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Abstract 

The H1 histone multigene family shows the greatest diversity of isoforms among the five histone gene 

families, including replication-dependent (RD) and replication-independent (RI) genes, according to their 

expression patterns along the cell cycle and their genomic organization. Although the molecular 

characterization of the RI isoforms has been well documented in vertebrates, similar information is lacking 

in invertebrates. In this work we provide evidence for a polyadenylation signature in the Mytilus “orphon” 

H1 genes similar to the polyadenylation characteristic of RI H1 genes. These mussel genes, together with the 

sea urchin H1δ genes, are part of a lineage of invertebrate “orphon” H1 genes that share several control 

elements with vertebrate RI H1 genes. These control elements include the UCE element, H1-box and H4-

box. We provide evidence for a functional evolution of vertebrate and invertebrate RI H1 genes, which 

exhibit a clustering pattern by type instead of by species, with a marked difference from the somatic variants. 

In addition, these genes display an extensive silent divergence at the nucleotide level which is always 

significantly larger than the nonsilent. It thus appears that RI and RD H1 isoforms display similar long-term 

evolutionary patterns, best described by the birth-and-death model of evolution. Notably, this observation is 

in contrast with the theoretical belief that clustered RD H1 genes evolve in a concerted manner. The split of 

the RI group from the main RD group must therefore have occurred before the divergence between 

vertebrates and invertebrates about 815 million years ago. This was the result of the transposition of H1 

genes to solitary locations in the genome.  
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Introduction 

Histones are a small set of basic proteins found in all eukaryotic organisms and are involved in DNA 

packaging as well as in the regulation of gene expression. Based on structural and functional criteria, 

histones can be subdivided into core histones (H2A, H2B, H3, H4) and linker histone (H1). The synthesis of 

histone mRNAs is tighly coordinated with DNA replication for the assembly of chromatin from newly 

replicated DNA (Isenberg 1979; Marzluff 1992). A unique feature of these histone mRNAs is their lack of 

polyadenylation tails, which are replaced by a stem-loop signal followed by a purine-rich segment that is 

recognized by U7 snRNP. The regulation of these replication-dependent (RD) or somatic histones results in a 

large increase in histone mRNAs as cells progress from G1 to S phase. In addition, there is a small fraction 

of isolated single-copy histone genes that are expressed uncoupled with the cell cycle in nonproliferating 

cells. They are referred to as replication-independent (RI) or replacement histones (Doenecke et al. 1997). 

These RI histones are encoded by polyadenylated mRNAs, whose expression is mediated by the poly (A) 

binding protein and is related to the stability of mRNAs. 

The H1 multigene family encodes linker histones which, in addition to their structural role as an integral part 

of the chromatosome (Simpson 1978), also exhibit a regulatory role in transcription. This functional role can 

be either repressive (Khochbin and Wolffe 1994; Wolffe et al. 1997) or of an activation nature (Harvey and 

Downs 2004). Among the five histone families, the H1 family shows the greatest diversity of subtypes, 

which in mammals consist of five somatic (H1.1–H1.5), a spermatogenesis-specific (H1t), an oocyte-specific 

(H1oo), and a replacement (H1°) subtype (Albig et al. 1997a; Wang et al. 1997; Tanaka et al. 2001). This 

diversity is also observed in other vertebrates, which initially includes other differentiation-specific subtypes 

such as histone H5 from birds (Ruiz-Carrillo et al. 1983), histone H1° (Brocard et al. 1997), and the oocyte-

specific subtype B4 or H1M (maternal) protein (Dimitrov et al. 1993) from amphibians. In the case of 

invertebrates there are fewer H1 isoforms which include somatic and stage-specific subtypes (Hentschel and 

Birnstiel 1981; Maxson et al. 1983). In addition, several stress-specific histone H1 subtypes have been 

described in plants (Chabouté et al. 1993). 

Differentiation-specific H1 subtypes have also been identified in sea urchins (Lieber et al. 1988; Poccia and 

Green 1992), annelids (del Gaudio et al. 1998), mollusks (Ausio 1999; Eirín-López et al. 2002, 2004a), 

crustaceans (Barzotti et al. 2000), and insects (Hankeln and Schmidt 1993). With the exception of the H1δ 

gene from sea urchin, in which polyadenylated H1 transcripts were revealed by Northern blot experiments, 

the RI status of other invertebrate diferentiation-specific H1 genes has never been fully demonstrated. 

Histone H1 is the fastest-evolving histone class (Isenberg 1978), and purifying selection certainly plays a 

critical role in maintaining their protein homogeneity. The long-term evolution of these proteins has been 

classically explained by concerted evolution (Kedes 1979; Henstchel and Birnstiel 1981; Coen et al. 1982; 

Ohta 1983; Holt and Childs 1984; Schienman et al. 1998). However, we have recently shown that H1 genes 

are substantially divergent at the nucleotide level and that H1 proteins cluster by type in the phylogenies, 

indicating that they are no more closely related within than between species. Thus, the diversification of the 

H1 isoforms seems to be primarily enhanced by mutation and selection, where genes are subject to birth-and-

death evolution under strong purifying selection (Eirín-López et al. 2004b). 

