diversity and novelty. ¿e most notable exception is the case
of LM-JMS-WSR-IB and LM-JMS-RM2 on R3-Yahoo where RM2 pro-
vides the same accuracy with much better diversity. On the MovieLens
datasets, we �nd that the higher the value of nDCG is, the lower the
values of Gini and MSI are. However, on R3-Yahoo and Library¿ing
datasets, we �nd the opposite trend to some degree. ¿e reason is that
R3-Yahoo and Library¿ing are sparser datasets and contain users with
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Method Metric ML 100k ML 1M R3-Yahoo LibraryThing

SLIM
nDCG 0.5223bcd e gh 0.4609bcd e gh 0.0741bcd e 0.3654bcd e f gh

Gini 0.2479 0.1731 0.4356 0.2062
MSI 171.97 184.53 328.10 436.50

PureSVD
nDCG 0.5107e gh 0.4281e g 0.0663 0.2475eh

Gini 0.2801 0.1663 0.2208 0.0991
MSI 180.27 186.73 302.80 427.85

BPRMF
nDCG 0.5181bd e gh 0.4575bd e gh 0.0721be 0.2997bd eh

Gini 0.2655 0.1769 0.3683 0.0907
MSI 178.38 183.30 312.93 377.69

WRMF
nDCG 0.5079e gh 0.4468be gh 0.0713b 0.2938beh

Gini 0.3147 0.2086 0.4240 0.1524
MSI 189.97 200.02 340.07 443.43

NeuMF
nDCG 0.4977 0.4074 0.0700b 0.2262
Gini 0.3141 0.2393 0.3926 0.1572
MSI 190.85 203.08 321.73 422.37

PRIN
nDCG 0.5233bcd e gh 0.4585bd e gh 0.0750bcd e gh 0.2987bd eh

Gini 0.2530 0.1701 0.4021 0.0976
MSI 170.38 179.80 319.94 378.07

LM-JMS
WSR-IB

nDCG 0.4989 0.4232e 0.0731be 0.3118bcd e f h

Gini 0.2952 0.1854 0.3520 0.3368
MSI 190.23 191.34 318.00 499.73

LM-JMS
RM2

nDCG 0.5021e 0.4392be g 0.0731bd e 0.2406e

Gini 0.2794 0.1825 0.4281 0.1285
MSI 184.29 189.27 332.49 418.39

Table 12.1: Values of nDCG@100, Gini@100 and MSI@100 for each baseline
recommender and our proposals on the MovieLens 100k and 1M,
R3-Yahoo and Library¿ing datasets. Statistically signi�cant improve-
ments in nDCG@100 according to permutation test (p < 0.05) with
respect to SLIM, PureSVD, BPRMF, WRMF, NeuMF, PRIN, LM-
JMS-WSR-IB and LM-JMS-RM2 are superscripted with a, b, c, d, e,
f , g and h, respectively. Highest value of nDCG@100 for each metric
on each dataset is indicated in bold.

more diverse tastes than the MovieLens collections. ¿erefore, a highly
accurate recommender system must be able to model this diversity.
Among matrix factorization techniques, BPRMF provides the best re-

sults. Compared to our approaches, BPRMF only presents slightly higher
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accuracy �gures on the MovieLens datasets. Additionally, this technique
provides lower diversity and novelty �gures on all datasets.
Regarding neural models, NeuMF is not able to compete against other

MF techniques. ¿is may be caused by the complexity of this model: it
has a high number of parameters and hyperparameters. In general, deep
learning models tend to work best on scenarios with huge amounts of
data but also requiring a lot of computing power to train.¿is approach is
only able to beat our proposals in diversity and novelty on the MovieLens
datasets.
PRIN presents the best �gures of accuracy on MovieLens 100k and R3-

Yahoo and the second-best ones on the other datasets with good values
of diversity and novelty. ¿is technique shows the potential of combining
a neural model within a probabilistic framework.
Finally, SLIM provides the best �gures of accuracy on MovieLens 1M

and Library¿ing and the second-best values of nDCG on the other two
collections with decent �gures of diversity and novelty. Nevertheless, this
baseline is limited by its scalability.¿e temporal and spatial requirements
of SLIM grow quadratically with the number of items which make it
infeasible in large-scale scenarios.
Most of the baselines have several hyperparameters, especially neural

models such as PRIN and NeuMF. In contrast, our approaches only have
two hyperparameters for the neighborhoods (the number of neighbors k
and the JMS parameter of the language model λ). WSR does not add any
additional hyperparameter while RM2 demands two extra hyperparame-
ters: the additive smoothing parameter and the probabilistic item prior
smoothing parameter.
Another advantage of our proposals is that they do not need training.

