
Characterization of Message-Passing Overhead on the AP3000 Multicomputer

Juan Touriño and Ramón Doallo
Department of Electronics and Systems, University of A Coruña

Campus de Elviña, s/n, 15071 A Coruña, Spain
juan@udc.es, doallo@udc.es

Abstract

The performance of the communication primitives of
parallel computers is critical for the overall system perfor-
mance. The characterization of the communication over-
head is very important to estimate the global performance
of parallel applications and to detect possible bottlenecks.
In this work, we evaluate, model and compare the perfor-
mance of the message-passing libraries provided by the Fu-
jitsu AP3000 multicomputer: MPI/AP, PVM/AP and APlib.
Our aim is to fairly characterize the communication primi-
tives using general models and performance metrics.

1. Introduction

The performance of the communication primitives of a
parallel computer does not only depend on the underlying
hardware, but also on their implementation. Users do not
know the quality of the message-passing implementations
and they can find that the performance of their parallel
applications makes worse in other machine or using other
message-passing library. We have used low-level tests to
study basic communication primitives on the AP3000. Our
aim is to estimate communication overheads with simple
expressions, which can help AP application developers to
design or migrate parallel programs more efficiently.

We have used the AP3000 to develop a parallel algo-
rithm in the field of fluid mechanics [1]. The tuning of
the communication routines of our algorithm is critical to
achieve good performance. We predict communication
costs using simple models, which can easily serve for ex-
tracting a set of rules or practices to select the appropria-
te primitive. There are related works that report message-
passing performance on other machines, such as Cray T3E
and SGI Origin 2000 [9], IBM SP2 [7] [12] or large clusters
of workstations [4].

The next section introduces the target machine and the
programming environment, the performance models and
their associated metrics, as well as a brief description of

our experiments. In Section 3 point-to-point communica-
tions (from now on, p-t-p) are analyzed. Section 4 presents
modeling results for collective communications, mainly fo-
cusing on MPI primitives. Section 5 describes an example
of the practical application of our work to a real program.
Finally, conclusions are discussed in Section 6.

2. AP3000 message-passing environment

The Fujitsu AP3000 [6] is a distributed-memory multi-
processor consisting of multiple nodes (4-1024) connected
via a high-speed network, AP-Net, in a 2D-torus topology.
The AP-Net transfers 16-bit data in parallel for a throughput
of 200 Mbytes/s (bidirectional).

There are two message-passing modes in the AP3000:
ult (user-level transfer) and slt (system-level transfer). The
ult mode provides dedicated use of the allocated pro-
cessors. Besides, the message communication can be ac-
tivated without any help from the OS and there is direct
access to the message controller, the interface hardware of
the processor to the AP-Net. The slt mode uses the TCP/IP
protocol, which results in a higher overhead. It allows to
run many programs at one time in a processor partition.

Sitsky and Mackerras proposed in [10] a high-
performance message-passing library for the AP3000,
LWSLT (Light-Weight SLT), as basic communication layer
in an MPI implementation for the AP3000. The name indi-
cates a multiuser communication library without the heavy
overhead of the slt mode by using the AP-Net directly. The
goal is to obtain a robust library with low startup overhead
for small messages and high bandwidths for large messages,
taking into account the underlying communication hard-
ware of the AP3000. It would involve the use of two diffe-
rent protocols for small and large messages, respectively.
Tan et al. [11] were developing EPVM (Enhanced PVM),
a PVM implementation for the AP3000. It uses the AP-
Net and allows heterogeneous parallel computing, dynamic
task spawning and MIMD programming style (PVM/AP
and MPI/AP only allow the SPMD paradigm). Neverthe-
less, it does not achieve the PVM/AP communication speed.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/199452039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


APlib is a proprietary library that provides a programming
and execution environment same as the AP1000 multicom-
puter [5], the predecessor of the AP3000.

