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Abstract

This thesis deals with the modelling, mathematical analysis and numerical solution
of partial differential equation (PDE) problems for pricing European and American
options when considering counterparty risk. Several valuation adjustments are con-
sidered, the most important one being the credit value adjustment (CVA).

In the modelling, the intensity of default from each risky counterparty plays a
relevant role. In the present work we analyze two situations. In the first one constant
intensities of default are assumed, leading to PDE models with one spatial dimen-
sion. In the second setting stochastic intensities are assumed, although only one
counterparty can default so that PDE models with two spatial variables are deduced.
Thus, Cauchy-boundary value PDE problems are posed for European options, while
complementarity problems govern the pricing of American options.

The two more usual choices for the mark-to-market value, risk—free and risky
derivative values, lead to linear and nonlinear PDE problems, respectively. The
mathematical analysis of the nonlinear models is one of the main achievements of
this work, thus obtaining the existence and uniqueness of solution for the different
problems.

For the numerical solution, a method of characteristics jointly with a fixed point
iteration and finite elements are used. In the case of American options, an augmented
Lagrangian active set method is additionally applied. Also, the equivalent formula-
tions in terms of expectations have been posed and numerically solved by means
of appropiate Monte Carlo techniques. Finally, we show illustrative results of the

performance of the models and numerical methods that have been implemented.
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Resumen

Esta tesis se centra en el modelado, analisis matematico y resoluciéon numérica de
problemas de ecuaciones en derivadas parciales para opciones europeas y americanas
con riesgo de contrapartida. Se consideran diferentes valoraciones de ajustes, el més
importante de los cuales es el riesgo de contrapartida (CVA).

En el modelado, la intensidad de quiebra de cada contraparte juega un papel
importante. En el presente trabajo consideramos dos situaciones. En la primera se
asumen intensidades de quiebra constantes, lo cual da lugar a modelos unidimension-
ales. En el segundo escenario se consideran intensidades de quiebra estocasticas, pero
solo una contraparte puede quebrar, obteniéndose un modelo de EDPs bidimensional.
Se obtiene asi un problema de valor inicial y de contorno regido por EDPs para las
opciones europeas, mientras que la valoraciéon de opciones americanas esta gobernada
por problemas de complementariedad.

Las dos opciones mas habituales del valor de mercado en el instante de quiebra
(valores sin riesgo y con riesgo) conducen a EDPs lineales y no lineales, respectiva-
mente. El andlisis matematico de los modelos no lineales es uno de los principales
logros de este trabajo, obteniéndose la existencia y unicidad de solucién.

Para la solucién numérica, se combinan métodos de caracteristicas, punto fijo y
elementos finitos. En el caso de las opciones americanas, el problema discretizado es
resuelto mediante un método de lagrangiano aumentado. Se han planteado también
formulaciones equivalentes en términos de esperanzas, que han sido resueltas me-
diante técnicas adecuadas de Monte Carlo. Finalmente se muestran resultados del

comportamiento de los modelos y de los métodos numéricos implementados.
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Resumo

Esta tese céntrase no modelado, analise matematica e solucion numérica de problemas
de ecuaciéns en derivadas parciais para opcions europeas e americanas con risco de
contrapartida. Considéranse diferentes valoraciéns de axustes, o mais importante dos
cales é o risco de contrapartida (CVA).

No modelado, a intensidade de quebra de cada contraparte xoga un papel im-
portante. No presente traballo consideramos duas situaciéns. Na primeira asimense
intensidades de quebra constantes, o cal da lugar a modelos unidimensionais. No
segundo escenario considéranse intensidades de quebra estocésticas, pero sé unha
contraparte pode quebrar, obténdose un modelo de EDPs bidimensional. Obtense asi
un problema de valor inicial e de contorno rexido por EDPs para as opcions euro-
peas, mentres que a valoracion de opciéns americanas esta gobernada por problemas
de complementariedade.

As dias opciéns mais habituais do valor de mercado no instante de quebra (valores
sen risco e con risco) conducen a EDPs lineais e non lineais, respectivamente. A
analise matematica dos modelos non lineais é un dos principais logros deste traballo,
obténdose a existencia e unicidade de solucién.

Para a soluciéon numérica, combinanse métodos de caracteristicas, punto fixo e
elementos finitos. No caso das opcions americanas, o problema discretizado é resolto
mediante un método de lagrangiano aumentado. Proponse tamén formulacions equi-
valentes en termos de esperanzas, que son resoltas mediante técnicas adecuadas de
Monte Carlo. Finalmente méstranse resultados do comportamento dos modelos e dos

métodos numéricos implementados.
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Introduction

Since 2007 crisis, when important financial entities went bankrupt, the counterparty
risk has become an important ingredient that needs to be taken into account in all
financial contracts. It can be described as the risk to each party of a contract that the
counterparty will not live up to its contractual obligations. Different institutions and
financial analysts consider that the crisis was due to mistakes made in the financial
system, namely in the management of the risk. The complexity of the financial deriva-
tives and the consideration of a low probability of default were two of the factors that
led to the crisis. As a consequence, a review of the counterparty risk consideration

has been addressed.

The two parts of a financial contract are usually named as the investor (or the
buyer) and the hedger (or the seller). Nevertheless, both counterparties will buy or
sell different assets, playing the role of buyer or seller at each situation. From the
point of view of the seller, the risk neutral value of a derivative can be adjusted by

the following items:

e [t is reduced by the existence of funding costs, in the case the latter takes part

(Funding Cost Adjustment, or FCA).

e It is increased in the case its value produces liquidity for the entity (Funding

Benefit Adjustment, or FBA).

e [t is reduced by the necessary costs to compensate the credit risk due to the

counterparty (Credit Value Adjustment, or CVA).



e If a bilateral counterparty risk is assumed, the derivative value is increased by
its potential benefits due to the issuer probability of default and the issuer has

not to face its contractual responsibilities, when those are positive for the issuer
(Debit Value Adjustment, or DVA).

e [t is increased by the cost of borrowing the collateral (Collateral Value Adjust-
ment, or CollVA).

The FCA and the FBA can be merged and the sum of them is known as FVA
(Funding Value Adjustment), which is understood as the correction to the risk—free
price to account for the funding costs. The presence of FVA in the adjustment is
reasonable in the case of non-collateralized trades; however, when a collateral is
posted to fully cover the counterparty risk then the FVA reduces to zero. In this
sense, FVA is given by the difference of price between non—collateralized and fully
collateralized contracts (see [45]). CVA represents the price to mitigate counterparty
credit risk on a trade and the concept was first introduced in [47) 33, 24]. However,
as no parts in the contract are risk—free, then DVA is the price of the hedging used to
mitigate the own credit risk and from the other counterparty is understood as a CVA.
DVA was first introduced in [24] to account for the presence of two risky counterparties
and the consideration of DVA allows to agree on the price by both traders (symmetric
prices). However, a long controversy exists about the consideration of DVA, and the
same happens with FVA (see [31], 32, 37, [I§] for different views on FVA).

Thus, including counterparty risk in the pricing of derivatives represents an im-
portant change in the existent risk—free pricing models. In particular, in this setting
nonlinear partial differential equations (PDE) models can be deduced, and have to be
mathematically analyzed and solved by means of suitable numerical methods. The
main goal of the present thesis concerns the computing of European and American
options prices, accounting for all the associated cash flows that come from the deriva-
tive itself, the act of hedging, the default risk management and the funding costs.

Following the usual terminology, we will refer to the total value of these adjustments



as XVA, which in terms of the previously introduced notations is defined by:
XVA = DVA — CVA + (FBA — FCA) + CollVA = DVA — CVA + FVA + CollVA..

Thus, we pose PDE models for the derivative value, \A/, from the point of view of the
seller, when the trade takes place between two risky counterparties. More precisely,
we focus on the case of European and American vanilla options. We use hedging
arguments to derive the extensions to the Black—Scholes PDE in the presence of
bilateral jump—to—default model and include funding considerations into the financing
of the hedged positions.

Firstly, we consider a framework with constant intensity of default for the counter-
parties, then a model depending on one stochastic factor, the asset price is obtained.
Nevertheless, the behaviour of the probability of default, from each counterparty that
takes part in a contract, is not always constant. Thus, in a second part we model the
XVA associated with a contract where the intensity of default from the counterparties
is stochastic. As a result a model depending on two stochastic factors, the asset price
and the spread, is posed.

Actually, nowadays there are three main methodologies to include funding costs,
collateral and credit risk in the pricing of derivatives. A first approach follows the
seminal papers by [45] and [I5], that obtain PDE formulations by means of suitable
hedging arguments and the use of It6’s lemma for jump—diffusion processes. In [45]
funding costs are introduced while in [I5] both funding costs and bilateral counter-
party credit risk are considered. This approach is also followed in [27] in the more
general setting of stochastic spreads, in which three underlying stochastic factors are
involved. Moreover, in [27] the solution is also equivalently written in terms of expec-
tations. A second approach follows the initial ideas in [I12] to include DVA by means
of expectations, and extend it to the collateralized, close—out and funding costs in
[42] [13]. A third approach is based on backward stochastic differential equations in-
troduced in [2I] and [22]. In all previous papers, only the case of European derivatives

is addressed. More recently, Borovykh et al. pose the problem in terms of a forward



backward stochastic differential equation and solve a problem on Bermudan options
[9].

In this thesis, we follow the methodology introduced by [I5] and [27], where the
XVA is given in terms of partial differential equations. Moreover, we also extend the
previous results to American options. It is well known that European and American
options are among the most popular derivative products on assets. In both contracts,
the holder has the right (but not the obligation) to buy or sell an asset at a price
that has been agreed with the counterparty. While European options can only be
exercised by the holder at the end of the maturity period, the holder of an American

option can exercise it at any moment along this period.

Taking into account such dissimilarity —according to the modelled, European
or American, option— different problems are obtained. The total value adjustment
associated to a European option contract is modelled by initial-boundary value prob-
lems associated to partial differential equations. However, for an American option the
related XVA is obtained solving complementarity problems. Both of them are posed
in terms of the mark—to—-market price. Throughout this thesis, two possible values for
such mark-to—market are considered, the risk—free derivative value or the derivative
value including counterparty risk. The first choice leads to linear partial differential
equations for European options, or linear complementarity problems in the case of

American options. For the second one, nonlinear PDE problems are posed.

As we have mentioned, the most common methodology to compute the XVA is
posed in terms of expectations. In order to write the XVA following such methodology,
Feynman—Kac theorem is applied on the partial differential equations and comple-
mentarity problems previously obtained. As a result, we can also write the XVA in
terms of expectations. For European options, classical Monte Carlo techniques will
be applied, jointly with a fixed point scheme for nonlinear problems. For American
options, the methodology introduced by Longstaff and Schwartz [38] and Glasserman
[28] to obtain the risk—free derivative value will be extended to include the counter-

party risk in the derivatives pricing.



In order to obtain a numerical solution of the different problems, some numerical
methods previously introduced in [3] are applied. As we could expect, the numerical
results obtained solving the partial differential equations (or the analogous comple-
mentarity problems) and those deduced from the Monte Carlo techniques show a

similar behaviour.
The outline of this thesis is as follows.

In Chapter [I| the mathematical model to price the total value adjustment for Eu-
ropean options is posed as a Cauchy problem. Constant intensity of default from each
part of the contract is considered, then a model depending on one stochastic factor
is deduced. Using a hedging strategy and applying [t0’s lemma, the PDE models are
derived. Next, the mathematical analysis to obtain the existence and uniqueness of a
solution for the model is described. Moreover, some numerical methods are proposed
to solve the problem. Finally, some examples showing the obtained results by solv-
ing the PDE problems and by implementing the alternative Monte Carlo simulation

techniques are presented.

In Chapter [2, we study the total value adjustment for American options. Then, lin-
ear and nonlinear complementarity problems are posed. As in the previous chapter, a
model depending on the asset price is deduced. Moreover, the augmented Lagrangian
active set algorithm is introduced to solve the discretized obstacle problem. Addi-
tionally, the Longstaff-Schwartz methodology is extended in order to price American
options considering counterparty risk. Finally, the results obtained by solving the
complementarity problem, or by implementing the adapted Longstaff-Schwartz tech-

nique are presented.

In Chapter [3 the total value adjustment for European options is also modelled.
Nevertheless, the main difference with Chapter 1 comes from the behaviour of the
intensity of default. In this case, a stochastic behaviour is considered. As a result, a
model depending on two stochastic factors, the spread and the asset price is deduced.

The mathematical analysis to prove the existence of the unique solution for the PDEs



is developed. Finally, the numerical methods and the associated numerical results are
also included.

In Chapter [4] the American options considering counterparty risk are introduced.
A similar framework as in Chapter 3 is considered. Thus, linear and nonlinear comple-
mentarity problems depending on two stochastic factors are deduced. We will study
the existence and uniqueness of solution of the problem. Finally, we describe how
to solve the model, and we present some examples to show the obtained numerical

results by Longstaff-Schwartz techniques and solving the complementarity problem.



Chapter 1

One stochastic factor model for

European options with XVA

1.1 Introduction

In this first chapter, we focus on European options. More precisely, a contract between
two defaultable counterparties is considered. The departure point in this model is
the consideration of a contract between two counterparties with constant intensity of
default. As a result, the derivative value including counterparty risk, is modelled by

a Cauchy problem depending on one stochastic factor, the asset price.

We follow the approach based in hedging arguments and the use of It6’s lemma for
jump diffusion processes to obtain partial differential equations (PDE) formulations.
Thus, after recalling the hedging strategy proposed for European—style derivatives,
different kinds of PDEs arise depending on the assumptions on the mark—to—market
value at default [15]. Thus, if this mark-to-market value is equal to the risk—free
derivative then a linear PDE that involves the value of the risk—free derivative is
obtained. However, if the mark—to—market value is given by the risky derivative,
then a nonlinear PDE is obtained. In the linear case, the equivalent expression of the

solution in terms of expectations can be solved. In the nonlinear case, this equivalent
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expression takes the form of a nonlinear integral equation and numerical methods are

also required.

Moreover, different adjustments are included in the trade of the derivative, thus
leading to different models. A first model includes adjustments for a non collateralized
contract, i.e, only CVA, DVA and FVA are considered. Nevertheless, in a second
model the CollVA is taken into account in the XVA.

We also prove the existence of the unique solution of the obtained nonlinear prob-

lem. With this aim, the methodology introduced by Henry [30)] is followed.

In order to solve the resulting PDEs for both choices of the mark—to—market at
default, we propose a set of numerical techniques. For this purpose, we truncate the
unbounded asset domain and pose original suitable conditions at the boundaries of
the resulting finite domain, following some ideas in [19] also taken from [23]. After
truncation, we propose a time discretization based on the method of characteristics
combined with a finite element discretization in the asset variable. For the case
leading to a nonlinear PDE a fixed point iteration algorithm is proposed. Moreover,
to obtain the XVA from the equation in terms of expectations, Monte Carlo techniques

are applied.

The plan of the chapter is the following. In Section [I.2] some one stochastic
factor models from the literature to price European—style options in the presence of
counterparty credit risk are described. More precisely, first counterparty credit risk
and funding costs are considered, while in a second step the collateral is added to
the previous model. In Section the existence and uniqueness of solution for the
problems modelled in Section [I.2] are proved. Section[1.4]is devoted to the description
of different numerical methods that are proposed to solve the linear and nonlinear
PDE models stated in Section [1.2] Particularly, the domain truncation to pose the
PDE problem in a bounded domain requires the consideration of appropriate and
original boundary conditions. In Section [1.5| we present the Monte Carlo technique

to estimate the XVA. Finally, in Section [1.6] we present and discuss the numerical



results for different examples. Most of the contents presented in this chapter are

included in [4].

1.2 Mathematical model

In this section, we deduce the Cauchy problems that model the total value adjustment
associated to European options considering counterparty risk. Different models are
introduced depending on the adjustments taken into account in the contract between

both counterparties. Finally, we deduce the model for the total value adjustment.

1.2.1 Pricing with counterparty credit risk and funding costs

Following [I5] we model the derivative value by considering different adjustments on
the value of the corresponding risk—free derivative, i.e. a derivative without coun-
terparty risk. In particular, bilateral default risk and funding costs are taken into
account. More precisely, we consider two counterparties, the seller B and the buyer

C, and the following assets associated to the trading [L15]:
e Counterparty B zero recovery bond price, Pg, with yield rp,.
e Counterparty C zero recovery bond price, P, with yield 7p,.
e Underlying asset with no default risk.

Due to the involved risks, the stock and the bond prices are modelled as stochastic

processes satisfying the following stochastic differential equations (SDEs):
dPp, = rp,(t)Pp,dt — Pg,dJ]
dPC’t =Tp (t)PCtdt — PcthtC (1.1)
dSt = TR(t)Stdt + U(t)Stth s

where W, is a Wiener process, and JP and JC are two independent jump processes

that change from 0 to 1 on default of B and C|, respectively.



Next, we consider a derivative trade where both counterparties can default. From
the point of view of the seller, the value of this derivative at time ¢ is denoted by
V, = ‘A/(t, Sy, JB, JC) and it depends on the spot value of the asset, S, and on the
default states at time ¢, JP and JC, of the seller B and buyer C, respectively. The
value of the same derivative when the trade takes place between two default free
counterparties is denoted by V; = V (¢, Sy).

Since the trade takes place between defaultable counterparties, we need to incor-
porate some technical issues around close—outs. In this chapter it is assumed that
the close—out mark—to—market can only take two possible values, namely the value
of the risk—free derivative or the one of the defaultable derivative. The value of the
defaultable derivative, ‘7(15, S;, JB, JE), includes adjustments —such as CVA, DVA
and FCA— into valuation whereas the value of the derivative without default risk,
V (t,S), does not include any counterparty adjustment. Moreover, we assume a set-
ting such that the function V (¢, .S) can be computed using a Black—Scholes model.

The conditions of the risky value upon default of the issuer or the counterparty

are:
e if counterparty B defaults first,

V(t,S,1,0) = M*(t,8,) + RgM~(t,S,) (1.2)

e if counterparty C defaults first,

~

V(t, St, O, 1) == RCM+(t, St) —|— M_(t, St) ; (13)

where Rp € [0,1] and Re € [0,1] represent the recovery rates on the derivatives
positions of parties B and C|, respectively, and M represents the close-out mark—to—
market value.

In order to deduce the value of the credit risky derivative, we hedge the derivative
with a self-financing portfolio IT which covers all underlying risk factors of the model.

Recall that we want to compute the XVA from the point of view of the seller, B.

10



Thus, we have:

—‘//\2 — Ht'

Let us assume that the portfolio II; at time ¢ consists of:

A(t) units of the underlying asset S;.
ap(t) units of Ppg,.
ac(t) units of Pg,.

~(t) units of cash, which is made up of a financing amount, needed to buy a
position in C’s bond and a repo amount, such that the portfolio value at time
t hedges out the value of the derivative contract to the seller. Furthermore, the

following issues need to be pointed out:

1. The cost of the portfolio is denoted by vp, whereas the amount which is

necessary to buy a position in B’s bond or the cash obtained from selling
B’s bond is denoted by vp,. Thus, the funding account, denoted by vp, is
defined as the difference between the cost of the hedging portfolio and the

price of the position in counterparty B’s bond, vp = vp — 7p,.

. The cash needed to buy a position in C’s bond, or the cash received from

selling a C’s bond, is denoted by vp..

. The repo account contains the amount of cash invested or borrowed in

order to fund the stock position A(t)S; through a repurchase agreement,

and is denoted by ~g.

. Although vp, vp, and v depend on ¢, for simplicity we do not explicit

this dependence in the forthcoming expressions.

The values of the different bonds, in which the cash amount is invested or bor-

rowed, satisfy the following relations for s > t:

rr(s)Br(s)ds if <0
dBul(t, s) = 7(s)Br(s) TP >
r(s)Br(s)ds if vp >0,

11



and

dBp,(t,s) = r(s)Bp.(s)ds,
dBg(t,s) = rr(s)Bgr(s)ds,

jointly with Bp(t,t) = Bp.(t,t) = Bg(t,t) = 1. Bp and Bg are two bonds with
different interest rates. Moreover, r denotes the risk—free interest rate, rr represents
the funding rate from the issuer and rg is the rate paid for the underlying asset in a

repurchase agreement. Thus, the portfolio value is equal to:
Ht = A(t)St + OéB(t)PBt + Oéc(t)PCt + ’Y(t) s

and, according to the self-financing condition, dlI; = —dlz.
Next, since Pg and Py are zero recovery bonds, their spreads are equal to the

default intensities Ag and A\g, respectively:
Ap=Tp, — T, Ao =Tp. —T. (1.4)
Now, imposing the self-financing feature of the portfolio, we deduce:
dll; = A(t)dS; + ap(t)dPp, + ac(t)dPc, + (ryf + reve — rYp. — rryR)(t)dt . (1.5)

In order to compute the change in the derivative price we use Ito’s lemma for

jump—diffusion processes (see [43], for example), thus leading to:

SOV OV 1, 0 5 0
d‘/t = Edt + ﬁdSt + §U2S§Wdt + AVvB‘thtB + AVCthtC
oV OV 1,00 v o 7
= (W + T’R% + §G2SEW> dt + O'St%dwt + AVdeJtB + AVC’thtC7 (16)

where V' and all partial derivatives of V are evaluated at (t, Sy, JB, JC). Moreover,
we use the notations
A‘/}Bt = ‘7({;7 St7 17 0) - ‘7(t7 Sta 07 0) )

S _ (1.7)
AVCt = V(t7 St7 07 1) - V(t> Sta 07 0) )
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which can be computed using the default conditions ((1.2)—(1.3).
Keeping in mind expressions (1.5 and (|1.6) we deduce the following equation:

A(t)dSt + OlB(t)dPBt + Oéc'(t)dpct + (7"’7?:_ + TF’)/; — T’}/pc — ’I“R’)/R)dt

__(af/ W 1,0

~ ~ (1.8)
——dt + —dS, + —0*S?——dt + AVp,dJP + AVCthtC> :

ot S 2 1 9s?

According to the SDEs in (1.1) we obtain:

A(t)dSt + @B(t)(TpBPBtdt — PBthtB) + Oéc(t)(’r’pcpctdt — PcthtC)
+ (1 +TEYE = YR — TRYR)AE
ov . oV 1, .0V T

Moreover, we choose the following weights:

1%
Alt) = ——=—
( ) 857
AVp, Vi — (M + RpM;)
= =— 1.1
an(t) = ot (1.10)
AV, V, — (M; + ReM;
Ozc(t): Ct:_t (t+0t)
Pe, Pe,
in order to remove all risks in the portfolio II;. Thus, equation (1.9) leads to
oV 1, 0%V
aprp, P+ acrp. Po+ (1Y +TeYpe — Y. — TRYR) + e + 50252m =0. (1.11)

In order to obtain the PDE that models the derivative value, we consider the

equivalences: vp, = apPp,, vp, = acPc,, P =1+ sp and vp = 7p — Yp,, so that

aprp, Pp + acrp, Po + vl + ey — VP — TRYR
= aprp, P+ acrp, Po+r(vp — vpp) " +10(vp — Vpy)” —racPe — TRYR

= aprp, Pp + acrp,Po +1(vp — apPp) + sp(yp —apPp)” —racPc — rryr .-

13



According to the repo account we have yg = AS, so that the previous identity

becomes:

aprp, Pp + acrp. Po + T’Y; +TFYp — TYPe — TRVR

=ryp + Spyp — TRAS + (rp, — r)acPo + (rp, — 1)apPsp.

In order to avoid arbitrage opportunities, the hedging portfolio value has to be
equal to the derivative value, so that vp = —V. Moreover, by considering the expres-

sions in (|1.4) the previous equation can be further reduced to

aprp, Pp + acrp,Po + i + rpyp — TP — TRYR

= —T‘/} + SF’YE — TRAS+ )\Coécpc + )\BO./BPB.

Finally, considering the addends in which apPp, and ac P, take place and ex-

pressing them in terms of the mark—to-market value we get

aprp, Pp + acrp. Po + 7”7;: + TPV — VP — TRVR

= _(T + )\B + )\0)‘7 + SF/YE - T’RAS + /\B(M+ + RBM_) + /\0(M_ + RCM+) .

Thus, we introduce the previous expression in ([I.11) to obtain the PDE that

models the value of the derivative including the counterparty risk:

at‘?—i-AV—T‘? = (>\B+)\C)‘7—|—SF]\/[+
~Ap(RpM~ + M7*) — A\¢(ReM* + M™) (1.12)

~

V(T,S)=H(SY),

where s is the funding cost of the entity, M represents the mark—to—market and the

differential operator A is given by

1, ,0%V oV
AV—ZUS 552 —1—7‘3565. (1.13)

According to the two scenarios usually considered for the choice of the derivative

mark—to—market value at default, M, two different PDE problems are obtained:

14



° IfMZ‘/},

~

OV + AV =1V = (1 — Rp)AgV ™ + (1 — Ro)AcVH + spV T

E)tV + .A‘? - (7“ + >\B + )\0)‘7
= _(RB)\B + Ac)v_ — (Rc)\c + )\B)V+ +spV T

~

V(T,S)=H(S),

where H () represents the pay—off of the derivative. In this chapter, European vanilla
call and put options and forwards will be considered.

The derivative value with counterparty risk can be written as:
V=V+U,

where U is the total value adjustment (XVA) and the counterparty risk—free value of

the derivatives, V', satisfies the classical linear Black—Scholes equation:

8tV+.AV—7"V:O,
V(T,S) = H(S) .

(1.14)

Thus, the PDE problems satisfied by U are the following:
o If M = ‘A/, we get a final value nonlinear problem:
U+ AU —rU = (1 — Rp)A\g(V+U)~
+(1 = Re)Ae(V + U +sp(V +U)* (1.15)
U(T,S)=0.
e If M =V an analogous linear problem is deduced:
U+ AU — (r+ g+ Ao)U = (1 — Rp) gV~
+(1 = R)AV T + spV+ (1.16)
U(T,S)=0.
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In both cases, variable S lies in the unbounded domain [0, +00) while ¢ € [0, T7.

1.2.2 Pricing with counterparty credit risk, funding costs

and collateral

Many contracts include the collateralization of an asset. Collateral is a property or
other assets that a borrower offers a lender to secure a loan. If the borrower stops
making the promised loan payments, the lender can seize the collateral to fully or

partly recover its losses.

In this section, mainly following [16], a credit risky collateralised derivative value
is modelled in terms of PDEs, thus a more generalized framework is studied. For this
purpose, we assume an agreement between two risky counterparties B and C', where
B is the issuer. As in the previous section, a self-financing hedging portfolio is used.
The main difference with respect to the former setting is that in the present one the
hedging portfolio only hedges out the derivative when counterparty does not default,

whereas in the previous section the hedging portfolio perfectly hedges the derivative.

When the counterparty B defaults, there is a difference between the hedging

portfolio and the short derivative value, which is known as hedge error.

In a similar way to the previous section, we want to deduce the PDE model for a
collateralised derivative. Thus, we need to describe all the items taking part in this
new setting. For this purpose, in [16] the authors consider the general case in which
B has a portfolio made up of two bonds, P; and P,, with different seniorities and

different recoveries, R; and R,, respectively. More precisely,

e P is an issued junior bond with recovery R; > 0 and yield r

e P is an issued senior bond with recovery Ry > 0 and yield 7y
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and Ry > R;. Thus, we assume the price processes satisfy the following SDEs:

dSt = TR(t>Stdt + O'(t)Stth
dPg, = rp,.(t)Po,dt — PodJf

(
(

dPy, = ri(t)P,dt — (1 — R))Py,dJP (1.19
(

)P,
dPy, = ro(t) Py, dt — (1 — Ry)Py,dJP .

t

The total position, at time ¢, in the B issued bond is given by
Pg, = a1(t) Py, + as(t) Py, (1.21)
and the value of Py in the issuer’s default instant is defined as
Pp, = a1 (t)R1 Py, + aa(t) Ra P, - (1.22)

The conditions of the collateral derivative value upon default of both counterpar-

ties are:

e if B defaults first, then

~

V(t, St, 1, O) = gB(Mt7Xt) = Xt + (Mt — Xt)+ =+ RB(Mt — Xt)_ (123)

e if ' defaults first, then

~

V(t,5,0,1) = go(My, Xy) = Xy + (My = X4)” + Ro(M, = Xi)7, (1.24)

where X; represents the collateral and M; is the mark—to-market value. These con-
ditions represent an extension of the ones given in 7, which are clearly
recovered for X; = 0.

The hedging portfolio built up in this model only hedges out the derivative when

the counterparty B does not default, so that, in this case
I, +V,=0. (1.25)
Moreover, the self-financing hedging portfolio is made up of
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e A(t) units of the underlying asset S;.
e One unit of counterparty B bonds, Ppg,.
e ac(t) units of counterparty C' bonds, Pg,.

e 7(t) units of cash, which consists on an amount of stock position in a repurchase

agreement, yg(t), and the cash amount necessary to purchase ac(t) bonds of

C, vre-
e An amount of collateral, X;.
Thus, the total value of the portfolio at time ¢ is given by:
I, = A(t)S; + Pg, + ac(t) P, +(t) — X;. (1.26)
As the portfolio is self-financing, the change in the hedging portfolio is
dll; = A(t)dS; + dPg, + ac(t)dPe, — (ryp. + rrYR)(t)dt — rx Xdt . (1.27)

We now consider the expressions given in ((1.17)—(1.20]), and by replacing them in
the hedging equation (1.27)) we obtain:

dHt == AdSt + Oél<t)(7’1(t)P1tdt — (1 - Rl)PlthtB)
+ @Q(t)(T’Q(t)Pgtdt — (1 - Rg)PgthtB)
+ ac(t)(rp, (t) Pe,dt — PodJC) — rac(t)Podt — rpA(t)Sdt — ry X,dt
and reordering terms we get:
dHt = A(t)dSt + oy (t)’l"lpltdt -+ O@(t)?"gpztdt + Ofc(t))\cpctdt
— TRAStdt — TxXtdt - (041(t)P1t + OzQ(t)Pgt)thB
+ (a1 (t)Ri Py, + as(t)Ro Py, )dJP — ac(t) Po,dJf . (1.28)
Taking into account equations ([1.21]) and ([1.22), the hedging equation ([1.28)) reads:
dHt = (Oél(t)?"lplt + OCQ(t)TQPQt -+ OéC(t))\Cpct — TRA<t)St — TxXt)dt
+ A(t)dS; + (Pp, — Pg,)dJ? — ac(t)PedJEC .

18



Moreover, applying again It6’s lemma for jump—diffusion processes, the dynamics of

the risky derivative value is obtained:

dv, = %—Ydt + g S+ 10253%& + AV, dJP + AV, dJC
(%‘; + TR(;‘Z + 10253 g;) dt + aStg—gth + AV, dJP + AVg,dJC | (1.29)
where:
AV, =V (t,5,1,0) = V(t,5,,0,0) = gg(M,, X;) — V(t,5,,0,0)
AV, = V(t,5,0,1) — V(t,5,,0,0) = go(M,, X;) — V(t,5,,0,0)

By combining the change in the hedging portfolio and the change in the derivative

value, we obtain

~ ov
dHt + dV} = (al(t)rlPlt + Oég(t)’l“gpgt + Olc(t))\cpct — T’RA( )St — TxXt + W
1 4,0V oV
+ 508 oy | di | AW + o | dS,
+ (Pp, — P, + AVp)dJE + (AVe, — ac(t)Pe)dJE . (1.30)

Next, we can remove the counterparty C’s credit risk and the market risk by

choosing
AV, 1%
aC’(t) = PCC ) A(t> = _%7 (131>

so that equation (|1.30]) is reduced to:

N oV -
dHt —+ d‘/t = (E + AV + ozl(t)rlplt + Oég(t)rgpgt + aC(t))\CPCt — TXXt> dt

+ <AXA/Bt — Py, + PDt) dJP (1.32)

where the differential operator A is defined as in (|1.13]).
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Furthermore, when the counterparty B does not default, the difference between

the hedging portfolio and the short derivative is given by

-~

I, — (~V;) =L + V; = A(t)S, + Pp, + ac(t)Pe, + 7 — X, + V,
= A(t)S; + P, + ac(t)Po, — (va +vpe) — Xi + Vi
— Py +V,— X,. (1.33)

In this case, while the counterparty B is alive, we have a perfectly hedged portfolio,

so that the following funding constraint is obtained:
Vi+ Pp, — X, = 0. (1.34)

We can interpret this equation in the following way: if YA/t — X; <0, then B bonds are
used to fund the difference between the derivative value and the collateral. Conversely,
if that difference is positive then they are used to repurchase B issued bonds. Finally,
if the risky value is fully hedged by the collateral then the bond position will be
reduced to zero. If the collateral is zero, the trade will be financed by B’s bonds.
Therefore, we have assumed that the issuer wants a self-financing portfolio while
he/she is alive. In this case, the jump indicator is zero, because B does not default.
Thus, the drift term has to be equal to zero to obtain a self-financing hedging portfolio
according to . So, the PDE for the collateralized risky value is given by:

oV ~
E+AV+O&1T1P1+OQT2P2+&C)\0PC—TxXZO. (135)

Next, let us consider the case when the counterparty B defaults. In this situation
the derivative value is gg(M;, X;) and Pp is the total B bond position, so that the
previous difference 7 in the case that B defaults, turns into the hedge error given
by:

he = Pp, + gg(M;, X;) — X; , (1.36)

which depends on the mark—to—market value.

Taking into account equations (1.31]), (1.34) and ((1.36]), the PDE (|1.35)) can be

reduced to:

oo ~
E—F.AV— (T+/\B+)\C)V+>\CgC(M,X> +)\BgB(M,X) _)\Bhe —SxX = 0,
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so that the final value problem consists in finding the function V as the solution of:

v~ .
E—F.AV—(T—F)\B‘F)\C)V

= Aphe — Apgp(M, X) — A\ogo(M, X) + sx X (1.37)
V(T,S) = H(S).
If we compare ([1.37)) with the PDE problem ([1.12]) obtained in the case without

collateral, the two additional terms Agh, and sx X appear. Furthermore, the terms
gp and gc are now more general.

Moreover, in case of counterparty B default a hedge error arises. Nevertheless,
while the issuer B is alive, it will incur a cost or gain of size Agh. per time unit.
We can prove that this gain is equal to the hedge error. The gain is defined as the
coefficient of J? in (1.32):

A‘/}B+PD_PB:gB_‘/}"‘PD_PB:gB—i‘PD—X:he.

As in the case without collateral (described in the previous section), our goal is
the computation of the total value adjustment. For this purpose, we write the risky

value as the sum of the risk—free value V' and the total value adjustment, U, i.e.:
V=V+U

where V' is solution of ((1.14). Thus, the total value adjustment satisfies the following
PDE problem:

(OU ~
B + AU — rU = Aghe + Ap(V — gp(M, X))

FAc(V = ge(M, X)) + 5x X (1.38)
U(T,S)=0.

\

If we analyze the terms involved in the right hand side of the equation, the following
adjustments are taken into account: the first term is related to the amount of gain or
cost, and takes part of the FCA; the second and third terms are related to the DVA
and CVA, respectively; and the last term is related to collateral value adjustment.

Depending on the mark—to—market value, we obtain two different equations:

21



o If M = \7, we get a final value problem governed by a nonlinear PDE:
ou

E"‘AU—TU:ABhe—F)\B(l—RB)(V+U—X)_

(1 = Re)(V +U = X)T +5xX (1.39)
U(T,S) = 0.

e If M =V an analogous linear problem is deduced:

U

E + AU — (7” + A+ )\0)[] = A\gh. + /\B(l - RB)(V — X)_
(1= Ro)(V — X)* +sx X (1.40)

U(T,S)=0.

As in the non—collateralized problems, variable S lies in [0, +00) while ¢ € [0, 7).
Finally, different assumptions are made on counterparty B bond. As a result,

three particular different models can be proposed. Note that the linear versions

corresponding to ((1.40)) have been proposed in [14].

Collateral model 1: Perfect hedging

If all risks are perfectly hedged, then h,. is reduced to zero; thus we get:

he = gp(M;, Xi) + Pp, — Xi
= gB(Mt,Xt) + Oél(t)Rlph + Oég(t)Rngt — Xt =0. (141)

Moreover, according to the funding constraint ([1.34)), we have:
Vit ai(t)Pr, +ax(t) P, — Xy =0,

so that we get the identity:

X, —V, — azP
a(t) = St Tt et (1.42)
Py,
Replacing this value in (1.41]), we obtain the number of senior bonds
—gp(My, X;) + (1 — R)X; + RV,
as(t) = g(My, Xi) + ( )X + Ry t (1.43)

Py, (Ry — Ry)
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Next, replacing ((1.43) in (1.42]), we obtain the number of junior bonds:

on(t) = (B2 = VX = RVl + gu(M:, X))
Py (R — Ry) 7

with Ry > Ry, P # 0 and P; # 0. With that position of the counterparty B’s bonds,
a perfect hedging portfolio is obtained, eventhough B defaults. In this case the PDE

which models the risky derivative value is reduced to

v N
E +AV — (T’ + /\B + /\0)‘/ = —)\Cgc(M7X) — )\BgB(M; X) + S)(X
V(T,S) = H(S),

and the PDEs for the total value adjustment, U, are:

o If M =1V,
%—[Z+AU—7~U:AB(1—RB)(V+U—X)
+Ac(I = Re)(V+U - X)" +sxX
U(T,S)=0.
o If M=V,
ou _
-7 HAU - (r+ Xg+ Ae)U = Ag(1 — Rp)(V — X)
+Ac(1 = Re)(V — X)T 4+ sx X
U(T,S) =0.

Notice that funding cost adjustment vanishes because the hedge error is null, so that

only CVA, DVA and CollVA are taken into account in the XVA.

Collateral model 2: Two bonds model

In this model, we assume that counterparty B has two bonds. More precisely, a zero

recovery bond P, and a bond P, with recovery R,. This recovery is equal to the
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recovery rate of counterparty B on a derivative trade, i.e. Ry = Rp. Under this

assumption, the corresponding PDE is deduced.
Assuming the funding constraint (1.34]), we write:

Pp, = a1 () Py, + as(t) Py, = —(V, — X,) . (1.44)

t

According to the model without collateral and taking into account (1.10f), the zero
recovery B bond position value is equal to the difference between the risky value and

the mark-to—market value, thus we have:

a ()P, = —(V, — M) . (1.45)
Note that if the mark—to-market value is equal to the risk—free value, then the first
B bond position is bought or issued to invest or fund the XVA amount. Otherwise,
when the mark—to—market value is equal to the risky derivative value the situation

becomes equivalent to a one bond case, which will be later explained.

Including the first B bond position in ([1.44]) we obtain the second B bond position:

)Py, ==V, = X))+ (V, = M) = X, — M, . (1.46)

Next, by considering expressions ([1.23)), (1.24)), (1.44)), (1.45) and ((1.46)), the hedge

error becomes

he - (1 - RB)(Mt - Xt>+ .
Now, the hedge error is replaced into the general PDE (|1.37)), thus obtaining:
o - -
E + AV — (?” + A + )\0)‘/ = )\B(l — RB)(M — X)+
_ABgB(Mv X) - )‘CQC(M7X) + SXX
V(T,S)=H(S),

and the PDE models satisfied by XVA are given by:

° IfMZV,
oU
o AU - (r+Ag(1 — Rp))U = Ap(1 — Rp)(V — X)
+/\0<1—Rc)(v+U—X)+—|—8xX
U(T,S)=0.
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o [f M=V,

ou
E+AU_ (r+ A+ Ac)U = Ap(1 — Rp)(V — X)

+)\0(1 — Rc)(v — X)Jr +sxX
U(T,S) =0.

Collateral model 3: One bond model
Finally, only one bond from B, with recovery rate Rp, is considered so that:
a(t)P, =0 = Pp, =a(t)P,,.
According to the funding constraint , we get:
az(t) Py, = —(V = X,),
and the hedge error is given by

he = gp(My, X;) — RB(‘Z —Xi) — Xy =g5(M, X3) + (Rp — 1) X, — RV, .

After replacing the hedge error expression in ([1.37)), the following PDE modelling

the risky value is obtained:

oo .
E + AV - (7’ + )\B(l — RB) -+ /\0)V == )\B(RB — 1)X — )\CgC(M, X) + SxX
V(T,S) = H(S),

and the models for the XVA are:

o If M=V,
U
o AU - (r+ Ap(1 = Rp))U = A\p(1 — Rp)(V — X)
(1= Re)(V+U = X)F +5xX (1.47)
U(T,S)=0.
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o [f M=V,

88_(7{ + .AU - (7’ + /\B(l — RB) + Ac)U = )\B(l — RB)(V - X)
FAc(l = Re)(V = X))t 4 sx X (1.48)
U(T,S)=0.

We can observe that in the linear problem (1.48)), when M = V if a fully col-
lateralised derivative is considered then only CollVA exists in the adjustment upon

risk-neutral value, i.e. CVA, DVA and FCA vanish.

If we analyze the current situation, in which only funding desk can issue bonds in
the bank, the present model results the most realistic one because the trader cannot
issue bonds in order to raise cash for trade, so that only one bond from B has to be

considered.

1.3 Mathematical analysis

In the previous section, the mathematical model for XVA associated to European
options depending on one stochastic factor has been posed as a nonlinear or a linear
final value problem. In this section we study the existence and uniqueness of solution
for the nonlinear final value problem , as the linear case can be studied as a
particular one. Using a similar procedure, the mathematical analysis of the problem

considering collateral can be addressed.

For this purpose, we transform the associated partial differential equation (|1.15)
into an equivalent one, governed by a sectorial operator. Thus, the following changes

of variables and unknown

r=In (%) R %Z(T _1), wira) = %U(t, s)
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are introduced in problem ({1.15). Note that x € R and 7 € [O, "QTT] Thus, the

equivalent initial value problem becomes

ow  Ow 2 2rp Oow  2r o’T
L SRy 2 R <2
or  Ox? 02Kg<7-7 w)+ ( o2 ) gz o2 TSN 0=<7s 2
w(0,2) =0,

(1.49)

where function g is defined as:
g(t,w) = (1 = Rp)Ag(V + Kw)™ + (1 — Re)A\a(V + Kw)" + sp(V + Kw)* .

Next, we introduce a new change of variable in order to remove the last two terms

in the right hand side of the first equation in (|1.49)):

v(1,z) = exp(azx + B1)w(T, T),

1 2rr 2rp 2 op
062—5(1—?), ﬁ:<1—?> +;

As a consequence, the following equivalent problem is posed:

with

ov 0% o?T
E—@—h(T,U% LUGR,TE(O,T}
v(0,2) =0.

The function h is given by

h(r,2)(x) = = exp <—§(1_2;“_§)x+ [(1_2(7_1%){_] )

20— Bes (G0 0)@) + 10— Bedo + 58] (G(r. ) @)

X
Ko?

where G(7,¢)(z) = V (1, Ke*) + Kp(z) exp (% (1—28)z— [( - 2T’—R)2 + %} T>.

Finally, we apply the last change of variable in order to obtain a well defined

function in the second term of the equation:
u(r,z) = e’ v(T, x)
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where v will be later deduced. Thus, the following problem is obtained:

2 2
@—%IJ(T,U,), reR, 7€ O,ﬂ
or  Ox? 2 (1.50)
v(0,2) =0,
where function J : [O, ";T ] x H'(R) — L?*(R) is defined as follows:
2 3@ YT -y
J(1,0)(2) = 7v'pl(@) = 2y (2) + €°h(T, e () (1.51)

for all 7 € [o, %} o€ H'(R).
Next, we recall the definition of a sectorial operator, and a theorem that estab-
lishes the conditions for the existence and uniqueness of solution for a nonlinear PDE

problem associated to a sectorial operator (see [30]).

Definition 1.3.1. A linear operator B in a Banach space X is a sectorial operator if
it s a closed densely defined operator such that, for some ