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Abstract 

The present work represents the first characterization of a clustered histone repetitive unit containing an H1 

gene in a bivalve mollusk. To complete the knowledge on the evolutionary history of the histone multigene 

family in invertebrates, we undertake its characterization in five mussel Mytilus species, as an extension of 

our previous work on the H1 gene family. We report the quintet H4–H2B–H2A–H3–H1 as the major 

organization unit in the genome of Mytilus galloprovincialis with two 5S rRNA genes with interspersed 

nontranscribed spacer segments linked to the unit, which is not justified by their cotranscription with histone 

genes. Surprisingly, 3′ UTR regions of histone genes show two different mRNA termination signals, a stem-

loop and a polyadenylation signal, both related to the evolution of histone gene expression patterns 

throughout the cell cycle. The clustered H1 histones characterized share essential features with “orphon” H1 

genes, suggesting a common evolutionary origin for both histone subtypes which is supported by the 

reconstructed phylogeny for H1 genes. The characterization of histone genes in four additional Mytilus 

species revealed the presence of strong purifying selection acting among the members of the family. The 

chromosomal location of most of the core histone genes studied was identified by FISH close to telomeric 

regions in M. galloprovincialis. Further analysis on nucleotide variation would be necessary to assess if H1 

proteins evolve according to the birth-and-death model of evolution and if the effect of the strong purifying 

selection maintaining protein homogeneity could account for the homologies detected between clustered and 

“orphon” variants. 
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The nucleotide sequences for histone genes described in the present work have been deposited in the 

GenBank Database under the following accession numbers: Mytilus galloprovincialis histone repetitive unit 

(AY267739); M. californianus H2A (AY267759), H2B (AY267741), H3 (AY267745), H4 (AY267752); M. 

chilensis H2A (AY267756), H2B (AY267744), H3 (AY267746), H4 (AY267751); M. edulis H2A 

(AY267757), H2B (AY267742), H3 (AY267749), H4 (AY267754); M. galloprovincialis H2A (AY267755), 

H2B (AY267740), H3 (AY267748), H4 (AY267750); M. trossulus H2A (AY267758), H2B (AY267743), 

H3 (AY267747), H4 (AY267753). 

 

Introduction 

Histones are a small set of basic proteins found in all eukaryotic organisms, involved in DNA packaging in 

nucleosomes and also in the regulation of gene expression. There are five histone classes which can be 

classified in two major groups according to structural and functional criteria: core histones (H2A, H2B, H3, 

H4), which form multiprotein complexes and interact with DNA to constitute the nucleosome structure, and 

linker histones (H1), which interact with DNA stretches between nucleosomes giving rise to the 

chromatosome structure and participate in nucleosome positioning (Simpson 1978). 

Core histones show a typical tripartite structure with a central globular domain containing a fold motif 

involved in protein–protein interactions forming H2A–H2B heterodimers and (H3–H4)2 tetramers. The 

central domain is flanked by two terminal tails (N and C terminal) without tertiary structure, where the N-

terminal domains play a critical role in regulation of gene expression by interacting with different 

transcription factors (Arents and Moudrianakis 1995). The typical structure of H1 proteins consists of a 

central trypsin-resistant globular domain, which contains a winged-helix domain, flanked by two 

nonorganized terminal tails (Ramakrishnan et al. 1993). The long C-terminal tail is the most important 

domain, playing a role in nucleosome positioning and regulation of gene expression (Khochbin and Wolffe 

1994; Wolffe et al. 1997). 

With the exception of the H4 histone, for which variants have not been described, these proteins can also be 

classified on the basis of their genomic organization and expression patterns, such as replication dependent, 

replication independent, stage specific, and tissue specific (Isenberg 1979; Maxson et al. 1983; Doenecke et 

al. 1997). Replication-dependent histones are expressed only in the S-phase of the cell cycle during DNA 

replication, whereas replication-independent types are expressed at low levels but continuously throughout 

the cell cycle. Stage specific histones are generally and specifically expressed during early embryogenesis 

and tissue specific types are detected only in particular cell types such as testis and avian nucleate 

erythrocytes (Hentschel and Birnstiel 1981; D’Andrea et al. 1985; Ohsumi and Katagiri 1991). 

In many organisms core and linker histones are organized in clusters containing several copies of the five 

histone gene classes (Hentschel and Birnstiel 1981). These show a typical tandem arrangement in 

invertebrate genomes (Maxson et al. 1983), whereas this tandem configuration is generally lost in vertebrate 

genomes (D’Andrea et al. 1985; Albig et al. 1997; Wang et al. 1997). Additional organizations of histone 

genes are usually observed. Independent clusters containing only H1 genes have been described in annelids 

(Sellos et al. 1990; del Gaudio et al. 1998) and mussels (Drabent et al. 1999), which coexist in the genome 

with clustered repetitions of the five histone classes. The presence of histone quartets (without H1) has also 

been reported for newts (Stephenson et al. 1981), sea stars (Cool et al. 1988), corals (Miller et al. 1993), 

recently for the mussel Mytilus edulis (Albig et al. 2003), and also in the genome of Drosophila virilis 

coexisting with histone quintets (Domier et al. 1986). Different reports have proposed an “orphon” 

hypothesis to explain the evolutionary origin of the independently organized H1 genes. It is generally 

accepted that the exclusion of a gene from a gene family, and consequently from the homogenization events 

acting over the members, could give rise to an “orphon” gene, which hereafter would be under totally 



 
 

different evolutionary constraints to those guiding the evolution of the gene family (Childs et al. 1981; 

Schulze and Schulze 1995). Such an “orphon” origin has been proposed for the independent H1 clusters 

isolated in the mussel M. edulis (Drabent et al. 1999) and for a group of H1 genes in four additional Mytilus 

species (Eirín-López et al. 2002). 

So far, H1 clusters and core histone clusters have been independently characterized in one mussel species. 

The purpose of this paper is to undertake the molecular characterization of the histone repetitive unit in the 

mussel M. galloprovincialis and to study its evolution by analyzing the core histone genes in four additional 

Mytilus species. These studies are an extension of our previous work on H1 genes. Our results show that 

clustered H1 genes share common features with “orphon” variants at their promoter regions and at the 

protein central conserved domain, suggesting a common evolutionary origin for both histone subtypes. 

Additionally, nucleotide substitution numbers and codon bias values were estimated for histone genes and 

discussed in relation to copy number and chromosomal location analyses. 