2.1. Communication models

In p-to-p communication, message latency (� ) can be
modeled as an affine function of the message length �:
� ��� � �� � ���, where �� is the startup time and �� is
the transfer time per data unit (one byte from now on). Dis-
tance is not a factor when considering latency between any
2 processors, due to the wormhole routing on the AP3000.
We have experimentally checked that latencies vary slightly
depending on the processor location. Hockney [3] proposed
the following model to characterize p-t-p communications:

� ��� �
� �

�

� �

����

(1)

where ���� (� ����) is the asymptotic bandwidth, that is,
the maximum throughput achievable when � approaches in-
finity and � �

�

(� �����) is the half-peak length, the messa-
ge length required to obtain half of ����. ���� shows
long-message performance; the Hockney’s model also de-
fines the specific performance �� � ��� ��� � ����, to
characterize short-message performance.

Collective communications among � processors can
be characterized by the model proposed by Xu and
Hwang [12], which is a generalization of the p-to-p model:

� ��	 �� � ����� �
�

�������
(2)

������� can also be expressed as �������. The half-peak
length for collective communications is defined as � �

�

��� �

�����������. Similarly, we define ����� � �������.
In order to get more information about AP3000 collec-

tive primitives, an additional metric is derived from the
model of Eq. 2: the aggregated asymptotic bandwidth
����

�� , which is the ratio of the total number of bytes trans-
fered in the collective operation and the time required to
perform the operation, as �� �. For a broadcast, scatter,
gather or reduction, ����

�� ��� � �� � ���������, but it
is ��� � ��������� for a total exchange operation. Si-
milarly, we have derived a new metric from the aggrega-
ted concept, the aggregated specific performance: ���� ��� �
����

�� �����
��
�

�

��� � ����������. It shows the performance

of a collective operation for short messages. The aggre-
gated half-peak performance ����

�

��� can also be defined as

the message length that achieves an aggregated bandwidth
����

�� �����. It can be easily derived that ����
�

��� � � �

�

���.

We have also defined peak metrics: the peak aggre-
gated bandwidth �����

�� � �	
�������� ��
��
�� ���,

the peak aggregated specific performance ����� �

�	
�������� �
��
� ��� and the minimum aggregated half-

peak length ����
�

�

� ����������� �
��
�

�

���, being ���� the

maximum � available.

2.2. Experimental conditions

The configuration of our parallel machine consists of 20
processors (UltraSparc-II at 300 Mhz), but only a maximum
of a 12-processor partition can be accessed to execute pa-
rallel programs. The tests were executed in ult mode for
different message sizes (from 0 bytes to 1 Mbyte) and, for
collective communications, using different number of pro-
cessors (2-12). In APlib we have used messages of up to
768 Kbytes, because the machine fails for 1 Mbyte messa-
ges. Timing overhead, cache warm-up effects and timing
outliers were taken into account to avoid distortions in the
latency measurements. The ping-pong test was used to
model p-t-p communications; �� and �� were derived from a
least-squares fit of latency (� ) against message length (�).
Regarding collective communications, as each test consis-
ted of hundreds of iterations, a barrier was included to avoid
a pipelined effect and to prevent the network contention that
might appear by the overlap of collective communications
executed on different iterations of the test. Nupairoj and
Ni proposed in [8] a method (the Collective Communica-
tion Flow Model) to measure the performance of collective
communications accurately.

3. Modeling point-to-point primitives

Only blocking p-to-p communications were consi-
dered. Initially, the primitives under evaluation were:
MPI Send/MPI Recv, pvm psend/pvm precv and
l asend/l arecv (APlib). Table 1 shows the estimated
parameters and metrics.

As can be observed, ���� is the same for the three
primitives, which results into a similar behavior of the li-
braries for large messages: latencies tend to be equal as the
message length increases. The main difference lies in short
messages, because there are appreciable differences in the
startup times. APlib has the lowest startup time and MPI the
highest. Consequently, the best � �

�

is achieved by APlib.
Besides the standard MPI p-t-p primitive, we have also

modeled the buffered send MPI Bsend (the programmer
allocates a buffer into which data can be placed until it is de-
livered), the synchronous send MPI Ssend (the send does
not return until the destination begins to receive the me-
ssage), and the ready send MPI Rsend (the sending pro-
cessor assumes that the matching receive has already been
posted; so, communication performance can be improved).
According to the results of Table 1, the buffered send in-
volves a considerable overhead (both startup and transfer
time); the synchronous send also incurs a higher latency, but