All the baselines require a training phase to learn the recommendation
model. In contrast, our proposals only need to compute neighborhoods.
Although naïve kNN neighborhood computation has quadratic complex-
ity, more e�cient approaches such as L2Knng (Anastasiu and Karypis
2015) exist. If we are willing to accept a small decrease in accuracy in
exchange for a huge speed-up, we can also use approximate kNN algo-
rithms such as NN-descent (Dong et al. 2011). Moreover, we can leverage
existing implementations of the language modeling framework using
inverted indexes to compute neighborhoods e�ciently.
¿e simplicity of our neighborhood-based approaches not only re-

duces the number of hyperparameters to tune but also provides other
advantages such as explainability. Neighborhood-based recommenda-
tions are easier to explain than the suggestions produced by model-based
approaches (Ning et al. 2015; Tintarev and Mastho� 2015). For example,
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item-based systems can show the neighbor items rated by the user as an
explanation for a particular recommendation.
Finally, the last advantage of our proposals is their sound statistical

foundation that allows to model prior information or use di�erent esti-
mators. ¿is �exibility was crucial to be able to adapt relevance models
to di�erent recommendation tasks in Chapters 6 and 7.





13
CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the conclusions of this doctoral thesis and
provide future work suggestions.

13.1 conclusions

In this thesis, our research aim was that cross-pollination between IR and
RS could lead to new useful models. We drew inspiration from informa-
tion retrieval literature to study ranking accuracy metrics and adapted
di�erent pseudo-relevance feedback and ad hoc retrieval models to sev-
eral recommendation tasks. We also explored the opposite direction by
building a novel pseudo-relevance feedback framework inspired by rec-
ommendation models. In light of the results presented in this thesis, we
can conclude that e�ective models and ideas can be borrowed from one
�eld and applied to the other.
In the following, we present in more detail the �ndings of this work.

13.1.1 Research Method

In this thesis, we did not only follow common evaluation methods used
in information retrieval and recommender systems research but we also
further investigate RS evaluation. In Chapter 4, we leveraged the fact that
ranking accuracy metrics used in the evaluation of top-N recommenders
are also used in information retrieval. We proposed methodologies for
comparing the robustness and the discriminative power of di�erent rank-
ing accuracy metrics inspired in similar studies done in IR. On the one
hand, we studied cut-o�s and found that deeper cut-o�s o�er greater
robustness and discriminative power. On the other hand, we found that
precision o�ers high robustness and normalized discounted cumulative
gain provides the best discriminative power.
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13.1.2 PRF models for recommender systems

In part iii, we examined the adaptation of di�erent pseudo-relevance
feedback models to diverse recommendation problems.
Chapter 5 thoroughly evaluates the applicability of relevance models

(more speci�cally, the RM2 model) to user-based top-N recommenda-
tion. On the one hand, we studied the impact of smoothing methods
estimators in the accuracy, diversity and novelty of the recommenda-
tions. We established a connection between the IDF e�ect from IR to the
concept of novelty in RS and performed an axiomatic analysis to study
whether di�erent smoothing methods a�ect the IDF e�ect on RM2. We
found that while collection-based methods penalize this e�ect, additive
smoothing is neutral with respect to this property. In fact, experimenta-
tion revealed that additive smoothing o�ers better �gures of accuracy,
diversity and novelty than collection-based smoothing methods. On the
other hand, we examined di�erent user and item prior probability esti-
mators. Our experiments showed that a uniform neighbor prior with the
probabilistic estimator based on Jelinek-Mercer smoothing for items can
signi�cantly improve the ranking accuracy, diversity and novelty of the
recommendation.
In Chapter 6, we formulated a novel recommendation task consisting

in the liquidation of long tail items and proposed three di�erent strategies
for estimating the long tail items. We derived an item-based adaptation,
the IRM2model, of the relevancemodeling framework to address the long
tail item liquidation task. Our experiments showed that our proposal
outperforms state-of-the-art collaborative �ltering algorithms in this
novel task.
We also addressed the user-item group formation problem with the