 

Materials and methods 

General methods 

Mussel specimens were collected from different localities along the European and American coasts as 

follows: Mytilus californianus from Point No Point (Pacific coast of Canada), M. chilensis from Puerto 

Aguirre (Chile), M. edulis from Yerseke (Holland), M. galloprovincialis from Balcobo (Atlantic coast of 

Spain), and M. trossulus from Esquimalt Lagoon (Pacific coast of Canada). Genomic DNA was purified in 

CTAB buffer (2% hexaclecytrimethylammonium bromide, 1.4 M NaCl, 1 00 mM Tris–HCl, pH 8.0, 20 mM 

EDTA, 0.2% β-mercaptoethanol) following the protocols described by Rice and Bird (1990) and 

Winnepenninckx et al. (1993). 

Screening of a Mytilus galloprovincialis genomic library 

A genomic library from the mussel M. galloprovincialis synthesized in EcoRI/λ DASH II vector (Stratagene) 

was screened for histone genes using as a probe the coding region for the H1 gene (1100 bp) of this species 

(Eirín-López et al. 2002). The probe was labeled with [32P]dCTP using the Rediprime II Kit (Amersham 

Pharmacia Biotech) and subsequently used in the hybridization procedure as follows: filters were 

prehybridized under high stringency conditions for 12 h at 68°C, in a solution of 5× SSC, 0.1% SDS, 2% 

nonfat powdered milk, 100 µg/mL denatured herring sperm DNA. The labeled probe was added to the 

solution and the hybridization was carried for 24 h at 68°C. Posthybridization washes of the filters were 

successively performed in a solution of 2× SSC, 1% SDS for 30 min at room temperature. Positive clones 

were verified by Southern blotting experiments, again using the H1 probe. 

DNA sequencing of the repetitive unit 

PCR primers were designed from consensus of coding regions for histone genes in invertebrates to amplify 

core histone genes in the mussel M. galloprovincialis. Primers annealing in coding regions were defined as: 

5′-H2A-partial (AAG AGG TAA AAG TGG AAA GGC CCG) and 3′-H2A-partial (TAG CTT GAT TTG 

CCG GTC TTC TTG), with a resulting fragment of 366 bp; 5′-H2B-partial (CAA AGT CAA CGG CAC 

CCC GTG) and 3′-H2B-partial (TTT GGC GAG TTC ACC TGG CAG), amplifying a 278-bp-long 

fragment; 5′-H3-partial (TCG CAA ATC TAC AGG AGG GAA GGC) and 3′-H3-partial (CAT GAT GGT 

AAC CCT CTT GGC GTG), giving a fragment of 340 bp; and 5′-H4-partial (AAA GGA GGA AAG GGA 

CTG GGA) and 3′-H4-partial (CTG GCG TTT CAA GGC GTA CAC), with a resulting fragment of 267 bp. 

PCR amplifications from template DNA (25 ng) were performed in a final volume of 25 µL, where primers 

were used at 10 µM in PCR reactions, with 1 U/µL of Taq DNA polymerase (Roche Molecular 



 
 

Biochemicals). Reaction conditions were the same for the four histones, with a first denaturation step of 4 

min and 30 s at 95°C, followed by 35 cycles consisting of a 30 s denaturation step at 95°C, 30 s of annealing 

at 51°C, and 30 s of extension at 72°C. A final extension step of 5 min was performed at 72°C. 

The resulting products were digoxigenin-labeled (Roche Molecular Biochemicals) by PCR and subsequently 

used in Southern blot to verify the presence of core histone genes in the positive clones of the screening. 

Additionally, the primers annealing in coding regions were also used for PCR amplifications to corroborate 

the Southern blot results. The sequence of the histone cluster was determined using a primer walking strategy 

where intermediate primers were designed (Table 1) until determining the complete DNA sequence of the 

unit, through automatic DNA sequencing directly from PCR products in an ABI PRISM 377 sequencer 

(Applied Biosystems, Perkin–Elmer). Coding regions for histone genes were identified by means of BLAST 

software by comparing the obtained sequences with those of the ORFs in the databases. The complete 

nucleotide sequence of the unit has been deposited in the GenBank Database under accession number 

AY267739. 

Table 1. Primers used for DNA sequencing of the histone repetitive unit in M. galloprovincialis 

Primer Sequence (5′→3′) Position 

H3.15 GGATTCGGAGGTTAAACAGC 461–480 

H3.13 ATTCTTCATCTGATTAGTCCG 1023–1043 

H3.11 TACATTTCAGGAGTATACATC 1640–1661 

H3.9 CATCCAGGCTGTACTTCTGCC 2244–2264 

H3.7 TTTAAGAGAATGTGACAGCAG 2881–2901 

H3.5 TCCGATTGGTATAGACATGC 3256–3275 

H3.3 TGCAAACATTGCGGCTAGC 3671–3689 

H3.1 CTATGTGGCTTCTTAACTCC 3866–3885 

H3.2 TTCGTTTCCAGAGCTCTGC 4011–4029 

H3.4 GATGTACAACATATTCAGACTC 4234–4255 

H3.6 CAATCCATCTTCTAATTGCAG 4617–4637 

H3.8 TGTCAATTTCCCGGGACATC 5224–5243 

H3.10 ATCATTAGTTATTTGGTCCATC 5593–5614 

H3.20 GACTTCCTTGACCGAGATG 5987–6005 

H3.19 GATGTGTGCGAATGAACGAC 6507–6526 

H3.18 TTTGCAGATTTGGCAGCAGG 7050–7069 

H3.17 AAGAAGACAAAGGCTGCAGC 7089–7108 

H3.22 GTGTCTACGACCATATCACG 7484–7503 

H3.21 GAATACCGGGTGTTGTAGAC 7584–7603 

 

PCR amplification and DNA sequencing of core histone genes in Mytilus species 

Additional sets of primers were defined from DNA sequences of the repetitive unit characterized in M. 

galloprovincialis to efficiently amplify core histone genes coding and noncoding flanking regions in mussel 

species belonging to the genus Mytilus. These primers were defined as: 5′-H2A-full (ACT ACC TGG AAG 

AAG CGA T) and 3′-H2A-full (ACA GAG AAA TGG AGG GAG T), 5′-H2B-full (GTC ATT TTG GGG 

TGG GAC ACA G) and 3′-H2B-full (CAA AAC ATC GCT TCT TCC AGG TAG), 5′-H3-full (TGT GTG 

CCA AAT GTT AGC TTG G), and 3′-H3-full (CAG TAA CCT GAC TGT CTT GGT CT), and 5′-H4-full 

(ATT CCT ACA GAG TTA CCT CCC GGA T) and 3′-H4-full (AAG TTG GAC AAG TTG GAC AGG 



 
 

AGA). Histone genes were amplified in four other species (M. californianus, M. chilensis, M. edulis, and M. 

trossulus) by PCR under the same conditions as described above for M. galloprovincialis except for the 

annealing temperature, which was 52°C. A 661-bp-long fragment was obtained in the case of H2A, 663 bp 

for H2B, 878 bp for H3, and 601 bp for H4. Automatic DNA sequencing was performed directly from the 

PCR products in a CEQ 8000 sequencer (Beckman Coulter). The GenBank accession numbers of these 

sequences are: M. californianus H2A (AY267759), H2B (AY267741), H3 (AY267745), H4 (AY267752); M. 

chilensis H2A (AY267756), H2B (AY267744), H3 (AY267746), H4 (AY267751); M. edulis H2A 

(AY267757), H2B (AY267742), H3 (AY267749), H4 (AY267754); M. galloprovincialis H2A (AY267755), 

H2B (AY267740), H3 (AY267748), H4 (AY267750); and M. trossulus H2A (AY267758), H2B 

(AY267743), H3 (AY267747), H4 (AY267753). 