Table 1. Point-to-point communication parameters and metrics.
MPI/AP PVM/AP APlib

Send Bsend Ssend Rsend psend send l asend xy send
�� (�s) 69 84 75 69 53 50 46 46
�� (�s) 0.0162 0.0213 0.0171 0.0162 0.0162 0.0263 0.0162 0.0162

�� (Kbytes/s) 14.15 11.63 13.02 14.15 18.43 19.53 21.23 21.23
���� (Mbytes/s) 58.87 44.77 55.77 58.87 58.87 36.26 58.87 58.57

� �

�

(bytes) 4260 3944 4386 4260 3272 1902 2840 2840

Table 2. Broadcast parameters and metrics (��� ��
�����	�� � ��

�����).
MPI/AP PVM/AP APlib

����� (�s) 69log�p 22p 46+25(p-2)
����� (�s) 0.0162log�p 0.0110p 0.0162+0.0110(p-2)

����� (Kbytes/s) k�/(69 log�p) k�/(22p) k�/(25p-4)
���� ��� (Kbytes/s) k�(p-1)/(69 log�p) k�(p-1)/(22p) k�(p-1)/(25p-4)
����� (Kbytes/s) 43.43 40.69 36.29

������� (Mbytes/s) k�61.73/log�p k�90.91/p k�/(0.0110p-0.0058)
����

����� (Mbytes/s) k�61.73(p-1)/log�p k�90.91(p-1)/p k�(p-1)/(0.0110p-0.0058)
�����

�� (Mbytes/s) 180.63 79.47 83.13
� �

�

��� � �
��
�

�

���(bytes) 4260 2000 (25p-4)/(0.0110p-0.0058)

�
���
�

�

(bytes) 4260 2000 2346

the parameters are closer to the standard mode. The ready
send works as the normal send, that is, the protocol between
sending and receiving processors was not optimized in the
AP implementation of MPI Rsend. It is clear that the stan-
dard send is the best option.

pvm send/pvm recv were also tested (see Table 1).
The estimated startup is slightly lower than pvm psend/
pvm precv, �� � �
s, but the transfer time increases
excessively, �� � ������
s, which results in a poor band-
width, ���� � ����� Mbytes/s. This is due to packing and
unpacking operations (pvm pk� and pvm upk� routines).

The APlib primitives xy send/xy recv were low la-
tency p-to-p communications that used the torus network
(T-net) [5] of the AP1000; xy recv reads the received
message directly in a specified variable (in l arecv, an
additional readmsg routine is necessary to read the re-
ceived message). These routines have exactly the same la-
tencies as l asend/l arecv, as can be observed in Ta-
ble 1 (it seems that they have the same implementation).

4. Modeling collective primitives

4.1. Broadcast

In a broadcast a source processor (root) sends the same
data to a group of destination processors. The routines
under consideration are: MPI Bcast, pvm mcast and

cbroad (APlib). We have not used the pvm bcast rou-
tine because the PVM/AP group operations are not reliable,
as we will comment in Section 4.3.

MPI Bcast is called by all the processors involved in
the broadcast. In PVM, pvm mcast (and pvm bcast)
is only called by the root processor, which broadcasts a
message previously stored in the active send buffer. The
other processors receive the broadcast message using a re-
ceive routine (pvm precv in our experiment). Another
difference is that the MPI standard establishes that the root
processor broadcasts the message to all the processors of
the group, itself included; in PVM, the message is not sent
to the caller (even if listed in the array of destination pro-
cessors of pvm mcast or if the caller is in the destination
group of pvm bcast). The APlib cbroad routine works
as pvm mcast. There is another APlib broadcast routine:
xy brd. As MPI Bcast, it is called by all the processors.
We have found that cbroad and xy brd have the same
latencies in the AP3000.

The fitting of the components of Eq. 2 and the perfor-
mance metrics are shown in Table 2. The constants �� and
�� are introduced to consider the base 2 vs base 10 discre-
pancy. Note that, for 2 processors, in MPI and APlib the
values of the model’s parameters are the same as the ones of
the p-to-p model (see Table 1). Therefore, the p-to-p model
in MPI and APlib can be considered as a particular case of
the broadcast model for �=2. That is not the case for PVM,



Table 3. Parameters for MPI collective data movement primitives.
Scatter Gather Allgather Total exchange

����� (�s) 58+53p 1/(0.0135-10��2.96log�p) 95p-24 89p
����� (�s) 0.0209(log�p)������� 0.0252(log�p)������� 0.0239+10��2.79log�p 0.0291+10��8.84p

where latencies are higher for a 2-processor broadcast than
in a p-to-p communication, although they are slightly better
for short messages due to a lower startup time.

As can be observed, latency has a complexity �������
in MPI and, therefore, the asymptotic bandwidth is
���������. This fact reveals that the broadcast in MPI
was implemented using a binomial tree-structured approach
(top-down traversing of the tree). Bernaschi et al. proposed
in [2] an MPI broadcast implementation based on quasi-
optimal spanning trees, instead of binomial trees. In PVM,
latency is ��� (and ������� is �����). This is an ineffi-
cient PVM implementation. It seems that pvm mcast was
implemented as a sequence of sends all originating from
the root processor. Surprisingly, the APlib broadcast is also
���. Therefore, MPI performance is the best, and it is be-
tter as � increases. The results for PVM and APlib are very
similar, although ����� is slightly better for the APlib broad-
cast and the startup time is a bit lower in PVM. The Fujitsu
AP1000, but not the AP3000, included a specific network
(B-net, Broadcast network) for one-to-all communications
between a host processor and the other processors. Using
this network, broadcast routines (and other collective pri-
mitives) with latency independent of � (that is, ���) could
be implemented. Regarding � �

�

���, in MPI and PVM is a
constant and in APlib is almost constant, because the com-
plexities of ����� and ����� are the same within each library.

4.2. Data movement primitives

A broadcast is a data movement routine. Table 3 in-
cludes the estimated parameters for other MPI data move-
ment primitives.

In a scatter operation (MPI Scatter), a data structure
that is stored on a single processor is distributed across
the processors. In a gather (MPI Gather), a distribu-
ted data structure is collected onto a single processor. In
MPI Scatter the message length � of Eq. 2 is the num-
ber of bytes of the message to be scattered from the root
processor, and it is the total number of bytes of the messa-
ge gathered onto the root processor in MPI Gather. In
both primitives, ����� is a decreasing function, and it tends
to be constant as � increases. It can be due to the fact that,
as � increases, the size of the message to be sent/received
by each processor is smaller and these communications can
be overlapped through the torus interconnection network.
Nevertheless, the startup increases with � and is specially

high (it is ���) in the scatter operation because the root
processor has to split the message among the processors.

MPI Allgather gathers a distributed array on all the
processors. As expected, according to the modeling results,
it is clearly better to use Allgather instead of the equi-
valent Gather�Broadcast, except for short messages
(due to the high ��� startup of Allgather).

In a total exchange (MPI Alltoall) each processor
sends a distinct collection of data to every processor. This
operation is the basis of the parallel FFT. The startup time is
��� and is the highest of the collective routines under eva-
luation, together with Allgather. Although the transfer
time is also ���, the slope increases very slowly and it is
almost constant.

4.3. Reduction primitives

The model of Eq. 2 hides an additional parameter that
cannot be ignored (mainly for long messages) in reduction
primitives: ��, the cost per byte of the operation performed
by the reduction. Therefore, we propose an extension of the
model shown in Eq. 2, valid for all the collective primitives:

� ��	 �� � ����� �
�

�������
� ������ (3)

where ������� � �������. The parameter �� depends on
the operation (sum, maximum ...) and the data type (inte-
ger, double ...). Clearly, for a broadcast ����� � �. We pro-
pose a new metric, the ratio transfer time-computation time:
������ � �����������, which provides a view of the weight
of the computation factor as opposed to the communication
factor in the total latency. As this metric is specially inte-
resting when considering long messages (in which the effect
of �� and �� is greater), it can be formally defined as:

������ � ���
	��

����� � ������

������
�

�����

�����
(4)

We have tested MPI and PVM reductions, MPI Reduce
and pvm reduce (the APlib reduction can only be applied
to single numbers and the result is stored in all the
processors involved in the reduction). The parameters of the
model were obtained as follows. First, a user-defined empty
operation (MPI Nop, PvmNop) was created. It allowed us
to obtain ����� and ����� as in the broadcast model. Se-
cond, the regression procedure is repeated using the de-
sired operation (sum, maximum ...) and ����� is estima-
ted by substracting the first model (Nop model) from the



Table 4. Parameters for MPI reduction primitives.
Reduce Allreduce Reduce scatter Parallel prefix

����� (�s) 90log�p-15 144log�p+15 279log�p-57 70p+38
����� (�s) 0.0171log�p+0.0037 0.0344log�p 0.0147log�p+0.0262 0.0145p+0.0116
����� (�s) 0.0051log�p-0.0037 0.0038log�p-0.0026 0.0046log�p+0.0049 0.0071p-0.0079

second one (Op model). Specifically, we have used a sum
operation (MPI Sum, PvmSum) of double precision floa-
ting point numbers (MPI DOUBLE, PVM DOUBLE) (8 bytes
in our system) for all reduction routines.

We have found that the PVM reduction (and, in general,
the group routines) are poorly implemented. The reduction
routine is not robust: it fails for � � �. Also, latencies are
dominated by very high startup times; for instance, using
the PvmNop operation for only 2 processors, �� � ���
and it seems that it is ���. Another example: for �=3 and
�=64 Kbytes, �� represents� 80% of latency.

Table 4 presents the estimated parameters of the model
for MPI reduction routines. As expected, MPI Reduce
is �������, which means that it uses a tree-structured
communication pattern (bottom-up traversing of the tree).
We can derive ������=(0.0171�����+0.0037)/(0.0051�����-
0.0037). Although it varies from 14.86 (for �=2) to 4.46 (for
�=12), it tends to be a constant since �=4 and the transfer
time per byte is approximately five times (on average) the
computation time per byte.

MPI Allreduce stores the result on all the pro-
cessors. If we compare this routine with the equivalent
Reduce�Broadcast (see the corresponding models),
we can observe that there is not much difference (Allre-
duce is slightly better as � increases). It seems that the im-
plementation of Allreduce could be improved by using
an efficient butterfly-structured communication pattern.

The MPI Reduce scatter routine scatters the result
across the processors (it is like Reduce�Scatterv).
This primitive can be used as a basis for other primitives
like Allreduce. Although it is �������, the startup and
the transfer time are very high. In general, the latencies
achieved are similar to the equivalent Reduce�Scatter
ones (provided that it was possible to use Scatter instead
of Scatterv), even worse for large messages according
to the models. Clearly, the implementation of MPI Re-
duce scatter on the AP is inefficient.

The MPI Scan primitive carries out a parallel prefix
operation. It is much like an Allreduce operation, but
on each processor with rank � stores the result of operating
the input values on processors with ranks � �. MPI Scan
is ��� on the AP, which leads to have the highest transfer
time of all MPI routines under evaluation. It is not an opti-
mized implementation because ������� complexity could
be achieved.

4.4. Experimental results

Figures 1 and 2 show some experimental results for the
broadcast routines described in Section 4.1, by fixing �=8
(log scale) and �=64 Kbytes (linear scale), respectively.
The filled symbols represent the estimated values of the la-
tencies, following the derived models, whereas the dotted
symbols are the experimental values of the latencies. The
latter graph shows that the model is very accurate for PVM
and APlib. This graph also reveals that in MPI, for that
message size, the startup time of the model should be a bit
higher, although the fitting is acceptable.

Figures 3-9 show an overview of the latencies of the MPI
collective communications on the AP3000. In many ca-
ses the estimated values are hidden by the measured values,
which means a good modeling.

