
Servet: A Benchmark Suite for Autotuning on
Multicore Clusters

Jorge González-Domı́nguez, Guillermo L. Taboada, Basilio B. Fraguela, Marı́a J. Martı́n, Juan Touriño
Computer Architecture Group

Department of Electronics and Systems
University of A Coruña, Spain

Email: {jgonzalezd, taboada, basilio.fraguela, mariam, juan}@udc.es

Abstract—The growing complexity in computer system hierar-
chies due to the increase in the number of cores per processor,
levels of cache (some of them shared) and the number of
processors per node, as well as the high-speed interconnects,
demands the use of new optimization techniques and libraries
that take advantage of their features.

In this paper Servet, a suite of benchmarks focused on
detecting a set of parameters with high influence in the overall
performance of multicore systems, is presented. These bench-
marks are able to detect the cache hierarchy, including their
size and which caches are shared by each core, bandwidths
and bottlenecks in memory accesses, as well as communication
latencies among cores. These parameters can be used by auto-
tuned codes to increase their performance in multicore clusters.
Experimental results using different representative systems show
that Servet provides very accurate estimates of the parameters
of the machine architecture.

Keywords-Benchmarking, Autotuning, Multicore Clusters, Op-
timization.

I. INTRODUCTION

Nowadays, there is a trend towards developing autotuned
codes, which can automatically optimize their performance
depending on the machine on which they are executed. Some
tools have already been developed for sequential compu-
tation [1]–[3] using a wide search mechanism to find the
most appropriate algorithm, although the knowledge of some
hardware characteristics can reduce the search time [4].

Additionally, many optimization techniques have been de-
veloped for parallel computing. Among the different parallel
architectures, clusters of multicores pose significant chal-
lenges, as they present a hybrid distributed and shared mem-
ory architecture with several hierarchies determined by non-
uniform communication latencies. Furthermore, because of
sharing memory or even cache among some cores, concurrent
memory accesses using different threads can decrease the
memory access performance per core.

Two main approaches are being studied to improve the
performance of parallel applications in clusters of multicores.
One consists in implementing codes that take into account
the system characteristics [5]–[8], for instance minimizing the
number of messages across the network or using blocks of
data that fit in the caches to avoid cache misses. The other
approach maps the processes to specific cores to improve the
performance without changing the codes [9]–[11]. Knowledge

of the topology of the machine and of some hardware param-
eters is necessary in both approaches.

System parameters and specifications are usually vendor-
dependent and often inaccessible to user applications. For
instance, the administration tool dmidecode reports informa-
tion about the hardware as described in the BIOS, but it is
restricted to system administrators. Therefore, estimation by
benchmarks is the only general and portable way to find out the
hardware characteristics, without worrying about the vendor,
the OS or the user privileges. Besides, this approach provides
experimental results about the performance of the systems,
obtaining a more reliable estimate than inferring them from
the machine specifications.

This paper presents Servet1, a portable benchmarking suite
to obtain the relevant hardware parameters of clusters of
multicores and, hence, support the automatic optimization of
parallel codes on these architectures. Cache size and hierarchy,
bottlenecks in memory access and communication overheads
are included among the estimated parameters. The accuracy
of the estimates has been satisfactorily validated on several
machines with very different architectures.

The rest of the paper is organized as follows. Section II
presents previous works focused on obtaining system param-
eters to support autotuning. Section III describes the bench-
marks. Section IV summarizes the experimental environments
and the results. Finally, concluding remarks are presented in
Section V.

II. RELATED WORK

The automatic extraction of system parameters to support
the autotuning of parallel applications is a topic which has
been previously tackled with different approaches. The X-
Ray tool [12] provides micro-benchmarks to automatically
obtain some characteristics of the CPU and the cache hierarchy
for unicore systems. In [13] Yotov et al. presented a new
methodology to obtain the cache parameters. However, they
reported some issues measuring the characteristics of the cache
levels lower than L1 because they are physically indexed. In

1As this suite dissects the machines to discover their characteristics, it
obtains its name from Miguel Servet, a Spanish theologian, physician, car-
tographer and humanist who lived in the XVIth Century and performed many
dissections, being the first European to describe the function of pulmonary
circulation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/199451902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

their benchmarks contiguous memory allocation is compul-
sory, therefore, they must request virtual memory backed by
a superpage. As the way to request it depends on the OS,
their approach is not portable. Servet provides an algorithm
to detect the sizes of all cache levels (and whether they are
shared) in any system with any OS (either using page coloring
or not), thus solving the main problem detected in previous
works [12], [13]. As we will see, our approach also addresses
the influence of hardware prefetchers in the measurements.

