
IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 3, AUGUST 2005 391

A Grid Portal for an Undergraduate Parallel
Programming Course

Juan Touriño, Member, IEEE, María J. Martín, Jacobo Tarrío, and Manuel Arenaz

Abstract—This paper describes an experience of designing and
implementing a portal to support transparent remote access to su-
percomputing facilities to students enrolled in an undergraduate
parallel programming course. As these facilities are heterogeneous,
are located at different sites, and belong to different institutions,
grid computing technologies have been used to overcome these is-
sues. The result is a grid portal based on a modular and easily ex-
tensible software architecture that provides a uniform and user-
friendly interface for students to work on their programming lab-
oratory assignments.

Index Terms—Grid computing, grid portal, parallel program-
ming, supercomputing.

I. INTRODUCTION

S INCE 1998, the Department of Electronics and Systems
(DES) at the University of A Coruña, A Coruña, Galicia,

Spain, has offered a one-semester elective course in parallel
programming for undergraduate fifth-year computer science
(CS) students. The inclusion of parallel processing in an un-
dergraduate degree has been widely justified since the 1980s
[1] since parallel computers have become much easier to use
and much more widely available. It continued to be justified
during the 1990s [2]–[4], and nowadays many universities
offer specific courses to provide CS undergraduates with real
parallel-processing experience [5] as an essential compo-
nent to teaching parallel-programming concepts effectively.
Three additional reasons have favored the introduction of
a parallel-programming course in the CS curriculum at the
University of A Coruña.

1) There is an active research group on parallel processing
at DES.

2) There are powerful supercomputers available at the Su-
percomputing Center of Galicia (CESGA) [6] in San-
tiago de Compostela (70 km away from DES), mainly
used for scientific computing.

3) There is growing interest of small and medium enter-
prises of Galicia in cluster architectures [7] because
they deliver outstanding parallel performance at a com-
petitive cost.

Manuscript received July 2, 2004; revised November 30, 2004. This work
was supported by a Teaching Innovation Grant (UDC-TIC03-057) from the Uni-
versity of A Coruña, A Coruña, Spain; by the Galician Government (Xunta de
Galicia, Projects PGIDIT02TIC00103CT and PGIDIT04TIC105004PR); and
by the CrossGrid European Project (IST-2001-32243).

The authors are with the Computer Architecture Group, Department of Elec-
tronics and Systems, University of A Coruña, 15071 A Coruña, Spain (e-mail:
juan@udc.es).

Digital Object Identifier 10.1109/TE.2004.842888

CS graduates skilled in parallel-processing techniques are,
therefore, requested by both academic/scientific and enterprise
environments.

Problems that arise in teaching a course in parallel program-
ming include the difficulty in having access to supercomputing
resources and the time it takes to teach their effective use, as
stated in [8]. Wilkinson and Allen discourage the use of re-
sources of supercomputing centers [9] because the technicali-
ties of supercomputers may be too much for an undergraduate
course. Moreover, their access must be controlled carefully by
the center, and perhaps the centers are not equipped to handle a
large number of inexperienced students. Therefore, the choice is
the use of a dedicated local network of workstations for parallel
programming.

Since the course was intended to be highly practical, a hy-
brid approach was followed: use of local resources (both from
DES and the School of Computer Science (SCS) at the Uni-
versity of A Coruña), mainly for training purposes, and access
to remote supercomputers (available at CESGA) to assess the
performance of parallel algorithms. This approach has several
advantages: students are more motivated if they have access to
real supercomputers, and they have the chance to implement the
same algorithm using different architectures and parallel-pro-
gramming models, which enable students to make objective per-
formance comparisons (execution times, speed-ups, complexity
of algorithm development, etc.). Moreover, their curiosity for
new machines stimulates self-learning to go deeply into specific
parallel-processing issues of the target supercomputers.

The computers used in the course are administered by dif-
ferent institutions: DES, SCS, and CESGA. As a minor draw-
back, tedious bureaucratic procedures are necessary to obtain
accounts for the students (mainly, access to the supercomputing
center). However, the major drawback is the impact on students
in using a number of unrelated and geographically distributed
systems. Thus, each student has several accounts on machines
with their own local file system (which involves source code
files being continuously transferred among the target machines),
and with different access, use, and security policies (e.g., re-
stricted Internet protocol (IP) access that makes it difficult to
log in to the machines from home). Once the student is logged
on, he or she has to deal with different compilers, libraries to
be linked, and specific program execution commands for each
machine and each parallel-programming model, as well as dif-
ferent job schedulers to submit and monitor parallel jobs.

All these issues outside the core course contents involve sig-
nificant overhead time. These problems were overcome in 2003
at the University of A Coruña by applying grid computing tech-
nologies [10] to facilitate the use of the diverse parallel-pro-

0018-9359/$20.00 © 2005 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/199451327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

392 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 3, AUGUST 2005

cessing platforms. Specifically, a grid portal was developed that
acts as a single point of entry to the geographically distributed
computers used in the course and as a high-level, user-friendly
environment for the students to manage transparently their par-
allel jobs. No reported practical experiences on the application
of a grid portal to support the teaching of a course were found,
but a few projects focused on setting up a grid infrastructure
for teaching purposes, such as ISILab [11] and ULabGrid [12].
ISILab is a distributed environment that allows students to carry
out remote laboratory experiments with real electronic instru-
ments and circuits via the Web. The authors propose to map
ISILab functionalities on a layered grid model: from the grid in-
frastructure composed of diverse resources geographically scat-
tered (computers, storage systems, catalogues, networks, sen-
sors, and devices) to the user application layer that controls
the experiment execution. However, this grid-oriented approach
is under development using proprietary protocols and applica-
tion program interfaces (APIs), which limit reusability for other
projects. ULabGrid is an architecture based on standard grid
technologies that enables educators to design collaborative dis-
tant laboratories for students using a grid infrastructure. It al-
lows students to run the software required for the laboratory
from everywhere at any time. This approach was not conceived,
however, to access supercomputing facilities, and it does not
provide Web access via a portal. A prototype of this architec-
ture applied to a flight simulator of an aeronautics laboratory is
still being developed.

The remainder of the paper is organized as follows. Section II
describes the contents of the course (both lectures and labora-
tory work) which provide the context for the design and devel-
opment of the grid portal. Section III focuses on the portal: re-
quirements, software architecture components, and functionali-
ties provided to ease the completion of the course assignments.
Finally, conclusions are drawn in Section IV.

II. COURSE CONTENT

The one-semester course consists of 60 hours (40 hours
in-class instruction and 20 hours laboratory). It attracts 20
students per year on average. All the students in the fourth
year take a course in advanced computer architecture, which
provides the architectural basis (including performance issues)
for the parallel programming course. Thus, the students have a
solid background in advanced topics, such as parallel computer
architectures (shared memory and distributed memory), inter-
connection networks for parallel computers, cache coherence
and memory consistency on multiprocessors, etc. Students are
also skilled in C and Fortran 90 (taught in previous courses),
which are the prerequisite languages for the course. Prior to
the introduction of the parallel-programming course in 1998,
the advanced computer architecture course included a short
parallel-programming laboratory focused on the Parsys Su-
pernode, a transputer-based machine (from 1990 to 1993),
and PVM [13] message-passing programming on a network of
workstations (1994–1997).

A. Course Lectures

The syllabus for the parallel-programming course currently
being offered is on the following lines.

1) Introduction

a) Course organization;
b) Review of parallel computer architectures;
c) Parallel-programming models;
d) Case study: computing in parallel using numer-

ical integration.
2) Message-passing programming: MPI

a) MPI main features;
b) Point-to-point communications;
c) Collective communications;
d) Derived data types;
e) Communicators and virtual topologies;
f) Overview of new functionalities in MPI-2;

Recommended textbook: [14]. Web material: [15].
3) Shared memory programming: OpenMP

a) OpenMP main features;
b) Directives to exploit loop-level parallelism;
c) Directives for task-level parallelism;
d) Synchronization mechanisms;
e) Run-time library and environment variables;

Recommended textbook: [16]. Web material: [17].
4) Data-parallel programming: HPF

a) HPF main features;
b) Data distribution and alignment directives;
c) Directives and constructs to express data paral-

lelism;
d) HPF intrinsic and library procedures;
e) Extrinsic procedures;

Recommended textbook: [18]. Web material: [19].
5) Parallel-programming techniques: design of parallel

programs

a) Performance metrics for parallel programs;
b) Data partitioning techniques;
c) Techniques to enhance locality: exploiting

memory hierarchy;
d) Load balancing techniques;
e) Case studies: parallel sorting, matrix multipli-

cation, direct and iterative methods for solving
linear systems of equations, parallel fast Fourier
transform (FFT), and parallel tree search;

Recommended textbook: [20]. Web material: [21].
The course ends with Lecture 5 because its contents may be

too abstract for students at the beginning of the course without
having experienced practical parallel-programming using the
specific software taught in Lectures 2–4. Nevertheless, some
topics of Lecture 5 are informally or intuitively introduced in
the previous lectures, for instance, basic performance metrics
such as speed-up or efficiency, load balancing techniques
through OpenMP scheduling clauses, or data partitioning
strategies using HPF directives. With this basis set, this lecture
consolidates and completes the learning of parallel-program-
ming techniques through practical case studies; thus, these
topics are more easily assimilated by students.

TOURIÑO et al.: GRID PORTAL FOR AN UNDERGRADUATE PARALLEL PROGRAMMING COURSE 393

TABLE I
SUPERCOMPUTING RESOURCES AVAILABLE FOR THE STUDENTS

B. Course Laboratory

Laboratory work consists of the following assignments.

1) Training exercises. The students are provided with the
skeleton of several example codes of increasing diffi-
culty to illustrate and experiment with the main con-
cepts explained for each programming model.

2) Comparison of programming models. The students
have to implement the same parallel algorithm (e.g.,
Gauss–Jordan elimination in the 2003 course) using
MPI, OpenMP, and HPF in order to compare practi-
cally the programming features associated with each
model.

3) Algorithm performance contest. A well-specified algo-
rithm is proposed to be implemented in parallel (using
MPI, since it provides more programming flexibility)
on a particular supercomputer. The goal of the student
is to maximize performance by taking into account
both programming and architectural issues. Some ex-
amples used in previous years are parallel sorting al-
gorithms, parallel matrix transposition, data redistri-
butions (e.g., block-to-cyclic), or parallel prefix/suffix
operations. This contest stimulates creativity, in-depth
study, as well as experience sharing, discussion, and
criticism (the best works are presented in class).

4) Course miniproject. It is an individual work proposed
by the student under the supervision of the teacher who
determines if it has sufficient technical merit. The goal
of this miniproject is to put into practice as many theo-
retical contents as possible through the implementation
of a parallel algorithm, application, or library using
a particular programming model. Message-passing is
usually the choice because students can install MPICH
[15], a free implementation of MPI, on their own PCs
for an initial development of their codes before moving
them to a parallel computer. Students are encouraged to
work on topics that have been studied in other courses
(thus, these topics are familiar to them) to enhance
interdisciplinary education. The most popular fields
selected for the miniproject are numerical computa-
tion, neural networks, genetic algorithms, computer
graphics, and image processing.

The resources currently available for the laboratory assign-
ments are shown in Table I. The “Programming” column shows
the parallel-programming software used for each computer,
which does not indicate the only way to program that computer.
Local resources are mainly devoted to training exercises and
to the development and debugging of the other programming
assignments before being tuned, executed, and evaluated on a
particular CESGA supercomputer.

III. GRID PORTAL FOR THE COURSE LABORATORY

The laboratory resources listed in Table I (which may vary
each year depending on availability) are heterogeneous and are
administered by different institutions. These resources have
been integrated into a grid environment for the parallel-pro-
gramming laboratory. Grid computing [10] links different
computing resources that belong to different institutions
(usually sited in distant physical locations) and makes these
resources available to users located at remote sites via public
communication networks. Regarding this educational scope,
the grid must provide the following basic functionalities.

• Authentication: Students and computing resources
must be authenticated to allow the former to connect
to the latter securely.

• Information service: An information service must pro-
vide students with both static and dynamic information
about the setup and the status of the hardware and soft-
ware resources of the grid (e.g., resource characteris-
tics and availability).

• Data transfer: Students must be able to transfer se-
curely and transparently their source codes and asso-
ciated data files between the different computers of the
grid.

• Resource/job management: A unified mechanism must
provide for resource allocation, remote job submission,
cancellation, monitoring, job input/output, etc.

These functionalities are provided by diverse software com-
ponents that can be found integrated in software packages called
grid toolkits. The Globus toolkit [22], which aims to use com-
modity software and technologies, is becoming the de facto
standard for grid computing. It provides middleware services to

394 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 3, AUGUST 2005

Fig. 1. Software architecture of the grid portal.

support grid environments. These toolkits are designed to pro-
vide basic grid services through low-level command-line inter-
faces, and thus a significant amount of learning time and effort
must be spent by their potential users. This situation would be
a serious obstacle to the effective adoption of the grid for in-
struction support, since the goal is precisely to enable students
to develop more easily their assignments on the laboratory re-
sources. To alleviate this problem, some easy and intuitive in-
terfaces, such as grid portals that take the complexity of the grid
away from the user, have been developed. A grid portal is a
Web-based single point of entry to a grid and its implemented
services. The Grid Portal Development Kit (GPDK) [23], a set
of higher level function libraries that provide a generic frame-
work for the development of grid portals, was used to imple-
ment the portal. The GridPort toolkit [24] also provides access
to grid services through a Web interface by means of a set of Perl
modules which wrap Globus. However, the design of GridPort
makes code maintainability and portal customization more diffi-
cult than the approach taken by GPDK. A recent promising suc-
cessor to GPDK is the GridSphere portal framework [25] with a
new architecture based on portlets. The goal of this framework
is to enable portal developers to implement new portal interfaces
and add new functionality more quickly.

A. Portal Design and Architecture

A customized grid portal for laboratory support has been
designed using several standard software components orga-
nized as a vertical stack, where each layer uses the services
provided by the lower layer (Fig. 1). In the upper layer, the
user opens a connection to the secure Apache Web server
and makes an HTTP request. This request is forwarded to the
Tomcat application server, which is running the portal Web
application. Although GPDK provides a set of templates to
generate ready-to-run portals, they have not been used since
they implement an ad hoc architecture based on the use of
program logic embedded in Java server pages (JSPs), which
presents many drawbacks. For example, customization of
the portal look for a particular site would probably involve
changing some lines of Java code, which is generally outside

of what a Website designer is willing to do. Conversely, adding
new functionalities to the portal would require the portal devel-
oper to design its appearance at the same time. To avoid this
issue, the Model-View-Controller (MVC) architecture [26] was
used to provide a greater separation between business logic
and presentation. The MVC architecture was used to design a
new layer on top of GPDK (the Portal layer depicted in Fig. 1)
and was implemented using the Java Struts framework. In the
MVC architecture, the Model contains data and functionalities
(e.g., file transfer, job submission…); the View is the part of
the portal that interacts with the user (graphical display); and
the Controller connects View and Model together and controls
the execution of the portal. The Model was implemented using
customized, high-level methods that make calls to functions of
the lower layer, the GPDK class library that provides access
to grid services along with some portal-specific utilities (e.g.,
portal user profiles). GPDK uses the libraries of the next layer:
the Java Commodity Grid (CoG) kit [27] (which provides
Java counterparts of the Globus C APIs) and some commodity
libraries not specifically created for grid computing but used
to access grid services [e.g., the Globus information service is
based on the lightweight directory access protocol (LDAP)].
Finally, in the lowest layer lies Globus, which provides the
basic grid services.

This layered approach allows the addition of new computing
resources straightforwardly. When a new computer joins the
grid, the associated information (e.g., number of processors or
job managers installed) is automatically transferred from the
Globus information service at the lowest layer of Fig. 1 to the
upper layers, and the Portal View layer displays the interface to
have access to the new resource. Moreover, the strong separa-
tion between layers provided by the MVC architecture allows
the modification of the appearance of the portal (HTML code)
without affecting the Java code that implements the functional-
ities and vice versa, and allows the inclusion of new functional-
ities easily.

B. Portal Features and Functionalities

The portal described in the previous subsection provides easy
and transparent access to the available laboratory resources enu-
merated in Table I. The basic functionalities of the portal are de-
picted as a navigation diagram in Fig. 2. It is a UML (Universal
Modeling Language) state diagram in which each portal page
is represented by a state, and each link between pages is repre-
sented as a transition between states. The portal also includes
links to useful course information: course schedule and news
and course material (local and external) to enhance self-study.

The portal home page is shown in Fig. 3. Students must be
authenticated and authorized to access the grid resources. The
DES system administrator issues and stores credentials (a cer-
tificate and a private key with a lifetime of one semester) for each
student on a credential server. There are two alternative ways for
students to log into the portal: using a username and password
(with a maximum lifetime of one week for security reasons), ob-
tained by running the MyProxy package [28] on the credential
server, or using a proxy credential file that must be copied to the
computer where the student will launch the browser to access
the portal (usually his/her home computer). This file, also with

TOURIÑO et al.: GRID PORTAL FOR AN UNDERGRADUATE PARALLEL PROGRAMMING COURSE 395

Fig. 2. Navigation diagram of the grid portal.

a limited lifetime, is obtained by running the grid-proxy-init
Globus command on the credential server.

Once the student has been authenticated in the portal, the
user’s home page is displayed (see Fig. 4). This page shows
the available resources (which could be different depending on
the user) and detailed resource-level information, such as avail-
able processors and memory, average system load, or descrip-
tion of available job queues. This information is obtained dy-
namically from the Globus information service. The student
has access to different functionalities from this page, such as
file transfer between computers of the grid, job submission, or
user profile information (personal data, certificate details, user
preferences, or user history). For illustrative purposes, Fig. 5
shows the job submission page. It can be used to execute any
program (operating system commands, compilation commands,
parallel codes, etc.) on the selected machine of the grid. In this
example, an eight-processor MPI job is submitted to the muxia
cluster. This computer provides two different job managers (in-
formation obtained dynamically from the grid and displayed in
a menu): fork, for running interactive jobs, and PBS (portable
batch system), which was selected to launch the parallel job. The
link “List jobs” in the menu displays a complete list of the user’s
jobs (see Fig. 6): job name, execution node, current status (ac-
tive or completed), submission date, and a link to the job output
(if available). There is also a link to cancel a running job or to
delete an entry from the list when the job is finished.

In addition, the course teachers have access to several param-
eters about the portal activity (“System status” link): users cur-
rently connected, list of active and finished jobs, files transferred
per user, login/logout records, and other activity logs. These pa-
rameters provide useful information on the individual and global
use of the different computers of the grid. This information also
turned out to be useful to detect and discourage incidents and
bad practices in the use of supercomputers by students (e.g.,
massive submission of jobs, overallocation of processors and
memory, or hung jobs as a result of careless job running).

Regarding the dynamics of the laboratory, students first
develop and debug their assignments using local resources
and submit their jobs to these resources in interactive mode
through the portal. These jobs usually have small workloads
and input data sets to check code correctness. Next, source
codes are moved to CESGA supercomputers through the file
transfer page. In the first contact with a real supercomputing
environment, many students become impatient and complain
because they are accustomed to obtain immediate results in
the interactive execution on local resources. However, now
their jobs are submitted to queues through the job submission
page and, depending on the load of the supercomputer (which
can be checked from the resource portal page), some time is
required to gain resource access since CESGA supercomputers
are used by researchers from the three Galician universities and
from CSIC, a national research institute. Students are advised

396 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 3, AUGUST 2005

Fig. 3. Portal home page with authentication.

to finish their assignments far enough in advance to allow for
supercomputers that may be overloaded close to the assign-
ment deadline. Nonetheless, students rapidly adapt to this new
environment and experience the power of supercomputers by
using more processors and larger workloads for their jobs. They
also use specific profilers (usually linked to their codes) that
study the application behavior and report performance statistics
(e.g., CPU time, communication time, or cache behavior) to
guide performance tuning. At this stage, students become
fully conscious that programming portability does not mean
performance portability because performance results largely
depend on the target machine. Students are provided in the
lectures with basic information about available profiling tools
or compiler options for each programming model, but they
must experiment with them on their own. The effective use of
these tools is an additional factor for the teacher to evaluate the
assignments.

IV. CONCLUSION

In this paper, a grid portal to support an undergraduate par-
allel-programming course was described. Although grid tech-
nology is primarily intended to enable large-scale scientific re-
search projects to better utilize and share distributed resources,

it has been successfully applied in an educational environment.
The portal provides an intuitive and homogeneous interface to
the geographically distributed and dynamically changing super-
computing resources available for the laboratory assignments.
Thus, the portal allowed students to focus on the course subjects
instead of dealing with irrelevant and time-consuming technical
issues, such as job submission or file transfer between com-
puting resources, which helped to improve student performance.

The experience of the authors has shown that it is feasible
for undergraduates to have access to supercomputing facilities
and that their assignments do not interfere with the research ac-
tivities of the supercomputing center. This situation results be-
cause of the relatively small number of students enrolled in the
course, and in general, the assignments are designed so that they
are not very CPU and memory consuming (a maximum of a few
CPU hours, reasonable enough for students to exploit the power
of the supercomputer). Moreover, the Supercomputing Center
of Galicia (CESGA) enthusiastically supports the course as a
medium to promote and extend the use of parallel computing
technologies in Galicia, Spain.

The introduction of the portal was valued very highly by
the students, who have even provided feedback on the portal
design and functionalities. They highlighted the 24-hour ac-
cess to supercomputing facilities from home, requiring only a

TOURIÑO et al.: GRID PORTAL FOR AN UNDERGRADUATE PARALLEL PROGRAMMING COURSE 397

Fig. 4. User’s home page: resource list and menu of functionalities.

Fig. 5. MPI job submission through the portal.

browser, unlike other courses where hardware or software re-
sources can only be accessed from on-campus machines. This
fact, together with the motivation of programming production
supercomputers, caused the students to spend many extra hours

at home on the assignments, as revealed by the statistics pro-
vided by the portal. The format of the laboratory assignments
described in Section II-B also stimulated self-study (mainly the
course miniprojects) which, in some cases, became research. In

398 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 3, AUGUST 2005

Fig. 6. List of user’s jobs.

fact, this course turned out to be a good way to recruit Ph.D.
students to work in the area of parallel processing.

Although the portal was developed for computer science
(CS) undergraduates, it could be used at the graduate level
not only for CS students but also for students from diverse
disciplines of science and engineering (such as mathematics,
physics, chemistry, biology, and civil, mechanical, or aerospace
engineering), enrolled in a computational science/engineering
program, who need parallel programming as an essential tool
to solve large-scale problems in their fields. The portal also
opens new possibilities for teaching parallel programming in
the context of international Master’s and Ph.D. programs as
a means to enable universities from different countries share
their supercomputing resources for teaching purposes. It could
also provide a remote parallel-programming laboratory to
students in countries that lack supercomputing infrastructures.
The traditional educational links between Spain and Latin
America offer a potential scenario for these purposes. Ongoing
initiatives currently under development such as Gridcole [29],
a collaborative learning environment that uses grid services
technology, would be potentially appropriate in this context
to provide integration of supercomputing capabilities or other
specific resources at different locations in a wide area.

The development of the portal required a significant learning
curve to acquire background in the technologies shown in Fig. 1.
However, grid computing is still evolving, and it is expected that
grid tools will be easier to set up and use so that they are more
accessible to a wide audience not familiar with grid technolo-
gies but who might wish to build a grid portal for teaching pur-
poses. Once built, a key issue is to obtain organizational support
to manage the portal. Thus, currently, the departmental system
administrator performs basic portal management tasks, such as
portal accounting and authentication (e.g., student credentials),
portal availability (maintenance of Web, application, and cre-
dential servers), or incident reporting on the grid infrastructure

(e.g., unavailability of supercomputing resources). The URL for
the portal home page is http://gridportal.des.udc.es

ACKNOWLEDGMENT

The authors would like to thank the Supercomputing Center
of Galicia (CESGA) for providing access to its supercomputing
facilities.The authors also would like to thank the Editor-in-
Chief and the three anonymous referees for their helpful com-
ments.

REFERENCES

[1] R. M. Butler, R. E. Eggen, and S. R. Wallace, “Introducing parallel pro-
cessing at the undergraduate level,” in Proc. 19th ACM Tech. Symp. Com-
puter Science Education, Atlanta, GA, Feb. 1988, pp. 63–67.

[2] T. Hintz, “Introducing undergraduates to parallel processing,” IEEE
Trans. Educ., vol. 36, no. 1, pp. 210–213, Feb. 1993.

[3] W. E. Toll, “Decision points in the introduction of parallel processing
into the undergraduate curriculum,” in Proc. 26th ACM Tech. Symp.
Computer Science Education, Nashville, TN, Mar. 1995, pp. 136–140.

[4] C. H. Nevison, “Parallel computing in the undergraduate curriculum,”
IEEE Computer, vol. 28, no. 12, pp. 51–56, Dec. 1995.

[5] J. Adams, C. Nevison, and N. C. Schaller, “Parallel computing to start
the millennium,” in Proc. 31st ACM Tech. Symp. Computer Science Ed-
ucation, Austin, TX, Mar. 2000, pp. 65–69.

[6] (2004, Nov.). Supercomputing Center of Galicia. [Online]. Available:
http://www.cesga.es

[7] (2004, Nov.). IEEE Task Force on Cluster Computing. [Online]. Avail-
able: http://www.ieeetfcc.org

[8] J. A. Youssefi and K. Zemoudeh, “A course in parallel processing,” IEEE
Trans. Educ., vol. 40, no. 1, pp. 36–40, Feb. 1997.

[9] B. Wilkinson and M. Allen, “A state-wide senior parallel programming
course,” IEEE Trans. Educ., vol. 42, no. 3, pp. 167–173, Aug. 1999.

[10] The Grid: Blueprint for a New Computing Infrastructure, I. Foster and
C. Kesselman, Eds., Morgan Kaufmann, San Francisco, CA, 1998.

[11] A. Bagnasco and A. M. Scapolla, “A grid of remote laboratory for
teaching electronics,” presented at the 2nd Int. LeGE-WG Workshop
e-Learning and Grid Technologies, Paris, France, Mar. 2003.

TOURIÑO et al.: GRID PORTAL FOR AN UNDERGRADUATE PARALLEL PROGRAMMING COURSE 399

[12] O. Ardaiz, P. Artigas, L. Díaz de Cerio, F. Freitag, A. Gallardo, R.
Messeguer, L. Navarro, D. Royo, and K. Sanjeevan, “ULabGrid, An
infrastructure to develop distant laboratories for undergrad students
over a grid,” in Proc. 1st Eur. Across Grids Conf., vol. 2970, Lecture
Notes in Computer Science, Santiago de Compostela, Spain, Feb. 2003,
pp. 265–272.

[13] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-
deram, PVM: Parallel Virtual Machine. A Users’ Guide and Tutorial for
Networked Parallel Computing. Cambridge, MA: MIT Press, 1994.

[14] P. S. Pacheco, Parallel Programming with MPI. San Francisco, CA:
Morgan Kaufmann, 1997.

[15] The Message Passing Interface (MPI) Standard (2004, Nov.). [Online].
Available: http://www-unix.mcs.anl.gov/mpi

[16] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R.
Menon, Parallel Programming in OpenMP. San Francisco, CA:
Morgan Kaufmann, 2001.

[17] (2004, Nov.). OpenMP Architecture Review Board. [Online]. Available:
http://www.openmp.org

[18] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele, Jr., and M.
E. Zosel, The High Performance Fortran Handbook. Cambridge, MA:
MIT Press, 1994.

[19] The High Performance Fortran Home Page (2004, Nov.). [Online].
Available: http://dacnet.rice.edu/Depts/CRPC/HPFF

[20] B. Wilkinson and M. Allen, Parallel Programming Techniques and Ap-
plications using Networked Workstations and Parallel Computers. En-
glewood Cliffs, NJ: Prentice-Hall, 1999.

[21] I. Foster, Designing and Building Parallel Programs. Boston, MA:
Addison-Wesley, 1995.

[22] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure
toolkit,” Int. J. Supercomputer Applicat., vol. 11, no. 2, pp. 115–128,
1997.

[23] J. Novotny, “The grid portal development kit,” Concurrency Computa-
tion: Practice Experience, vol. 14, no. 13–15, pp. 1129–1144, Nov./Dec.
2002.

[24] M. Thomas, S. Mock, M. Dahan, K. Mueller, D. Sutton, and J. R. Bois-
seau, “The GridPort toolkit: A system for building grid portals,” in Proc.
10th IEEE Symp. High Performance Distributed Computing, San Fran-
cisco, CA, Aug. 2001, pp. 216–227.

[25] J. Novotny, M. Russell, and O. Wehrens, “Gridsphere: A portal frame-
work for building collaborations,” in Proc. 1st Int. Workshop Middle-
ware for Grid Computing, ACM/IFIP/USENIX Int. Middleware Conf.,
Rio de Janeiro, Brazil, Jun. 2003, pp. 178–185.

[26] I. Singh, B. Stearns, and M. Johnson, Designing Enterprise Applications
with the J2EE Platform. Boston, MA: Addison-Wesley, 2002.

[27] G. von Laszewski, I. Foster, J. Gawor, and P. Lane, “A Java commodity
grid kit,” Concurrency Computation: Practice and Experience, vol. 13,
no. 8–9, pp. 645–662, Jul./Aug. 2001.

[28] J. Novotny, S. Tuecke, and V. Welch, “An online credential repository
for the grid: MyProxy,” in Proc. 10th IEEE Int. Symp. High Performance
Distributed Computing, San Francisco, CA, Aug. 2001, pp. 104–111.

[29] M. L. Bote-Lorenzo, D. Hernández-Leo, Y. A. Dimitriadis, J. I.
Asensio-Pérez, E. Gómez-Sánchez, G. Vega-Gorgojo, and L. M. Va-
quero-González, “Toward reusability and tailorability in collaborative
learning systems using IMS-LD and grid services,” Adv. Technol.
Learning, vol. 1, no. 3, pp. 129–138, 2004.

Juan Touriño (M’01) received the B.S., M.S., and Ph.D. degrees in computer
science from the University of A Coruña, A Coruña, Galicia, Spain, in June
1993, October 1993, and 1998, respectively.

Since 1993, he has been on the faculty of the Department of Electronics and
Systems at the University of A Coruña, where he is currently an Associate Pro-
fessor of Computer Engineering, teaching undergraduate and graduate courses
on parallel programming and advanced computer architecture. He also collab-
orates with Hewlett-Packard (HP) Spain on designing and teaching training
courses for programming HP supercomputers. Since 1999, he has also been
the Coordinator of his university with the Supercomputing Center of Galicia
to advise researchers on the use of supercomputing facilities. He has been a
Visiting Researcher at the Edinburgh Parallel Computing Center, Edinburgh,
U.K., and at the CINECA Supercomputing Center, Bologna, Italy. His research
interests include parallel algorithms and applications, grid computing, paral-
lelizing compilers, performance evaluation of supercomputers, and management
of large-scale parallel and distributed systems. He is coauthor of more than 60
technical papers on these topics.

Dr. Touriño is a Member of the IEEE Computer Society and the Association
for Computing Machinery (ACM).

María J. Martín received the B.S., M.S., and Ph.D. degrees in physics from
the University of Santiago de Compostela, Santiago de Compostela, Spain, in
1993, 1994, and 1999, respectively.

She is an Associate Professor of Computer Engineering at the University of A
Coruña, A Coruña, Galicia, Spain, where she teaches undergraduate and grad-
uate courses on computer architecture. She has been a Visiting Researcher at the
Edinburgh Parallel Computing Center, Edinburgh, U.K., and at the Department
of Computer Science of Stanford University, Stanford, CA. Her major research
interests include parallel algorithms and applications, parallelizing compilers,
grid computing, and fault tolerance for message-passing applications.

Jacobo Tarrío received the B.S. degree in computer science from the University
of A Coruña, A Coruña, Galicia, Spain, in 2003.

He is currently an Open-Source Software Engineer in Alfa21, an information
technology and network security company specializing in Unix/Linux systems.
He has also been a Debian developer since 2001. He has been involved in the
design and development of grid portals at the Department of Electronics and
Systems of the University of A Coruña.

Manuel Arenaz received the B.S., M.S., and Ph.D. degrees in computer science
from the University of A Coruña, A Coruña, Galicia, Spain, in 1997, 1998, and
2003, respectively.

He is an Assistant Professor of Computer Engineering with the University
of A Coruña. His major research interests include optimizing and parallelizing
compilers, parallel algorithms and applications, and grid computing.

	toc
	A Grid Portal for an Undergraduate Parallel Programming Course
	Juan Touriño, Member, IEEE, María J. Martín, Jacobo Tarrío, and
	I. I NTRODUCTION
	II. C OURSE C ONTENT
	A. Course Lectures

	TABLE I S UPERCOMPUTING R ESOURCES A VAILABLE FOR THE S TUDENTS
	B. Course Laboratory
	III. G RID P ORTAL FOR THE C OURSE L ABORATORY

	Fig. 1. Software architecture of the grid portal.
	A. Portal Design and Architecture
	B. Portal Features and Functionalities

	Fig. 2. Navigation diagram of the grid portal.
	Fig. 3. Portal home page with authentication.
	IV. C ONCLUSION

	Fig. 4. User's home page: resource list and menu of functionalit
	Fig. 5. MPI job submission through the portal.
	Fig. 6. List of user's jobs.
	R. M. Butler, R. E. Eggen, and S. R. Wallace, Introducing parall
	T. Hintz, Introducing undergraduates to parallel processing, IEE
	W. E. Toll, Decision points in the introduction of parallel proc
	C. H. Nevison, Parallel computing in the undergraduate curriculu
	J. Adams, C. Nevison, and N. C. Schaller, Parallel computing to
	(2004, Nov.). Supercomputing Center of Galicia. [Online] . Avail
	(2004, Nov.). IEEE Task Force on Cluster Computing. [Online] . A
	J. A. Youssefi and K. Zemoudeh, A course in parallel processing,
	B. Wilkinson and M. Allen, A state-wide senior parallel programm

	The Grid: Blueprint for a New Computing Infrastructure, I. Foste
	A. Bagnasco and A. M. Scapolla, A grid of remote laboratory for
	O. Ardaiz, P. Artigas, L. Díaz de Cerio, F. Freitag, A. Gallardo
	A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.
	P. S. Pacheco, Parallel Programming with MPI . San Francisco, CA

	The Message Passing Interface (MPI) Standard (2004, Nov.). [Onli
	R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Me
	(2004, Nov.). OpenMP Architecture Review Board. [Online] . Avail
	C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele, Jr.

	The High Performance Fortran Home Page (2004, Nov.). [Online] .
	B. Wilkinson and M. Allen, Parallel Programming Techniques and A
	I. Foster, Designing and Building Parallel Programs . Boston, MA
	I. Foster and C. Kesselman, Globus: A metacomputing infrastructu
	J. Novotny, The grid portal development kit, Concurrency Computa
	M. Thomas, S. Mock, M. Dahan, K. Mueller, D. Sutton, and J. R. B
	J. Novotny, M. Russell, and O. Wehrens, Gridsphere: A portal fra
	I. Singh, B. Stearns, and M. Johnson, Designing Enterprise Appli
	G. von Laszewski, I. Foster, J. Gawor, and P. Lane, A Java commo
	J. Novotny, S. Tuecke, and V. Welch, An online credential reposi
	M. L. Bote-Lorenzo, D. Hernández-Leo, Y. A. Dimitriadis, J. I. A

