
Sparse Householder QR Factorization on a Mesh

Ram�on Doallo� Juan Touri�no Emilio L� Zapata

Dept� Electr�onica y Sistemas Dept� Arquitectura de Computadores
Universidad de La Coru�na Universidad de M�alaga
Campus de Elvi�na s�n Plaza El Ejido s�n
��	
� La Coru�na� Spain ��	� M�alaga� Spain

E�mail� fesdoallo�juang�udc�es E�mail� ezapata�atc�ctima�uma�es

Abstract

In this document we are going to analyze the pa�
rallelization of QR factorization by means of House�
holder transformations� This parallelization will be
carried out on a machine with a mesh topology �a ��D
torus to be more precise�� We use a cyclic distribu�
tion of the elements of the sparse matrix M we want
to decompose over the processors� Each processor re�
presents the nonzero elements of its part of the matrix
by a one�dimensional doubly linked list data structure�
Then� we describe the di�erent procedures that consti�
tute the parallel algorithm� As an application of QR
factorization� we concentrate on the least squares pro�
blem and 	nally we present a evaluation of the e
�
ciency of this algorithm for a set of test matrices from
the Harwell�Boeing sparse matrix collection�

� Introduction

In many scienti�c �elds it is necessary to solve large
systems of linear equations� �uid dynamics� molecu�
lar chemistry� aeronautic simulation��� In many cases�
these systems are sparse� feature we can use in order
to reduce the computation time and the memory ne�
cessary for the solution of these problems� We can
use iterative methods �	
� such as the conjugate gra�
dient algorithm or direct methods ��
� mainly based
on Gaussian elimination� In this document we con�
sider a direct method based on orthogonalization� QR
decomposition� It basically consists in the decomposi�
tion of a matrix M of dimensions A �B �with A � B
into the product of two matrices� Q�R� where Q is an
orthogonal matrix �that is� the columns of Q are or�
thogonal and of unit length� consequently� QT �Q � I�
that is� QT � Q�� and R is upper triangular�

LU decomposition is more widely employed for the
solution of sparse linear equation systems because it is
less costly in computation time and memory despite
the better numerical stability of QR decomposition�
However� the main use of QR decomposition is in the
various applications it has in linear algebra� such as
eigenvalue calculation and the least squares problem�
There are several algorithms for �nding this decom�

position� Householder re�ections or transformations�
Givens rotations and Modi�ed Gram�Schmidt algo�
rithm� Di�erent results obtained for dense matrices
can be found in ��� ��� ��� ��
 on distributed�memory
machines� or for sparse matrices in ���� �	� �� ��
�

The algorithm we will implement is the one based
on Householder transformations ���� chapter �
 with
column pivoting in order to contemplate those cases
in which the rank of matrix M is not maximum �B�
Pivoting will also be used in order to provide nume�
rical stability� This algorithm obtains a matrix Q of
dimensions A�A and a matrix R of dimensions A�B�
in which the elements of the last A�B rows of this
matrix are zero�

The parallel algorithm has been programmed for
Fujitsu�s AP���� MIMD distributed�memory com�
puter and previously debugged using the software si�
mulator called CASIM ��
� This supercomputer has a
��D torus topology� It consists of �� to ���� processing
elements or cells �SPARC processors and three inde�
pendent communication networks� the torus network
�T�net� for point to point communications between
cells� the broadcast network �B�net� for � to N
communications between the host and the cells as
well as for the distribution and recollection of the
data� and the synchronization network �S�net� for the
barrier synchronization� For more details on this ar�
chitecture consult ���
� To all this we must add a
speci�c instruction set ��
 for the distribution and re�
collection of the data �very adequate for working with
dense matrices and reduction instructions for obtai�
ning sums� maxima and minima of the elements in
di�erent cells� We are going to assume� in the nota�
tion� a general con�guration of m � n processing ele�
ments or cells� Each cell is going to be identi�ed by
coordinates �idx�idy�� with � � idx � n and � � idy �
m� m identi�es the number of cells in the Y axis and
n the number of cells in the X axis�

� Data storage structure

In general� we will say that a matrix is sparse if it
is advantageous to exploit the null elements� As in the
sparse QR decomposition problem the structure of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/199452062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

matrices varies �due to the 	ll�in� it is convenient to
use dynamic structures for the storage of the data in
the cells that support the changes in the disposition
of the nonzero elements� The main factor we have
taken into account in the selection of the data storage
structure has been the nature of the algorithm� Thus�
as we will later see� we are only going to need column
access to the matrix �except in the least squares pro�
blem� Consequently� we have chosen to use doubly
linked lists� each one of which represents a column of
the matrix� Their structure is given by the following
code�

typedef struct item �
index i�
type mij�
struct item �up�
struct item �down� � item�

where index is the data type of the row index i of the
matrix element �an integer� for example and type is
the data type of the element of the matrix� This list
is arranged in growing order of the index i� We also
need two pointers per list� one at the beginning and
another one at the end�

item �startcr�MAXSIZE��
item �lastcr�MAXSIZE��

where MAXSIZE is a constant that represents the
maximum number of local rows or columns�

An important fact is that we only require e�cient
access by columns in this algorithm� this implies large
memory savings� Thus� in a LU decomposition for
sparse matrices ��
� we would need a data structure
that facilitated access both by rows and by columns�
such as a two�dimensional doubly linked list� and in
order to do this we would need to store� in addition to
what we have indicated� the j index of each element
and two additional pointers �one to the previous row
element and another to the next� On the other hand�
the time needed for managing this structure would
increase�

The parallel algorithm uses several routines for in�
sertion and deletion in the lists in order to optimize
their handling� As an example� there is an insertion
procedure that contemplates an insertion at the end of
the list or in the middle� and as a complement there is
another procedure fast insertion that only takes into
account insertions at the beginning of the list� The
division of insertion into two procedures is due to the
fact that in certain steps of the algorithm we are only
going to need insertions at the beginning of the lists
and this way computation times can be reduced�

� The parallel algorithm

The parallel algorithm developed has been gene�
ralized for any dimension of the mesh and any dimen�
sion of matrix M� so that the execution for a single
processor is going to be equivalent to the sequential
algorithm�

��� Data distribution

We have chosen a cyclic distribution of the data�
also known as grid distribution and scattered square
decomposition� Element �I�J� of the original matrix
M is located in a cell �idx�idy��J mod n�I mod m��
The original matrix M is distributed among the local
matrices �lists and� after executing the corresponding
parallel algorithm� we will obtain a piece of the matrix
R in each one of them� It is therefore an in�place algo�
rithm� From the global indices �I�J� that identify the
elements of the matrix� we can obtain the local indices
�i�j� in each cell� i�b I

m
c� j� bJ

n
c� If the dimension of

matrixM is A�B� the dimension of the local matrices
once the distribution has been carried out would be
a�b �the dimension will vary depending on the cell we
consider� a � b A

m
c � idy � A mod m� b� bB

n
c � idx

� B mod n� The logical expressions idy � A mod m�
idx � B mod n will return one if they are ful�lled and
zero otherwise� In a similar way� we can reconstruct
the global indices of the matrix from the local indices�
I � �i � m � idy� J � �j � n � idx� This is nece�
ssary for the result recollection stage �matrix R and
the solution vector of the least squares problem� The
selection of this distribution responds to two reasons�
data balancing and load balancing�

So� this is a problem of reducing the index space�
The algorithm is made up of as many steps as columns
in the original matrix �unless the rank is smaller� Let
us assume that in a given moment we are in step k
of the algorithm� Then� as we will later see� elements
����� of matrix R� will be updated with k � � � A�
k � � � B� It is clear that if we employed a conse�
cutive distribution of the data� as the algorithm was
executed� a large number of the cells would be inactive
because the elements of the matrix that have to be
updated would be concentrated in a few cells� This is
prevented using a cyclic distribution�

��� Main procedure of the program

In what follows we present the main body of the
parallel algorithm� This code is the same for all the
cells of the computer�

cell main�

� Receiving	Data	from	Host
��
� rankB�
� Norms
��
� for
current	index��current	index�B�

current	index��� �
� Pivot	Element
��
� if
fabs
pivot��EPSILON� �
� rankcurrent	index�
� break� �
� Column	Swap
��
�� Householder	Vector
��
�� Householder	Product
�� �
�� Sending	Data	to	Host
��

����� The cells receive the submatrices correspon�
ding to the original matrix M according to a cyclic

distribution scheme� rank indicates the rank of this ori�
ginal matrix� The maximum rank for M is B �number
of columns� as A �B�

��� This procedure �nds the square of the euclidean
norms of the columns of matrixM and stores them in
vector norm� The fact that each list represents one
column of the matrix favours the calculation� Each cell
obtains the local norms corresponding to the column
segments �local lists it contains� By means of the
reduction instruction y fsum of the AP���� �sum by
columns� the norm vector of a given cell is going to
contain the norms of the global columns corresponding
to the original matrix M�

We go through the columns of the matrix and per�
form all the following actions�

���	� Obtain in variable pivot the pivot element�
which is the maximum of the norms of the columns
whose order is higher than or equal to current index
�iteration we are currently processing of our global
matrix� The index of the global column containing the
pivot element is called pivot index� Both values �pivot
and pivot index will be contained in all the cells� If
the pivot element is zero �EPSILON is the required
precision� the rank of the matrix is given by the value
current index and the algorithm ends� Initially� we
calculate the local maximum of each cell �this value
is going to be the same for each cell column� The
global maximum is obtained by means of a reduction
instruction �x fmax which �nds the maximumby cell
rows�

�
� If the pivot is di�erent from zero� we perform
a swap of the column we are processing with the co�
lumn of the pivot element in matrix R and of their
corresponding norms�

�������Once the pivoting has been carried out� we
apply the Householder transformations� updating the
appropriate elements of matrixR� as well as the corres�
ponding norms� In the following sections we describe
the last three procedures in more detail�

���� The local results of the cells are sent to the
host in order to reconstruct the global results�

��� Column Swap procedure

A swap of the square of the norm and of the column
of matrix R with global index current index �current
column we are processing with the norm and column
corresponding to the global index pivot index �column
of the pivot element is carried out� This can be ob�
served in �gure ��

The cell column that contains the current column
exchanges this column of matrix R �as well as the co�
rresponding norm with the cell column that contains
the pivot column� Consequently� we have to send a
local list to another cell �which can be the same one�
In order to carry out this process of sending infor�
mation to another cell� we have to indicate the start
memory address where this information is located and
the size� This implies that the information we send
has to occupy consecutive memory positions� situa�
tion that obviously does not happen with the informa�
tion contained in a data structure such as a list� This
would imply a great temporal cost� since we would

R

NORM

pivot_index

pivot_index

current_index

current_index

Figure �� Column swap �pivoting

have to establish as many connections �for sending the
data as components of the list� In the AP���� com�
puter� the communication time T can be modelled by
an a�ne function so that for a message of N bytes�
T � t� � tb � N�s� where t� is a �xed overhead in
establishing the communication and tb is the trans�
fer time per byte� In point to point communications
�using the T�net� t� � ����s and tb � ������s� In
the B�net these values vary depending on several con�
ditions� t� � �	� ���s and tb � ������ ������s� In
���
 we �nd numerous experiments and measures of
the communication times of the AP����� Therefore�
it would be interesting to send all the components of
the list in a single message and this way we would
save the �xed overhead in each one of the communica�
tions� In order to implement this solution� we will use
a special structure� a packed vector ��� chapter �
� that
is going to act as a bu�er for sending the necessary
information�

As we show in �gure �� the procedure is the follo�
wing� we go through the local list corresponding to the
column of matrix R from the end� as we go through
it� we store each one of the elements in the bu�er and
erase the element from the list� The management of
the erasure has been optimized� we use a speci�c rou�
tine for erasing the last element of the list� As header
of this exchange bu�er� we indicate the value of the
square of the norm of that column� As a conclusion�
with a single pass over the local list� it is completely
erased and its content written in the swap bu�er� As
a result� we have our information in consecutive me�
mory positions and we send the corresponding column
of R� as well as the square of the norm in a single
message� The receiving cell will reconstruct the new
local list for R by means of a function for insertion�
This insertion has also been optimized� we always in�
sert at the beginning of the local list we are construc�
ting� as the bu�er is arranged according to a decrea�
sing order of the row index�

��� Householder Vector procedure

By means of this procedure we are going to
get the Householder vector �v�� of length dim�A�
current index� so that v�current index� �the �rst
component of the vector is � and the product
�I��vvT �vT v� is zero in all of the components except
the �rst one� I is the identity matrix� of dimensions

startcr[j]

26 y 23 v 18 s 7 m 3 h c0

header num_elem_R)

2

i mij

norm

up

down
0 c

up

down

up

down

up

3 h 7 m 18

num_elem_R)NULL
up

down

up

downdown
s 23 v 26 y

lastcr[j]

NULL

Figure �� Bu�er for sending local lists

dim�dim and � is the subcolumn ���current index� of
our matrix� current index � � � A� We call matrix
P � I � �vvT �vT v� of dimensions dim�dim� House�
holder matrix�

In order to get vector v we only require accessing
the current column �access by columns and divide it
by a given value� Once this is completed� each cell co�
lumn will contain vector v in a cyclic distribution� As
the Householder vector is going to contain many null
elements and is going to be broadcast to all the cells of
the mesh� we are going to store it in a packed vector�
Nonetheless� so as not to complicate the notation� we
reference it as if it was a conventional vector�

In this procedure� only the processor column that
contains the current column we are processing is going
to be working�

��� Householder Product procedure

In this procedure we are going to update ma�
trix M� in particular� the submatrix S of dimen�
sions �A�current index���B�current index�� made up
of elements ��� ��� current index � � � A and cu�
rrent index � � � B� so that we will substitute the
original submatrix S by the product P�S� being P the
Householder matrix� This product P�S is equivalent
to performing the operation S�vwT � with w � 	ST v
and 	 a �oating point number equal to ���vT v�
Remember that the global vector v starts in index
current index and ends in A��� On the other hand�
the global vector w also starts in position current index
and ends in B���

As we have calculated the Householder vector in the
previous procedure� the updating of S as S�P�S would
make all the elements of subcolumn ���current index��
current index � � � A of our matrix zero� Thus�
once all the iterations �B iterations of the algorithm
have been carried out� we will get the upper triangular
matrix R� as shown in �gure 	�

The cyclic distribution of the data is going to
allow us to follow an optimal path through subma�
trix S distributed in the cells� The strategy consists
in going through the columns �local lists correspon�
ding to this submatrix� starting from the last column�
When we reach a column whose global index is less
than current index� we end the process� Also� in order
to process each column� we go through the correspon�
ding list from the end until we reach a row whose
global index is less than current index�

In the �rst place� we obtain in all the cells the value

0

R

Figure 	� Process of obtaining matrix R from the ori�
ginal matrix M

	� After this� we calculate vector w � 	ST v� from
element w�current index� to w�B��� �its length is there�
fore� B�current index� It is not necessary to transpose
S due to the disposition of the data� Each cell row will
contain vector w which is distributed in a cyclic man�
ner� We will update submatrix S� as S � S � vwT �
For this� we place ourselves in element Sij of matrix
S which is the one we are going to update and make
Sij � Sij � viwj � When this sum is carried out� it
may happen that Sij � � and vi� wj �� �� so that an
element of submatrix S which was initially null� now
takes a nonzero value ��ll�in� we therefore insert it in
the corresponding local list� It may also happen that
element Sij takes a value of zero and consequently� we
will have to eliminate it from the corresponding local
list �the opposite phenomenon to the �ll�in�

This section of code is optimized because when it
updates a column of submatrix S� the corresponding
local list is going to su�er a single pass� always starting
from the last one of its elements and until an element
with a global row index lower than current index is
found� In addition� we have taken into account that
when we perform an insertion at the beginning of a lo�
cal list �due to the �ll�in� all the rest of the insertions
will also be at the beginning of the list� In this proce�
dure the norms of the columns will also be updated�

We must point out that once the algorithm has
ended� what we really get is a M � � � Q � R fac�
torization� where � is a permutation B � B� made
up by the product of rank elementary permutations�
� �
� �
� � ��� �
rank��� being each
i� with
i�������rank��� the identity matrix or a matrix resul�
ting from swapping two of its columns� This is due to
the pivoting we carry out in the Column Swap pro�
cedure� In general� obtaining matrix Q in an ex�
plicit manner is not going to be necessary� It can
be obtained by previously storing it in a factorized
format� It consists in storing the Householder vec�
tors as they are obtained� in the lower triangular part
of matrix R� Each Householder vector will have a
length of A�current index� However� the �rst element
�v�current index�� as we have obtained it� will always
be one and it will not be necessary to store it� Conse�
quently� we will use column current index of matrixR�
from row current index�� to row A�� in order to store
the corresponding Householder vector� And� from this
factorized format� an algorithm can be applied �back�
ward accumulation in order to get Q in an explicit
way �see ���� chapter �
 for more details�

� An application� the least squares
problem

As an application example of the QR decomposi�
tion� we are going to approach a standard problem in
linear algebra� the least squares problem� It consists
in calculating a vector x of length B that minimizes
kMx � zk� �euclidean norm� where M is a matrix
of dimensions A � B �with A � B and z is a vector
of length A� If the rank of M is maximum �B� the
least squares problem is going to have a unique solu�
tion �xLS� In any other case� it is going to have an
in�nite number of solutions xSOL� out of which there
will only be one whose norm is minimum and which
we will also denote as xLS � xLS � xSOL�kxSOLk� is
minimum� In the case where A�B� the least squares
problem is equivalent to solving a linear equation sys�
tem Mx � z as� obviously� kMx� zk� � � �minimum
norm�

The solution of this problem can be approached
adapting the parallel algorithm that carries out the
QR decomposition of matrixM� In particular� the least
squares problem is going to be equivalent to solving
the upper triangular system� R�Tx � QT z� This
approach is adequate due to the good numerical sta�
bility of the QR factorization� With this algorithm
we will get the unique solution to the least squares
problem when rank�M � B� In the case where
rank�M � B� we will get one of the in�nite solu�
tions� the one called basic solution� which will have
a maximum of rank nonzero elements and that in
general will not coincide with the minimum norm so�
lution xLS�

��� Obtaining vector QTz

Once vector z has been cyclicly distributed in each
cell column� the product QT z can be calculated at the
same time we perform the Householder transforma�
tions� In order to get this product it is not necessary
to have physically a vector z� as we store it directly
in vector qtz and through an iterative process� in the
end we will obtain in qtz the QT z product we desire
�in�place algorithm� Consequently� initially� vector
qtz will contain vector z �of length A� And� in each
one of the iterations �B� if the rank is maximum of
our parallel algorithm we will carry out the following
actions for the elements of vector qtz and v� from com�
ponent current index to component A��� � � 	qtzT v�
qtz � qtz � v��

Once all the iterations of the algorithm have ended�
we will get the product QT z in vector qtz� from index
� to index B��� Now we will add two procedures to
the main body of the program� Back Substitution��
and Permutation���

��� Back Substitution procedure

By means of this procedure we will solve the
upper triangular system Rx � QT z� The corres�
ponding sequential algorithm is the following�

for �i�rank���i���i� ��

xi � �qtzi �
Prank��

j�i�� rijxj�rii�

being rij element �i�j� of matrix R� It is a loop with
data dependencies� and thus this loop must be main�
tained in the parallel code without any possibility of
distributing it among the cells� In addition� it is ne�
cessary to access the elements of matrix R by rows�
This implies a big drawback� as matrix R is stored by
columns� We solve it using an auxiliary pointer vector
with as many components as columns in the matrix�
This would permit access to matrix R �from bottom
to top by rows going through the linked lists corres�
ponding to the columns of the matrix only once�

Once the backsubstitution is carried out we get� in
each cell row� the solution vector x of global length B
cyclicly distributed� so that the global component J
of vector x will be replicated in the cell column with
idx�J mod n�

��� Permutation procedure

Due to the column swap carried out in the QR fac�
torization� in order to obtain the �nal solution to the
least squares problem we will have to apply the �
permutation to the components of vector x obtained
in the previous procedure� so that we overwrite x with
vector� �x� All the cells will have a vector called
permut� of local length B �it is the only global vec�
tor whose components are not distributed among the
cells� but is completely stored in them� This vector
will contain the index of the swapped column �pivot
column in each iteration� For this� we will add as �rst
command of the Column Swap procedure�

� permut�current	index�pivot	index�

This way� applying the swaps stored in vector per�
mut starting from the end� we obtain the elements of
vector x in the correct order�

� Evaluation of the algorithm and con�
clusions

In order to carry out several temporal measure�
ments of the parallel algorithm we have made use of
the Performance Analyzer of the AP���� computer
��
� which analyzes performance during execution and
provides several temporal measures� times of the task�
of inactivity of the cells� of interruptions� of calls to
libraries� average� maximum and minimum values of
these times for all the cells� information on various
events� etc�

The sparse matrices we have used for the eva�
luation of the algorithm were obtained from the
Harwell�Boeing collection ��
� Table � shows a descrip�
tion of the matrices we have selected� A�B indicates
the dimensions of the matrix� El�M� the number of
nonzero elements and El�R� the number of nonzero
elements of matrix R� The selection of these matri�
ces is due to the fact that all of them include vector
z� necessary for solving the least squares problem and�

Matrix Origin A�B El�M� El�R�

WELL����

Least squares

problems in
surveying

�������� 	
�� �����

WELL����

Least squares

problems in

surveying
�����
�� �
�� �����

SHERMAN�
Oil reservoir
simulation ��������� �
�� ��

Table �� Harwell�Boeing sparse matrices for the eva�
luation

Matrix ��� ��� 	�	 ���

WELL���� ������ 	
��� ���� �	�
WELL���� ������
 	����� ����
� �����
SHERMAN� �
	��	 ������ ��
� ��
�

Table �� Execution times �in seconds

in particular� matricesWELL���� andWELL���� are
speci�c for the solution of this problem�

Table � shows the execution times �in seconds for
some of the con�gurations of the mesh� All the mea�
sures depicted include the time required for carrying
out the QR factorization and solving the least squares
problem� The times required for the distribution and
recollection of the data are not included because we
assume that the problem of solving least squares is a
possible subproblem within a wider program�

Figure � shows the e�ciency and the speed�up ob�
tained for these sparse matrices� Observe that the
results are better for larger sizes of the matrix� This
is because with larger matrices there are more cal�
culations and thus the parallelism is more e�ciently
used� Small sizes of matrix M result in low e�cien�
cies because the calculation time of the task itself is
small with respect to the additional time required by
communications �message passing and other factors�
In addition� a larger number of nonzero elements �as
is the case of matrixWELL���� also provides longer
e�ective calculation times and the parallelism applied
motivates that the calculation time of the task in each
processor is large with respect to the times that are
not related with the task itself�

The factors that are going to in�uence the �ll�in of
a given sparse matrix are the following� the dimen�
sion and rank of the matrix� the degree of sparsity
�number of null elements and a factor of great impor�
tance but di�cult to model� the pattern of the matrix�
that is� the location of the nonzero elements� Thus�
with the same dimension� rank and degree of disper�
sion for two matrices� the �ll�in may vary signi�cantly�
depending on how the nonzero elements are placed�
Consequently� there will also be large variations in the
execution times and e�ciencies� The reduction of the
�ll�in is the work we are currently carrying out� As a
conclusion� the sparse approach to the QR factoriza�
tion we have presented is more adequate with respect
to the dense approach the bigger the dimension of ma�
trixM and the smaller the number of nonzero elements
�high degree of sparsity�

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

E
F

F
IC

IE
N

C
Y

SPARSE HOUSEHOLDER QR FACTORIZATION

SHERMAN1

WELL1033

WELL1850

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8

S
P

E
E

D
-U

P

MESH X*X

SHERMAN1

WELL1033

WELL1850

Figure �� E�ciency and speed�up measures

Acknowledgements

We gratefully thank to the Fujitsu Parallel Com�
puting Research Centre �Japan and the Galician Su�
percomputing Centre �Spain for giving us access to
the AP���� machine�

References

��� AP���� Program Development Guide� Fujitsu Labora�
tories Ltd�� �rd edition� July �����

�	� AP���� User�s Guide� Fujitsu Laboratories Ltd�� June
�����

��� R� Barret� M� Berry� T� Chan� J� Demmel� J� Donato�
J� Dongarra� V� Eijkhout� R� Pozo� C� Romine and H�
Van der Vorst� Templates for the Solution of Linear

Systems� Building Blocks for Iterative Methods� �����

�
� C�H� Bischof� Adaptive Blocking in the QR Factoriza�
tion� The Journal of Supercomputing� Vol��� pp�����
	��� �����

�� R�H� Bisseling� J�G�G� Van de Vorst and A�F� Van der
Stappen� Parallel Sparse LU Decomposition on a Mesh
Network of Transputers� SIAM J� Matrix Anal� Appl��
Vol��
� n��� pp�������� July �����

��� CASIM User�s Guide� Fujitsu Laboratories Ltd��
th
edition� August �����

��� I�S� Du�� A�M� Erisman and J�K� Reid� Direct Methods

for Sparse Matrices� Clarendon Press� �����

��� I�S� Du�� R�G� Grimes and J�G� Lewis� User�s Guide
for the Harwell�Boeing Sparse Matrix Collection� Tech�
nical Report TR�PA��	���� CERFACS� October ���	�

��� J�A� George and M�T� Heath� Solution of Sparse Li�
near Least Squares Problems using Givens Rotations�
Linear Algebra Appl�� Vol��
� pp������� �����

���� G�H� Golub and C�F� Van Loan� Matrix Computa�

tions� The Johns Hopkins University Press� 	nd edi�
tion� �����

���� H� Ishihata� T� Horie� S� Inano� T� Shimizu� S� Kato
and M� Ikesaka� Third Generation Message Passing
Computer AP����� Proceedings of ISS��	� pp�
���
November ���	�

��	� H� Ishihata� T� Horie and T� Shimizu� Architecture
for the AP���� Highly Parallel Computer� Fujitsu Sci�

Tech� Journal� Vol�	�� n��� pp����
� March �����

���� S�G� Kratzer� Sparse QR Factorization on a Massively
Parallel Computer� The Journal of Supercomputing�
Vol��� pp�	���	� ���	�

��
� J�H�W� Liu� On General Row Merging Schemes for
Sparse Givens Transformations� SIAM J� Sci� Statist�

Computing� Vol��� pp�������	��� �����

��� P� Matstoms� Sparse QR Factorization with Applica�

tions to Linear Least Squares Problems� PhD thesis�
Department of Mathemathics� Link�oping University�
Sweden� ���
�

���� A� Pothen and P� Raghavan� Distributed Orthogonal
Factorization� Givens and Householder Algorithms�
SIAM J� Sci� Statist� Computing� Vol���� pp������
���
� �����

���� E�L� Zapata� J�A� Lamas� F�F� Rivera and O�G� Plata�
Modi�ed Gram�Schmidt QR Factorization on Hyper�
cube SIMD Computers� Journal of Parallel and Dis�

tributed Computing� Vol��	� pp������� �����

���� B�B� Zhou and R�P� Brent� Parallel Implementation

of QRD Algorithms on the Fujitsu AP����� Technical
Report TR�CS�����	� Computer Sciences Laboratory�
The Australian National University� Canberra� ACT
�	��� Australia� November �����

