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Abstract

Statistical significance tests can provide evidence that the observed difference in performance between two
methods is not due to chance. In Information Retrieval, some studies have examined the validity and suitability
of such tests for comparing search systems. We argue here that current methods for assessing the reliability
of statistical tests suffer from some methodological weaknesses, and we propose a novel way to study signific-
ance tests for retrieval evaluation. Using Score Distributions, we model the output of multiple search systems,
produce simulated search results from such models, and compare them using various significance tests. A key
strength of this approach is that we assess statistical tests under perfect knowledge about the truth or falseness
of the null hypothesis. This new method for studying the power of significance tests in Information Retrieval
evaluation is formal and innovative. Following this type of analysis, we found that both the sign test and Wil-
coxon signed test have more power than the permutation test and the t-test. The sign test and Wilcoxon signed
test also have a good behavior in terms of type I errors. The bootstrap test shows few type I errors, but it has
less power than the other methods tested.

1 Introduction

Use of significance tests is a de facto standard of evaluation in Information Retrieval (IR). In the early days of IR
experimentation, researchers tended to prefer the Wilcoxon signed-rank test and the sign test, which are simple and
make few assumptions about the data. Other parametric alternatives, such as Student’s t-test, require data drawn
from specific distributions (e.g. Gaussian), but the output of retrieval experiments violates this assumption.

A number of studies have analysed the reliability of significance tests (Zobel, 1998; Voorhees & Buckley, 2002;
Urbano, Marrero & Martı́n, 2013; Sanderson & Zobel, 2005; Cormack & Lynam, 2007; Sakai, 2016; Smucker,
Allan & Carterette, 2007). Many of them suggest that, despite its assumptions, the t-test performs well and it
should be preferred over the Wilcoxon signed-rank test and the sign test. Smucker and colleagues argued that the
use of the Wilcoxon signed-rank test and the sign test should cease (Smucker et al., 2007), and have influenced a
change towards the t-test and the permutation test. The way in which experimenters employ statistical testing is
crucial and affects the dissemination of research results, as it has been demonstrated in other fields (Miettunen &
Nieminen, 2003). A comprehensive and solid analysis of the relative merits of each significance test is therefore
essential for IR experimentation.

A significance test stands on a null hypothesis (H0) and an alternative hypothesis (H1). In IR, many exper-
iments run paired two-sided tests. In such a case, the null hypothesis states that the two retrieval outputs under
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examination are drawn from the same population (any difference between them is due to chance), and the alternat-
ive hypothesis states that they are drawn from different populations. The test estimates the probability p (p-value)
of observing a difference at least as large as that produced by the experiment given that H0 is true.

The studies on the reliability of significance tests for IR evaluation have followed two main methodologies.
Query splitting methods split the topics of a test collection into two groups, run each significance test in each group,
and check the coherence of the results. Smucker and colleagues followed an alternative approach (Smucker et al.,
2007), where the p-values estimated by a permutation (or randomisation) test are the main reference and other
significance tests are evaluated in comparison to the permutation test. We claim here that both methodologies have
severe limitations and propose an innovative way for assessing significance tests.

Query splitting methods are limited to assess the consistency of a significance test with itself. But the results
of the test can be consistently wrong over the splits (rejecting a true H0 –type I error– or failing to reject a false
H0 –type II error–). With no knowledge of the truth or falseness of H0, we should not just equate consistency
with reliability. Comparing significance tests based on the permutation test, as done in (Smucker et al., 2007), is
not exempt from problems either. The permutation test can compute a good approximation to the exact p-values,
but we should not produce miss or false alarm rates from such p-values. Given a certain significance level (α) and
the p-values estimated by permutation, the miss and false alarm rates of each significance test are measured based
on the agreement between the test’s decisions and the permutation test’s decisions. Such an approach implicitly
assumes that those cases where the p-value produced by permutation is above α are cases where H0 is true and,
conversely, those cases below α are cases where H0 is false. This rule compromises the quality of the analysis
because the permutation test is not error-free. For example, with α = .05, the permutation test would be making
an average of 5% type I errors (no difference between the systems, but the permutation test says otherwise). As
such, in 5% of cases, giving blind faith to the permutation test unfairly penalises any significance test that makes
the correct decision (any significance test that is skeptical about the difference is actually right!). Likewise, the
permutation test makes some type II errors and accepting such permutation test’s decisions is unfair to those tests
that detect the difference. In summary, the main flaw of existing methods to assess the reliability of significance
tests is that they make strong assumptions about the truth value of the null hypothesis. Although the previous
studies substantially contributed to analysing the use of significance tests in IR, we believe that a more robust
methodology, based on actual knowledge about H0, can be designed. This is precisely the primary aim of our
paper.

We propose a method for assessing the reliability of significance tests that works with simulated results of
retrieval systems. We take many executions (runs) from TREC systems, and we model IR systems using Score
Distributions (SDs) (Manmatha, Rath & Feng, 2001; Arampatzis & Robertson, 2011) learnt from those real runs.
With the modeled systems, we can produce multiple retrieval results by sampling from the distributions. The core
idea is that we can compare significance tests under complete knowledge about the null hypothesis. For example,
we can experiment with the same system producing two ranked lists (null hypothesis true) or we can experiment
with two different systems producing each a ranked list (null hypothesis false). Systems with distinctive retrieval
characteristics can be obtained by manipulating the parameters of the inferred statistical distributions. Furthermore,
this simulation method can be repeated as many times as needed, serving to reinforce the validity of the study.

We examined the tests with this innovative methodology and found some results that agree with those presented
by Smucker and colleagues (Smucker et al., 2007): the permutation and the t-test tend to agree with each other and,
to a lesser degree, with bootstrap; while the Wilcoxon test and the sign test disagree with both the permutation
and the t-test. However, we found substantive evidence that suggests that these differences occur because the
Wilcoxon and the sign test have higher power than the permutation test. These results are in agreement with the
findings reported by authoritative statistical studies, which showed the relative lack of power of the permutation
test (see Section 5.11 (Conover, 1999)).

The main contributions of this paper are:

1. a new method for assessing the reliability of the statistical tests based on the analysis of their power using
data derived from simulated IR systems.
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2. a complete empirical study that categorically concludes that, in typical IR experimentation, the Wilcoxon
and sign tests are more powerful than the permutation, bootstrap or the t-test.

2 Related Work

Non-parametric tests of significance, such as the Wilcoxon test and the sign test, have been widely used in IR
experiments. Both tests assume data drawn from continuous distributions, while retrieval experiments produce
discrete data. Despite this fact, Van Rijsbergen suggested conservative use of such tests (Van Rijsbergen, 1979).
The t-test has been also used regularly in IR. Hull (Hull, 1993) claimed that it often performs well even when
the normality assumption is violated. Other popular tests in IR are the bootstrap test (Savoy, 1997; Cormack &
Lynam, 2006) and the permutation test (Smucker et al., 2007).

Several papers studied the reliability of the significance tests. Zobel (Zobel, 1998) made multiple pairwise-
comparisons of systems with two disjoint query sets. A type I error was recorded when a test observed a significant
difference between two systems on the first query set and the ordering of the systems was different on the second
query set. He concluded that the Wilcoxon test is more reliable and has higher power than both the t-test and
ANOVA. Sanderson and Zobel (Sanderson & Zobel, 2005), who expanded a previous study by (Voorhees &
Buckley, 2002), found that the t-test shows lower error rates when compared to the sign and the Wilcoxon tests.
Cormack and Lynam (Cormack & Lynam, 2007) also performed a query-splitting study and observed that the
t-test, Wilcoxon and the sign test are highly accurate and have high power, with the t-test proving superior overall.
Urbano et al. (Urbano et al., 2013) also presented a comparison of significance tests based on query-splitting.
Regarding safety (smallest error rates across significance levels), the t-test was the best, followed by the Wilcoxon
test (for low levels of significance) and the permutation test (for the usual levels of significance). The bootstrap
test consistently produced smaller p-values and, thus, it was the most powerful across significance levels. The
authors also studied the agreement of the tests with themselves, and the Wilcoxon test turned out to be the most
stable of all for small p-values, while the t-test the most stable overall. The permutation test was also evaluated
in this study, but it was not optimal under any criterion considered. All these studies provide valuable evidence
for IR experimentation. However, the query-splitting methodology makes an arbitrary division of topics and lacks
real knowledge about the truth or falseness of the null hypothesis. The fact that a significance test gives consistent
results over two splits of topics should not be considered a measure of quality. As a matter of fact, the test might
be consistently wrong over the splits (consistently rejecting a true null hypothesis or consistently accepting a false
null hypothesis).

Smucker and colleagues (Smucker et al., 2007) found that the bootstrap test, the t-test and the permutation
test produce comparable p-values, and showed that both the Wilcoxon and the sign test are discordant with the
permutation test. Following their experiments, they suggested discontinuing the use of these two tests. Our study
also reveals a discordance between these two tests and the rest of the tests, but we argue that the output of the
permutation test must not be taken as the main reference. Smucker et al.’s study evaluated significance tests in
terms of how well each test matched the decisions of the permutation test. For example, a given test was assigned
a false alarm when the test labeled a difference as significant while the permutation test considered it as non-
significant (see e.g. Table 2, (Smucker et al., 2007)). We claim that assigning this kind of ground truth role to
the permutation test limits the conclusions that can be drawn from the analysis. We show here that the Wilcoxon
test and the sign test have higher power than the other tests and make a low number of type I errors. Therefore,
significant differences found with these two tests must not be ignored on the basis that other tests fail to identify
these differences.