IRM2model in Chapter 7. We framed the group formation problem as an
item relevancemodeling task and proposed di�erent user prior estimators
to model inter-group relationships. ¿e experiments showed that our
proposal is very e�ective and surpasses all the baselines on the denser
datasets.
Finally, in Chapter 8, we explored the adaptation of term scoring func-

tions used in the context of the Rocchio framework to top-N recommen-
dation. Our work led to four neighborhood-based recommenders. We
also proposed a probability estimator that takes into account the size of
the neighborhood yielding better recommendation rankings. We tested
our proposals and found that the proposed algorithms are dramatically
faster than RM2 while incurring in a small penalty in accuracy.
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13.1.3 Improving neighborhoods

part iv is devoted to the computation of neighborhoods, a critical piece
of memory-based recommender systems.
In Chapter 9, we proposed a greedy and a cosine-based oracles that

provide an approximation of the optimal user neighborhoods in a col-
laborative �ltering scenario. ¿ese oracles showed that there is room for
improvement in the memory-based collaborative �ltering by computing
better neighborhoods. We analyzed some characteristics of those ground
truth neighborhoods to search for desirable properties. We adjusted co-
sine similarity with the �ndings of these analyses and proposed two
modi�ed versions of the similarity that improves the original formulation
in terms of ranking accuracy, diversity and novelty.
Additionally, in Chapter 10, we established an analogy between ad hoc

retrieval and neighborhood computation. In this way, we modeled the
formation of neighborhoods using the language modeling framework.
Our proposal leveraged the advantages of this successful retrieval tech-
nique for calculating user and item neighborhoods. We found that the
query likelihood model with Jelinek-Mercer smoothing outperforms co-
sine similarity in accuracy, diversity and novelty. We also provided an
axiomatic analysis that showed that our proposal satis�es two desirable
properties that cosine similarity does not.

13.1.4 Recommender systems models for PRF

In part v, we explored the opposite path to the one studied in part iii:
adapting recommendation models to pseudo-relevance feedback. We
presented the adaptation of linear methods, used in recommendation
techniques such as SLIM in Chapter 11. ¿is work resulted in a novel and
e�ective PRF framework called LiMe. We derived two formulations of
the PRF task involving inter-document and inter-term similarities and
an algorithm based on constrained elastic net regression for solving the
proposed models and computing the expansion terms. ¿e empirical
evaluation showed that the term-based formulation outperforms the
state of the art whereas the document-based model presents competitive
e�ectiveness with a reduced computational cost.
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13.1.5 Final Implications

¿e e�ectiveness achieved by the recommendation models derived from
IR ideas supports the research aim of this thesis. Our proposals not only
o�er competitive e�ectiveness, but are also simple and explainable rec-
ommendation models. Additionally, the �exibility of their probabilistic
formulation enables their adaptation to di�erent recommendation tasks.
Finally, we also found that pseudo-relevance feedback can bene�t from
models developed by the RS community.

13.2 future directions

Next, we propose future lines of work to continue the research presented
in this thesis.

13.2.1 Research Method

We studied the robustness and discriminative power of ranking accu-
racy metrics. However, we envision to extend this analysis to di�erent
types of metrics. Apart from ranking accuracy, diversity and novelty are
also important properties of recommender systems (Castells et al. 2015).
Additionally, it would be worth studying the impact of di�erent dataset
partitioning schemes such as temporal splits and n-fold cross-validation.

13.2.2 PRF models for recommender systems

We found that additive smoothing does not promote nor demote the IDF
e�ect in relevance models. However, it would be interesting to develop
new smoothingmethods that do actively promote this e�ect. Additionally,
we think that performing an axiomatic analysis of the proposed priors
for relevance models may be useful to identify why some estimators are
more e�ective than others. Finally, it would be interesting to analyze if the
combination of di�erent priors can lead to better results as in IR (Peng
and Ounis 2007).
Regarding the problem of liquidating long tail items, we used relevance

models with uniform priors. ¿erefore, it would be interesting to analyze
the e�ect of priors in IRM2. Moreover, the probability distributions of
the user priors can be modi�ed to introduce business rules in the model.
For example, we can demote the probability of certain VIP users because
we do not want to over�ow them with liquidation advertisements.
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We also think that our work on group formation with item-based
relevance models opens the way for further research. For example, it
would be interesting to compute the optimal size of the recommended
group automatically—perhaps we can exploit the probability scores for
this. Additionally, we have seen that the e�ectiveness of IRM2 in this
task depends largely on the prior estimators. ¿erefore, we recommend
further work on this topic to develop better prior estimators. Moreover,
an axiomatic analysis may shed light on the e�ectiveness of the priors.
Finally, we have seen that term scoring functions used within the

Rocchio framework are cost-e�ective alternatives to RM2 in the top-N
recommendation task.We think that exploring other state-of-the-art PRF
techniques such as divergence minimization models or mixture models
(Tao and Zhai 2006; Zhai and La�erty 2001) may be a fruitful area for
further research.

13.2.3 Improving neighborhoods

We proposed two oracles for computing neighborhoods that led us to
improvements in cosine similarity. We think that this work paves the way
for plenty of future research in the area of neighborhood-based recom-
mender systems. In this thesis, we focused our analysis on user-based
approaches, but extending the presented study to the item-based coun-
terpart would be interesting. Additionally, we envision to explore other
neighborhood-based collaborative �ltering techniques apart fromWSR
as well as other methods for computing neighborhoods di�erent from
kNN. Furthermore, we investigated how to improve cosine similarity, a
measure based on rating co-occurrence in user pro�les. However, to ap-
proach the high �gures of the greedy oracle, this will not su�ce. Hence, it
would be interesting to study other aspects such as trustiness or expertise
to complement co-occurrence.
We also envision to expand our work on language models for comput-

ing neighborhoods. In this thesis, we used the query likelihood model.
We found that Jelinek-Mercer provides the best results although Dirichlet
priors is also a great choice. ¿is result is analogous to the information
retrieval task where JMS works better than DPS for long queries (Zhai
and La�erty 2004). To overcome the problem that JMS does not vary
the amount of smoothing applied depending on the document length
(in contrast to DPS), Losada and Azzopardi (2008a) proposed the use
of a length-based document prior. ¿is prior is equivalent to the linear
prior that we used in RM2 (see Section 5.3.1.2). Testing the applicability of
this prior combined with JMS smoothing would be an interesting avenue
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for further work. Furthermore, we think that exploring language mod-
els based on di�erent probability distributions such as the multivariate
Bernoulli (Losada and Azzopardi 2008b) may be worthwhile.
Finally, we also intend to explore neural models that are becoming

increasingly popular in IR (Mitra and Craswell 2018). However, we take
the reported results of these models with a grain of salt due to recent
criticism (Lin 2018).

13.2.4 Recommender systems models for PRF

We found that not only can ideas from IR be adapted to RS, but also the
other way around. ¿e good results achieved by the LiMe framework
using only TF-IDF suggest that exploring alternative features may be an
interesting avenue for future work. We also envision to include richer
representations of text features in the model. For example, the use of
features extracted fromWikipedia has proved to be bene�cial in PRF (Xu
et al. 2009). Additionally, we plan to study other similarity measures used
in translation models which are based on inter-term similarities (Berger
and La�erty 1999; La�erty and Zhai 2001). Previous work on translation
models learned inter-term similarities from training data (Berger and
La�erty 1999) or employed mutual information (Karimzadehgan and
Zhai 2010).
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EXTENDED SUMMARY IN SPANISH

In accordance with the current Regulations of the PhD Studies of the Uni-
versidade da Coruña, we present in this appendix an extended summary
of this doctoral thesis in Spanish.

b.1 introducción

La historia de la humanidad ha sido moldeada por la forma en la que
hemos manejado la información. A medida que surgieron las sociedades,
el desarrollo de la escritura, hace más de cinco milenios, fue el primer
hito. Empezamos a recopilar información que sólo se había difundido
de boca en boca. Impulsados por necesidades pragmáticas, continuamos
creando nuevas formas de almacenar y procesar información. Las bib-
liotecas, los principales lugares donde se almacenaba y conservaba la
información escrita, �orecieron. Sin embargo, la cantidad de datos era
mínima debido al alto coste de la escritura a mano. Fue la invención de la
imprenta la que multiplicó exponencialmente la tasa de crecimiento de la
información escrita. Más recientemente, la invención de la computadora
llevó a desarrollos modernos fundamentales como el diseño de estruc-
turas de datos especializadas para la consulta de bibliotecas digitales.
Finalmente, la aparición de la World Wide Web en 1989 desencadenó
una explosión sin precedentes en la disponibilidad de información. La
creación de Tim Berners-Lee se ha convertido en un depósito univer-
sal de conocimiento humano que ha transformado la forma en la que
accedemos a la información.
La recuperación de información y el �ltrado de información son dos

campos de estudio que giran en torno al procesamiento de la información.
El desarrollo de las tecnologías de la computación y de la comunicación ha
aumentado la importancia de estos campos. Los sistemas de recuperación
de información se ocupan de la representación, almacenamiento y acceso
a la información. Su objetivo es exponer a los usuarios a información
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relevante de acuerdo a sus necesidades (Baeza-Yates and Ribeiro-Neto
2011; Manning et al. 2008). Por otra parte, los sistemas de �ltrado de
información tienen por objeto seleccionar aquellos elementos de un �ujo
de información que pueden ser de interés para un usuario determinado
(Hanani et al. 2001). Entre los diferentes tipos de �ltros de información,
los sistemas de recomendación son probablemente los más importantes
en la actualidad. El objetivo de un sistema de recomendación es generar
sugerencias personalizadas para los artículos basados en los intereses de
un usuario (Ricci et al. 2015).
Dado que el objetivo �nal de los sistemas de recuperación de informa-