Nucleotide substitution numbers in Mytilus histone genes 

Multiple alignments of amino acid and nucleotide sequences were conducted using Clustal X software 

(Thompson et al. 1997) with the default parameters given by the program. The proportions of synonymous (p 

S) and nonsynonymous (p N) substitution differences per site were computed for all sequences by the 

modified Nei–Gojobori method (Zhang et al. 1998). Phylogenetic trees were reconstructed from sequence 

alignments by means of the neighbor-joining algorithm (Saitou and Nei 1987), testing the inferred topology 

with 1000 bootstrap replicates. All the steps in the analysis were conducted using the MEGA package, 

version 2.1 (Kumar et al. 2001). The amount of codon bias presented by Mytilus histone genes was estimated 

by means of the DnaSP 3 program (Rozas and Rozas 1999) and is referred to as the “effective number of 

codons” (ENC [Wright 1990]), where the highest value (61) indicates that all synonymous codons are used 

equally (no bias), and the lowest (20) that only one codon is used in each synonymous class (extreme bias). 

Copy number of histone genes in mussel genomes 

Different amounts of genomic DNA (200, 100, 50, 25 ng) from each of the five species were transferred onto 

a nylon membrane together with 0.8, 0.4, 0.2, and 0 ng of PCR product from the amplification of histone 

genes (coding regions) as a reference. The haploid DNA complement consists of 1.605 pg in M. 

californianus and 1.510 pg in M. trossulus (González-Tizón et al. 2000) and of 1.710 pg in M. chilensis and 

M. edulis and 1.920 pg in M. galloprovincialis (Rodríguez-Juiz et al. 1996). The blot was hybridized with 

100 ng/mL of each of the digoxigenin-labeled probes (whole coding regions of H2B and H3 from M. 

galloprovincialis lacking noncoding regions to avoid nonspecific signals), in a final volume of 25 mL of 

solution, where probes were not at limiting conditions. The resulting signals were detected by 

chemiluminescence and hybridization intensity was quantified using Q-Win Image Analysis Software (Leica 

Imaging System). 

Fluorescent in situ hybridization on Mytilus galloprovincialis chromosomes 

M. galloprovincialis specimens were collected from intertidal rocky shores and, once in the laboratory, were 

placed in tanks with filtered seawater and fed with a microalgae suspension of Isochrysis sp. and Tetraselmys 

sp. for at least 10 days. Metaphases were obtained as described by González-Tizón et al. (2000). The DNA 

probe used was a digoxigenin-labeled fragment of approximately 4.2 Kbp containing only core histone genes 

that were amplified by PCR using the clone λ2[5,1]1a DNA as a template and the primers 5′-H4-full/3′-H3-

full at 10 µM. Hybridization was performed using 100 ng of labeled probe and the signal was detected by 

immunocytochemical incubations in mouse anti-digoxigenin, rabbit anti-mouse FITC (fluorescein 

isothiocyante), and goat anti-rabbit FITC antibodies, with a final chromosome counterstaining using 

propidium iodide (50 ng/mL antifade). Chromosome preparations were visualized and photographed using a 

Leica DM RXA fluorescence microscope on Sensia-Fujichrome 400 ASA film (Fujifilm). 

 



 
 

Results 

Isolation and organization of histone genes 

Five positive clones, λ2[5,1]1a, λ2[5,2]1a, λ4[13,7]1a, λ7[25,13]1a, and λ8[29,21]1a, were isolated from the 

genomic library of Mytilus galloprovincialis following the procedure described in Materials and methods. 

The presence of H1 genes was corroborated by means of Southern blot analyses on phage DNA digested 

with EcoRI (Fig. 1A). The presence of the remaining histone genes (H2A, H2B, H3, H4) was evidenced in 

the clones λ2[5,1]1a and λ2[5,2]1a through PCR amplifications using specific primers annealing in histone 

coding regions. The unit was subsequently sequenced by primer walking (GenBank accession No. 

AY267739). The sequence analysis displayed the presence of five histone genes and two 5S rRNA genes in a 

fragment of approximately 8 Kbp with the following organization: H4>, <H2B, H2A>, H3>, H1>, 5S>, 5S>. 

Intergenic spacers separate the genes from one another (Fig. 1B). A final round of DNA sequencing of the 

positive clone λ2[5,1] revealed the first nucleotides of the open reading frame for the H4 gene near the 5S 

rDNA genes in the 3′ region of the histone unit (the beginning of a new unit) and the last nucleotides of the 

open reading frame for the H1 gene flanking the H4 gene in the 5′ region of the unit (the final segment of the 

previous unit). We understand these results as evidence for the presence of histone genes organized in 

repetitive units which are grouped in clusters. 

 

 

 

Figure 1. Southern blot of phages isolated from the genomic library of M. galloprovincialis (A) and histone gene 

cluster in clone λ2[5,1]1a. (B). A Lanes are as follows: 1, λ2[5,1]1a; 2, λ2[5,2]1a; 3, λ4[13,7]1a; 4, λ7[25,13]1a; 5, 

λ8[29,21]1a. All clones showed a common hybridization signal of 2.5 Kbp. B Restriction map of the characterized 

repetitive unit in the clone λ2[5,1]1a. E, EcoRI; A, AccI; H, HindIII; P, PstI; N, HindII; D, DraI; S, SacI. Position and 

orientation of the intermediate and specific primers used in the amplification of the repetitive unit, organization, and 

polarity of histone genes and 5S rRNA genes in the unit are indicated below. 

The units characterized in the present work (quintets) were not under the ancestral exclusion events which 

gave rise to clusters containing only tandemly arranged “orphon” H1 histone genes. Taking into account that 

these quintets gave rise to the two additional types of clusters reported in Mytilus genomes (Drabent et al. 