P-Ray [14] extended X-Ray benchmarks to detect the
characteristics of multicore systems. Although it is very ap-
propriate for SMPs, it inherits most of the issues of X-
Ray (e.g., non-portable L2/L3 cache parameters determination)
and lack some relevant parameters for multicore clusters like
communication overhead. Although the algorithm to detect
the processor mapping in P-Ray could be used (with manual
work) to show different communication latencies on multicore
systems, it is restricted to shared memory systems, so it is not
applicable to clusters. Our benchmark automatically detects all
communication layers in multicore clusters. Besides, Servet
provides additional information which has not been addressed
in previous works, such as the scalability of each layer and
its behavior according to the message size. This information
can be very useful to optimize applications in multicore
clusters, where the behavior of the networks can be a very
important bottleneck. Another shortcoming of P-Ray is that
it assumes a uniform cost in the intra-node memory access.
Our experimental results show in Section IV that in practice
it is not true: cores that share the memory bus present a
greater overhead than the other cores in the same cell, and
cores in the same cell present a greater overhead than the
other cores in the same node. Servet is able to detect these
types of issues, which are very important for mapping policies,
by using the benchmark to automatically detect which cores
present an overhead when accessing concurrently to memory
and the magnitude of this overhead.

Some tools to optimize parallel codes in multicore clus-
ters according to their architecture have been developed [9],
[10]. They are focused on communication overheads, trying
to obtain the best process placement policies by increasing
the use of shared memory, thus avoiding messages across
the cluster interconnection network. However, they do not
take into account the effective memory bandwidth, specially
when concurrent accesses from different threads are present.
Furthermore, although these tools rely on the characteristics of
the machine, they do not actually measure them. MPIPP [9]
needs the communication bandwidth among cores and obtains
it from the technical specification of the machine, but this is
not usually possible. Mercier and Clet-Ortega [10] obtain the
topology of the machine from its specifications and then esti-
mate the communication costs according to them. Although the
knowledge about the topology is often available from machine
documentation, this is a non-portable approach. Additionally,
these estimates are usually poorly accurate.

Summarizing, our approach improves previous works by
providing a portable estimate of several parameters of the
machine architecture such as the cache size (L1, L2 and, when
available, L3 caches), cache hierarchy (determining if a cache

is private to a particular core or shared among several cores),
shared memory access bandwidth, shared memory hierarchy
(cores that share memory and NUMA system hierarchy) and
communication overheads.

III. BENCHMARKS

The benchmarks implemented in Servet to determine cache
size, cache sharing topology, memory performance and com-
munication overheads are next described.

A. Cache Size Estimate

The knowledge of the cache size is used in many opti-
mization techniques to divide the computation in blocks of
data which fit in cache in order to minimize the number
of cache misses and, therefore, increase the memory access
performance.

Several benchmarks that estimate the cache size have been
proposed during the last years. We have followed the approach
of Saavedra and Smith [15]: measuring the number of cycles
used to traverse arrays of different sizes using 1KB strides.
This stride has been chosen because it is big enough to avoid
influences of the hardware prefetcher on the measured number
of cycles, as current prefetchers work with strides up to 256
or 512 bytes. It is also larger than any existing cache line size
and it is a divisor of any cache size.

However, this approach presents several drawbacks [13]:
the results may be disturbed by unintended optimizations of
aggressive compilers and they must be interpreted to determine
the different cache sizes. Our code improves this benchmark
using values read from an array as stride, thus avoiding
aggressive compiler optimizations, and providing directly the
cache sizes.

The algorithm used (mcalibrator) is shown in Figure 1. Its
outputs are two arrays S and C, of length n, containing the
sizes of the traversed arrays and the average number of cycles
required by each access during their traversal, respectively.

Figure 2(a) presents the cycles obtained with this algorithm
on two Intel Xeon based architectures (Dempsey-5060 and
Dunnington-E7450), whereas Figure 2(b) shows the gradient
of the previous results, that is C[k+1]/C[k], 0 ≤ k < n. These
architectures will be used to explain the algorithm to detect
the cache hierarchy from the cycles of access to memory and
their corresponding gradients.

1) L1 Cache: Traversing an array with all its elements
in cache is faster than traversing one which does not fit.
Therefore, the sizes where the number of cycles rises indicate
that they do not fit in cache and cache misses appear. Sharp
changes in the slope of the cycles graph correspond to peaks
in the gradients one. The L1 cache size is determined by the
first peak of the gradients: 16KB for Dempsey and 32KB for
Dunnington according to Figure 2.

2) Lower Cache Levels: The approach followed to estimate
the L1 cache size cannot be always applied to lower levels.
L1 caches are typically virtually indexed, but lower levels
are always physically indexed for a number of practical rea-
sons [16]. This is a problem when the cache size is larger than
one page because contiguity in virtual memory does not imply

aux = 0 // Auxiliary variable to help to avoid compiler influences

i = MIN CACHE
n = 0 // Number of cache sizes tested

while i≤MAX CACHE do
S[n] = i // Size of the traversed array

size = The amount of integers stored in S[n] bytes
for j=0;j<size;j=j+1 do

A[j] = The amount of integers stored in 1KB // Each position keeps the stride

end
// The access to the array is in the loop to know the stride

for j=0;j<size;j=j+A[j] do
aux = aux + size // A variable update to avoid compiler optimizations

end
C[n] = The number of cycles to perform the previous loop
n=n+1
if i<2MB then

i=i*2
else

i=i+1MB
end

end

Fig. 1: mcalibrator algorithm

(a) Cycles needed to traverse an array (b) Gradient of the rise of cycles

Fig. 2: mcalibrator results (run on two cores)

adjacency in physical memory, which leads to the generation
of misses in tests with arrays much smaller than the cache
considered. Therefore, peaks in the gradient function could not
be enough to estimate the cache size, as for Dempsey, with
high gradient values in the range [512KB,2MB]. Although
some OSs solve this problem applying page coloring, others
such as Linux, widely used in scientific computing, do not.
As commented in Section II, an alternative has been proposed
by Yotov et al. [13] but their solution is not portable.

Our benchmark overcomes this problem following a prob-
abilistic approach. Since the OS can map a virtual page to
any physical page, no assumptions can be made on which
cache sets of a physically indexed cache correspond to a given
virtual page. Now, in a K-way physically indexed cache of size
CS with a page size PS every cache way can be divided in

CS/(K ∗PS) page sets, that is, groups of cache sets that can
receive data from the same page. As a result, if the probability
a given virtual page is mapped to a given page set is uniform,
the number of pages X per page set belongs to a binomial
B(NP, (K ∗ PS)/CS), where NP is the number of pages
involved in the access [8]. Since each set can contain up to
K pages without conflicts, the probability P (X > K) is the
expected miss rate during the repeated access to the NP pages.

Thus, based on the outputs of mcalibrator (Figure 1), the
algorithm in Figure 3 can be used to determine L2 and L3
(if present) cache size according to the previous reasoning.
The probabilistic algorithm starts calculating the number of
pages and the miss rate for each mcalibrator result. After that,
it calculates the divergences between the measured and the
predicted miss rates according to the binomial distribution.

hit time = MIN(C);
miss overhead = MAX(C)−MIN(C)
for i=0;i<n;i=i+1 do

MR[i] = (C[i]− hit time)/miss overhead // Miss Rate

NP [i] = S[i]/PS // Number of Pages
end
foreach tentative cache size CS and associativity K do

div[CS][K] = 0
for i=0;i<n;i=i+1 do

div[CS][K] = div[CS][K] + |MR[i] - P (X > K) |, X ∈ B(NP [i], (K ∗ PS)/CS)
end

end
Result: The statistical mode of CS using the five elements of div with the lowest values

Fig. 3: Probabilistic algorithm to determine the size of physically indexed caches (L2, L3) based on mcalibrator outputs

Data: mcalibrator outputs from MIN CACHE to MAX CACHE
foreach peak in the gradients do

if This is the first peak then
Estimate the L1 cache size using the peak position

else
if Peak is related only to a single array size then

Estimate the corresponding cache size using the peak value
else

Estimate the corresponding cache size from the probabilistic algorithm using mcalibrator outputs where
gradient is larger than 1 around the peak

end
end

end
if The largest array sizes show a gradient > 1 then

The corresponding cache size is the estimate of the probabilistic algorithm using mcalibrator outputs with the largest
sizes

end

Fig. 4: Algorithm to detect the cache levels and their sizes

The estimated cache size is the one with the highest similarity
(less divergence).

The accuracy of this algorithm is higher than only searching
peaks in the gradients of the mcalibrator outputs. For instance,
in the Dempsey case, a 1MB L2 cache would be erroneously
estimated looking at the mcalibrator outputs. The estimate of
the latter algorithm analyzing the [256KB,4MB] range is 2MB,
the correct value.

Besides, this algorithm is able to provide a correct cache
size estimate when gradients are higher than 1 for a wide size
range. This is the case of Dunnington (see Figure 2): the use
of the algorithm in the range [3MB,14MB] provides 12MB as
result, which is the actual L3 cache size.

The overall algorithm to detect the number of levels of cache
and their sizes is presented in Figure 4. As L1 caches are
virtually indexed, their size is always calculated using the first
peak of the gradients. However, there are two ways to estimate
the size of the next levels. A peak clearly located only in
one array size means that the OS has used page coloring so
the behavior of the cache is analogous to that of a virtually

indexed one and the position of the peak determines the cache
size. However, a peak with high gradients for several array
sizes needs the use of the probabilistic algorithm. Therefore,
this benchmark is completely portable, being independent
from the application of page coloring by the OS. Finally, the
probabilistic algorithm is used again if gradients are higher
than 1 for the largest arrays.

B. Determination of Shared Caches

The knowledge of which cores share a concrete cache level
can be useful in order to speed up the memory accesses. On
the one hand, if two processes work with the same block of
data which fits in cache, mapping them to cores which share
cache would improve the performance, as they could exchange
data using the cache. On the other hand, if they do not work
with the same data, their working sets could not fit in a shared
cache, leading to more replacements and misses. In this case
scheduling techniques for autotuning would map the processes
to cores that do not share cache in order to minimize the
misses.

Data: l, number of cache levels, and CS[0..l-1] cache size per level
for i=0;i<l;i=i+1 do

Psc[i] = Empty list
ref = Cycles obtained from mcalibrator run on one core using an array of size (2/3) ∗ CS[i]
foreach pair of cores in the system do

c = Cycles obtained from mcalibrator run in parallel on the cores of the pair using an array of size
(2/3) ∗ CS[i] in each core

ratio = c/ref
if ratio>2 then

Add the pair to Psc[i]
end

end
end
Result: Psc[0..l-1]

Fig. 5: Algorithm to determine the shared caches

Figure 5 shows our benchmark to detect shared caches. The
inputs are the number of cache levels l and an array CS, of
length l, with the cache size per level. For each cache level
i, the first step is to call mcalibrator using an array of size
a little larger than CS[i]/2 and keep the result as reference.
Then mcalibrator is invoked simultaneously on two arrays of
this size in two threads, varying the cores where the threads
are mapped. The chosen array size provokes that two arrays
do not fit simultaneously in cache so, when cores share cache,
the array created by each of them is replacing the other one
and the number of cycles increases. The output is an array of
lists Psc (one list per cache level) with the pairs with a number
of cycles at least twice greater than the reference value (metric
ratio > 2 in Figure 5), and therefore whose cores share cache.

C. Memory Access Overhead Characterization

When several cores share the main memory, performance
bottlenecks may arise with concurrent memory accesses. The
knowledge of these bottlenecks would allow to implement
scheduling policies in autotuned applications to avoid them
and improve the memory access performance.

A benchmark that provides performance results of concur-
rent memory accesses has been developed. This benchmark
is similar to the previous one, as it compares the bandwidth
to memory using an isolated core (reference) with the one
obtained when accessing by pairs. Our approach to calculate
the bandwidth is based on similar tools which measure it, such
as STREAM [17]. In our case, it is the bandwidth from the
copy of all the elements stored in one array to another (these
arrays must not fit in cache).

The algorithm of the benchmark is shown in Figure 6. For
each pair of cores, the bandwidth of one core when both
of them are concurrently accessing to memory is calculated
and compared to the reference value, it means, the memory
bandwidth when accessing with an isolated core. A bandwidth
for concurrent accesses significantly lower than the reference
indicates an overhead.

However, distinguishing the different magnitudes of over-
head and which pairs suffer each of them is also interesting.

To do it, the algorithm works with two arrays: BW , with the
different bandwidths lower than the reference value, and Pm,
which contains the pairs of cores which cause each overhead
(Pm[i] is the list of the core pairs which obtained a concurrent
bandwidth similar to BW [i]). When a bandwidth lower than
the reference value is found, the algorithm searchs in the BW
array if any previous pair already obtained a similar overhead.
In this case, the pair which is being studied is added to the
list of Pm corresponding to that bandwidth. Otherwise, this
is the first pair with that specific overhead, so BW and Pm

are updated appending to them a new entry with the new
bandwidth and a list with the studied pair, respectively.

n = 0 // Number of different overhead levels

found

ref = Memory bandwidth when accessing with an
isolated core
foreach pair of cores in the system do

b = Memory bandwidth for one core when accessing
both cores concurrently
if b<ref then

if b is similar to a given BW[i], 0≤i<n then
Add the pair to Pm[i]

else
BW[n] = b
Pm[n] = Empty list
Add the pair to Pm[n]
n=n+1

end
end

end
Result: n, BW[0..n-1], Pm[0..n-1]

Fig. 6: Algorithm to characterize the memory access over-
head

The groups of cores that collide accessing to memory with
a given overhead are easily obtained from Pm. For instance,
if the list in Pm[i] has the pairs (0,1),(0,2),(3,4) and (3,5), it
allows to identify two groups for the overhead BW [i]: {0,1,2}

and {3,4,5}.
This knowledge about memory access overhead of groups

of cores can be used to analyze the scalability of the memory
access performance. This parameter has an special importance,
as autotuning could optimize codes by limiting the number
of cores accessing to memory if a poorly scalable memory
system is detected. Characterizing the effective bandwidth
according to the number of threads that are being executed
only requires one group per overhead. For instance, for the
previous example, the concurrent memory access bandwidth
of the cores 0, 1 and 2 is the same as the one for cores 3, 4
and 5. Therefore, using the arrays BW and Pm, the effective
bandwidth to memory can be characterized without using all
cores.

D. Determination of Communication Costs

Currently, many optimization techniques that can be used in
autotuned applications for clusters of multicores are focused
on reducing the communication overhead taking into account
the different latencies [9], [10].

Traditionally, the characterization of the communication
overhead has been done using extensions either of the LogP
model [18] or of the Hockney’s linear model [19]. However,
both of them show poor accuracy on current communication
middleware on multicore clusters [20], which implement sev-
eral communication protocols, both depending on the message
size and the communication layer (e.g., high-speed networks,
inter-process and intra-process shared memory transfers).

In this section a new benchmark which provides a more ac-
curate communication overhead characterization is proposed.
The characterization provided by our benchmark is divided
in three parts. Firstly, communication layers (sets of pairs of
cores whose communication costs are similar) are established.
Then, these layers are used to characterize communication
performance and, finally, to evaluate the scalability of the
communication system.

In order to group the cores according to their communica-
tion costs, the benchmark shown in Figure 7 has been imple-
mented. The reference implementation uses MPI. It compares
the latencies when sending a message between different pairs
of cores. Several representative message sizes can be selected
for this task. In our case, the size of the message is equal
to the L1 cache size, because it allows to find differences in
communications when sharing other cache levels.

The algorithm is similar to the previous one: for each pair of
cores, it obtains the latency to send a message between them
and stores the different latencies in the array L. Besides, the
array Pl is created so that Pl[i] keeps the list with the pairs
with a latency L[i]. Finally, the cores that present the same
communication performance are grouped.

Once the layers are established, the followed approach is
to store the performance results of a micro-benchmarking of
a point-to-point communication (also implemented with MPI)
for representative message sizes and for each representative
pair of cores (one per layer). The communication performance
for the rest of the pairs is the same as for the representative
pair of their group.

n = 0 // Number of different layers

foreach pair of cores in the system do
l = Latency sending a message between the two cores
if l is similar to a given L[i], 0≤i<l then

Add the pair to Pl[i]
else

L[n] = l
Pl[n] = Empty list
Add the pair to Pl[n]
n=n+1

end
end
Result: n, L[0..n-1], Pl[0..n-1]

Fig. 7: Algorithm to categorize the communication costs

Finally, in order to characterize the scalability of an in-
terconnect, the performance of all the cores in a given layer
concurrently sending one message is compared to the latency
of an isolated message. In fully scalable communication sys-
tems, times should be similar because each core only sends
one message. However, many cluster interconnection networks
can present performance penalties when concurrent messages
are sent through them. Sending concurrently N messages of
size S usually costs more than sending one message of size
N*S. Thus, it is possible to optimize the communication per-
formance by gathering messages in poorly scalable systems.

IV. EXPERIMENTAL EVALUATION

Two systems have been used to test the benchmarks pre-
sented in this paper. The first one is a machine with four
Dunnington Intel Xeon E7450 hexacore processors (2,40
GHz). The six cores in the same processor share a 12MB L3
cache. There are also 3MB L2 caches shared by pairs of cores
and individual 32KB L1 caches. The MPI implementation is
MPICH2 version 1.1.1.

The second machine is the Finis Terrae supercomputer [21].
It consists of 142 HP RX7640 nodes, each of them with 8
Itanium2 Montvale dual-core processors (1,60 GHz), hence
16 cores, distributed in two cells (each cell has 4 processors
and 8 cores). Each cell has its own 64GB main memory,
so all cores in the same node logically share 128GB of
memory. Memory accesses are performed across buses shared
by pairs of processors. Each core has its individual 16KB L1,
256KB L2 and 9MB L3 caches. Nodes are interconnected via
InfiniBand (20 Gbps). The MPI library is HP MPI 2.2.5.1,
with a shared memory device (SHM) and an InfiniBand device
(IBV).

A. Cache Size Estimate

As the cache size estimates do not require a multicore
cluster to be tested, two additional systems were used to
prove the correctness of the approach shown in Section III-A:
Dempsey, an Intel Xeon 5060 dualcore processor (3,20 GHz)
with 16KB L1 and 2MB L2 caches, and the unicore AMD
Athlon 3200 (2 GHz) with 64KB L1 and 512KB L2 caches.

(a) Dunnington (b) Finis Terrae

Fig. 8: Results from the shared cache benchmark

(a) Memory access performance with two simultaneous accesses (b) Memory access performance with multiple simultaneous accesses

Fig. 9: Results from the memory overhead benchmark

These systems present a good variety of characteristics: Intel
and AMD processors, 3 or only 2 cache levels, shared and
individual caches, etc.

The benchmark presented in Section III-A was tested in
these four machines (10 cache sizes in total) and all the
estimates agreed with the specifications.

B. Determination of Shared Caches

Figure 8(a) illustrates the results for the detection of which
caches are shared (Section III-B) in the Dunnington system,
whereas Figure 8(b) shows the Finis Terrae numbers, obtained
using one node. For clarity purposes, only the results obtained
with the pairs that contain core 0 are shown. The performance
metric in the graphs is the ratio of cache access overhead
presented in the benchmark (see ratio in Figure 5).

In Dunnington, core 0 shares its L2 cache with core 12
and the L3 cache is shared by all the cores in the same
hexacore processor, cores {0,1,2,12,13,14}. In principle, one
would expect that the OS would number the cores according
to their physical layout. Thus, it would be expected that cores
0 and 1 share the L2 cache and that the 6 cores sharing the L3
cache would be numbered 0-5. This benchmark is useful to
discard this kind of assumptions and show the actual topology.

In Finis Terrae all the ratios are below 2, so the benchmark
detects that all the caches are private.

C. Memory Access Overhead Characterization

Figure 9(a) illustrates the memory bandwidth when two
cores are accessing memory concurrently in the Dunnington
and Finis Terrae systems. For clarity purposes only pairs of
cores that contain core 0 are shown. Besides, the bandwidth
achieved individually by the core 0 (the reference value) is
labeled as ref in the x axis.

Dunnington presents overhead when two cores access mem-
ory simultaneously, and its magnitude is the same indepen-
dently of the pair of cores. However, the results in Finis
Terrae depend on the cores tested. Core 0 accessing memory
concurrently with cores 1, 2 or 3 shows the lowest bandwidth.
The reason for this behavior is that, according to the system
specification, these cores belong to processors which share
the bus to memory. A higher bandwidth, but still a 25%
lower than the reference value, is achieved from cores 4 to
7, which is explained by the fact that these cores are located
in the same cell as core 0 and present some performance
degradation from sharing the cell memory. Finally, there is

(a) Message-passing latency (L1 message size) (b) Latency scalability (L1 message size)

(c) Point-to-point bandwidth (Dunnington) (d) Point-to-point bandwidth (Finis Terrae)

Fig. 10: Results from the communication costs benchmark

no particular overhead when cores from different cells are
accessing memory simultaneously.

Figure 9(b) shows the effective bandwidth when several
cores access memory concurrently. Only groups whose cores
presented overhead in the left graph must be analyzed, thus
for the Finis Terrae case there are two lines: bus, for cores
that share the bus to memory, and cell, for cores located in
the same cell.

D. Determination of Communication Costs

Figure 10(a) illustrates the latency of MPI message transfers
between two cores (the affinity of MPI processes to particular
cores has been set with the sched system library). In this
case Finis Terrae results are shown for two nodes (hence,
up to 32 cores), which is enough to characterize all the
different communication costs. For the purpose of clarity, only
communications whose source core is 0 are shown.

In Dunnington, communications among cores in the same
hexacore processor present lower latencies than inter-processor
transfers, especially when sharing the L2 cache (core 12). In
Finis Terrae the intra-node communications (cores 1 to 15) are
around two times faster than inter-node ones (cores 16 to 31).
This benchmark not only provides the hierarchy of the system
according to the communication overhead, but also the actual
communication performance.

Figure 10(b) shows the scalability of the inter-processor
transfers for the Dunnington system and the inter-node trans-
fers (InfiniBand) for the Finis Terrae through the latency of
several messages sent concurrently across these interconnects.
The results show a moderate scalability. For instance, a mes-
sage sent through the InfiniBand network in Finis Terrae when
there are other 31 messages is 7 times slower than a message
sent alone.

Figures 10(c) and 10(d) present the point-to-point band-
width achieved by representative pairs of cores, one per
each layer detected using the benchmark shown in Figure 7.
These results allow to accurately estimate the communica-
tion overhead of a given message, both taking into account
the communication layer being used (e.g., InfiniBand, intra-
processor, inter-processor), and the message size. Thus, using
this benchmark an autotuned code can analyze the cost of a
communication (and its alternatives) beforehand.

E. Execution Times

Regarding the execution times of the benchmarks, they are
very dependent on the target architecture, specially on the total
numbers of cores, the number of caches and the complexity
of the communication layers. As a reference, Table I shows
the execution times of each benchmark in the two multicore
clusters. Anyway, as these benchmarks do not use dynamic

information, they must be run only once at installation time,
and each time the system changes its hardware configuration
(e.g., if new nodes are added to the system). The information
obtained can be stored in a file to be consulted by the
applications to guide optimizations when needed, thus their
execution time is not important.

TABLE I: Execution times (in minutes) of all the benchmarks

Dunnington Finis Terrae
Cache Size Estimate 2’ 2’

Determination of Shared Caches 11’ 3’
Memory Access Overhead 20’ 5’

Communication Costs 22’ 33’
Total 55’ 43’

V. CONCLUSIONS

This paper has presented Servet, a fully portable suite of
benchmarks to obtain the most interesting hardware parame-
ters to support the automatic optimization of applications on
multicore clusters. These benchmarks determine the number
of levels of cache, their sizes, the cache topology of shared
caches, the memory access bottlenecks, and the communica-
tions scalability and overheads. Our tests prove that the suite
provides highly accurate estimates according to the system
architecture specifications.

Many optimization techniques can take advantage of the
hardware parameters determined. The information about the
possible overheads can be used to automatically map the pro-
cesses to certain cores in order to avoid either communication
or memory access bottlenecks. Even if not all overheads can
be avoided, mapping policies with a good trade off according
to the characteristics of the code can be applied. In some
cases it could be even better not to use some cores to avoid
performance drops.

Not only the mapping techniques can take advantage of
Servet. Tiling is one of the most widely used optimization
techniques and our suite can help to this technique by pro-
viding all the cache sizes in a portable way. Furthermore,
many programs provide several implementations of parts of
their code in order to take advantage of different architectures.
Using the system parameters obtained by Servet it is possible
to adapt the behavior of an application to maximize its
performance.

Servet is publicly available under GPL license at
http://servet.des.udc.es.

ACKNOWLEDGMENTS

This work was funded by the Galician Government (Xunta
de Galicia) under Project INCITE08PXIB105161PR, and by
the Ministry of Science and Innovation of Spain under Project
TIN2007-67537-C03-02 and FPU grant AP2008-01578. We
gratefully thank CESGA (Galicia Supercomputing Center,
Santiago de Compostela, Spain) for providing access to the
Finis Terrae supercomputer.

REFERENCES

[1] R. Clinton Whaley, Antoine Petitet and Jack J. Dongarra. Automated
Empirical Optimizations of Software and the ATLAS Project. Parallel
Computing, 27(1–2):3–35, 2001.

[2] Matteo Frigo and Steven G. Johnson. The Design and Implementation
of FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005.

[3] Markus Püschel, José M. F. Moura, Jeremy Johnson, David A. Padua,
Manuela M. Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca
Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson and Nicholas
Rizzolo. SPIRAL: Code Generation for DSP Transforms. Proceedings
of the IEEE, 93(2):232–275, 2005.

[4] Kamen Yotov, Xiaoming Li, Gang Ren, Marı́a J. Garzarán, David A.
Padua, Keshav Pingali and Paul Stodghill. Is Search Really Necessary
to Generate High Performance BLAS? Proceedings of the IEEE,
93(2):358–386, 2005.

[5] Steve Sistare, Rolf van de Vaart and Eugene Loh. Optimization of
MPI Collectives on Clusters of Large-Scale SMPs. In Proc. 12th
Supercomputing Conf. (SC’99), pages 23–36, Portland, OR, USA, 1999.

[6] Peter Sanders and Jesper L. Träff. The Hierarchical Factor Algorithm for
All-to-All Communication. In Proc. 8th Euro-Par Conf. (Euro-Par’02),
volume 2400 of Lecture Notes in Computer Science, pages 799–804,
Padeborn, Germany, 2002.

[7] Vinod Tipparaju, Jarek Nieplocha and Dhabaleswar K. Panda. Fast Col-
lective Operations Using Shared and Remote Memory Access Protocols
on Clusters. In Proc. 17th Intl. Parallel and Distributed Processing
Symposium (IPDPS’03), pages 84–93, Nice, France, 2003.

[8] Basilio B. Fraguela, Yevgen Voronenko and Markus Püschel. Automatic
Tuning of Discrete Fourier Transforms Driven by Analytical Modeling.
In 18th Intl. Conf. on Parallel Architectures and Compilation Techniques
(PACT’09), pages 271–280, Raleigh, NC, USA, 2009.

[9] Hu Chen, Wenguang Chen, Jian Huang, Bob Robert and H. Kuhn.
MPIPP: An Automatic Profile-guided Parallel Process Placement Toolset
for SMP Clusters and Multiclusters. In Proc. 20th Intl. Conf. on
Supercomputing (ICS’06), pages 353–360, Cairns, Australia, 2006.

[10] Guillaume Mercier and Jérôme Clet-Ortega. Towards an Efficient
Process Placement Policy for MPI Applications in Multicore Environ-
ments. In Proc. 16th European PVM/MPI Users’ Group Meeting (Eu-
roPVM/MPI’09), volume 5759 of Lecture Notes in Computer Science,
pages 104–115, Espoo, Finland, 2009.

[11] Jin Zhang, Jidong Zhai, Wenguang Chen and Weimin Zheng. Process
Mapping for Collective Communications. In Proc. 15th Euro-Par Conf.
(Euro-Par’09), volume 5704 of Lecture Notes in Computer Science,
pages 81–92, Delft, The Netherlands, 2009.

[12] Kamen Yotov, Keshav Pingali and Paul Stodghill. X-Ray: A Tool for
Automatic Measurement of Hardware Parameters. In Proc. 2nd Intl.
Conf. on the Quantitative Evaluation of Systems (QEST’05), pages 168–
177, Torino, Italy, 2005.

[13] Kamen Yotov, Keshav Pingali and Paul Stodghill. Automatic Mea-
surement of Memory Hierarchy Parameters. In Proc. Intl. Conf. on
Measurements and Modeling of Computer Systems (SIGMETRICS’05),
pages 181–192, Banff, Canada, 2005.

[14] Alexandre X. Duchateau, Albert Sidelnik, Marı́a J. Garzarán and David
A. Padua. P-Ray: A Suite of Micro-benchmarks for Multi-core Archi-
tectures. In Proc. 21st Intl. Workshop on Languages and Compilers
for Parallel Computing (LCPC’08), volume 5335 of Lecture Notes in
Computer Science, pages 187–201, Edmonton, Canada, 2008.

[15] Rafael H. Saavedra and Alan J. Smith. Measuring Cache and TLB
Performance and their Effect on Benchmark Runtimes. IEEE Trans.
Computers, 44(10):1223–1235, 1995.

[16] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 4th edition, 2006.

[17] STREAM: Sustainable Memory Bandwidth in High Performance Com-
puters. http://www.cs.virginia.edu/stream/, Last visit: January 2010.

[18] David E. Culler, Richard Karp, David A. Patterson, Abhijit Sahay, Klaus
E. Schauser, Eunice E. Santos, Ramesh Subramonian and Thorsten von
Eicken. LogP: Towards a Realistic Model of Parallel Computation. In
Proc. 4th Symposium on Principles and Practice of Parallel Program-
ming (PPoPP’93), pages 1–12, San Diego, CA, USA, 1993.

[19] Roger W. Hockney. The Communication Challenge for MPP: Intel
Paragon and Meiko CS-2. Parallel Computing, 20(3):389–398, 1994.

[20] Guillermo L. Taboada, Juan Touriño and Ramón Doallo. Performance
Analysis of Message-Passing Libraries on High-Speed Clusters. Intl.
Journal of Computer Systems Science & Engineering, 2010 (In press).

[21] Finis Terrae. http://www.top500.org/system/9500, Last visit: January
2010.