Figures 3, 4 and 5 show latencies in an 8-processor con-
figuration (log scale). In Figures 6 and 7, 8 and 9, the messa-
ge size is set to 16 bytes and 256 Kbytes, respectively, and
� varies from 2 up to 12 (linear scale). Figures 6, 7 focus on
short-message latency (dominated by the startup time) and
Figures 8, 9 on long-message performance (dominated by
the transfer time). As can be observed, MPI Allgather
has the highest startup time (it is ���), and MPI Bcast
the lowest. Regarding the transfer time, MPI Scan (also
���) is clearly the most expensive, while MPI Scatter
is the least expensive. It can be also observed that the imple-
mentations of MPI Allgather and MPI Alltoall are
very similar: they have almost the same startup and their
transfer times are represented by a similar curve, although
MPI Alltoall is more expensive. It is not surprising be-
cause an Allgather operation can be expressed in terms
of an Alltoall operation. The poor implementation of
MPI Reduce scatter pointed out in Section 4.3 is con-
firmed by the fact that, for short messages, it is less ex-
pensive to have the whole result of a reduction in all the
processors (Allreduce) instead of distributed, due to the
high startup of MPI Reduce scatter (see Figure 7).

5. Case study

We developed in [1] a parallel numerical algorithm
for solving an elastohydrodynamic piezoviscous lubrica-
tion problem that appears in industrial devices. It involves
very high execution times because very fine finite element



4b 64b 1Kb 16Kb 256Kb
Message length n

100

1000

10000

100000

L
at

en
cy

 T
(n

,p
) 

(m
ic

ro
se

co
nd

s)

Broadcast (p=8)

MPI 
PVM 
APlib 

Figure 1. Broadcast latencies for various me-
ssage sizes.

2 4 6 8 10 12
Processors p

0

2000

4000

6000

8000

10000

L
at

en
cy

 T
(n

,p
) 

(m
ic

ro
se

co
nd

s)

Broadcast (n=64Kb)

MPI 
PVM 
APlib 

Figure 2. Broadcast latencies for various ma-
chine sizes.

4b 64b 1Kb 16Kb 256Kb
Message length n

100

1000

10000

100000

L
at

en
cy

 T
(n

,p
) 

(m
ic

ro
se

co
nd

s)

Collective Communications (p=8)

Broadcast
Scatter
Gather

Figure 3. Latencies for various message sizes
(broadcast, scatter, gather).

4b 64b 1Kb 16Kb 256Kb
Message length n

100

1000

10000

100000

L
at

en
cy

 T
(n

,p
) 

(m
ic

ro
se

co
nd

s)

Collective Communications (p=8)

Allgather
Total exchange
Reduce

Figure 4. Latencies for various message sizes
(allgather, total exchange, reduce).

4b 64b 1Kb 16Kb 256Kb
Message length n

100

1000

10000

100000

L
at

en
cy

 T
(n

,p
) 

(m
ic

ro
se

co
nd

s)

Collective Communications (p=8)

Allreduce
Reduce_scatter
Parallel prefix

Figure 5. Latencies for various message sizes
(allreduce, reduce scatter, parallel prefix).

2 4 6 8 10 12
Processors p

0

200

400

600

800

1000

1200

L
at

en
cy

 T
(n

,p
) 

(m
ic

ro
se

co
nd

s)

Collective Communications (n=16 bytes)

Broadcast
Scatter
Gather
Allgather
Total exchange

Figure 6. Latencies for various machine sizes
(data movement routines).



2 4 6 8 10 12
Processors p

0

200

400

600

800

1000

1200

L
at

en
cy

 T
(n

,p
) 

(m
ic

ro
se

co
nd

s)

Collective Communications (n=16 bytes)

Reduce
Allreduce
Reduce_scatter
Parallel prefix

Figure 7. Latencies for various machine sizes
(reduction routines).

2 4 6 8 10 12
Processors p

2000

5000

8000

11000

14000

17000

20000

L
at

en
cy

 T
(n

,p
) 

(m
ic

ro
se

co
nd

s)

Collective Communications (n=256Kb)

Broadcast
Scatter
Gather
Allgather
Total exchange

Figure 8. Latencies for various machine sizes
(data movement routines).