Sakai (Sakai, 2016) compared two versions of two-sample t-tests: Student’s t-test and Welch’s t-test. He also
employed a query-splitting methodology but his approach has some restricted knowledge about the null hypothesis.
More specifically, he modeled the case of H0 being true as follows. Given a query set of size n and m runs that
processed these queries, the queries are randomly partitioned into two sets. For each of the runs and a given
evaluation metric, he conducted a two-sided, two-sample test to determine whether or not the difference between
the two means for the same run are statistically significant. The ground truth was that they are not, since the
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scores actually come from the same system. This strategy, based on unpaired data, cannot be applied to evaluate
significance tests under current TREC-like exercises (where all systems are evaluated with the same queries).
However, as argued by Sakai, possible applications of two-sample tests in IR include comparing set of clicks from
two search engines or comparing the difficulty of two test collections using the same search system.

Our paper is also related to some studies that also employed simulation in order to analyze other aspects of
IR evaluation. For example, Urbano (Urbano, 2016) performed a study on test collection reliability that compared
a number of measures and estimators of test collection accuracy. His method was based on stochastic simulation
of evaluation results and, through large-scale simulation from TREC data, the bias of several estimators of test
collection accuracy was analyzed.

Score distributions (Arampatzis, Robertson & Kamps, 2009) have been studied and modeled since the early
days of IR (Swets, 1963). Different combinations of statistical distributions have been proposed for modeling the
score distributions of relevant and non-relevant documents (two Gaussians (Swets, 1963), two negative exponen-
tials (Swets, 1969), two Poissons (Bookstein, 1977), two Gammas (Baumgarten, 1999), a Gaussian and a negative
exponential (Arampatzis, Beney, Koster & van der Weide, 2000; Manmatha et al., 2001; Arampatzis, Kamps &
Robertson, 2009), or a Gaussian and a Gamma (Kanoulas, Pavlu & Dai, 2009; Dai, Kanoulas, Pavlu & Aslam,
2011)). Some studies (Kanoulas, Dai, Pavlu & Aslam, 2010) have also analysed SDs based on the scoring for-
mulas of the retrieval models. Manmatha et al. (Manmatha et al., 2001) proposed the use of SDs to combine the
outputs of multiple search engines. Arampatzis et al. (Arampatzis et al., 2000; Arampatzis, Kamps & Robertson,
2009) utilised SD models for threshold optimisation in a legal search task. Cummins employed SDs for query per-
formance prediction (Cummins, 2014). Arampatzis et al. experimented with SDs in image retrieval (Arampatzis,
Zagoris & Chatzichristofis, 2013), Parapar et al. employed SDs in pseudo-relevance feedback (Parapar, Presedo-
Quindimil & Barreiro, 2014), and Losada at al. proposed a rank fusion approach based on SDs for prioritising
assessments in IR evaluation (Losada, Parapar & Barreiro, 2018).

3 Analysing Significance Tests with Score Distribution Models

Score distributions model the way in which search systems generate retrieval scores. We can, therefore, simulate
multiple search systems and evaluate their output using Average Precision. Different conditions –null hypothesis
true/false– can be generated, and significance tests can be evaluated accordingly. Our method proceeds as follows:

1. For every (TREC run, query) pair, we learn a SD model (a mixture of statistical distributions) from the list
of scores supplied by the run.

2. For each run we take its 50 (as many as different queries) mixtures and we experiment with the case of a
true null hypothesis (same model producing two outputs):

(a) we randomly extract 1000 samples from the SD model and obtain a synthetic list of scores and their
relevance values (the method extracts samples from either the distribution of relevant documents or the
distribution of non-relevant documents and, thus, each extracted score is assigned a relevance label, 1
if the score came from the relevant document distribution and 0 if the score came from the non-relevant
document distribution). The resulting list of scores is sorted in descending order.

(b) we repeat step (a) and obtain a second synthetic list.

(c) we compute the average precision of both lists.

Given the two sequences of 50 APs obtained, a significance test is run for assessing the significance of the
difference found.

3. Step 2 is repeated 1000 times and we record the average number of times that the significance test falsely
rejects H0.
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4. Now, we experiment with the case of a true alternative hypothesis (the outputs come from different models).
For each run we take its 50 (as many as different queries) mixtures and

(a) we randomly extract 1000 samples from the SD model and obtain a synthetic list of scores and their
relevance values. The resulting list of scores is sorted in descending order.

(b) we alter the SD model’s parameters, sample from the modified model and obtain a second synthetic
list.

(c) we compute the average precision of both lists.

Given the two sequences of 50 APs obtained, a significance test is run for assessing the significance of the
difference found.

5. Step 4 is repeated 1000 times and we record the average number of times that the significance tests correctly
rejects H0.

6. Steps 4-5 are repeated several times by gradually separating the modified model from the original model
(parameter manipulation of the mixture).

With this procedure, we can straightforwardly estimate the power of a significance test, p(Reject H0|H0 is
false), the probability of a type I error, p(Reject H0|H0 is true), and so forth. The pseudo-code that implements
this procedure is available in the Appendix.

3.1 Modeling Information Retrieval Systems

With real search systems, a comparative analysis of significance tests is tricky. We have no knowledge of the
underlying retrieval models that generate the search results and, thus, we know nothing about the truth of the null
hypothesis. Furthermore, we often observe a small number of executions from each search system. Such limited
sample imposes limitations on the statistical analysis. By modeling search systems with statistical models we can
produce as many samples as required and, additionally, we have certainty about the null hypothesis.

Score distribution models assume that the distribution generating the scores of relevant documents is different
from the one producing the scores of non-relevant documents. Various combinations of distributions have been
employed to model each group of documents, and the parameters of the mixture distribution can be learned from
the observed documents’ scores. We employ here a two log-normal distribution (Cummins, 2011), which adheres
to the recall-fallout convexity hypothesis (Robertson, 2007), and shows higher goodness of fit when compared
with other alternatives (Cummins, 2011; Cummins & O’Riordan, 2012).

Each retrieval system has a set of mixtures (one mixture per query). For every query q(i), the mixture has two
log-normal distributions: L(i)

0 for the non-relevant documents and L(i)
1 for the relevant documents. If P (s|1)(i)

is the probability density function (pdf) for the scores (s) of relevant documents and P (s|0)(i) is the pdf for the
scores of non-relevant documents then the mixture is:

P (s)(i) = λ(i)P (s|1)(i) + (1− λ(i))P (s|0)(i) (1)

where λ(i), the mixture parameter, represents the proportion of relevant documents returned by the system for
query q(i).

Some TREC runs produce negative scores and we followed the standard procudure of shifting all scores of
these runs by some constant factor. We discarded those runs that do not supply retrieval scores for the returned
documents. The use of alternative SD models that do not rely on the existence of scores (Robertson, Kanoulas &
Yilmaz, 2013) is left to future work.

For each query q(i), TREC supplies a set of relevance assessments. Given the TREC run and the relevance
assessments, we proceeded to learn the run’s SD model as follows. The mixing weight is set to the proportion of
relevant documents returned by the run. The scores of the relevant documents returned by the run are used to learn
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the parameters of L(i)
1 . This learning stage was done following a maximum likelihood approach1 (Dempster, Laird

& Rubin, 1977), which provides better goodness of fit than the method of moments (Cummins, 2011). Following
usual practice in pooling-based IR, the set of non-relevant documents retrieved by the run is composed of the
judged non-relevant documents plus the unjudged documents. The procedure to learn L(i)

0 from this set was the
same than that used to learn L(i)

1 from the set of relevant documents.
The ultimate objective of our study is to analyse significance tests with a series of per-query results. The

procedure sketched above leads to SD models that can generate multiple system outputs in the form of lists of
retrieval scores. Classic IR measures, such as Mean Average Precision (MAP ), rely on relevance judgments at
document level. By sampling separately from the two component distributions (e.g., see step 2(a) in the procedure
sketched above), we ensure that each sampled score is assigned a relevance value. In this way, the resulting ranking
of scores can be evaluated with any performance measure, such as MAP.

3.2 Power Curves

Given a certain level of significance, a common way to analyse significance tests consists of studying the form of
the power curve. A power curve plots the probability of rejecting H0 against increasing differences between the
systems being compared. Figure 1 shows an example of a power curve. The y-axis represents the probability of
rejecting the null hypothesis (P (Reject H0)), while the x-axis represents the difference between the systems that
are compared. The 0.0 point of the x-axis (leftmost point) corresponds to the case where H0 is true (x = 0.0,
no difference between the systems). The rest of the points of the x-axis (x > 0.0) correspond to cases where H0
is false (and the larger x is, the more different the systems are). The height of the leftmost point represents the
probability of a type I error (incorrect rejection of the null hypothesis). Typically, the power curve starts from a
height equal to the significance level, rises smoothly and monotonically and, eventually, reaches the maximum
probability of 1. The closer the curve is to a right angle, the more power the test has.