ción y los de �ltrado de información es, en última instancia, proporcionar
a los usuarios elementos de información relevantes, algunos autores con-
sideran que ambos campos son dos caras de la misma moneda (Belkin
and Cro 1992). No obstante, a pesar de las similitudes entre la recu-
peración de información y el �ltrado de información, ha habido poca
investigación sobre la aplicación de técnicas clásicas de recuperación
de información a sistemas de recomendación hasta hace poco tiempo
(Bellogín et al. 2013a; Kallumadi et al. 2018; Parapar et al. 2013). En esta
tesis doctoral, pretendemos salvar la brecha entre la recuperación de
información y los sistemas de recomendación, adaptando varios modelos
de recuperación de información a diferentes tareas de recomendación y
estableciendo nuevas analogías entre ambos campos.

b.2 motivación

Los primeros trabajos sobre recuperación de información se remontan a
los años 50 (Kent et al. 1955;Mooers 1951). Desde entonces, la recuperación
de información ha evolucionado enormemente. La primera conferencia
de la ACM sobre recuperación de información (SIGIR) se celebró en 1971
y actualmente cuenta con cientos de asistentes. Además, la Web ha traído
un nuevo paradigma de acceso a la información en el que la búsqueda se
ha vuelto crucial. Por el contrario, los sistemas de recomendación son un
campo mucho más joven. Esta área surgió a mediados de los años 90 con
la explosión de la World Wide Web (Resnick and Varian 1997; Resnick
et al. 1994; Shardanand and Maes 1995). Aunque la primera conferencia
de la ACM sobre sistemas de recomendación (RecSys) tuvo lugar en 2007,
ha crecido muy rápidamente y actualmente atrae a cientos de asistentes,
muchos de ellos de la industria.
A medida que la Web proporciona cada vez más información, los sis-

temas de información tienen que enfrentarse a nuevos retos. El volumen
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de información disponible para el público resulta abrumador. La di�cul-
tad para encontrar y seleccionar información relevante aumenta amedida
que más contenido está disponible. Sin las herramientas adecuadas para
hacer frente a la sobrecarga de información, los usuarios pueden perderse
información interesante o consumir contenido poco interesante. Por esta
razón, las ciencias de la información, como la recuperación y el �ltrado
de la información, son cruciales en el panorama actual.
Los sistemas de recuperación de información suelen estar orientados

a producir listas ordenadas de documentos ordenados por relevancia.
Aunque los sistemas de recomendación se orientaron inicialmente a
predecir con precisión las valoraciones de los usuarios a los ítems, se
ha producido un cambio de paradigma hacia la generación de listas de
ítems ordenadas por relevancia estimada. Por lo tanto, las técnicas de
recuperación de información y de sistemas de recomendación modernas
parecen tener objetivos muy similares.
Los sistemas de recomendación se han convertido en una tecnología

omnipresente para abordar el problema de la sobrecarga de información.
El enorme ritmo de crecimiento de los datos ha cambiado radicalmente
la forma en que accedemos a la información. Además, a medida que
los sistemas de información ofrecen capacidades más avanzadas, los
usuarios son cada vez más exigentes. En este contexto, las funciones de
búsqueda tradicionales no son su�cientes. Los usuarios esperan recibir
de los sistemas sugerencias proactivas en lugar de tener que especi�car
explícitamente consultas que expresen sus necesidades de información.
La principal diferencia entre los sistemas de recuperación de infor-

mación y los sistemas de recomendación radica en la representación de
la necesidad de información: mientras que un sistema de recuperación
de información suele utilizar una consulta especi�cada explícitamente
por el usuario, un sistema de recomendación explota el historial del
usuario como una consulta implícita. Sin embargo, al �nal, ambos cam-
pos comparten el mismo objetivo: proporcionar a los usuarios acceso a
información relevante.

b.3 objetivos y alcance

Creemos que el intercambio de ideas entre la recuperación de informa-
ción y los sistemas de recomendación puede conducir a nuevos y útiles
enfoques. En esta tesis doctoral, retrocedemos a las raíces del campo de los
sistemas de recomendación y exploramos su relación con la recuperación
de información. La recuperación de información ha existido durante más



216 extended summary in spanish

tiempo que los sistemas de recomendación; por lo tanto, creemos que
podemos aprovechar el trabajo y el conocimiento existente desarrollado
por la comunidad de recuperación de información para proponer nuevos
modelos de recomendación. Sin embargo, también pensamos que pode-
mos inspirarnos en las técnicas de recomendación para dar un soplo de
aire fresco a tareas consolidadas en recuperación de información.
En esta tesis doctoral, nos centramos en la aplicabilidad de algunos

modelos de recuperación de información en problemas de recomen-
dación. Limitamos el alcance de este trabajo a dos tareas principales
de recuperación de información: la recuperación ad hoc y la retroali-
mentación de pseudo-relevancia. En particular, exploramos la adaptación
de modelos de recuperación ad hoc para computar vecindarios y algo-
ritmos de retroalimentación de pseudo-relevancia para diferentes tareas
de recomendación. Por otro lado, para cerrar el círculo, al �nal de esta
tesis también exploramos cómo los métodos lineales utilizados en la re-
comendación pueden construir modelos efectivos de retroalimentación
de pseudo-relevancia.
La evaluación desempeña un papel crucial en las ciencias experimen-

tales, como la recuperación de información y los sistemas de recomen-
dación. En esta tesis, evaluamos la efectividad y e�ciencia del modelo
propuesto empleando colecciones de datos. Este enfoque suele constituir
el primer paso en la evaluación debido a sus costes reducidos y a su alta
reproducibilidad. Por el contrario, las evaluaciones en vivo requieren
experimentos con usuarios reales que son caros y difíciles de realizar
en la academia. Por estas razones, nos centramos en realizar nuestros
experimentos con conjuntos de datos públicos.

b.4 estructura

Esta tesis doctoral se divide en seis partes con trece capítulos. El Capí-
tulo 1 contiene la introducción a este trabajo. El Capítulo 2 presenta los
principales conceptos de las áreas de la recuperación de información y
de los sistemas de recomendación. Aunque un especialista en los temas
puede omitirlo, un lector interesado puede encontrarlo una introducción
útil a ambos campos. El Capítulo 3 detalla los protocolos de evaluación y
las con�guraciones experimentales utilizadas a lo largo de esta investi-
gación. Los Capítulos 4 a 11 presentan las contribuciones novedosas de
esta tesis. Los capítulos de contribuciones han sido redactados para ser lo
más independientes posible. Por ello, pueden ser leídos y comprendidos
con solo la información proporcionada en el Capítulo 2. El Capítulo 12
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presenta la comparación y discusión de los hallazgos de esta tesis. Fi-
nalmente, el Capítulo 13 contiene las conclusiones y el trabajo futuro. A
continuación, presentamos la organización de las partes y capítulos más
detalladamente:

parte i La primera parte incluye el Capítulo 1, que es la introducción
a esta tesis, y el Capítulo 2, que discute los antecedentes. La
introducción presenta el contexto y la motivación de la tesis,
el objetivo y el alcance de nuestro trabajo y la estructura y
contribuciones del estudio. El capítulo de antecedentes, por
otro lado, presenta una visión general de los sistemas de recu-
peración de información y de recomendación e introduce los
principales conceptos de ambos campos. En cuanto a la recu-
peración de información, nos centramos en la recuperación
ad hoc y en la retroalimentación de pseudo-relevancia, que
adaptamos en los capítulos siguientes a las tareas de recomen-
dación. También presentamos trabajos anteriores que estudian
o explotan la relación entre recuperación de información y
sistemas de recomendación.

parte ii Esta parte de la tesis describe los métodos de investigación en
dos capítulos. Por un lado, el Capítulo 3 describe la evaluación
en recuperación de información y sistemas de recomendación
utilizada a lo largo de este trabajo. Por otro lado, el Capítulo 4
contiene un estudio novedoso de la robustez y el poder dis-
criminatorio de las métricas utilizadas para evaluar listas de
recomendaciones ordenadas. Los resultados de este estudio
justi�can las métricas de evaluación empleadas en esta tesis.

parte iii Presentamos aquí la adaptación de varios modelos de retroali-
mentación de pseudo-relevancia a diferentes tareas de recomen-
dación. En particular, el Capítulo 5 mejora una adaptación ex-
istente de modelos de relevancia a recomendación mediante
la exploración de técnicas de suavización y de estimadores de
probabilidad a priori. El Capítulo 6 propone una adaptación
complementaria basada en ítems de los modelos de relevancia
que usamos para resolver un nuevo problema de recomen-
dación: cómo liquidar ítems de la larga cola. El Capítulo 7 em-
plea los modelos relevancia basados en ítems con estimadores
personalizados de probabilidad a priori de usuario para abor-
dar la tarea de formación de grupos a partir de un usuario-ítem.
Por último, exploramos la adaptación de las técnicas de retroal-
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imentación de pseudo-relevancia propuestas en el marco de
Rocchio a la tarea convencional de recomendación en el Capí-
tulo 8.