Although birth-and-death evolution (Nei and Hughes 1992; Nei et al. 1997, 2000) best describes the general 

long-term evolutionary pattern in RD H1 genes, the mechanisms involved in the evolution of RI H1 isoforms 

still remain unclear. In the present work, we provide evidence that the mussel Mytilus galloprovincialis 

histone H1 “orphon” genes are polyadenylated and share common molecular and evolutionary features with 

vertebrate RI H1 isoforms. The mode of long-term evolution of these genes is investigated here and 

compared with the birth-and-death process operating in their somatic RD counterparts. 

 



 
 

Materials and methods 

RT-PCR and transcript analyses of invertebrate RI H1 genes  

Total RNA extracts from frozen adult mussels were prepared using the Ultraspec-II RNA isolation kit 

(Biotecx), following the manufacturer’s instructions. Poly (A)-rich RNA was prepared using the mRNA 

purification kit (Amersham Pharmacia Biotech), also following the accompanying instructions for use. RT-

PCR analyses were performed by using the partial set of primers specific for Mytilus histone genes, 

described by Eirín-López et al. (2002). Electrophoretic separation of RNA and blotting onto nylon 

membranes was performed as described by Sambrook et al. (1989). Blots were hybridized with radiolabeled 

probes specific for each of the M. galloprovincialis histone genes. Hybridization conditions were 55°C for 

20–30 h in 5 × SSC, 0.25% SDS, 5 × Denhardt’s 50% formamide, and 0.1 mg/mL denatured salmon sperm 

DNA. Four posthybridization washes were performed, for 15 min each; the first two were carried out at room 

temperature in 2 × SSC/0.1% SDS, and the final two at 65°C in 0.2 × SSC/0.1% SDS. 

Molecular evolutionary analysis 

We have analyzed all the nonredundant RI H1 nucleotide sequences from vertebrates listed in the 

NHGRI/NCBI Histone Sequence Database as of April 2004 (Sullivan et al. 2002) together with mussel 

Mytilus “orphon” H1 sequences (Eirín-López et al. 2002) and the RI H1δ gene from the sea urchin 

Strongylocentrotus purpuratus (Lieber et al. 1988). In addition, nonredundant RD H1 sequences were also 

included in the analyses for comparison (see table in Supplementary Material). The nomenclature of the 

sequences corresponding to the histone H1 subtypes was adapted to the numeric nomenclature from 

Doenecke’s laboratory (Albig et al. 1997b). Alignments of nucleotide sequences were constructed on the 

basis of the translated amino acid sequences using the programs BIOEDIT (Hall 1999) and CLUSTAL_X 

(Thompson et al. 1997). The alignments were checked for errors by visual inspection. A total of 104 histone 

H1 sequences from 32 different species, containing 18 RI H1 sequences belonging to 12 different species 

and 86 RD H1 sequences from 26 different species, were used in this analysis. 

Molecular evolutionary analyses were performed using the computer program MEGA version 2.1 (Kumar et 

al. 2001), where uncorrected p distances were used to measure the extent of sequence divergence in both 

nucleotide and deduced amino acid sequences. The number of synonymous (pS) and nonsynonymous (pN ) 

nucleotide differences per site was also computed using the modified method of Nei-Gojobori (Zhang et al. 

1998). Amino acid and nucleotide distances were estimated using the pairwise deletion option, with standard 

errors calculated by the bootstrap method (1000 replicates). 

Phylogenetic trees were reconstructed using the neighbor-joining method (Saitou and Nei 1987), and the 

reliability of the resulting topologies was tested by both the bootstrap and the interior branch-test methods 

(Felsenstein 1985; Rzhetsky and Nei 1992; Sitnikova 1996), producing the bootstrap probability (BS) and 

the confidence probability (CP), respectively, for each interior branch. Phylogenetic trees were rooted using 

the histone H1 from the protist Entamoeba histolytica, one of the most primitive eukaryotes for which an 

H1-related protein has been characterized (Kasinsky et al. 2001). 

 

Results 

Identification of invertebrate “orphon” RI H1 gene transcripts 

To assess the functionality of all the histone genes of M. galloprovincialis and the polyadenylated status of 

their transcripts, RT-PCR amplifications from poly (A)-rich RNA were performed by using the partial set of 

primers (see Materials and methods) indicated in Fig. 1A. An amplified fragment of the expected size was 



 
 

obtained from the transcripts corresponding to each type of histone genes (Fig. 1C). In addition, Northern 

blot experiments using probes for each of the histone genes (H1, H2A/2B, H3/4) showed that all of them 

hybridized to both total RNA and poly (A)-rich RNA samples (Figs. 1D and E ). These results have 

important evolutionary implications for the RI status of the invertebrate “orphon” H1 genes. They also 

provide direct experimental support for the true existence of functional polyadenylated forms of Mytilus 

histone genes, in agreement with observations based on previously defined putative polyadenylation signals. 