2 4 6 8 10 12
Processors p

4500

15500

26500

37500

48500

59500

70500

L
at

en
cy

 T
(n

,p
) 

(m
ic

ro
se

co
nd

s)

Collective Communications (n=256Kb)

Reduce
Allreduce
Reduce_scatter
Parallel prefix

Figure 9. Latencies for various machine sizes
(reduction routines).

meshes are required to obtain accurate solutions to the pro-
blem. We applied our models to this code, where an appro-
priate choice of the communication primitives can involve
a substantial reduction in the execution times.

In one stage of the algorithm, the pressure approximation
� of the lubricant fluid is computed by solving the sparse
linear equation system �� � �, where � is a finite element
matrix. The right-hand side is computed by means of a re-
duction operation with processor 0 as root. Next, processor
0 distributes vector � in order to solve the system in pa-
rallel. It seems that the primitive MPI Reduce Scatter
fits well for obtaining �. Nevertheless, in Section 4.3 we
pointed out that, according to the models, it would be better
to use (if possible) Reduce+Scatter instead of Re-
duce Scatter, and the difference would be clearer for
large messages. That is the case of our problem: we have
used a standard block distribution and vector � has as many
elements as nodes of the mesh. If we consider a mesh
of 60000 nodes (vector � of 480000 bytes), the estima-
ted and measured results of both approaches are shown in
Table 5. The entry �Red. represents the percentage of
reduction in the measured execution times by using Re-
duce+Scatter instead of Reduce scatter. As can
be observed, this percentage goes down as � increases. Al-
though the estimated times for this size of � are greater than
the corresponding measured times, the difference between
the measured times and the difference between the estima-
ted times of both approaches follow the same tendency. Ta-
king into account that this stage of the algorithm takes place
over 1.6 million times (it is executed in the innermost loop
of the algorithm), the profits obtained following the trends
ruled by our modeling are evident.

The approximations to unknown parameters of the lubri-
cation problem are computed using iterative methods. Some
convergence tests involve gathering one element (double)
per processor onto each processor. Therefore, an Allga-
ther is needed to obtain an 8��-byte vector on all pro-
cessors. According to the models of Section 4, it would
be better to use Gather+Broadcast instead of Allga-
ther for short messages, where latency is dominated by
the startup time. This fact was experimentally proved in our
code, as shown in the results of Table 5. It is clear that the
improvement using the second approach increases with �,
due to the ��� complexity of the startup of Allgather.

6. Conclusions

The characterization of the communication overhead is
very important in the development of parallel codes. In
this work, we have presented a comprehensive study of the
AP3000 message-passing primitives. Such primitives are
the basis for the design of more complex communication
patterns that can appear in parallel applications. The models



Table 5. Estimated and measured execution times (in �s) of the example code.
Reduce scatter Reduce+Scatter Allgather Gather+Broad.p
Estim. Meas. Estim. Meas.

%Red.
Estim. Meas. Estim. Meas.

%Red.

2 24414 21568 20927 18920 12.28% 166.43 177.61 164.54 168.146 5.33%
4 33957 31167 29440 27376 12.16% 356.94 354.43 271.69 269.717 23.90%
8 43500 39534 39291 36269 8.26% 738.07 718.67 427.93 420.668 41.47%
12 49082 47181 45355 43444 7.92% 1119.25 1122.82 601.14 530.717 52.73%

and metrics used in the previous sections helped us to iden-
tify design faults in the communication routines and, fur-
thermore, to estimate and improve the performance of the
most time-consuming stages of parallel programs, as shown
in Section 5. The primitives could be more accurately mo-
deled by defining different functions for different message
length intervals. Nevertheless, we found more interesting
to show global functions which have been experimentally
proved to have a reasonable accuracy and that provide a
clearer overview of the primitives’ behavior. Machine ven-
dors should provide the parameters of these models (or, at
least, complexities) for basic communication routines.

Regarding the AP3000 libraries, we can conclude that
the PVM/AP library (particularly, the group routines) is a
naive implementation. The APlib routines are not robust
for long messages, the broadcast implementation is ineffi-
cient and the APlib reduction routines are only available for
single numbers. Besides, APlib is a proprietary library with
a small set of primitives compared to MPI. It is clear that
APlib is available for compatibility with the AP1000 ma-
chine, where this library had a good behavior.

Currently, MPI/AP is the best choice to program the
AP3000 because the basic primitives present accepta-
ble latencies; nevertheless, the implementation of more
sophisticated collective communications, such as Re-
duce Scatter and Scan should be revised. Further-
more, the AP3000 hardware is not fully exploited by the
MPI/AP library. Message latencies could be reduced by
re-designing the low-level communication mechanisms. In
fact, MPI/AP was constructed using too many commu-
nication layers. Software developments to achieve high-
performance communication primitives for the AP3000
were mentioned in Section 2. Hardware improvements,
such as the SBus design (the I/O bus which connects the
processor and the message controller), could also help to
reach this aim.

Acknowledgments

We gratefully thank CESGA (Galician Supercomputing
Center) for providing access to the AP3000. This work was
funded by the Spanish Ministry of Science and Technology
and the European Union under Contract 1FD97-0118-C02.

References

[1] M. Arenaz, R. Doallo, J. Touriño, and C. Vázquez. A
Parallel Algorithm for an Elastohydrodynamic Piezoviscous
Lubrication Problem. In Parallel Numerical Computations
with Applications, chapter 13, pages 191–201. Kluwer Aca-
demic Publishers, 1999.

[2] M. Bernaschi, G. Iannello, and M. Lauria. Experimental
Results about MPI Collective Communication Operations.
In 7	
 Int’l Conference on High-Performance Computing
and Networking, volume 1593 of Lecture Notes in Computer
Science, pages 774–783. Springer-Verlag, 1999.

[3] R. W. Hockney. The Communication Challenge for
MPP: Intel Paragon and Meiko CS-2. Parallel Computing,
20(3):389–398, 1994.

[4] L. S. Huse. Collective Communication on Dedicated Clus-
ters of Workstations. In 6	
 European PVM/MPI Users’
Group Meeting, volume 1697 of Lecture Notes in Computer
Science, pages 469–476. Springer-Verlag, 1999.

[5] H. Ishihata, T. Horie, and T. Shimizu. Architecture for the
AP1000 Highly Parallel Computer. Fujitsu Sci. Tech. Jour-
nal, 29(1):6–14, 1993.

[6] H. Ishihata, M. Takahashi, and H. Sato. Hardware of
AP3000 Scalar Parallel Server. Fujitsu Sci. Tech. Journal,
33(1):24–30, 1997.

[7] J. Miguel, A. Arruabarrena, R. Beivide, and J. A. Gregorio.
Assessing the Performance of the New IBM SP2 Communi-
cation Subsystem. IEEE Parallel & Distributed Technology,
4(4):12–22, 1996.

[8] N. Nupairoj and L. M. Ni. Performance Metrics and
Measurement Techniques of Collective Communication Ser-
vices. In 1�	 Int’l Workshop on Communication and Ar-
chitectural Support for Network-Based Parallel Computing,
pages 212–226, San Antonio, TX, 1997.

[9] M. Prieto, D. Espadas, I. M. Llorente, and F. Tirado.
Message Passing Evaluation and Analysis on Cray T3E and
SGI Origin 2000 Systems. In 5	
 Int’l Euro-Par Conference,
volume 1685 of Lecture Notes in Computer Science, pages
173–182. Springer-Verlag, 1999.

[10] D. Sitsky and P. Mackerras. A High-Performance Message-
Passing Library for the AP3000. In 8	
 Int’l Parallel Com-
puting Workshop, pages 245–251, Singapore, 1998.

[11] C. P. Tan, W. F. Wong, and C. K. Yuen. PVM Enhance-
ment for AP3000. In 7	
 Int’l Parallel Computing Work-
shop, pages P1D1–P1D8, Canberra, 1997.

[12] Z. Xu and K. Hwang. Modeling Communication Overhead:
MPI and MPL Performance on the IBM SP2. IEEE Pa-
rallel & Distributed Technology, 4(1):9–23, 1996.