1999; Albig et al. 2003) and also regarding the coordinate expression of histone genes (Hentschel and 

Birnstiel 1981), we define major units as those gathering the five histone classes. 

 

 



 
 

Analysis of histone sequences in the repetitive unit 

The sequence of the unit is composed of a first ORF of 309 bp coding for an H4 protein of 103 residues, 

located 163 bp downstream of the 5′ EcoRI site (Fig. 2A). The next ORF is inverted and spaced by 782 bp 

from the H4 gene, and consists of 372 bp encoding an H2B protein of 124 amino acids (Fig. 2B). A short 

spacer segment of 282 bp separates this gene from a 375-bp-long ORF, which encodes for an H2A histone 

type of 125 residues (Fig. 2C). After a long spacer region of 1470 bp, the ORF for histone H3 is found, 

which is 408 bp long and encodes for 136 amino acids (Fig. 2D). The next ORF comprises 594 bp encoding 

an H1 protein of 198 amino acids, which is separated by a 2374 bp-long spacer region from H3 (Fig. 2E). 

Both 5S rRNA genes are 300 bp downstream from the end of the stop codon of H1 and encoded by the same 

DNA strand. A short segment of 41 bp corresponding to an α-NTS region is first identified, followed by a 5S 

rRNA gene of 121 bp separated by another α-NTS region of 132 bp from the last 5S rRNA gene (Fig. 2F). 

 

 

Figure 2. Nucleotide and amino acid sequences of M. galloprovincialis histone genes encoded by the repetitive unit 

isolated from clone λ2[5,1]1a with flanking 5′/3′ untranslated regions. Numbering on the right refers to the nucleotide 

sequence and numbering in boldface refers to amino acid residues. Translated amino acids are placed above the 

correspondingcodons. The conserved promoter motifs are indicated as follows: TATA boxes are in boldface and boxed, 

putative CAP sites are underlined, CAAT boxes are in boldface, and the H1 box-like (positions 6376 to 6383) and the 



 
 

H4 box (positions 6435 to 6451) elements are boxed in the promoter region of the H1 gene. In the 3′ UTR, regions of 

conserved elements are indicated as follows: stem-loop orhairpin terminal structures are in boldface and underlined, and 

purine-rich elements are in italics and boxed. Note that the amino acid sequence of H2B appears inverted because it is 

encoded by the complementary DNA strand. 5S rRNA genes linked to the histone repetitive unit are reflected in F, 

where 5S genes are indicated in boldface and the interspersed α-NTS spacers are underlined. 

 

Specific subtype features were absent, with the exception of the H4 gene, where the presence of an alanine 

residue at position 74, typical of stage-specific subtypes (Drabent et al. 1995), has been identified. No typical 

features of vertebrate-specific histones were identified in mussel histone genes, except for H1 promoter 

regions, although the high K:R ratio presented by these genes (58:2) is typical of somatic subtypes (del 

Gaudio et al. 1998). 

The nucleotide sequence for the H1 histone is clearly divergent from the H1 genes characterized in other 

Mytilus species, with several indel (insertion/deletion) events at the C-terminal domain of the molecule. A 

deletion of two residues is observed at position 114 (Ala–Lys), together with an insertion of three, five, and 

one residue at positions 137 (Thr–Ala–Ala), 166 (Pro–Ala–Ala–Lys–Pro), and 185 (Thr), respectively. A 

high density of amino acid motifs enriched in basic residues is also observed in this domain, possibly 

representing phosphorylation sites (Mezquita et al. 1995). Comparison of the protein central conserved 

domain reveals that, at the amino acid level, clustered H1 proteins of M. galloprovincialis show the highest 

degree of homology with the consensus for H1 proteins in mussels, followed by that of H1D proteins in sea 

urchin and that of H5/H10 in vertebrates (Fig. 3). 

 

 

Figure 3. Length variation and analysis of the central protein domain in H1 histones. A Location and characterization 

of amino acid indel events (in boldface) in the H1 C-terminal domain, compared with the consensus sequence in the 

genus Mytilus. Asterisks indicate perfect matches, colons indicate a high degree of homology, and dots indicate a low 

degree of homology between residues. B Comparison of the central conserved domain between clustered H1 proteins 

and consensus sequences for other organisms. Homology is indicatedas in A. The three α-helix regions in the winged-

helix motif are emphasized by open boxes and β-sheet structures are indicated with black boxes. 



 
 

Noncoding flanking regions of the histone genes 

The promoter regions contain several elements common to other genes transcribed by RNA polymerase II. 

Perfect TATA signals were identified for H2A, H2B, and H4 genes at positions −62 to −69, −69 to −76, and 

−56 to −61, respectively. H1 had a slight modification, showing the sequence TAGATAA. The typical 

sequences 5′-GATCC-3′ and 5′-CCTAATTTGCATATG-3′ (Maxson et al. 1983) were not detected. The 

short sequence 5′-MCATTCP-3′, which represents putative CAP sites, was also present in all genes, 

generally 50 to 70 bp upstream of the start codon (Sures et al. 1980). From our results, the consensus CAP 

sequence for M. galloprovincialis histone genes was defined as 5′-Pu T T ACATTCPu-3′. These genes do not 

contain either the short sequence CCCTCT/G, which is present upstream from the CAP sites in Drosophila 

histone genes, or ATTTGCAT, which is specific for the H2B promoter region and involved in replication-

dependent expression (Sturm et al. 1988). The CAAT box signal was identified in all cases and was present 

twice in the H3 gene, a characteristic feature of vertebrate histone genes (Connor et al. 1984). Histone H1 

promoter regions showed the presence of typical elements of linker genes such as an H1 box-like element 

(−166 to −173), followed by an H4 box element (−98 to −114). The latter element occupies the same position 

that the CAAT box occupies in somatic subtypes, and is typical of H4 genes and linker “orphon” variants 

(Peretti and Khochbin 1997). Only the presence of one enhancer sequence was identified for the H4 gene at 

positions −41 to −47, matching perfectly with the consensus sequence defined for histone genes (TGA T A T A 

TG [Connor et al. 1984]), TGGATAG being for M. galloprovincialis. Additionally, a high degree of 

homology between promoter regions of H2A and H4 genes was detected, where the first nine residues of 

both proteins match perfectly. This is consistent with that previously reported for sea urchins (Sures et al. 

1978), suggesting a common evolutionary origin for both proteins. 

Each of the histone genes analyzed show the typical palindrome sequence forming the stem-loop structure at 

noncoding 3′ terminal regions, followed by a purine-rich element 14 bp downstream. The stem-loop 

consensus sequence for the genes analyzed was defined as 5′-
G
 AGCCCTTTT

C
 AAGGGC

T
 C-3′ (Table 2). 

