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Abstract 

Five polymorphic microsatellite loci in the razor clam Ensis siliqua  are described. A collection consisting of 

34 individuals from Finisterre, Spain, was analysed. Loci were isolated from the sequences of intersimple 

sequence repeat (ISSR) markers. Detailed analysis of 42 ISSR markers led to the design of 16 primer pairs. 

Five of these yielded consistent and polymorphic products. The number of alleles ranged from five to 23 per 

locus with the observed heterozygosity ranging from 0.46 to 0.94. Linkage equilibrium was observed in all 

loci and three of them showed significant deviations from Hardy–Weinberg equilibrium. 
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The razor clam Ensis siliqua is a species of the family Pharidae distributed along the European Atlantic 

coast, from Norway to Spain, and in some parts of the Mediterranean and northwest Africa. This species has 

important commercial value and it is exploited in many countries. However, little is known about the 

population structure and genetic variability of this species, and in this sense, it is important to obtain and 

develop highly polymorphic markers to properly manage natural stocks and design breeding programmes. To 

these ends, we present the characterization of five polymorphic microsatellite loci. 

Microsatellite loci were isolated from the sequences of intersimple sequence repeat (ISSR) markers (Fisher 

et al. 1996). ISSR markers are generated from nucleotide sequences located between two microsatellite 

priming sites inversely orientated on opposite DNA strands and near enough to be amplified by polymerase 

chain reaction (PCR) (Zietkiewicz et al. 1994). We amplified ISSR markers from one individual using the 

following anchored primers: YG(CA)9, YG(GA)9, GATC(CGT)7, YG(CT)9, G(CT)9, HVG(TG)7 and 

KKVRVRV(CT)6. DNA extraction was carried out as in Winnepenninckx et al. (1993). PCR amplification 

of ISSR markers was performed using a touchdown protocol with the following conditions: initial 

denaturation at 94 °C (2 min), followed by 94 °C (20 s), 66 °C (30 s) and 72 °C (2 min). The annealing 

temperature was dropped 1 °C for each of the subsequent 10 cycles, followed by 30 cycles at 94 °C (20 s), 

55 °C (30 s) and 72 °C (2 min), with a final extension at 72 °C (5 min). Amplification of the ISSRs was 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/199450999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1111/j.1471-8286.2006.01423.x


 
 

conducted in 25‐µL volumes consisting of 1× NH4 reaction buffer [16 mM (NH4)2SO4; 67 mM Tris‐HCl, pH 

8.8; 0.1% Tween 20], 1‐µm primer, 0.2 mM of each dNTP, 5.2 mM MgCl2, 0.75 U Taq DNA polymerase 

(Bioline) and 20 ng of genomic DNA.  

Pools of ISSR markers amplified using each of the anchored primers were ligated directly into plasmid 

pCR2.1 TOPO TA vector, and transformed into Escherichia coli TOP10F′ competent cells (Invitrogen). 

Clones were selected on LB X‐Gal/IPTG/ampicillin plates and 271 white colonies were chosen for further 

screening. We determined the insert length of clones by colony PCR using M13 forward and reverse primers 

and picked clones with different insert length to avoid redundant sequencing. Plasmid DNA was prepared 

from 42 unique clones with the QIAprep spin miniprep kit (QIAGEN) and sequenced using a capillary array 

electrophoresis sequencer CEQ 8000 Genetic Analysis System (Beckman Coulter). To identify 

microsatellites in the genomic inserts, sequences were screened with the program TANDEM REPEATS 

FINDER 2.02 (TRF) (Benson 1999) using default parameters and 20 as the minimum alignment score. The 

search criteria was set to find microsatellites containing three or more units of repeat motifs consisting of two 

to six nucleotides. The analysis of these sequences revealed that each of the 42 clones (EMBL Accession nos 

AM182570–AM182611) contained a microsatellite at the 3′ and 5′ ends of the insert, and 25 had internal 

ones as well. OLIGO 6.3 (Molecular Biology Insights) was used for designing primers to amplify the 16 

internal microsatellites with sufficient flanking sequence. 

Microsatellite loci were characterized in 34 razor clams (Ensis siliqua) from Finisterre, located on the 

Atlantic coast of Spain. Microsatellite fragments were amplified under the following conditions: 94 °C (2 

min), followed by 30 cycles at 92 °C (1 min), 60 °C (1 min) and 72 °C (30 s) with a final extension step at 72 

°C (10 min). PCRs were carried out in a total volume of 25 µL containing 1× Roche Taq PCR buffer (10 

mM Tris‐HCl, pH 8.3; 50 mM KCl), 0.2 µm each of forward and reverse primers, 0.2 mM of each dNTP, 2‐

2.4 mM MgCl2, 0.75 U Taq DNA polymerase (Roche) and 20 ng DNA template. An initial screening of the 

16 primer pairs was carried out to evaluate each primer pair for robust amplification and polymorphism 

using an Agilent 2100 Electrophoresis Bioanalyser (Agilent Technologies). Five primer pairs fit these 

criteria and reverse primers were 5′‐labelled with fluorescent dyes (WellRED oligos, Proligo). Amplification 

products labelled with different fluorescent dyes were pooled and electrophoresed on a CEQ 8000 Genetic 

Analysis System apparatus (Beckman Coulter). Five to 23 alleles per locus were detected. The analyses of 

these loci are shown in Table 1. GENEPOP version 3.3 (Raymond & Rousset 1995) was used to calculate 

observed and expected heterozygosities and linkage disequilibrium between loci. Observed heterozygosities 

ranged from 0.46 to 0.94, all loci were unlinked and two (Es177 and Es136) conformed to Hardy–Weinberg 

equilibrium (HWE) at a 5% significance level. Even after applying Bonferroni correction for two loci (Es263 

and Es129), significant deviations from HWE were observed due to deficiency of heterozygous genotypes (P 

< 0.01), whereas Es128 showed a significant excess of heterozygosity (P < 0.01). The deficiency of 

heterozygosity suggests the presence of null alleles at Es263 and Es129, although this should be confirmed 

by further studies involving segregation analysis. In summary, a survey of 34 individuals showed numerous 

alleles and high HO. The genetic variation observed in these five microsatellite markers and the lack of 

evidence for linkage disequilibrium indicate that the markers presented here will be useful for future studies 

on the population structure of E. siliqua in the wild and the aquaculture of this species. 

 

 

 

 

  



 
 

 

Table 1. Characterization of five microsatellite markers in the razor clam Ensis siliqua 

Locus EMBL no. Repeat motif (5’-3’) Primer sequence (5’-3’) [MgCl2] 

 

N Alleles Sizes (bp) HO HE 

Es263 AM182601 (TAG)29(GTT)7 
F: AATTACTTCTGGAACCTTATTTACGCA 

R: CTATTTACCCGAACATATACTGCCG 
2.4 mM 32 23 203–317 0.5313* 0.9390 

Es177 AM182587 (GA)10 
F: ATTACCTCCAATACTAGGAGAGCCG 

R: CCGTAACCGTGTTCTTCTCCG 

2 mM  33  11  173–197  0.9394  0.8108 

Es136 AM182580 (CT)3GTATGT(CT)5 F: TGACCAACACTACCACCCCATC 

R: AGAAGGGTGTGAATGAGAGATAGGG 

2.4 mM 33  6  129–139  0.4545  0.5432 

Es129  AM182574  (ATT)10 F: TAATGCATACCCGTCTCTGATAAGC 

R: AATTAGCCTAAATTGTGCAGAAACG 

2.4 mM  33  13  114–162  0.7576*  0.8815 

Es128  AM182578  (GA)40 F: GAAAGAGAGAAGGGAGATAATTGGG 

R: GTTTTTGTGTATGTGTGTGCGTCTT 

2.4 mM  33  5  126–136  0.8788*  0.5533 

N, number individuals tested; HO, observed heterozygosity; HE, expected heterozygosity. 

* Significant departures from Hardy–Weinberg equilibrium after Bonferroni correction (P < 0.01). 
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