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Abstract 

Linker histones are a divergent group of histone proteins with an independent evolutionary history in which, 

besides somatic subtypes, tissue- and differentiation-specific subtypes are included. In the present work H1 

histone coding and noncoding segments from five Mytilus mussel species (Mollusca: Bivalvia) widely 

distributed throughout the world have been determined and characterized. Analysis of promoter regions 

shows clear homologies among Mytilus H1 genes, sea urchin H1 genes, and vertebrate differentiation-

specific H1 subtypes (H5 and H10), all having an H4 box motif in common. The amino acid sequence of the 

H1 protein central conserved domain is also closely related to that previously defined for the vertebrate 

divergent subtypes. A phylogenetic tree reconstructed from different H1 genes from several species 

strengthens the hypothesis of an “orphon” origin for the Mytilus H1 genes, as well as for the H10/H5 genes 

from vertebrates and the H1D gene from the sea urchin Strongylocentrotus purpuratus, is suggested. As 

additional data, the average copy number of the H1 genes in the species analyzed was estimated as being 100 

to 110 copies per haploid genome, where FISH revealed telomeric chromosomal location for several H1 

copies in M. galloprovincialis. The contribution of such proximity to heterochromatic regions over the 

amount of codon bias detected for H1 genes is discussed.  
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Introduction 

Histone proteins, subdivided into core histones (H2A, H2B, H3, H4) and linker histones (H1and its variants), 

are the major constituents of the eukaryotic chromatin. The typical structure of H 1proteins consists in a 

central trypsin-resistant globular region, with a winged-helix domain, flanked by two terminal arms (N and C 

terminal) without tertiary structure (Ramakrishnan et al. 1993). Besides the structural role of linker proteins 

constituting the chromatosomal structure (Simpson 1978), preferential binding to scaffold-associated regions 

and participation in nucleosome positioning are currently accepted mechanisms by which H1could have a 

regulatory role in transcription, through modulation of chromatin higher-order structure (Zlatanova and Van 

Holde 1992; Khochbin and Wolffe 1994; Wolffe et al. 1997). Linker histones can also be subdivided into 

distinct types according to the stage of development and to the tissue where they are expressed (Khochbin 
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and Wolffe 1994). During early embryogenesis, the expression of specifc H1histones has been described in 

amphibians (Ohsumi and Katagiri 1991).  Later in development and during the activation of zygotic genes, 

there is an accumulation of somatic H1histones in cells, and finally, the formation of different tissues is 

accompanied by the accumulation of differentiation-specific subtype H1histones (Grunwald et al. 1995). 

Three vertebrate-specific H1 histones (H10, H5, H1M), which are encoded by polyadenylated mRNAs and 

expressed independently of the S- phase in the cell cycle (Pandey and Marzluff 1987), stand out from all the 

others because of their high  degree  of  structural  and  functional  divergence. Otherwise, vertebrate somatic 

H1 histones are encoded by mRNAs with a 3’ stem-loop structure, correlated with S- phase-dependent 

expression. The only known example of a differentiation-specific subtype in invertebrates is the H1D histone 

in the sea urchin Strongylocentrotus purpuratus (Lieber et al. 1988), which shows great homology with H5 

and H10 histones from vertebrates and also with H1 histone from the mussel Mytilus edulis (Drabent et al. 

1999). 

In many organisms core and linker histone genes are grouped together in clusters with several repetitions of 

the five histone classes (Hentschel and Birnstiel 1981). The tandem organization of histone genes within the 

repetitive units is characteristic of invertebrate genomes (Maxson et al. 1983) and generally lost in vertebrate 

genomes (D'Andrea et al. 1985; Albig et al. 1997; Wang et al. 1997). Many times along the evolutionary 

scale, an independent organization of linker histone genes from the remaining core histone genes has been 

observed. Such an arrangement was reported for invertebrates such as Drosophila virilis (Domier et al. 

1986), Caenorhabditis elegans (Roberts et al. 1987), sea stars (Cool et al. 1988), corals (Miller et al. 1993), 

annelids (del Gaudio et al. 1998), and M. edulis (Drabent et al. 1999). This arrangement has also been 

observed for vertebrates such as newts (Stephenson et al. 1981) and for vertebrate specific linker subtypes as 

H5 (Krieg et al. 1983) and H10 (Albig et al. 1993; Walter et al. 1996). 

In general, previous works have revealed that the exclusion of a gene from a gene family could be more 

precisely defined as an exclusion from the events of sequence homogenization operating over the family 

members,  and  such  exclusion  gives  rise  to  an “orphon” gene (Childs et al. 1981; Sculze and Schulze 

1995). Till now, studies on “orphon” genes have involved mostly vertebrate genomes (Coles and Wells 

1985; Schulze and Schulze 1995; Brocard et al. 1997; Peretti and Khochbin 1997), only two groups of 

invertebrates being analyzed: the sea urchin S. purpuratus (Lieber et al. 1988) and the mussel M. edulis 

(Drabent et al. 1999). To complete and clarify several aspects of the evolutionary history of linker histone 

genes in invertebrates, we have sequenced and characterized H1histone genes in five mussel species, 

distributed worldwide, and belonging to the genus Mytilus (M. californianus, M. chilensis, M. edulis, M. 

galloprovincialis, and M. trossulus). Results obtained from molecular and phylogenetic analyses support the 

hypothesis that H1histone genes in the genus Mytilus share a common evolutionary origin with a group of 

“orphons” composed of the differentiation-specific subtypes from vertebrates and also the H1D histone gene 

from the sea urchin S. purpuratus. Additionally, the copy number and the chromosomal location of the 

H1genes are reported and discussed in the present work with regard to the estimated codon bias values. 

 

Materials and methods 

PCR amplification and DNA sequencing of Mytilus H1 histone genes 

Mussels analyzed were collected from different localities along the European and American coasts as 

follows: Mytilus californianus from Point no Point, Pacific coast of Canada; M. chilensis from Puerto 

Aguirre, Chile; M. edulis from Yerseke, Holland; M. galloprovincialis from A Coruña, Atlantic coast of 

Spain; and M. trossulus from Esquimalt Lagoon, Pacific coast of Canada. 

Genomic DNA from muscle tissue was purified in CTAB buffer in the five mussel species analyzed, 

following the protocol described by Rice and Bird (1990). PCR amplifications from template genomic DNA 



 
 

were performed in a final volume of 25 µl (10 ng/µl), where primers 5’-H1-full (TAC CTG CGA AGA CAA 

TTC AG), and 3’-H1-full (AGA AAG GGT AGG GCT CAG) were used at 10 µM, with 1U/µl of Taq DNA 

polymerase (Roche Molecular Biochemicals). The reactions were performed with a first denaturation step of 

4 min 30 s at 95°C, followed by 35 cycles consisting of a 30 s of denaturation at 95°C, 30 s of annealing at 

55.5°C, and 30 s of extension at 72°C. A final extension step of 5 min was performed at 72° C. In the 

resulting 1100-bp band, the whole H1 coding region together with the noncoding flanking segments is 

included. Automatic DNA sequencing was performed directly from the PCR products using the 5’-H1-full/3’ 

-H1-full primer set. 

Generation of nucleotide and amino acid alignments 

Multiple alignments of nucleotide and amino acid sequences were conducted using the Clustal X program 

(Thompson et al. 1997), with the default parameters given by the program. Alignments of the amino acid 

central conserved domains were performed following the criteria previously established by Ramakrishnan et 

al. (1993) and by Schulze and Schulze (1995) to define the borders of the H1central domain. Further 

alignments with different gap penalizations were performed to estimate the stability and validity of the 

assignments between the sequences of the final alignment. 

Nucleotide substitutions and phylogenetic analysis 

The number of synonymous (dS) and nonsynonymous (dN) substitutions were estimated by the method of Nei 

and Gojobori (1986) with the Jukes-Cantor correction. The reconstruction of a phylogenetic tree from the 

aligned nucleotide sequences was achieved using the neighbor-joining method (Saitou and Nei 1987). 

Evolutionary distances were estimated by means of Jukes-Cantor's one parameter model and the inferred 

phylogeny was tested with 1000 bootstrap replicates. All the steps in the analysis were carried out using the 

MEGA 2 package (Kumar et al. 2001). 

The nucleotide substitution patterns were determined by the maximum-likelihood method, using the baseml  

program for the 5’ region (positions -300 to -1), and the codeml program for the coding region (positions  1 

to 576), both included in the PAML package (Yang 2000). Ancestral sites were discarded if their probability 

was less than 0.75 and the probability of multiple hits in the branches from the ancestral species to closely 

related species was considered to be low and not significantly affected (Petrov and Hartl 1999). The amount 

of codon bias presented by Mytilus H1 genes was estimated by means of the DnaSP 3 program (Rozas and 

Rozas 1999) and is referred to as the effective number of codons (ENC) (Wright 1990). The highest value 

(61) indicates that all synonymous codons are used equally, and the lowest (20) that only one codon is used 

in each synonymous class. 

Analysis of the H1 copy number in the Mytilus genomes 

Varying amounts (200, 100, 50, and 25 ng) of genomic DNA from each Mytilus species analyzed were 

transferred onto a nylon membrane together with 0.8, 0.4, 0.2, and 0 ng of H1 PCR product (complete coding 

region) for comparison. The haploid DNA complement consists of 1.605 pg in M. californianus, and 1.510 

pg in M. trossulus (González-Tizón et al. 2000), 1.710 pg in M. chilensis and M. edulis, and 1.920 pg in M. 

galloprovincialis (Rodríguez-Juiz et al. 1996). The blot was hybridized with 100 ng/ml of the digoxigenin-

labeled whole H1coding region probe from M. galloprovincialis (in a final volume of 25 ml of hybridization 

solution, the probe was not under limitant conditions) and the resulting signal was detected by a 

chemiluminescent reaction using CSPD (Roche Molecular Biochemicals) as substrate for alkaline 

phosphatase. Hybridization intensity was quantified and evaluated using the Q-Win image analysis software 

(Leica Imaging System).  

 



 
 

Obtaining chromosomes and fluorescent in situ hybridization 

Once in the laboratory, collected M. galloprovincialis specimens were placed in tanks containing filtered 

seawater and fed continuously on a suspension of Isochrysis sp. and Tetraselmis sp. microalgae for 10-15 

days. Metaphases were obtained following the protocol described by González-Tizón et al. (2000). The DNA 

probe used in fluorescent in situ hybridization (FISH) was an H1-positive recombinant phage from a M. 

galloprovincialis genomic library (ƛ DASH II/EcoRI; Stratagene), labeled with digoxigenin-11-dUTP using 

a Nick Translation Kit (Roche Molecular Biochemicals). The slide preparation procedure was performed as 

described previously by González-Tizón et al. (2000), using 100 ng of labeled DNA probe. Hybridization 

sites were detected by immunocytochemical incubations in mouse antidigoxigenin, rabbit anti-mouse FITC 

(fluorescein isothiocyanate), and goat anti-rabbit FITC. Chromosomes were counterstained with propidium 

iodide 650 ng/ml antifade) and visualized and photographed, using a Leica DM RXA fluorescence 

microscope, on Kodak Ektachrome 400 ASA film. 

Results 

Characterization of the HI histone sequence in the genus Mytilus 

PCR reactions with the 5’-H1-full/3’-H1-full primer set yielded a 1100-bp fragment containing the coding 

and noncoding flanking regions of the H1gene. The resulting fragments for each species were subsequently 

purified and sequenced. Coding regions, translated amino acid sequences, and noncoding flanking regions 

are shown in Fig. 1. Promoter regions (Fig. 1A) are highly conserved, especially the major regulatory 

elements involved in the transcriptional activity of H1. We have identified an H1 box-like element, an H4 

box, and a TATA box. The gaps in the alignment of the promoter regions are due mainly to the presence of 

indels in the sequence of M. californianus. The consensus obtained for the promoter region from the five 

Mytilus species was compared with other H1promoter regions from different taxa (Fig. 2), where the 

presence of an H4 box element (instead of a CAAT box) clearly discriminates between vertebrate somatic 

H1s and the rest of the linker subtypes. 

The coding sequences (Fig. 1B) reveal the presence of a 190-amino acid (aa)-long H1 protein in all cases, 

with the exception of M. chilensis (189 aa) and M. californianus( 188 aa). These sequences possess a high 

density of amino acid motifs that are enriched in basic residues. Length variation involves deletion of two 

amino acid residues at the C-terminal arm of the protein: a proline (P) in position 138 in both cases and an 

alanine (A) in position 170 only in M. chilensis. The nucleotide variation in the coding region is essentially 

synonymous, although 13 of the 15 amino acid replacements are represented by nonsynonymous 

substitutions between M. californianus and/or M. chilensis and the remaining species. At the 3’-terminal 

region (Fig. 1C), once again, nucleotide variation is practically absent, especially in the region corresponding 

to the stem-loop or hairpin structure of the mRNA. 

Analysis of the protein central conserved domain 

An amino acid alignment was performed from 58 H1 protein central domains (including Mytilus H1s), in 

which the whole folded region is represented as described for histone H5 by Ramakrishnan et al. (1993). 

Given that many positions show shared residues between invertebrates and plants, and finding that they are 

clearly differentiated from the residues observed in vertebrate sequences, consensus sequences were 

separately defined for invertebrates/plants, vertebrates, H5/H10, and Mytilus. These consensus sequences 

agreed with those previously reported by Schulze and Schulze (1995). A high degree of divergence between 

the central domain of the H1M protein from Xenopus and the remaining sequences was detected, and that is 

why it was independently analyzed. By individually aligning each consensus sequence against that obtained 

for the central domain of Mytilus H1 proteins (Fig. 3), our results show that the highest degree of homology 

is presented by the consensus obtained for H5/H10 central domains, followed by the consensus for 

invertebrates/plants, vertebrates, and H1M from Xenopus, which shows the lowest degree of homology. 



 
 

 

 

Figure 1. Nucleotide sequences determined for the five mussel species analyzed and the corresponding EMBL 

Nucleotide Sequence Database accession numbers: M. galloprovincialis (Mg) AJ416424, M. trossulus (Mt) AJ416425, 

M. edulis (Me) AJ416423, M. chilensis (Mch) AJ416422, and M. californianus (Mc) AJ416421. (A) Sequence for 

Mytilus H1 promoter regions (positions – 1 to -300). Numbering on the left refers to the nucleotide sequence, dots 

represent complete matches between sequences, and gaps are indicated by dashes. Conserved regulatory elements 

(positions -80 to -180) are indicated by open boxes: (1) H1 box-like element (positions -173 to -180); (2) H4 box 

(positions -104 to -120); (3) TATA box (positions -85 to -92). (B) H1 coding regions. Numbering on the right refers to 

amino acid residues. Translated amino acids are placed above the corresponding codon, with positions where 

replacements were detected in boldface and underlined. (C) H1 non-coding 3’flanking regions (positions 577 to 655). 

Conserved elements are again in open boxes: (4) stem-loop or hairpin terminal structure (positions 620 to 636); (5) part 

of a purine-rich element (positions 648 to 654). 

 



 
 

Nucleotide substitution numbers and patterns in Mytilus H1 histone genes 

Synonymous and nonsynonymous substitution numbers were estimated using the method of Nei and 

Gojobori (1986). The analysis of the individual domains shows a total absence of amino acid replacements 

among the Mytilus species in the central segment of the protein (see Table 1). The highest synonymous 

divergence was observed at the C-terminal arm, followed by the central domain and the N-terminal arm of 

the protein. On the other hand, the highest levels of nonsynonymous divergence were present at the N-

terminal domain. Nucleotide sequences corresponding to the coding regions of M. galloprovincialis and M. 

edulis matched perfectly, and the most divergent species in the genus Mytilus were M. chilensis and M. 

trossulus. On average, synonymous and nonsynonymous divergence among the five mussel species analyzed 

was 0.127 ± 0.025 and 0.018 ± 0.005 substitution/site, respectively. In the differentiation-specific subtypes 

(H5 and H10) and in the tissue-specific subtype H1t from vertebrates, the central domain, again, is more 

conserved than the terminal regions, at the amino acid level (Fig. 4). Once more, nucleotide divergence is 

essentially synonymous in all cases and located mainly in the N-terminal segment of histones H5 and H10 

(0.553 ± 0.258 and 0.877 ± 0.285 substitution/site, respectively, on average) and in the C-terminal segment 

of the H1t histone (1.746 ± 0.415 substitutions/site, on average). Histone H1t is the most divergent subtype at 

all levels, reaching synonymous and nonsynonymous substitution numbers of almost 1 and 0.2 

substitution/site, respectively, for the whole protein. 

 

Figure 2. The structure of the proximal promoter region of the H1 gene is compared between the consensus for the 

genus Mytilus and its homologous region in vertebrates, sea urchins, and vertebrate differentiation-specific subtypes and 

the consensus of vertebrate H4 histone gene (Peretti and Khochbin 1997). The TATA box and the upstream sequence 

including the CAAT box (in vertebrate common-type somatic H1s) and the H4 box (in the remaining H1 genes) are 

indicated. Black arrows on the left indicate evolutionary relationships among the H1sequences analyzed. 

 

 

 

 



 
 

 

Figure 3. Analysis of the H1protein central conserved domain, represented above the alignment as an open box flanked 

by the two terminal arms (carboxy and amino) of the protein. Black boxes in the central domain indicate positions in 

which the three α-helical regions of the winged-helix motif are placed. Regions of homology with the consensus defined 

for Mytilus H1 protein are emphasized with discontinuous bars below the amino acid sequence compared, where 

asterisks indicate totally conserved residues, colons indicate a high degree of conservation, and dots indicate a low 

degree of conservation. 

 

Figure 4. Numbers of nucleotide substitutions in vertebrate differentiation- and tissue-specific histone genes and  in 

Mytilus H1 genes. Results are given as an average, discriminating between the whole coding region (shaded bars) and 

the three protein domains (open bars). Thin bars indicate the standard deviation. (A) Synonymous substitutions per site. 

(B) Nonsynonymous substitutions per site. T, complete protein; N, amino-terminal region; G, central domain; C, 

carboxy-terminal region. 

 

 



 
 

 

 

 

Table 1. Numbers of synonymous (dS) and nonsynonymous (dN) substitutions in H1 histone genesa 

 Complete  protein N-terminal domain Central domain C-terminal domain 

Histone H1 

Mytilus 

dS dN dS dN dS dN dS dN 

Mg/Me 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 

Mg/Mt 0.063 ± 0.023 0.005 ± 0.003 0.000 ± 0.000 0.017 ± 0.015 0.036 ± 0.026 0.000 ± 0.000 0.119 ± 0.055 0.005 ± 0.005 

Mg/Mch 0.201 ± 0.044  0.019 ± 0.008 0.105 ± 0.078 0.051 ± 0.039 0.137 ± 0.052 0.000 ± 0.000 0.319 ± 0.098 0.026 ± 0.014 

Mg/Mc 0.162 ± 0.039 0.030 ± 0.009 0.051 ± 0.054 0.051 ± 0.029 0.116 ± 0.048 0.000 ± 0.000 0.265 ± 0.082 0.054 ± 0.019 

Me/Mt 0.063 ± 0.023 0.005 ± 0.003 0.000 ± 0.000 0.017 ± 0.015 0.036 ± 0.026 0.000 ± 0.000 0.119 ± 0.055 0.005 ± 0.005 

Mc/Mch 0.201 ± 0.044 0.019 ± 0.008 0.105 ± 0.078  0.051 ± 0.039 0.137 ± 0.052 0.000 ± 0.000 0.319 ± 0.098 0.026 ± 0.014 

Me/Me 0.162 ± 0.039 0.030 ± 0.009 0.051 ± 0.054 0.051 ± 0.029 0.116 ± 0.048 0.000 ± 0.000 0.265 ± 0.082 0.054 ± 0.019 

Mt/Mch 0.210 ± 0.046 0.023 ± 0.008 0.104 ± 0.077 0.069 ± 0.043 0.137 ± 0.051 0.000 ± 0.000 0.345 ± 0.102 0.032 ± 0.015 

Mt/Mc 0.171 ± 0.040 0.035 ± 0.009 0.050 ± 0.054 0.069 ± 0.033 0.116  ± 0.048 0.000 ± 0.000 0.289 ± 0.087 0.060 ± 0.020 

Mch/Mc 0.040 ± 0.018 0.019 ± 0.006 0.051 ± 0.054 0.051 ± 0.029 0.018 ± 0.018 0.000 ± 0.000 0.058 ± 0.035 0.026 ± 0.012 

Average 0.127 ± 0.025 0.018 ± 0.005 0.052 ± 0.038 0.043 ± 0.023 0.085 ± 0.031 0.000 ± 0.000 0.210 ± 0.055 0.029 ± 0.010 
a Estimations are in units of substitutions per site ± standard deviation. The average is the arithmetic mean. 

 

 

 

 

 

  



 
 

To determine the nature of nucleotide substitutions in the H1gene, ancestral sequences were obtained using 

the maximum-likelihood method. Although no functional constraints are thought to be present in flanking 

regions (except for promoter motifs) in the 5’ region, transitions from G to A (four) and from C to T (five) 

occurred more frequently than transitions from A to G (two) and T to C (one). A significantly higher 

frequency of change to A or T than to G or C was observed here (9:3, p >0.05), indicating a bias toward A or 

T, with high transition numbers and relative frequencies of A and T (A=0.33, T=0.35). In the protein coding 

region, significantly higher frequencies of changes to A or T than to G or C were not observed (8:9; p >0.05), 

indicating an equilibrium state for the base composition. 

 

The amount of codon bias in Mytilus H1 histone genes was estimated as the “effective number of codons” 

(ENC) index (Wright 1990), which ranges between 20 (extreme bias) and (61 no bias). For Mytilus H1genes, 

the codon bias measured as ENC is an average of 46.898 (Table 2). This value is very low compared with 

those obtained for core histone genes such as the H3 and H4 histones in the same species. 

 

 
Table 2. Codon bias values in Mytilus histone genesa 

 Effective number of codons (ENC) 

Species H1 H3 H4 

Mc 43.896 37.181 35.845 

Mch 45.611 38.793 30.238 

Me 47.186 39.182 34.887 

Mg 47.186 40.378 39.785 

Mt 47.991 39.008 39.902 

Average 46.898 38.908 36.131 
a Species abbreviations are as in Fig. 2. 

 

 

Phylogenetic analysis 

A neighbor-joining phylogenetic tree (Saitou and Nei 1987) was reconstructed from 58 complete nucleotide 

H1coding regions in several organisms and rooted with the H1-like gene from the trypanosomatidae 

Leishmania braziliensis (Fig. 5). The bootstrapped topology (1000 replicates) obtained clearly discriminates 

among the taxonomic groups of plants, invertebrates, and vertebrates.  The monophyletic subgroup of the 

differentiation-specific subtypes from vertebrates is also well defined, where H1 histone genes from Mytilus 

and the H1D gene from the sea urchin S. purpuratus are included. Three H1genes from sea urchins (H1B and 

H1G from S. purpuratus and H1from Lytechinus pictus) are uncertainly placed between plants and vertebrate 

differentiation-specific subtypes. Xenopus H1M histone is grouped together with the vertebrate somatic types 

in the present topology. 

Number of H1 copies in the genomes analyzed and chromosomal location in M. galloprovincialis 

Increasing amounts of genomic DNA from each species were transferred onto a nylon membrane and, for 

comparison, corresponding amounts of H1 PCR product DNA (Fig. 6A). The probe lacking the non-coding  

flanking regions (to avoid nonspecific signals) was digoxigenin-labeled, and after hybridization, the signal 

was subsequently detected by chemiluminescence. Hybridization intensity was measured and the copy 

number of the H1genes was calculated at about 84 copies per haploid genome in M. californianus,110 in M. 

chilensis and M. edulis,115 in M. galloprovincialis, and 94 in M. trossulus. FISH experiments on M. 

galloprovincialis chromosomes, using an H1-recombinant phage from a M. galloprovincialis genomic 

library as a probe, revealed the presence of three pairs of signals in three chromosome pairs (Fig. 6B). With 

the exception of one pair located at an interstitial position, all the hybridization signals map H1genes at 

telomeric chromosomal positions. 

 



 
 

 

Figure 5. Phylogenetic relationships among H1 histone genes from several species grouped in different phyla and in 

one group of  differentiation-specific subtypes. Boot-strap values are placed in the corresponding nodes. Patterns of 

gene expression related to the cell cycle are indicated as follows: the open diagram of the cell cycle indicates gene 

expression independent from the S phase; S phase-dependent expression is indicated by shading of the correspondent 



 
 

segment in the cell cycle diagrams (asterisks indicate exceptions). The five Mytilus species analyzed in the present work 

are in boldface. Nucleotide coding regions for  H1genes were obtained from the NHGRI/NCBI database under the 

following accesion numbers: Lycoperscion esculentum (AJ224933), Nicotiana tabacum (AB029614), Pisum sativum 

(X05636), Cicer arietinum (AJ006767), Apium   graveolens (Y12599), L. pennellii (U01890), Euphorbia esula 

(AF222804), Lilium longiflorum (AB012694), Triticum aestivum (D87064), Zea mays (X57077), Volvox carteri H1.1 

(L07946), V. carteri H1.2 (L07947), Chlamydomonas reinhardtii (U16726), Strongylocentrotus purpuratus H1B (H1β ; 

M20314), Lytechinus pictus (X04488), S. purpuratus H1G (H1ɤ ; M16033), Mytilus galloprovincialis, M. edulis, M. 

trossulus, M. chilensis, M. californianus, and S. purpuratus H1D (H1δ; J03807), Cairina moschata H5 (X01065), 

Gallus gallus H5 (J00870), Xenopus laevis H10a (Z71502), X. laevis, H10b (Z71503), Homo sapiens H10 (X03473), 

Mus musculus H10 (U18295), Rattus norvegicus H10 (X72624), Tigriopus californicus (M84797), Chaetopterus 

variopedatus (U96764), Chironomus thummi (L28724), C. dorsalis (U21211), Glyptotendipes barbipes (L29102), 

Drosophila melanogaster (X14215), D. virilis (L76558), D. hydei (X17072), Euplotes crassus (AF127331), 

Tetrahymena thermophila (M14854), Anas platyrhynchos (X06128), G. gallus (M17021), X. laevis H1M (S69089), 

Oncorhynchus mykiss (X02624), H. sapiens H1.5 (Z98744), M.musculus H1.5 (Z46227), H.sapiens H1.4 

(NM_005321), M.musculus H1.4 (Y12292), M. musculus H1.2 (Y12291), M. musculus H1.3 (Y12291), H. sapiens 

H1.2 (X57129), H. sapiens H1.3  (M60747), H. sapiens H1.1 (X57130), M. musculus H1.1 (L26164), H. sapiens H1t 

(M60094), Macaca mulatta H1t (M97756), M. musculus H1.t (X72805), R. norvegicus H1t (M28409), Leishmania 

braziliensis (AF131910). 

 

Figure 6. Copy number and chromosomal location of the H1genes. (A) Dot-blot analysis of the H1histone copy number 

in the five species analyzed. The signal intensity of one H1copy was estimated from the intensity pattern given by  

different amounts of H1 probe. The H1copy number in genomic DNA from Mytilus species was subsequently resolved 

from this pattern. Species abbreviations are as in Fig. 2. (B) FISH with a digoxigenin-labeled H1histone probe in 

metaphase chromosomes of  M. galloprovincialis counterstained with propidium iodide. Arrows indicate interstitial 

hybridization signals. Bar = 10 µm. 

 

Discussion 

H1 histone genes in the genus Mytilus 

In the present work, coding and noncoding flanking regions of the H1 histone gene were amplified by PCR 

using specific primers in five species of mussels belonging to the genus Mytilus. Within the promoter region 

(Fig. 1A) typical regulatory elements of H1 genes are represented (Peretti and Khochbin 1997). Between the 

H 1box-like element (Dalton and Wells 1988) and the TATA box, it is characteristic to find a region that is 

homologous to the promoter sequence of the H4 histone gene (H4 box). This region is located at the same 

position as that occupied by the CAAT box in somatic H1s from vertebrates (Martinelli and Heintz 1994). 

This H4 box motif strongly accounts for the high degree of homology detected at promoter regions among 

Mytilus H1genes and vertebrate differentiation-specific H1s, sea urchin H1s, and vertebrate H4 genes (Fig. 

2). In this sense, the evolutionary vinculation established between H 1histones from the mussel M. edulis and 



 
 

the differentiation-specific subtypes from vertebrates by Drabent et al. (1999) extends to all the species 

analyzed in the present work. 

The coding sequences (Fig. 1B) reveal polymorphism in protein length caused by indel events at the C-

terminal arm of the H1protein. A high density of amino acid motifs highly enriched in basic residues was 

identified at the C-terminal arm, possibly representing phosphorylation sites (Mezquita et al. 1985), although 

the presence of the H1-specific motif  T(S)PKKAKKP from vertebrates (Tönjes and Doenecke 1987) was 

not found. The presence of a stem-loop or hairpin termination signal (Birnstiel et al. 1985) in the 3’  fl̄anking 

region (Fig. 1C) is correlated with the appearance of these mRNAs in the S phase of the cell cycle, which 

contrasts with the polyadenylation signal presented by the “orphon” subtypes and also by the H1D gene from 

S. purpuratus, expressed independently of the S phase. 

 

The comparisons between the protein central conserved domains in the organisms analyzed show that 

H1proteins in Mytilus share essential characteristics with H1proteins from invertebrates and plants and also 

with H5 and H10 proteins from vertebrates (Fig. 3). The residues constituting the first two α-helical regions 

and also the terminal β-sheet structure of the protein-folded domain show the highest degree of conservation 

among the groups analyzed. As reported previously by Schulze and Schulze (1995) for vertebrate 

differentiation-specific subtypes, it is possible that the central domain is also an evolutionarily old structure 

in Mytilus H1proteins, and nonconservative changes made during the rise of the phylum Vertebrata represent 

evolutionary innovations. This could be due to an ancestral exclusion event of a gene from the clustered gene 

family, and subsequently from the operating events of nucleotide homogenization, which could account for 

the rise of an “orphon” group with an independent evolutionary history with respect to the somatic types. 

Nucleotide substitutions and phylogenetic analysis of H1 genes 

 

The group of linker histones is the fastest-evolving histone class. However, the H1subtypes, except for H1t 

and H1a, can still be considered highly conserved proteins (Ponte et al. 1998). The vast majority of the 

nucleotide variation detected among Mytilus species is focused on the nonorganized terminal segments of the 

protein (Table 1), where synonymous divergence greatly exceeds nonsynonymous divergence, indicating the 

presence of purifying selection acting on H1 genes. The H1histone C-terminal arm comprises nearly 50 % of 

the protein and its function is associated with chromatin condensation and gene expression modulation, 

whereas the short N-terminal arm has little or no critical function (Widom 1998). Probably, the absence of 

tertiary structure in these regions contributes to the higher tolerance of amino acid substitutions (Ponte et al. 

1998). The vertebrate tissue-specific H1t gene is the most variable linker histone, followed by the 

differentiation-specific subtypes H5 and H10  (Fig. 4). It is possible that the absence of sequence 

homogenization events, due to an independent genomic location of these divergent variants with respect to 

the clusters of somatic types (Krieg et al. 1983; Albig et al. 1993; Walter et al. 1996), accounts for the high 

nucleotide variation and also for the fast evolutionary rates observed. Finally, the central domain of H1 

histones is generally the most conserved region, due to the presence of tertiary structure (Ramakrishnan et al. 

1993) and also to its functional importance in the process of binding to DNA. 

 

It is likely that bias toward AT in the nucleotide substitution patterns observed for the 5’flanking region of 

Mytilus H1genes may be due to a need to maintain the structure of the characteristic promoter motifs 

involved in the correct expression of the “orphon” genes, avoiding the presence of transversions which could 

drastically modify these signals. The same results have been recently reported for the H3 histone gene in 

eight species of the D. melanogaster species subgroup (Matsuo 2000), indicating a recent change in the 

selective pressure acting over this region to maintain the structure of the regulatory elements. It is not 

surprising that histone genes (highly expressed during certain stages of the cell cycle) have their promoter 

regions under strong selective constraints to assess the effective expression of the gene. Meanwhile, the same 

effect would be present in the coding regions through a homogeneous synonymous codon usage (high codon 

bias). 

 

 

The exclusion event of a group of linker histones from the main group during the short period of divergent 

evolution which gave rise to the phylum Vertebrata is reflected in the inferred tree topology (Fig. 5). This 



 
 

group would constitute the direct predecessor of the present divergent linker histones from invertebrates, 

plants, and vertebrate differentiation-specific subtypes. Further evolutionary changes involving major 

structural changes would have arisen related mainly to gene expression, where one group underwent changes 

oriented toward S phase-dependent gene expression, while other linker histone genes, present at the same 

time and encoded by “orphon” genes (Childs et al. 1981), were not subject to these particular changes. In the 

tree topology, Mytilus H1 histone genes are included in a monophyletic group together  with  the 

differentiation-specific subtypes from vertebrates, supporting the data previously reported by Drabent et al. 

(1999) for the mussel M. edulis H1genes. The H1D histone gene from the sea urchin S. purpuratus is also 

included in this group, strengthening the hypothesis that this gene is defined as a differentiation-specific 

subtype from invertebrates (Lieber et al. 1988). An additional group that includes the S. purpuratus H1B 

and H1G histone genes is also placed in a basal position, close to the differentiation-specific subtypes 

group. 

 

In a previous work by Schulze and Schulze (1995) the H1M histone gene from Xenopus laevis was defined 

as a vertebrate differentiation-specific subtype, although clear dissimilarities from H5/H10 genes were 

reported. This result contrasts with those obtained in the present work, in which the H1M gene is placed in 

the vertebrate somatic H1s monophyletic group. Possibly, the restriction of the data analyzed by Schulze and 

Schulze to amino acid comparisons, referring only to the H1 protein central domain, constitutes a serious 

bias in their results. In any case, further analysis will be necessary to clarify the evolutionary status of this 

gene, given that “orphon” characteristics such as polyadenylated mRNAs and independent organization from 

multiple histone gene clusters are presented by H1M. 

Copy number and chromosomal location of H1 genes 

The copy number of the H1genes in the genomes of the species analyzed has been estimated to be about 

100 to 110 copies per haploid genome on average (Fig. 6A), supporting previous results obtained in M. 

edulis (Drabent et al. 1999). The high copy number of H1genes could be related to the telomeric 

chromosomal position of several H1copies in M. galloprovincialis (Fig. 6B), as stated previously for 

Drosophila histone genes (Fitch et al. 1990). Genes located near heterochromatic regions are generally less 

active than their euchromatic counterparts, and it is probable that the former may have come to exist in 

higher copy numbers to achieve similar levels of expression. 

 

In this sense, the estimated amount of codon bias in Mytilus H1 histone genes (Table 2) differs greatly from 

the codon bias values obtained for two core histone genes (H3 and H4) in the same species. The easiest and 

classical explanation involves differences in selective constraints between core and linker histone genes, but 

the observed codon bias is still low for the high expression levels presented by H 1histone genes. Taking into 

account the telomeric chromosomal position of H1genes in M. galloprovincialis (Fig. 6B), the low 

recombination rates presented by such heterochromatic regions are likely to be a critical factor in 

determining the low codon bias values presented by genes located near these chromosomal positions, as 

predicted by the hitchhiking and background selection models, together with the Hill-Robertson effect (Hill 

and Robertson 1969; Kaplan et al. 1989; Charlesworth et al. 1993). Low codon bias has been empirically 

reported for histone genes in D. melanogaster, which are located fairly close to the centromere of 

chromosome 2 (Fitch and Strausbaugh 1993), and also for highly expressed genes close to telomeric regions 

in D. melanogaster (Munté et al. 2001). It is probable that differences in selective constraints between core 

and linker histone genes account for the codon bias and high synonymous divergence values in Mytilus 

H1genes, but is not possible to discard the additional effect of the telomeric chromosomal location of these 

genes. 

 

The results reported in the present work show the presence of significant homologies between the H1 

histones characterized in the genus Mytilus and the vertebrate differentiation-specific linker histones (H5 and 

H10) and sea urchin H1D histone. These histone genes would have their direct evolutionary predecessor in an 

“orphon” group, which would have diverged from the main group during the rise of the phylum Vertebrata. 

Thus, it is not possible from our results to discard the effect of the telomeric chromosomal position of several 

H1repetitions on the copy number or on the amount of codon bias detected for H1histone genes. Further 



 
 

analysis of H1histone genes from invertebrates will be necessary to trace and place the evolutionary events 

which gave rise to the presence of sequence elements such as the poly (A) tail, related to gene expression 

patterns in an independent way from DNA replication, a key proccess in the divergence of this “orphon” 

group of histone genes. 
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