 

Figure 1. RT-PCR and Northern blot analysis of total RNA and poly (A)-rich RNA from M. galloprovincialis.  

A Nucleotide sequences (5′ to 3′) and locations of primers used for PCR and RT-PCR amplifications carried out within 

the M. galloprovincialis histone repetitive unit. The histone fold domains of the core histones and the winged-helix 

motif of histone H1 are highlighted with black boxes.  

B Electrophoretic analysis of M. galloprovincialis total and polyadenylated RNA, showing the absence of the 28S 

rRNA fraction resulting from the denaturing conditions of the gel used in this analysis (Barcia et al. 1997).  

C RT-PCR amplifications of histones H1, H2A, H2B, H3, and H4 from M. galloprovincialis mRNA using the internal 

primers defined in A. The coding fraction PL-IIa of the sperm-specific PL-II protamine-like protein of Mytilus (Carlos 

et al. 1993) and the human H1.1 histone (Lever et al. 2000) were used as positive and negative controls for 

polyadenylation, respectively.  

D Electrophoretic analysis of the histone probes used for Northern blot hybridizations. These probes were obtained by 

PCR amplifications from M. galloprovincialis genomic DNA using primers from the 3′ and 5′ UTR regions (Eirín-

López et al. 2004a).  

E Northern blot analysis obtained from M. galloprovincialis total and poly (A)-rich RNA using the probes shown in D. 

The probes used and the approximate size are indicated. 

 

Evolution of promoter regions in RI H1 subtypes 

Analyses of promoter regions in invertebrate H1 “orphon” genes showed the presence of elements involved 

in RI gene expression of vertebrate differentiation-specific H1 genes, in addition to several control elements 

typical of genes transcribed by RNA polymerase II (Fig. 2A). It is possible to identify the presence of a 



 
 

homologous region with an upstream conserved element (UCE), typical of vertebrate H1° genes, and a 

region showing similarity to the H4 Site II from H4 gene promoter regions (Van Wijnen et al. 1992). The 

latter region is known as the H4-box and is typically found in promoter regions from vertebrate RI H1 genes 

(H1° and H5), positioned at the site occupied by the CAAT-box in somatic histone H1 isoforms (Fig. 2A). 

These elements are clearly different from those observed in somatic, tissue-specific, and stage-specific H1 

genes (Fig. 2B) and, also, from those observed in core histone genes (Fig. 2C). 

 

Figure 2. Structure of the histone H1 gene proximal promoter region.  

A Molecular structure of promoter regions of vertebrate RI H1 genes (H1° and H5) in comparison with those of 

invertebrate RI H1 genes (mussel and sea urchin “orphon” H1 genes). The similarities to the H4 Site II element from 

the H4 gene promoter region are also indicated.  

B Molecular organization of the promoter regions in somatic, tissue-specific, and stage-specific H1 genes.  

C Molecular structure of the promoter regions of mussel core histone genes. Major regulatory elements are 

schematically represented by black boxes, and the corresponding regions of the alignments are shown in the open 

boxes. 

 

The sequence comparisons between promoter regions are in good agreement with the features observed at 

the molecular level, altogether suggesting that invertebrate “orphon” H1 genes are closely related to 

vertebrate RI H1 genes (Fig. 3A). In a phylogenetic analysis, both groups of genes cluster together and 

constitute an independent group which is characterized by the presence of an H4-box element in the 

promoter regions. 

Evolution of coding regions in RI H1 subtypes 

Vertebrate histone H1 RI isoforms characteristically exhibit shorter amino acid sequences than the somatic 

counterparts. This is also the case for invertebrate “orphon” H1 proteins, whose primary structures range 

between 185 (sea urchin H1δ) and 191 (Mytilus H1) residues. These sizes are identical to those of vertebrate 

H1° and H5 proteins but smaller than the somatic counterparts. For instance, sea urchin H1β and H1γ 

histones contain 211 and 217 residues, respectively. No significant differences in amino acid composition 

were observed between invertebrate and vertebrate RI histones, except for slight differences in Ala (22.32% 

in invertebrates, 16.64% in vertebrates) and in Ser (6.38% in invertebrates, 11.02% in vertebrates). 



 
 

 

Figure 3. A Comparison of consensus promoter regions from RI and RD histone H1 genes from different vertebrate and 

invertebrate groups. The H4 promoter region is shown as a reference for the presence of the H4-box element in RI 

subtypes. Asterisk indicates early H1 gene. The branching pattern on the left indicates the evolutionary relationships 

among H1 histones reported by Eirín-López et al. (2002, 2004b).  

B Analysis of the winged-helix domain (Ramakrishnan et al. 1993) of RI H1 histones. The α-helix and β-sheet 

components of the winged-helix motif are shown above the corresponding protein sequence alignments of RI subtypes. 

C Phylogenetic neighbor-joining tree reconstructed using p-distances from the alignment of amino acid sequences 

corresponding to the winged-helix domains of RI and RD H1 histones from several representative eukaryote species. 

Numbers for interior branches represent the BS values (boldface), followed by the CP values based on 1000 

replications, and are only shown when their value is larger than 50%. The monophyletic origins of the RI H1s (R) and 

the somatic subtypes from plants (P), invertebrates (I), and vertebrates (V) are indicated by black circles at the 

corresponding nodes.  

D Phylogenetic tree generated from alignments of the nucleotide sequences coding for the amino acid sequences 

described in C. The topology was contrasted and rooted in the same way as in C. The origin of the different groups is 

indicated by black circles at the corresponding nodes. 

 

A high extent of similarity was also observed when comparing invertebrate “orphon” H1 and vertebrate RI 

H1 coding regions (Fig. 3B). By examining the overall amino acid sequence variability, we found that the 

lower divergence values occurred in the region of the histone H1 core which comprises the winged-helix 

domain (p = 0.271 ± 0.031 substitutions per site). These values were followed by those of the N- and C-

terminal tails (p = 0.422 ± 0.048 and p = 0.426 ± 0.026, respectively). This asymmetry seems to dissappear at 

the nucleotide level, where the core domain (p = 0.316 ± 0.020) exhibits almost the same nucleotide variation 

as the N-terminal (p = 0.386 ± 0.033) and the C-terminal (p = 0.375 ± 0.014) domains. The nucleotide 

variation detected was essentially synonymous (pS > pN; P < 0.001, Z-test), with similar pS values for each of 

the protein domains (pS = 0.684 ± 0.027 for the N-terminal tail, pS = 0.644 ± 0.023 for the central domain, and 

pS = 0.627 ± 0.022 for the C-terminal domain). These values suggest the occurrence of extensive silent 

divergence among the coding regions of the genes encoding these proteins. 

https://link.springer.com/article/10.1007/s00239-004-0328-9#CR15
https://link.springer.com/article/10.1007/s00239-004-0328-9#CR17
https://link.springer.com/article/10.1007/s00239-004-0328-9#CR43


 
 

The phylogenies reconstructed from both amino acid (Fig. 3C) and nucleotide (Fig. 3D) sequences 

corresponding to the core domain of RI H1 histones reveal that RI histones always cluster by type and not by 

species, which is indicative of the presence of a long-term evolutionary pattern predominantly dictated by 

functional constraints. Both topologies place mussel “orphon” H1 histones within the monophyletic group 

including the vertebrate RI subtypes. The RI cluster is statistically supported and clearly distinct from the 

somatic subtypes in both the trees generated from the amino acid and nucleotide sequences, being more 

closely related to invertebrate somatic H1s in the case of the protein phylogeny. 

Long-term evolution of RI H1 genes 

By comparing the complete nucleotide coding sequences within the three different RI lineages (H1°, H5, and 

“orphon” H1 genes), it was possible to detect the presence of a low synonymous variation among bird 

histone H5 genes (pS = 0.186 ± 0.022 substitutions per site) which was higher in the H1° and invertebrate 

“orphon” H1 lineages (pS = 0.387 ± 0.017 and pS = 0.385 ± 0.017 substitutions per site, respectively). Except 

for the case of H5, these values did not differ significantly from those obtained from the comparisons 

between different RI H1 lineages, where the silent divergence between H1° and “orphon” H1 and that 

between H5 and “orphon” H1 genes were found to be about 0.395 ± 0.041 and 0.477 ± 0.045 substitutions 

per site, respectively (Table 1). Furthermore, pS   is significantly greater than pN in all comparisons (P < 

0.001, Z-test). 

 

Table 1. Average number of synonymous (pS) versus nonsynonymous (pN) nucleotide differences per site and average 

s/v ratios (R) in representative RI and RD histone H1 genes 

 Within subtypes  Between subtypes 

 pS (SE) pN (SE) R   pS (SE) pN (SE) R  

RI subtypes    RI subtypes    

H1° vertebrates 0.387 

(0.017) 

0.069 

(0.008) 

1.4** H1°/H5 0.253 

(0.032) 

0.151 

(0.021) 

1.2** 

H1° mammals 
0.103 

(0.013) 

0.014 

(0.004) 
2.2** H1°/H1inv 

0.395 

(0.041) 

0.260 

(0.030) 
0.7** 

H1° Xenopus 
0.149 

(0.027) 

0.036 

(0.008) 
1.6** H5/H1inv 

0.477 

(0.045) 

0.341 

(0.030) 
0.7** 

H5 chicken 
0.186 

(0.022) 

0.045 

(0.008) 
1.4** 

    

H1Inv 
0.385 

(0.017) 

0.125 

(0.010) 
0.8** Vertebrates 

   

RD subtypes    
Human H1/H1° 

0.603 

(0.040) 

0.220 

(0.029) 
0.9** 

H1 human (genes 1–5) 
0.557 

(0.016) 

0.120 

(0.012) 
1.2** Mouse H1/H1o 

0.532 

(0.039) 

0.296 

(0.031) 
0.7** 

H1 mouse (genes 1–5) 
0.472 

(0.021) 

0.129 

(0.013) 
1.0** 

 Xenopus 

H1/H1° 

0.455 

(0.041) 

0.456 

(0.028) 
0.6 

H1 Xenopus (genes A-C) 
0.309 

(0.022) 

0.087 

(0.010) 
1.2** Chicken H1/H5 

0.392 

(0.034) 

0.257 

(0.026) 
0.6* 

H1 chicken 
0.155 

(0.018) 

0.041 

(0.006) 
0.7** Invertebrates 

   

H1Inv 
0.508 

(0.018) 

0.283 

(0.016) 
1.1**   H1/H1inv 

0.426 

(0.013) 

0.207 

(0.011) 
0.7** 

Note. pS > pN  in all Z-test comparisons except Xenopus H1 vs. H1°. Significant at *(P < 0.05) and **(P < 0.001). Standard 

errors (SE) calculated by the bootstrap method with 1000 replicates. H1inv, denotes invertebrate “orphon” H1 genes. 



 
 

Supplement Table 1. Replication independent subtypes 

Species RI Subtype Nucleotide Accession Number 

VERTEBRATES   

Birds   

Cairina moschata  H5 X01065 

Gallus gallus  H5 J00870 

 H5 X00169 

Mammals   

Homo sapiens  H1° Z97630 

Mus musculus  H1° U18295 

 H1° X13171 

Rattus norvegicus  H1° X70685 

 H1° X72624 

 H1° NM_012578 

Amphibians   

Xenopus laevis  H1°-1 Z71502 

 H1°-2 Z71503 

INVERTEBRATES   

Mollusks   

Mytilus californianus  H1-orphon AJ416421 

M. chilensis  H1-orphon AJ416422 

M. edulis  H1-orphon AJ416423 

M. galloprovincialis H1-rep. unit AY267739 

 H1-orphon AJ416424 

M. trossulus  H1-orphon AJ416425 

Echinoderms   

Strongylocentrotus purpuratus  H1-δ J03807 

 

 

Additional comparisons between vertebrate and invertebrate RI and RD H1 genes showed that, in both 

instances, RI genes from a given taxonomic group are not more closely related to their somatic counterparts 

than to somatic histone H1 genes from other different taxonomic groups (Table 1, Fig. 4). An extreme 

situation is that of mammalian H1° genes, which are always more closely related to bird, Xenopus, and 

invertebrate somatic H1 genes than to mammalian somatic histone H1 genes. It is also apparent from Fig. 4 

that RI subtypes are not more closely related within lineages than they are between RI lineages or between 

RI and RD subtypes. For instance, the synonymous divergence between rat and Xenopus H1° genes 

(0.832 ± 0.044) is greater than that between rat H1° and any other vertebrate somatic H1 genes (Table 2). 

Also, the average synonymous divergence between human histone H1° and H1.1 genes is about 

0.663 ± 0.043 substitutions per site, which is larger than that between human H1° and sea urchin H1β genes 

(Table 2). These data suggest that the process of divergence of RI and RD H1 genes is mainly the result of 

silent substitutions, independent of the subtype or species to which these genes belong. 

 

 

 

 



 
 

 

Figure 4. Average number of synonymous nucleotide differences per site (pS ) among RI and RD H1 histones computed 

by the modified Nei–Gojobori method (Zhang et al. 1998). p S > p N  in all comparisons (P < 0.001, Z-test). RI subtypes: 

human, h; mouse, m; rat, r; chicken, c; duck, d; Xenopus, x; Mytilus, my; sea urchin, s. RD subtypes: mammals, M; 

birds, B; Xenopus, X; invertebrates, I. Bars indicate standard errors computed by the boostrap method (1000 replicates). 

 

Discussion 

Although the molecular characterization of vertebrate RI H1 genes has been well documented (for a review 

see Doenecke et al. 1994), the situation in invertebrates is still unclear. In this work we provide evidence for 

a polyadenylation signature in the Mytilus “orphon” H1 genes (Fig. 1). This result, together with the common 

molecular and evolutionary features detected between vertebrate RI H1 isoforms and invertebrate “orphon” 

H1 genes and, also, with the solitary genomic location of these genes, suggests the presence of at least a 

fraction of H1 genes expressed uncoupled with the cell cycle and in a RI fashion in the genome of Mytilus 

galloprovincialis. 

Origin and evolution of invertebrate RI H1 genes 

Our results reveal the presence of common regulatory elements involved in the expression of both vertebrate 

RI H1 genes and mussel “orphon” H1 genes, including an upstream conserved region (UCE), an H1-box 

element, and an H4-box element (Khochbin and Wolffe 1994). From an evolutionary perspective, the 

presence of such an H4-box element in promoter regions of invertebrate RI H1s provides strong support for a 

close proximity between the vertebrate H1°/H5 genes and the “orphon” H1 genes from Mytilus and sea 

urchin. In addition, the presence of an H4-box element has also been reported in RD histone H1 genes from 

sea urchins (Peretti and Khochbin 1997), suggesting that both vertebrate and invertebrate RI isoforms are 

more closely related to invertebrate than to vertebrate somatic H1 genes. 

By analyzing the nucleotide substitution patterns in promoter regions (data not shown), we have found that 

the base changes involved in the evolution of the H1°, H5, and “orphon” H1 lineages were not balanced. 

They exhibited a marked trend toward G or C rather than toward A or T, which is probably to maintain the 

functionality of elements such as the UCE, the G/C-box, and the H4-box, which are mainly composed of G 

and C nucleotides. 

  

https://link.springer.com/article/10.1007%2Fs00239-004-0328-9#CR59


 
 

 

 

 

Table 2. Synonymous nucleotide differences per site (p S; lower-left diagonal) and standard errors (SE; upper-right diagonal) in comparisons among RI and RD histone H1 genes 

from different vertebrates and invertebrate species 

 Replication independent Replication dependent 

 H1°h H1°m H1°r H1°x H5c H1my H1°s H1.1h H1.1m H1.3r H1Cx H1c H1βs 

H1°h   0.039 0.037 0.045 0.041 0.043 0.043 0.043 0.040 0.041 0.038 0.041 0.041 

H1°m 0.285     0.043 0.043 0.042 0.045 0.044 0.042 0.041 0.041 0.040 0.042 

H1°r 0.251 0.077   0.044 0.043 0.042 0.042 0.044 0.042 0.040 0.041 0.040 0.042 

H1°x 0.801 0.863 0.832   0.041 0.047 0.045 0.042 0.042 0.042 0.044 0.040 0.043 

H5c 0.522 0.548 0.520 0.766   0.039 0.039 0.043 0.043 0.041 0.043 0.039 0.038 

H1my 0.788 0.817 0.824 0.765 0.785   0.043 0.041 0.039 0.041 0.044 0.042 0.045 

H1δs 0.801 0.801 0.784 0.805 0.736 0.757   0.042 0.040 0.037 0.042 0.039 0.041 

H1.1h 0.663 0.642 0.650 0.748 0.763 0.804 0.640   0.040 0.039 0.040 0.040 0.039 

H1.1m 0.750 0.719 0.709 0.694 0.639 0.778 0.768 0.714   0.042 0.038 0.039 0.038 

H1.3r 0.630 0.706 0.681 0.769 0.691 0.742 0.730 0.734 0.640   0.042 0.038 0.040 

H1Cx 0.673 0.669 0.690 0.728 0.689 0.773 0.726 0.818 0.718 0.744   0.038 0.042 

H1c 0.540 0.537 0.523 0.770 0.556 0.789 0.758 0.717 0.588 0.608 0.640   0.036 

H1βs 0.552 0.626 0.590 0.750 0.549 0.704 0.650 0.677 0.699 0.659 0.659 0.565   

Note. RI genes: H1°h, human H1°; H1°m, mouse H1°; H1°r, rat H1°; H1°x, Xenopus H1°; H5c, chicken H5; H1my, Mytilus “orphon” H1; H1δs, sea urchin “orphon” H1δ. RD 

genes: H1.1h, human H1.1; H1.1m, mouse H1.1; H1.3r, rat H1.3; H1Cx, Xenopus H1C; H1c, chicken H1; H1βs, sea urchin H1β. Standard errors calculated by the bootstrap method 

(1000 replicates). 

 

 

  



 
 

Supplement Table 2. Replication dependent subtypes 

Species RI Subtype Nucleotide Accession Number 

VERTEBRATES   

Birds   

Gallus gallus  H1.01 X01752 

  H1.03 M17021 

  H1.10 M17018 

  H1.11L M17019 

  H1.11R M17020 

Mammals     

Homo sapiens  H1.1 X57130 

  H1.1 NM_005325 

  H1.2 X57129 

  H1.3 NM_004423 

  H1.4 NM_004417 

  H1.5 NM_004452 

  H1.5 X83509 

  H1t NM_004415 

  H1t AL353759 

  H1t M97755 

  H1t M60094 

Macaca mulatta  H1t M97756 

Mus musculus  H1.1 Y12290 

  H1.2 M25365 

  H1.3 Z38128 

  H1.4 L26163 

  H1.5 Z46227 

  H1t U06232 

  H1t X72805 

Rattus norvegicus  H1.2 X67320 

  H1.3 M31229 

  H1t M13170 

Amphibians     

Xenopus laevis  H1A S69089 

  H1A M21287 

  H1B M21286 

  H1B M03017 

  H1C X72929 

 

 

 

 



 
 

Supplement Table 2. (cont. ) 

Species RI Subtype Nucleotide Accession Number 

INVERTEBRATES   

Insects     

Chironomus dorsalis  H1 U21211 

C. pallidivittatus  H1e L29106 

C. tentans  H1a L29107 

  H1b L29108 

  H1c L29109 

  H1d AF002683 

  H1e L29105 

C. thummi  H1-I-1 L28731 

  H1-I-1 L28724 

  H1-II-1 L28732 

  H1-II-1 L28727 

  H1-II-1 L28728 

  H1-II-2 AF002680 

  H1-II-2 L28725 

  H1-III-1 X56335 

  H1-III-1 L28726 

Drosophila melanogaster  H1 X14215 

D. virilis  H1.1 L76558 

  H1.2 U67772 

  H1.3 U67936 

Mollusks     

M. edulis  H1 AJ224070 

  H1 AJ224071 

  H1 AJ224073 

  H1 AJ224075 

  H1 AJ224076 

Echinoderms     

Lytechinus pictus  H1-late X04488 

Parechinus angulosus  H1.1a U07825 

Psammechinus miliaris  H1-cleav.stage U84113 

Strongylocentrotus purpuratus  H1-earsly V01354 

  H1-β M20314 

  H1-γ M16033 

 

 

 

 

 



 
 

Supplement Table 2. (cont. ) 

Species RI Subtype Nucleotide Accession Number 

INVERTEBRATES   

Nematodes     

Caenorhabditis elegans  H1.1 AF017810 

  H1.1 X53277 

  H1.2 AF017812 

  H1.2 AF017811 

  H1.3 AF012253 

  H1.4 AF005371 

  H1.4 AF026521 

  H1.5 AF005372 

PLANTS     

Arabidopsis thaliana  H1-1 X62456 

  H1-1 AC011001 

  H1-2 X62459 

  H1-3 U72241 

Nicotiana tabacum  H1 AB029614 

  H1 L29456 

  H1C AF170089 

FUNGI     

Ascobolus immersus  H1 AF190622 

Emericella nidulans  H1 AJ011780 

Saccharomyces cerevisiae  H1-Hho1p NC_001148 

PROTISTS     

Chlamydomonas reinhardtii  H1 U16726 

  H1 U50904 

Entamoeba histolytica  H1 AB002731 

Volvox carteri  H1-I L07946 

  H1-II L07947 

 

 

Invertebrate “orphon” H1 proteins shared common features with vertebrate RI H1s within the coding 

regions. The total number of amino acids of “orphon” H1s was roughly the same as that of histones H1° and 

H5, which is substantially lower than that of the somatic isoforms (Doenecke and Alonso 1996). Except for 

histone H5 (where there is a high content of Arg residues), no significant differences were found in the 

amino acid composition of vertebrate and invertebrate RI H1 proteins. The extent of similarity was quite 

evident when the protein sequences corresponding to the conserved histone H1 core were compared. Figure 

3B shows that the major elements of the winged-helix domain are well conserved among vertebrate and 

invertebrate RI isoforms, whose sequences are otherwise different from those observed in the somatic 

subtypes (Schulze and Schulze 1995; Eirín-López et al. 2002). 

The presence of a split within the RI group was revealed from the phylogenies reconstructed from the amino 

acid and the nucleotide sequences corresponding to the histone H1 core (Figs. 3 C and D). Two lineages 

could be clearly outlined early in the evolution of this group. One of them included the vertebrate 

differentiation-specific subtypes (H1° and H5) and the second included the invertebrate RI “orphon” H1 



 
 

genes belonging to Mytilus species. Both topologies are in very good agreement with those previously 

reported using the whole histone H1 sequences (Eirín-López et al. 2004b), with the exception of the H1δ 

protein from sea urchin, which is not placed inside the RI lineage in the phylogenies reconstructed using only 

the winged-helix domain. H1 histones were found to cluster by type instead of by species, suggesting that 

they are not more closely related within than between species, a key feature most likely determined by their 

long-term evolutionary pattern. 

At the nucleotide level, both vertebrate and invertebrate RI H1 genes diverge extensively through silent 

substitutions, which are always significantly larger than the nonsilent variation (P < 0.001, Z-test). As in the 

case of promoter regions, nucleotide substitutions show a trend toward G or C bases in coding regions, which 

could be (at least in part) a consequence of the medium-high levels of codon bias shown by histone genes. 

An additional effect of the regional mutation pressures along the chromosomes could also be invoked at this 

point, but this subject is beyond the scope of the present work and will require further and specific analyses. 

Evolutionary scenario of RI and RD H1 genes 

The long-term evolution of RD somatic histone genes best fits a birth-and-death evolution model under 

strong purifying selection instead to a concerted evolution pattern (Piontkivska et al. 2002; Rooney et al. 

2002; Eirín-López et al. 2004b). Both vertebrate and invertebrate RI H1 genes occur in solitary locations in 

the genome, generally in a different chromosome from that containing the RD genes (Albig et al. 1997a; 

Wang et al. 1997; Eirín-López et al. 2002, 2004b). Therefore, in these instances a mechanism of concerted 

evolution involving a rapid process of interlocus recombination or gene conversion could not have played a 

major role driving the long-term evolution of these genes. 

We have found evidence for a functional evolution of vertebrate and invertebrate RI H1 genes that exhibit a 

clustering pattern by type instead of by species. Besides the relatively low protein divergence observed 

within and between RI lineages, we also found an extensive silent divergence at the nucleotide level. In all 

instances, the extent of pS was always significantly larger than pN  in comparisons both within and between 

RI H1 lineages, as well as between RI and somatic RD subtypes (P < 0.001, Z-test). In addition, most of the 

pS values estimated within RI gene lineages were as high as the pS values estimated between RI lineages and 

between RI and RD lineages. The only exception to this observation was that of chicken H5 histone genes, 

suggesting that a recent gene duplication had occurred. Similar observations were also reported for chicken 

somatic H1, H3, and H4 genes (Piontkivska et al. 2002; Rooney et al. 2002; Eirín-López et al. 2004b). 

The divergence of the RI group from the main RD group must therefore have occurred before the 

differentiation between vertebrates and invertebrates about 815 million years ago (MYA) (Feng et al. 1997), 

as a consequence of the transposition of H1 genes to solitary locations in the genome (Fig. 5). The results 

reported in the present work show that, in the case of RI H1 isoforms, alleles from different loci form 

different clusters and the nuclotide divergence among genes takes place at the synonymous level. In Fig. 5, 

the independent evolution of RI H1genes is adapted to the general birth-and-death model (Nei et al. 1997). 

Recurrent gene duplication events and selection would lead to the acquisition of a RI expression pattern 

related to a concrete protein function in these genes. The stem-loop mRNA termination signal would have 

been progressively replaced by a polyadenylation signal (del Gaudio et al. 1998). Although this 

phenomenom has been well documented in the case of mammals, amphibians, and birds (Doenecke et al. 

1994), the presence of specific functions associated with invertebrate RI H1 genes remains unclear. 

 

 

 



 
 

 

Figure 5. Simplified phylogenetic tree adapted from Fig. 1 of Eirín-López et al. (2004b) showing the evolutionary 

relationships among H1 proteins (using uncorrected p-distances) from different eukaryotic kingdoms. The numbers at 

the branching points represent BS and CP values as in Fig. 3C. The numbers and letters in parentheses after the species 

names indicate the H1 subtype, and the arrow points to the origin of the monophyletic group encompassing the RI H1 

isoforms. The taxonomic groups as well as the expression patterns are indicated on the right side of the tree. The arrow 

indicates the split between RD and RI H1 genes, which resulted in an evolutionarily independent H1 group as a 

consequence of a transposition event of RD H1 genes (open boxes) to a solitary genomic location. The mechanism of 

birth-and-death evolution (Nei and Hughes 1992) would continue operating over this group, and the different RI H1 

gene lineages would evolve through recurrent gene duplication events, where some of these genes are maintained in the 

genome for a long time, whereas others are deleted or become nonfunctional (pseudogenes). 

 

Thus, it appears that RI H1 isoforms display the same long-term evolutionary pattern as RD H1 genes. This 

pattern is best described by a birth-and-death model of evolution with strong purifying selection, as has been 

well documented for the H3 multigene family (Rooney et al. 2002). This observation contrasts with the 

theoretical predictions that clustered genes would show evidence of more gene conversion or unequal 

crossing-over than solitary genes (Nei and Hughes 1992; Nei et al. 1997, 2000). In order to complete the 

picture of the RI histone H1 genes, further studies are neccessary to fill the gap in our knowledge about the 

evolutionary genesis and differentiation of the tissue-specific RI H5 subtype, which is uniquely present in 

bird erythrocytes. In this regard, characterization of the RD and RI H1 genes in reptiles, the closest 

evolutionary relatives to birds, is currently in progress in our labs and may be of critical value.

https://link.springer.com/article/10.1007%2Fs00239-004-0328-9#CR17
https://link.springer.com/article/10.1007%2Fs00239-004-0328-9#CR35
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