parte iv Esta parte contiene dos capítulos de enfocados en los vecindar-
ios de los sistemas de �ltrado colaborativo. El Capítulo 9 mide
elmargen demejora de diferentes técnicas para computar vecin-
darios. Basado en estos hallazgos, proponemos modi�caciones
de principio de la similitud del coseno basados en esquemas
de normalización usados en recuperación de información. El
Capítulo 10, por otro lado, propone la adaptación de los mod-
elos de lenguaje estadístico empleados en la recuperación ad
hoc a la computación de vecindarios.

parte v En esta parte, exploramos la dirección contraria adaptando una
técnica de recomendación para realizar retroalimentación de
pseudo-relevancia. En particular, el Capítulo 11 describe cómo
los métodos lineales dispersos, utilizados con gran éxito en
recomendación, también pueden utilizarse para expandir las
consultas de los usuarios y mejorar la e�cacia de la búsqueda.

parte vi En la última parte, el Capítulo 12 discute los resultados obtenidos
y los compara con el estado del arte. Finalmente, el Capítulo 13
resume las contribuciones de esta tesis, presenta las conclu-
siones y sugiere futuras líneas de investigación.

b.5 conclusiones

En esta tesis, el objeto de nuestra investigación es explorar el intercambio
de ideas entre la recuperación de información y los sistemas de recomen-
dación con la �nalidad de que pueda conducir a nuevos modelos. Nos
inspiramos en la literatura de recuperación de información para estudiar
las métricas de evaluación en recomendación y adaptamos diferentes
modelos de retroalimentación de pseudo-relevancia y de recuperación
ad hoc a varias tareas de recomendación. También exploramos la direc-
ción opuesta construyendo un nuevo método de retroalimentación de
pseudo-relevancia inspirado en modelos de recomendación. A la luz
de los resultados presentados en esta tesis, podemos concluir que los
modelos e ideas e�caces pueden ser tomados de un campo y aplicados al
otro.
A continuación, presentamos con más detalle las conclusiones de este

trabajo.
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b.5.1 Método de evaluación

En esta tesis, no solo seguimos los métodos de evaluación comúnmente
utilizados en la investigación en recuperación de información y sistemas
de recomendación, sino que también investigamos a fondo diversas al-
ternativas. En el Capítulo 4, aprovechamos el hecho de que las métricas
de precisión utilizadas en la evaluación de las recomendaciones también
se emplean en recuperación de información. Proponemos metodologías
para comparar la robustez y el poder discriminatorio de diferentes métri-
cas de precisión inspiradas en estudios similares realizados en recu-
peración de información. Por un lado, estudiamos diferentes cortes de
métricas y encontramos que los más profundos ofrecen mayor robustez
y poder discriminatorio. Por otro lado, comprobamos que la precisión
ofrece una alta robustez, mientras que la ganancia acumulativa descon-
tada normalizada proporciona el mejor poder discriminatorio.

b.5.2 Modelos de retroalimentación de pseudo-relevancia para sis-
temas de recomendación

En la parte iii, examinamos la adaptación de diferentes modelos de
retroalimentación de pseudo-relevancia a diversos problemas de recomen-
dación.
El Capítulo 5 evalúa a fondo la aplicabilidad de los modelos de relevan-

cia (más especí�camente, el modelo RM2) a la recomendación basada
en usuarios. Por un lado, estudiamos el impacto de los estimadores de
los métodos de suavización en la precisión, diversidad y novedad de las
recomendaciones. Establecimos una conexión entre el efecto IDF de re-
cuperación de información y el concepto de novedad en los sistemas de
recomendación y realizamos un análisis axiomático para estudiar si los
diferentesmétodos de suavización afectan al efecto IDF de RM2. Compro-
bamos formalmente que mientras que los métodos de suavizado basados
en la colección penalizan este efecto, la suavización aditiva presenta un
comportamiento neutro con respecto a esta propiedad. De hecho, la ex-
perimentación reveló que la suavización aditiva ofrece mejores cifras de
precisión, diversidad y novedad que los métodos de suavización basa-
dos en la colección. Por otro lado, se examinaron diferentes estimadores
de probabilidad a priori de usuarios y de ítems. Nuestros experimentos
demostraron que un estimador uniforme para los vecinos junto con un
estimador probabilístico basado en la suavización de Jelinek-Mercer para
los ítems puede mejorar signi�cativamente la precisión, la diversidad y la
novedad de las recomendaciones.
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En el Capítulo 6, formulamos una novedosa tarea de recomendación
consistente en la liquidación de ítems de la larga cola y propusimos tres
estrategias diferentes para estimar los ítems de la larga cola. Derivamos
una adaptación basada en ítems de los modelos de relevancia, a la que
llamamos IRM2, para abordar la tarea de liquidación de ítems de la larga
cola. Nuestros experimentos demostraron que nuestra propuesta supera
en esta tarea a los algoritmos de �ltrado colaborativo convencionales del
estado del arte.
También abordamos el problema de la formación de grupos a partir

de un usuario y un ítem con el modelo de IRM2 en el Capítulo 7. Enmar-
camos el problema de formación de grupos como una tarea de modelado
de relevancia de ítems y propusimos diferentes estimadores probabilidad
a priori de usuarios para modelar las relaciones intergrupales. Los experi-
mentos demostraron que nuestra propuesta es muy efectiva y supera a
las técnicas existentes en las colecciones de datos más densas.
Finalmente, en el Capítulo 8, exploramos la adaptación de las funciones

de puntuación de términos utilizadas en el contexto del método de Roc-
chio a la recomendación de listas ordenadas de ítems. Nuestro trabajo
condujo a la creación de cuatro recomendadores basados en vecindar-
ios. También propusimos una estimación de probabilidad que considera
el tamaño del vecindario, lo que produce mejores listas de recomenda-
ciones. Probamos nuestras propuestas y encontramos que los algoritmos
propuestos son drásticamente más rápidos que RM2 incurriendo en una
pequeña penalización en precisión.

b.5.3 Mejorando vecindarios

La parte iv está dedicada al cálculo de vecindarios, una pieza crítica de
los sistemas de recomendación basados en memoria.
En el Capítulo 9, propusimos un oráculo basado en un algoritmo vo-

raz y un oráculo basado en la similitud coseno que proporcionan una
aproximación de los vecindarios óptimos en un escenario de �ltrado
colaborativo. Estos oráculos mostraron que hay margen de mejora en la
computación de vecindarios en el �ltrado colaborativo basado en memo-
ria. Analizamos algunas características de esos vecindarios de referencia
para buscar propiedades deseables. Ajustamos la similitud coseno con
los resultados de estos análisis y propusimos dos versiones modi�cadas
de dicha similitud que mejoran la formulación original en términos de
precisión, diversidad y novedad.
Además, en el Capítulo 10, establecimos una analogía entre la recu-

peración ad hoc y el cálculo de vecindarios. De esta manera, modelamos
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la formación de vecindarios utilizando modelos de lenguaje estadísticos.
Nuestra propuesta aprovechó las ventajas de esta exitosa técnica de re-
cuperación de información para calcular los vecindarios de usuarios e
ítems. Comprobamos que el modelo de verosimilitud de la consulta junto
con el índice de suavización de Jelinek-Mercer supera la similitud coseno
en precisión, diversidad y novedad. También proporcionamos un análisis
axiomático que mostró que nuestra propuesta satisface dos propiedades
deseables que la similitud del coseno no satisface.

b.5.4 Modelos de sistemas de recomendación para retroalimentación
de pseudo-relevancia

En la parte v, exploramos el camino opuesto al estudiado en parte iii:
adaptar los modelos de recomendación a la retroalimentación de pseudo-
relevancia. Presentamos la adaptación de métodos lineales, utilizados en
técnicas de recomendación como SLIM, en el Capítulo 11. Este trabajo
dio como resultado un nuevo método de retroalimentación de pseudo-
relevancia al que llamamos LiMe. Derivamos dos formulaciones que
involucran similitudes entre documentos y entre términos y un algo-
ritmo basado en regresión de red elástica con restricciones para resolver
los modelos propuestos y calcular los términos de expansión. La evalu-
ación empírica mostró que la formulación basada en términos supera
a técnicas del estado del arte, mientras que el modelo basado en docu-
mentos presenta una e�cacia competitiva con un coste computacional
reducido.

b.5.5 Implicaciones �nales

La e�cacia alcanzada por los modelos de recomendación derivados de
ideas de recuperación de información respalda el objeto de investigación
de esta tesis. Nuestras propuestas no solo presentan una e�cacia com-
petitiva, sino que también son modelos de recomendación simples y
explicables. Además, la �exibilidad de su formulación probabilística per-
mite su adaptación a diferentes tareas de recomendación. Finalmente,
también comprobamos que la retroalimentación de pseudo-relevancia
puede bene�ciarse de los modelos desarrollados por la comunidad de
sistemas de recomendación.
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