Surprisingly, all genes show at least one additional mRNA termination signal downstream to the palindrome 

sequence, a polyadenylation signal which is typical of replication-independent histone genes expressed at 

constant but low levels throughout the cell cycle and in quiescent differenciated cells (Hentschel and 

Birnstiel 1981; Hankeln and Schmidt 1991; Akhmanova et al. 1997; del Gaudio et al. 1998; Barzotti et al. 

2000). 

The spacer regions between histone genes showed a great density of repetitions of the sequences TACA, TA, 

and TGAT. The simple sequence (AAAG)17 was detected between H4 and H2B genes, and 12 repetitions of 

the motif TTCG together with 4 reiterations of the heptanucleotide A(GA)2(AT)2 were observed in the spacer 

segment downstream of the H2A histone. Series of three repetitions forming the sequence 5′-

AC(TA)2(GA)2ATACAGAG-3′ and two repetitions of 5′-TA(GA)2ATACAAAGAA(TA)2GC-3′ were also 

present in the intergenic region between H2A and H3. 

 

 

 

 

 

 



 
 

Table 2. Transcription termination signals in M. galloprovincialis genes 

M. galloprovincialis 

histone genes 
Stem-loop signal Purine-rich motif 

Poly(A) 

signal 

H1 +37 AGCCCTTTTAAGGGCT +65 AAAAAGAG Y 

H2A +29 GGCCCTTTTCAGGGCC +58 AAAAAGAA Y 

H2B +27 GGCCCTTTTCAGGGCC +55 AAAAAGAG Y 

H3 +25 GGCCCTTTTAAGGGCC +54 AAAAAGAG Y 

H4 +29 GGCCCTTTTCAGGGCC +58 AAAAAGAA Y 

M. galloprovincialis  
C
 AGCCCTTTT

C
 AAGGGC

T
 C  AAAAAGA

G
 A  Y 

S. purpuratus  GGC
C
 TCTTTTCAG

G
 AGCC CAAGAAAGA N 

P. dumerilii  GGCC
T
 ATTTTAA

T
 AGGCC CAAAAGA N 

C. variopedatus  GG
C
 TCCTT

T
ACT

T
 CAGG

G
 ACC C

C
 A 

G
 A 

G
 AGAAA Y 

C. thummi  
C
GAGTC

T
 CTTTT

C
 TA

A
 GG

A
 GC

C
GT  AA

G
 AA

G
 AA

G
 A  Y 

A. aquaticus  GG
G
CT 

T
 CC

C
 TATT

C
 T 

G
 AG

T
 C 

C
GACC A

A
 CAA

A
 GAGA Y 

D. hydei  
G
 T 

G
TCCCTTTTCAGG

A
 GC

T
CG  

C
 A 

C
 AA

A
 GGA

G
 A 

A
CT 

A
 T  N 

O. mykiss  GGCTCTTTTAAGAGCC 
A
 T 

G
 CAAA

G
 A  N 

 

 

Nucleotide substitution numbers in Mytilus histone genes 

 

To complete the molecular and the evolutionary characterization of the histone multigene family in the genus 

Mytilus, core histone genes were isolated and sequenced in four additional mussel species. The numbers of 

synonymous (p S) and nonsynonymous (p N) nucleotide differences per site were estimated by means of the 

modified Nei–Gojobori method (Zhang et al. 1998). Nucleotide variability in histone genes was essentially 

synonymous and there were no particular species clearly divergent from the others with respect to all histone 

genes. The highest values of synonymous and nonsynonymous divergence were observed in the case of the 

H4 histone, with 0.265 ± 0.034 and 0.013 ± 0.007 substitutions per site, respectively (Table 3). M. 

californianus and M. edulis were the most divergent species at the synonymous level in the case of H2A and 

H4 genes. On the other hand, M. chilensis and M. edulis showed the highest values of synonymous 

divergence in the case of H2B and H3 genes, and they were also the most divergent pair of species at 

nonsynonymous level in the case of H3. The minimum synonymous divergence was presented by the pair M. 

galloprovincialis/M. trossulus in all genes but H2A, which showed the lowest value in M. chilensis/M. 

galloprovincialis. 

Nonsynonymously, M. trossulus was the most divergent species in the case of histones H2A and H2B, and 

M. chilensis in the case of H3 and H4. 

 

 

 

 

 



 
 

Table 3. Average numbers of synonymous (p S) and nonsynonymous (p N) substitutions in mussel histone genesa 

 H2A H2B H3 H4 

 p S ± SE p N ± SE p S ± SE p N ± SE p S ± SE p N ± SE p S ± SE p N ± SE 

Mc/Mch 
0.063 ± 

0.023 

0.000 ± 

0.000 

0.046 ± 

0.020 

0.000 ± 

0.000 

0.229 ± 

0.036 

0.010 ± 

0.006 

0.371 ± 

0.054 

0.023 ± 

0.012 

Mc/Me 
0.090 ± 

0.027 

0.000 ± 

0.000 

0.028 ± 

0.015 

0.000 ± 

0.000 

0.134 ± 

0.031 

0.007 ± 

0.005 

0.403 ± 

0.054 

0.023 ± 

0.012 

Mc/Mg 
0.072 ± 

0.024 

0.000 ± 

0.000 

0.009 ± 

0.009 

0.000 ± 

0.000 

0.202 ± 

0.034 

0.003 ± 

0.003 

0.194 ± 

0.043 

0.009 ± 

0.006 

Mc/Mt 
0.063 ± 

0.023 

0.004 ± 

0.004 

0.019 ± 

0.013 

0.004 ± 

0.004 

0.202 ± 

0.034 

0.003 ± 

0.003 

0.215 ± 

0.044 

0.009 ± 

0.006 

Mch/Me 
0.027 ± 

0.016 

0.000 ± 

0.000 

0.055 ± 

0.022 

0.000 ± 

0.000 

0.263 ± 

0.039 

0.014 ± 

0.007 

0.032 ± 

0.017 

0.000 ± 

0.000 

Mch/Mg 
0.009 ± 

0.009 

0.000 ± 

0.000 

0.037 ± 

0.018 

0.000 ± 

0.000 

0.034 ± 

0.016 

0.007 ± 

0.005 

0.338 ± 

0.053 

0.020 ± 

0.013 

Mch/Mt 
0.018 ± 

0.013 

0.004 ± 

0.004 

0.046 ± 

0.020 

0.004 ± 

0.004 

0.034 ± 

0.016 

0.007 ± 

0.005 

0.349 ± 

0.053 

0.015 ± 

0.012 

Me/Mg 
0.036 ± 

0.018 

0.000 ± 

0.000 

0.018 ± 

0.013 

0.000 ± 

0.000 

0.245 ± 

0.038 

0.007 ± 

0.005 

0.370 ± 

0.054 

0.020 ± 

0.013 

Me/Mt 
0.045 ± 

0.019 

0.004 ± 

0.004 

0.028 ± 

0.016 

0.004 ± 

0.004 

0.245 ± 

0.038 

0.007 ± 

0.005 

0.359 ± 

0.054 

0.015 ± 

0.012 

Mt/Mg 
0.027 ± 

0.015 

0.004 ± 

0.004 

0.009 ± 

0.009 

0.004 ± 

0.004 

0.000 ± 

0.000 

0.000 ± 

0.000 

0.022 ± 

0.015 

0.000 ± 

0.000 

Average 
0.045 ± 

0.012 

0.002 ± 

0.002 

0.025 ± 

0.008 

0.002 ± 

0.002 

0.159 ± 

0.024 

0.007 ± 

0.003 

0.265 ± 

0.034 

0.013 ± 

0.007 

a Species name abbreviations: Mc, M. californianus; Mch, M. chilensis; Me, M. edulis; Mg, M. galloprovincialis; Mt, 

M. trossulus. Estimations are in units of substitutions per site ± standard deviation. The average is the arithmetic mean. 

 

Histone proteins show a tripartite structure with a central conserved domain flanked by two terminal tails 

without tertiary structure. The nucleotide substitution numbers have also been determined for the three 

protein segments in the four core histone classes in order to analyze the presence of specific constraints 

acting on each domain. Comparisons of p S and p N values between the different protein domains are shown 

in Fig. 4. Regarding the central folded domain, H3 and H4 histones showed the highest levels of 

synonymous divergence, with average values of 0.189 ± 0.036 and 0.333 ± 0.042 substitutions per site, 

respectively, followed by the N-terminal and C-terminal tails. In the case of the H2A gene, the N-terminal 

domain was the most divergent at the synonymous level (0.055 ± 0.029) substitutions per site on average), 

whereas the C-terminal domain was the most divergent in the H2B gene (0.037 ± 0.034 synonymous 

substitutions per site on average). Additionally, the central domain showed the highest values of 

nonsynonymous divergence in all cases, especially in the H4 gene (0.016 ± 0.011 substitutions per site on 

average), followed by H2B (0.014 ± 0.006), H3 (0.011 ± 0.005), and H2A (0.003 ± 0.003). 

 



 
 

 

 

Figure 4. Synonymous and nonsynonymous average substitution numbers per site among the analyzed Mytilus species 

in the three functional domains of the five histone classes. N, N-terminaldomain; F, central folded domain; C, C-

terminal domain. A N-terminal domain versus central folded domain. B C-terminal domain versus central folded 

domain. C C-terminal domain versus N-terminal domain. Open circles represent synonymous substitution numbers per 

site (lower axis) and filled boxes represent nonsynonymous substitution numbers per site (upper axis). Standard 

deviations are represented by solid lines (synonymous substitutions) and dashed lines (nonsynonymous substitutions). 

 

Although a high degree of nucleotide divergence was presented by H3 and H4 genes, the phylogeny 

reconstructed from the complete nucleotide coding regions clearly discriminates between the five different 

histone classes and reflects a monophyletic origin for each histone class (Fig. 5). It is important to note that 

the clustered H1 gene from M. galloprovincialis is placed in an independent branch from the remaining 

Mytilus H1 genes previously described by Eirín-López et al. (2002). The characterization of H1 histone 

genes was completed by including mussel clustered H1 genes in the phylogenetic analysis of H1s from a 

broad number of species initially reported by Eirín-López et al. (2002). The bootstrapped topology (1000 

replicates) was rooted with the H1-like gene from the trypanosomatidae Leishmania braziliensis. Results 

show that clustered H1 genes are placed in the monophyletic subgroup of the vertebrate differentiation-

specific subtypes, where “orphon” H1 genes from Mytilus and the H1D gene from the sea urchin 

Strongylocentrotus purpuratus are also included. The amount of codon bias in Mytilus histone genes was 

estimated as the “effective number of codons” (ENC) index (Wright 1990). H4 is the most biased gene 

(35.015 ± 6.975, averaged for all species), followed by H3 (43.429 ± 2.339), H2A (43.507 ± 1.299), and 

H2B (50.522 ± 1.642). A comparison of the three protein functional domains of each histone revealed that 

the central folded domain including the fold-motif is the most biased segment in all histone genes but H2B 

(Fig. 6). 



 
 

 

Figure 5. Phylogenetic relationships among histone genes. A Phylogeny reconstructed from complete histone 

nucleotide coding regions in the genus Mytilus discriminating between the five major eukaryotic histone classes, 

marked by brackets. Bootstrap values (1000 replicates) are placed in the corresponding nodes. The sequences for 

histone genes are available under the following GenBank accession numbers: M. californianus H1 (AJ416421), H2A 

(AY267759), H2B (AY267741), H3 (AY267745), H4 (AY267752); M. chilensis H1 (AJ416422), H2A (AY267756), 

H2B (AY267744), H3 (AY267746), H4 (AY267751); M. edulis H1 (AJ416423), H2A (AY267757), H2B (AY267742), 

H3 (AY267749), H4 (AY267754); M. galloprovincialis H1 (AJ416425), H2A (AY267755), H2B (AY267740), H3 

(AY267748), H4 (AY267750); and M. trossulus H1 (AJ416425), H2A (AY267758), H2B (AY267743), H3 

(AY267747), H4 (AY267753). B Relationships among H1 genes from several species, grouped in different phyla and in 

one group of differentiation-specific subtypes. Gene expression patterns along the cell cycle are indicated in the right 

margin, where black boxes indicate active gene expression in the highlighted cell phase. 

 

 

Figure 6. Codon bias values in the structural domains of mussel histone genes. Abbreviations are as in Fig. 4. Values 

are given as an average, and in the case of the entire protein (e) they are represented by shaded bars. Thin lines indicate 

the standard deviations. Absence of bars indicates that the ENC index is not applicable. 

https://link.springer.com/article/10.1007/s00239-003-2531-5#Fig4


 
 

Copy number determination and chromosomal location of histone genes 

The copy number of histone genes in each mussel species was estimated as indicated in the Materials and 

methods. The average copy number of H2A/H2B genes was 212 copies per haploid genome (M. trossulus, 

152 copies; M. californianus, 195 copies; M. galloprovincialis, 224 copies; M. edulis, 239 copies; and M. 

chilensis, 251 copies) and about 201 copies per haploid genome for H3/H4 (M. californianus, 133 copies; M. 

trossulus, 178 copies; M. chilensis and M. galloprovincialis, 224 copies; M. edulis, 248 copies) (Fig. 7A). 

 

Figure 7. Copy number and chromosomal location of mussel histone genes. A Dot-blot results for core histone genes in 

the five Mytilus species analyzed (abbreviations are as in Table 3). The intensity of one histone copy was estimated 

from the signal pattern given by different amounts of histone probe. The copy number was resolved from this pattern. B 

FISH microphotograph after hybridization with a digoxigenin-labeled histone probe in metaphase chromosomes of M. 

galloprovincialis counterstained with propidium iodide. Arrows indicate terminal hybridization signals, and arrowheads 

indicate interstitial signals. Bar =10 µm. 

In situ hybridization of the repetitive unit without H1 and 5S rRNA genes to M. galloprovincialis 

chromosomes revealed the presence of two pairs of signals in two chromosome pairs (Fig. 7B), revealing the 

presence of two loci containing core histone genes in two different sites in the genome. One locus, which 

presumably gathers most of the histone genes due to the high intensity of its hybridization signal, is located 

at a telomeric position close to heterochromatic regions. 

Discussion 

Histone genes in the mussel Mytilus galloprovincialis 

The present work is the first characterization of a histone unit containing a H1 gene together with core 

histone genes in a bivalve mollusk. This unit is composed of one copy of each of the five histone classes, 

showing the organization H4–H2B–H2A–H3–H1, where all but H2B are transcribed from the same DNA 

strand. DNA sequencing of regions flanking the histone unit, organization and polarity of the histone genes, 

and fluorescent in situ hybridization results suggest that histone genes are organized in repetitive units which 

are clustered in two loci in the genome. 

The isolated unit is approximately 8 Kbp long and corresponds to a single PCR band, suggesting the 

presence of a single type of unit with respect to their length. Results contrast with those recently reported by 

https://link.springer.com/article/10.1007/s00239-003-2531-5#Tab3


 
 

Albig et al. (2003) for M. edulis, where no H1 histone genes were identified in the repetitive units and two 

size classes were described. 

Generally, there is great variability in the organization and polarity of histone genes in the clustered 

repetitions, even between closely related species. Previous works reveal the absence of H1 genes from the 

main repetition units in several invertebrate genomes. These genes are arranged in independent clusters as in 

the case of the mussel M. edulis (Drabent et al. 1999), with an “orphon” evolutionary origin which is 

probably common to all Mytilus species (Eirín-López et al. 2002). Our results show the presence of at least 

an additional number of H1 copies located together with the remaining histone classes forming quintets. It is 

not possible, however, to discard the presence of a second type of clusters comprising only core histone 

genes as recently described for M. edulis (Albig et al. 2003). The histone repetitive unit also contains two 5S 

rRNA genes, with an interspersed nontranscribed spacer (α-NTS) segment, which are linked to the histone 

unit and are encoded by the same DNA strand. Such an association has been previously reported for the 

crustaceans Artemia salina (Drouin and Moniz de Sá 1995) and Asellus aquaticus (Barzotti et al. 2000), 

although a different polarity of 5S genes was observed. Transcriptional control elements of the 5S rRNA 

genes reside within their coding region so that they are expected to be functionally autonomous. Given that 

5S rRNA and histone genes are transcribed by different RNA polymerases (type III and type II, 

respectively), their linkage would not be justified by their cotranscription. A possible hypothesis could 

involve the invasion of the histone units by 5S genes through transposition events, and this linkage would not 

provide any selective advantage (Drouin and Moniz de Sá 1995). 

A very interesting feature of all histone genes in the repetitive unit is the presence of two different mRNA 

termination signals in their 3′ UTR region, a unique characteristic of histone genes in a cluster. The typical 

stem-loop or hairpin-loop signal (Birnstiel et al. 1985) is followed by a purine-rich element, both signals 

involved in mRNA processing of replication-dependent genes (Hentschel and Birnstiel 1981). Additionally, 

a polyadenylation signal AATAAA, typical of replication-independent histone genes (Hentschel and 

Birnstiel 1981; Akhmanova et al. 1997), is located downstream to the purine-rich element. The presence of a 

double mRNA termination signal is unique of histone genes and common for other invertebrates such as 

Chironomus thummi (Hankeln and Schmidt 1991), Drosophila melanogaster (Akhmanova et al. 1997), 

annelids (del Gaudio et al. 1998), and crustaceans (Barzotti et al. 2000). A possible speculation about the 

meaning of both signals involves the progressive replacement of one of them by the other, more efficient and 

specific (del Gaudio et al. 1998). The presence of polyadenylation signals must be subjected to a more 

detailed analysis, however, because of their location with respect to the stop codons of the histone ORFs and 

regarding the abundance of the AT dinucleotide in several spacer regions, which can lead to confusion in the 

identification of polyadenylation signals (Hankeln and Schmidt 1991). 

Nucleotide substitution numbers in Mytilus spp. histone genes 

Most of the nucleotide variation presented by histone genes is essentially synonymous and H4 is the most 

variable gene, followed by H3, H2A, and H2B. Average synonymous divergence between Mytilus species 

for H1 genes was estimated as being 0.127 ± 0.025 substitutions per site (Eirín-López et al. 2002). The high 

degree of conservation of histone proteins has been maintained by purifying selection. However, the high 

degree of similarity at the DNA level between the gene members in the family has been classically explained 

as a consequence of concerted evolution, involving mechanisms such as selection, gene conversion, and 

unequal crossing-over. Notwithstanding, synonymous variation is still very high even between virtually 

identical proteins and there is great similarity between different copies of genes among distantly related 

species. This agrees with the birth-and-death model of evolution under strong purifying selection without 

concerted evolution (Nei and Hughes 1992), which has been recently proposed as the major mechanism 

guiding the evolution of the histone multigene families H3 and H4 (Piontkivska et al. 2002; Rooney et al. 

2002). 



 
 

Our results reveal that, in the genus Mytilus, the central folded domains of core histone genes are the most 

variable regions in comparison with terminal tails. This might reflect specific constraints operating on the 

individual domains of the molecule. Considering that core histones are critical in gene expression regulation 

through interactions with specific transcription factors (Wolffe et al. 1997), the higher conservation of N-

terminal domains would indicate that these are the main protein segments responsible for regulation of gene 

expression (Ponte et al. 1998). Estimation of the synonymous (p S) and nonsynonymous (p N) substitution 

numbers in the three protein domains show that, as for entire proteins, p S is substantially higher than p N in 

the three protein segments. These results follow the assumptions made by the birth-and-death model of 

evolution. 

The reconstructed neighbor-joining phylogenetic tree shows the relationships between the five histone 

classes in the five Mytilus species regarding synonymous substitution numbers. The tree topology suggests a 

monophyletic origin for histone genes, supported by high bootstrap values, being possible that all histone 

classes have evolved nearly simultaneously, with H1 genes arising later, as proposed by Piontkivska et al. 

(2002). A common evolutionary origin for H2A and H4 genes is also supported by the reconstructed 

topology, where both histone classes are clustered together. The phylogenetic analysis of H1 genes from 

several species grouped in different phyla suggests that clustered and “orphon” H1 genes from mussels share 

a common evolutionary origin. Both histone subtypes are included in a monophyletic group together with the 

differentiation-specific subtypes from vertebrates and also with the H1D gene from the sea urchin 

Strongylocentrotus purpuratus, the unique differentiation-specific subtype identified until now in 

invertebrates (Lieber et al. 1988). These relationships are supported by the presence of a polyadenylation 

signal in 3′ UTR segments of clustered H1s, typical from replication-independent histones such as vertebrate 

differentiation-specific subtypes. Although clustered H1 genes present “orphon” features, they are located in 

a branch different from that occupied by the “orphon” variants inside the Mytilus subtree. Further analysis 

will be necessary to clearly determine and characterize the different expression patterns of histone genes, a 

determinant process in the divergence of the “orphon” H1 histone group. 

Evolution of the clustered H1 genes 

The comparison between the H1 protein central conserved domain among different organisms also reveals 

that clustered H1 proteins share essential characteristics with “orphon” H1 genes from mussels and sea 

urchins (Lieber et al. 1988) and with vertebrate differentiation-specific subtypes H5 and H10. It is likely that 

the homologies between clustered and “orphon” H1 proteins observed in the present work are a consequence 

of the common origin of both molecules (Schulze and Schulze 1995). An ancestral exclusion event of several 

H1 copies from the main units followed by nonconservative changes, probably made during the rise of the 

phylum Vertebrata, would be specifically responsible for the rise of the “orphon” variants (Childs et al. 

1981). Additionally, it must be taken into account that purifying selection without concerted evolution is 

actually assumed to be the major evolutionary force maintaining protein homogeneity in multigene families 

such as ubiquitins and H3 and H4 histones (Nei et al. 2000; Piontkivska et al. 2002; Rooney et al. 2002). In 

this case, genes can evolve independently or according to the birth-and-death model of evolution (Nei and 

Hughes 1992). The latter model assumes that new genes are created by repeated gene duplication and that 

some of them are maintained in the genome for a long time, whereas others are deleted or become 

nonfunctional. This model assumes that (a) replication-dependent and replication-independent histone 

variants are divergent, (b) p S is substantially higher than p N, (c) genes are clustered by type in the 

phylogenies (i.e., H1t, H5, H10), not by species, and (d) pseudogenes are generated. Results presented in this 

work and additional data from a manuscript in preparation are consistent with these assumptions, suggesting 

the possibility that also the H1 family is evolving following the birth-and-death model, as previously 

reported for the H3 and H4 families (Piontkivska et al. 2002; Rooney et al. 2002). Otherwise, it is unlikely 

that clustered H1s observed in M. galloprovincialis are pseudogenes because of the integrity of their 



 
 

promoter regions (presence of H1 box, H4 box, and TATA box elements) and the detected indels do not alter 

the expected reading frame. 

Chromosomal location and copy number of histone genes 

FISH results on M. galloprovincialis chromosomes locate core histone genes at two loci in two different 

chromosome pairs, which support and complete previous results from Southern blot analyses in M. edulis 

(Albig et al. 2003). One of the loci, presumably gathering most of the genes, is located fairly close to 

heterochromatic regions of telomeres. The chromosomal position of H1 clusters in this species was located at 

three loci in three different chromosome pairs, two of them also fairly close to telomeres (Eirín-López et al. 

2002). Taking into account chromosome morphology data, it is likely that both loci containing core histones 

described here correspond to two of the three loci containing H1 genes, so that the remaining locus would 

only contain H1 genes. 

The proximity of core histones to heterochromatic regions in telomeres could be critical in two aspects. First, 

close proximity to heterochromatic regions is likely to reduce gene activity with respect to their euchromatic 

counterparts, as in the case of Drosophila histone genes (Fitch et al. 1990). Thus, a high copy number would 

be necessary to obtain similar amounts of histone proteins, taking into account that products of all four core 

histone classes are demanded nearly stoichiometrically. Indeed, the average copy number for core histone 

genes has been estimated to be 212 and 201 copies per haploid genome for H2A/H2B and for H3/H4, 

respectively. These results roughly duplicate the estimations of about 100–110 copies per haploid genome 

for H1 genes in the genus Mytilus (Eirín-López et al. 2002) and are in accordance with results obtained for 

M. edulis by Albig et al. (2003), agreeing with the 2:1 stoichiometry of core and linker histone genes. 

Second, proximity to heterochromatic regions can also be conditioning codon usage, as predicted by the 

hitchhiking and background selections models, diminishing the amount of codon bias due to the fixation of 

slightly deleterious mutations (Kaplan et al. 1989; Charlesworth et al. 1993). Nevertheless, the mussel 

histone genes are highly biased, as expected for very actively expressed genes under strong selective 

constraints, suggesting that their proximity to heterochromatic regions might not be close enough to 

significantly affect codon usage. From our results it seems that chromosomal location of core histone genes 

does not affect copy number and codon usage bias in histone genes. A possible explanation involves that 

such a proximity is not enough to modify these parameters, but we must take into account that mussel 

chromosomes show relatively short heterochromatic segments at centromeres and telomeres when compared 

with most of invertebrate chromosomes (Martínez-Lage et al. 1994). 

To our knowledge, the results described in this report are of relevance to the field in two main sections. We 

first report the presence of units containing H1 genes together with the remaining core histone genes in the 

genome of bivalve mollusks, and we also report the organization H4–H2B–H2A–H3–H1 as the major 

histone gene arrangement in mussel Mytilus repetitive units, where all but H2B genes are transcribed from 

the same DNA strand. On the other hand, the characterization of the five histone classes in several Mytilus 

species represents a very important contribution to improve the knowledge of this multigene family in 

invertebrates. Far from the classical notion of homogeneity among the family members, our results raise new 

questions as those concerning the evolutionary origin of clusters located at the two different chromosomal 

loci, about the homologies detected between clustered and “orphon” H1 genes, and also regarding the 

presence of two different mRNA termination signals in 3′ UTR regions. We are just beginning to fill the gap 

in the knowledge of histone genes in bivalve mollusks, and further studies will be necessary to determine 

clearly the evolutionary meaning of such outstanding features. 
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