Such an analysis must only be done under certainty about the hypothesis being tested. Previous studies on
significance tests for IR lack such certainty. By design, our methodology produces outputs where we know whether
or not the test must reject H0. To simulate the case when H0 is true we just have to obtain two random samples
from the same SD model (same system producing two outputs), and compare the two series of APs (one pair of
samples per query). To simulate the case when H0 is false, we proceed by taking a SD model and altering its
parameters. In this way, we can compare the original SD model against a modified SD model. Given the outputs
produced by these two models, we are certain that the series of APs come from different statistical distributions.
Note that the modifications are done on a per-query basis because each system has a SD model learnt for each
query. There are multiple possibilities to modify the original SD model. For example, by changing λ(i) we can
simulate the increase or decrease in the number of relevant documents returned. We decided to leave the same
λ(i) for both models because changing λ(i) models a change in the proportion of relevant documents returned.
In TREC, the number of relevant documents is fixed –for each query, we only have assessments for the pooled
documents– and, as a consequence, it does not make sense to model a system that returns more relevant documents
than those available in the pool. Another possibility consists of changing the mean of L0 (or L1), which has the
effect of altering the position in the ranking of the non-relevant (or relevant) documents. We opted to gradually
increase the mean (location) of L1 (µ1). This choice simulates relevant documents moving up in the ranking and,
thus, improves the effectiveness of the original model unequivocally and monotonically. Our report of significance
tests will, therefore, include power curve plots where the x-axis represents the percentage of increase in µ1. In
Section 4.3, we provide empirical evidence showing that increasing µ1 leads to improvements in AP.

1We performed direct optimization of the log-likelihood with the Nelder-Mead method (Nelder & Mead, 1965) using the
fitdistrplus R package: http://cran.r-project.org/web/packages/fitdistrplus/fitdistrplus.pdf.

6



0.0 0.1 0.2 0.3 0.4 0.5

0
.2

0
.4

0
.6

0
.8

1
.0

Actual differences of the compared systems

P
 (

R
e
je

c
t 
H

0
)

Figure 1: Example of Power Curve for the Wilcoxon Test. The X axis represents increasing differences between
the systems being compared. The null hypothesis, H0, only holds in the leftmost point, the other points correspond
with H0 false.

7



Table 1: Summary of TREC system runs used in the experiments.

Edition Query set Relevant Documents Systems Used systems
TREC 3 151-200 9805 40 32
TREC 5 251-300 5524 61 38
TREC 6 301-350 4611 74 48
TREC 7 351-400 4674 103 62
TREC 8 401-450 4728 130 88

4 Experiments

We performed a thorough analysis of several significance tests using the ad-hoc retrieval runs submitted to TREC
3, 5, 6, 7 and 8 (Voorhees & Harman, 2005). The number of systems that we used in our experimentation (see Table
1) is lower than the official number of participants because we removed the systems that did not return retrieval
scores or retrieved very few documents per query. We worked with the top 1000 documents ranked by the systems
and we set the number of random samples generated from the SD models to 1000.

4.1 Significance Tests

We compared the following tests: t-test, Wilcoxon signed rank test, sign test, permutation test and bootstrap. The
comparison was done for the two-sided case using paired data.

The t-test assumes that the obtained differences follow a normal distribution. The null hypothesis is that the
mean of the distribution of differences is zero. Wilcoxon assumes that the differences can be ranked, but ignores
the magnitude of the differences. The rank values are assigned the sign of the measured difference, and the null
hypothesis is that the sum of the positive ranks is the same as the sum of negative ranks. The sign test relies on even
less stringent assumptions: under the null hypothesis, we would expect the same number of positive and negative
differences. The permutation test is free of mathematical assumptions. The null hypothesis is that the two systems
are identical and any permutation of the matched pair observations will produce an output equally probable. Given
a statistic for the test and computing all possible permutations of the observed values it is possible to compute the
exact p-value. The null hypothesis of the bootstrap test is that the observed values are random samples from the
same distribution.

For the t-test, Wilcoxon, sign test, and permutation test we used the implementation of the JSC (Java Statistical
Classes) by Andrew Bertie from The Open University. For bootstrap, we implemented the test as described in
(Efron & Tibshirani, 1993) (the one-sample problem). Following (Smucker et al., 2007), we took the difference of
means as the statistic for both permutation and bootstrap, and we extracted 100.000 samples of random permuta-
tions. We also considered the popular t-test statistic for permutation and bootstrap but these two tests performed
better when the difference of means was the statistic.

4.2 Experiments: Type I Error and Power Curves

To estimate the probability of a type I error, p(Reject H0|H0 is true), we produced two samples from the same
SD model and ran the significance test. This procedure was repeated 1000 times for each system and we averaged
–over all TREC systems– the number of times that H0 was rejected (the significance level was set to 0.05). Figure
2 shows the results of this experiment with varying number of queries.

Wilcoxon and the permutation test tend to achieve the expected probability of rejecting H0 when H0 is true
(the significance level). The other three tests are more conservative and show a probability of rejecting H0 lower
than the significance level. Such conservative behavior becomes apparent with small query sets. Bootstrap is
extremely conservative (particularly in TREC 5 and 6, where the retrieval performance of the systems is the
lowest). By design, tests are expected to have 5% of type I errors and, thus, the t-test, the sign test and bootstrap do
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Figure 2: Average p(Reject H0|H0 is true) in different TREC collections (α = 0.05)
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not behave as expected. From a practical perspective, these three tests are making fewer errors, which might seem
convenient. However, from a statistical standpoint, this result suggests that the p-values obtained by these tests
are worse estimations of the probability of finding the observed difference when the null hypothesis is true. We
also experimented with other significance levels –from 0.01 to 0.25, steps of 0.01– and found consistent results:
Wilcoxon and the permutation test yielded results that matched with the significance level, while the other three
tests made fewer errors than expected.

Let us now analyse the tests whenH0 is false. Each experiment compared one SD model against a transformed
model, and we obtained different transformed models by increasing µ(i)1 up to 30% (in steps of 0.5%). The resulting
power curves, which plot the probability of rejection of the null hypothesis (averaged over all systems and samples),
are shown in Figures 3, 4, 5, 6 and 7.

With less than 30 queries, all tests perform poorly (many type II errors). This result is in line with previous
studies (Webber, Moffat & Zobel, 2008) and provides further empirical evidence on the need for large sets of
queries when we want to derive statistical conclusions about the superiority of one system over the other. Many
query splitting studies analysed significance tests using less than 30 queries in each split and, therefore, their
results must be taken with caution. Our discussion below therefore focuses on the graphs with more than 30
queries (Figures 3, 4, 5, 6 and 7).

The form of each power curve is related to the difficulty of the track. For example, on average, TREC-3 has
many relevant documents and, thus, the differences in performance between systems are higher and easier to detect
by the tests. As a consequence, TREC-3 plots tend to show a right angle.

The power curves are quite revealing on the relative merits of the significance tests. The sign test and Wilcoxon
perform the best at rejecting H0 when it is false. The permutation test, the t-test and bootstrap are inferior to both
the sign test and Wilcoxon. Our results suggest that the permutation test and the t-test have a similar behavior (and
bootstrap is slightly inferior to them). This outcome is in agreement with the study presented by Smucker et al.
(Smucker et al., 2007). But Smucker et al. did not analyse the power of the tests and, furthermore, they evaluated
Wilcoxon and the sign test in terms of how well their results match with the results yielded by the permutation test.
As argued above, we believe that significance tests should be compared with no a priori assumptions about which
test is the best.

Our results also agree with accepted statistical principles. It is known that the power of a statistical test is
mainly affected by: i) the effect size (the difference between the null and alternative values), ii) the sample size,
iii) the variability in the samples, and iv) the significance level of the test. The power of a test depends on these
four factors, and it is not uncommon that simpler tests perform better than complex ones. Furthermore, the relative
merits of the tests change under different conditions. For example, our TREC8 experiments show that when the
sample size is small (10 queries) and the effect size is high (more than 15%) the sign test has less power. Our
results also agree with the findings reported by Conover about the relative loss of power of the permutation test
(see Section 5.11, (Conover, 1999)). As a matter of fact, simulation studies conducted by Conover and Iman
suggested a preference on the tests (t-test << permutation << Wilcoxon) that matches with ours. Our study also
agrees with Kempthorne and Doerfler (Kempthorne & Doerfler, 1969), who concluded that the permutation test
behaves very well under H0. The permutation test matches very well with the significance value (see Fig. 2).
However, only Wilcoxon behaves well under both H0 (Fig. 2) and H1 (power curves).

4.3 Discussion

Studying significance tests based on the APs obtained from the simulated runs is a reliable way to understand
how the tests detect differences in search performance. An essential component of our methodology is the way in
which we produce SD models with increased performance. In section 3, we claimed that increasing µ(i)1 leads to
better performance. Figure 8 plots the AP –averaged over all systems and running 50 simulations per model– with
varying increases of µ(i)1 . The curves, which are monotonic increasing, demonstrate that manipulating the mean of
L1 leads to models with increasingly better performance.

Observe that increasing µ(i)1 does not improve the performance of the modeled system for every query. The
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Figure 3: Average P (Reject H0) (α = 0.05) in TREC 3.
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Figure 4: Average P (Reject H0) (α = 0.05) in TREC 5.
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Figure 5: Average P (Reject H0) (α = 0.05) in TREC 6.
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Figure 6: Average P (Reject H0) (α = 0.05) in TREC 7.
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Figure 7: Average P (Reject H0) (α = 0.05) in TREC 8.
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process is stochastic in nature and the improved systems tend to perform better for many queries, but they also
lead to decreased performance for a few queries. This is a natural consequence of the sampling process (sampling
from a better model tends to produce better performance, but individual samples show some variance). To further
illustrate this point, Figure 9 shows the effect of a 5% increment in µ(i)1 (similar boxplots were obtained for the
other percentages of improvements). The figure presents a summary of the distribution of ∆AP (% variation:
AP improved model vs AP original model) for all system-query pairs in our simulated study2. In all collections,
the median improvement in AP is positive, but there is a large variance, with many queries improved and some
other queries damaged. This demonstrates that the simulation is realistic (the system that is intrinsically better
underperforms for some individual queries) and reflects the typical situation of topic variation in IR experiments
(an improvement in search technology leads to improved performance for the majority of topics, but it also leads
to poorer performance for a minority of topics).

5 Conclusions

In this work, we have thoroughly analysed a number of significance tests that have been commonly employed in
IR experiments. A crucial contribution of our paper is the proposal of an innovative methodology to compare
significance tests. Our method models simulated search systems and evaluates the tests under complete certainty
about the truth value of the null hypothesis. Following the lessons learnt in the area of Score Distributions for IR,
we built models –learnt from TREC runs— that mimic the behavior of real search systems, we created different
situations where the null hypothesis is true or false, and we evaluated the ability of significance tests to correctly
accept or reject the null hypothesis.

The experiments performed revealed that Wilcoxon and the sign test are the most reliable tests for IR evalu-
ation. Both of them have more power than the permutation test, bootstrap and the t-test. Furthermore, the behavior

2The boxplot represents 100 simulations for each query-system pair.
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of Wilcoxon and the sign test concerning type I errors is solid. Previous studies (Smucker et al., 2007) claimed
that the use of Wilcoxon and sign test should be discontinued. Our study reveals otherwise. We confirmed that the
t-test and bootstrap resemble more the permutation test, but we also provided substantive evidence on the weak
power of the permutation test when compared with Wilcoxon or the sign test. Smucker et al (Smucker et al., 2007)
showed that, in comparison with the permutation test, Wilcoxon and the sign test produce different p-values. Such
outcome led the authors to argue against the two non-parametric tests (in a study where miss and false alarm rates
were computed based on the agreement between each test and the permutation test). Our methodology is agnostic
about which test is more reliable, adds another valuable tool to IR practitioners, and shows that the current sup-
port to the t-test or permutation should be revisited. Following our study, we would recommend IR practitioners
to employ Wilcoxon or the sign test. Compared to the three other tests, Wilcoxon and the sign tests have more
power and, thus, a higher ability to detect real improvements in search technologies. This ability is instrumental in
advancing the field of IR.

Our results are also in agreement with well-known statistical facts. We showed that the larger the query set
is, the more reliable the comparison is. Experiments with less than 30 queries are questionable and, therefore, it
is misleading to compare significance tests based on query-splitting methods whose splits have less than 30 quer-
ies. On the other hand, Conover (Conover, 1999) in his authoritative book on non-parametric statistics, exposed
a number of cases where parametric methods, such as the t-test, have low power compared to non-parametric
methods based on ranks. Such behavior is particularly apparent with data that show specific deviations from the
normal distribution. Our evaluation fits well with such statistical knowledge (as a matter of fact, the distribution
of differences in ad-hoc retrieval is known not to follow a normal distribution). In his book, Conover also referred
to simulation studies where the permutation test showed a relative lack of power when compared to tests based on
ranks. Overall, our empirical findings are in line with Conover’s findings. In a thorough series of experiments per-
formed with multiple retrieval collections, we showed that the t-test and the permutation test –whose p-values are
similar to those of the t-test– have less power than the sign test and Wilcoxon. This suggests that, under the typical
conditions of IR evaluation, we should prefer rank-based methods over alternative significance tests. Finally, the
weak results obtained with the bootstrap test were a bit surprising. Such poor behavior suggests the need for more
effective bootstrap methods in IR experimentation.
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Appendix

The following pseudo-code computes the probability of a type I error, p(Reject H0|H0 is true):

Algorithm 1: Pseudo-code for computing the probability of a type I error
Input: A set of TREC systems {S1,S2, . . . , Sm}, a set of queries {q1,q2, . . . , qn}, a set of set of relevance judgements {J1,J2 . . . , , Jn}, for

each system Sj and query qi a set of scores Sj,i = {s1j,i, s2j,i, . . . , s1000j,i } and a significance level α
for j ← 1 to m do

for i← 1 to n do
mixture[j, i]← learnLogNormalMixture(Sj,i,Ji)

for j ← 1 to m do
rejectionWilcoxon← 0;
rejectionSign← 0;
rejectionT test← 0;
rejectionPermutation← 0;
rejectionBootstrap← 0;
for k ← 1 to 1000 do

for i← 1 to n do
S1
j,i ← sort(randomSample(mixture[j, i], 1000));
S2
j,i ← sort(randomSample(mixture[j, i], 1000));
ap1[j, i]← ap(S1

j,i,mixture[j, i]);
ap2[j, i]← ap(S2

j,i,mixture[j, i]);

rejectionWilcoxon← rejectionWilcoxon+ testWilcoxon(ap1[j], ap2[j], α);
rejectionSign← rejectionSign+ testSign(ap1[j], ap2[j], α);
rejectionT test← rejectionT test+ testT test(ap1[j], ap2[j], α);
rejectionPermutation← rejectionPermutation+ testPermutation(ap1[j], ap2[j], α);
rejectionBootstrap← rejectionBootstrap+ testBootstrap(ap1[j], ap2[j], α);

pRejectH0GivenH0[wilcoxon]← pRejectH0GivenH0[wilcoxon] + (rejectionWilcoxon/1000);
pRejectH0GivenH0[sign]← pRejectH0GivenH0[sign] + (rejectionSign/1000);
pRejectH0GivenH0[ttest]← pRejectH0GivenH0[ttest] + ()rejectionT test/1000);
pRejectH0GivenH0[permutation]← pRejectH0GivenH0[permutation] + (rejectionPermutation/1000);
pRejectH0GivenH0[bootstrap]← pRejectH0GivenH0[bootstrap] + (rejectionBootstrap/1000);

pRejectH0GivenH0[wilcoxon]← pRejectH0GivenH0[wilcoxon]/m;
pRejectH0GivenH0[sign]← pRejectH0GivenH0[sign]/m;
pRejectH0GivenH0[ttest]← pRejectH0GivenH0[ttest]/m;
pRejectH0GivenH0[permutation]← pRejectH0GivenH0[permutation]/m;
pRejectH0GivenH0[bootstrap]← pRejectH0GivenH0[bootstrap]/m;

where m is the number of systems, n is the number of queries, the sort() method sorts in descending order,
randomSample(mixture[j, i], x) generates an array of size x with random samples from the mixture, and
testNameOfTheTest(ap1[j], ap2[j], α) returns 1 when the test determines rejection of H0 given the provided
alpha and 0 otherwise.
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The following pseudo-code produces the power figures:

Algorithm 2: Pseudo-code for computing the power plots of the statistical tests for a TREC edition
Input: A set of TREC systems {S1,S2, . . . , Sm}, a set of queries {q1,q2, . . . , qn}, a set of set of relevance judgements {J1,J2 . . . , , Jn}, for

each system Sj and query qi a set of scores Sj,i = {s1j,i, s2j,i, . . . , s1000j,i } and a significance level α
for j ← 1 to m do

for i← 1 to n do
mixture[j, i]← learnLogNormalMixture(Sj,i,Ji)

for j ← 1 to m do
rejectionWilcoxon← 0;
rejectionSign← 0;
rejectionT test← 0;
rejectionPermutation← 0;
rejectionBootstrap← 0;
for h← 0.0 to 0.30 do

for k ← 1 to 1000 do
for i← 1 to n do

S1
j,i ← sort(randomSample(mixture[j, i], 1000));
mixture′[j, i]← mixture[j, i];
mixture′[j, i].µ1 ← mixture[j, i].µ1 × (1 + h);
S2
j,i ← sort(randomSample(mixture′[j, i], 1000));
ap1[j, i]← ap(S1

j,i,mixture[j, i]);
ap2[j, i]← ap(S2

j,i,mixture
′[j, i]);

rejectionWilcoxon← rejectionWilcoxon+ testWilcoxon(ap1[j], ap2[j], α);
rejectionSign← rejectionSign+ testSign(ap1[j], ap2[j], α);
rejectionT test← rejectionT test+ testT test(ap1[j], ap2[j], α);
rejectionPermutation← rejectionPermutation+ testPermutation(ap1[j], ap2[j], α);
rejectionBootstrap← rejectionBootstrap+ testBootstrap(ap1[j], ap2[j], α);

pRejectH0[wilcoxon, h]← pRejectH0[wilcoxon, h] + (rejectionWilcoxon/1000);
pRejectH0[sign, h]← pRejectH0[sign, h] + (rejectionSign/1000);
pRejectH0[ttest, h]← pRejectH0[ttest, h] + ()rejectionT test/1000);
pRejectH0[permutation, h]← pRejectH0[permutation, h] + (rejectionPermutation/1000);
pRejectH0[bootstrap, h]← pRejectH0[bootstrap, h] + (rejectionBootstrap/1000);

for h← 0.0 to 0.15 do
pRejectH0[wilcoxon, h]← pRejectH0[wilcoxon, h]/m;
pRejectH0[sign, h]← pRejectH0[sign, h]/m;
pRejectH0[ttest, h]← pRejectH0[ttest, h]/m;
pRejectH0[permutation, h]← pRejectH0[permutation, h]/m;
pRejectH0[bootstrap, h]← pRejectH0[bootstrap, h]/m;

where withmixture′[j, i].µ1 ← mixture[j, i].µ1×(1+h) we are altering the mean of the distribution of relevant
documents in the mixture by a h percentage.
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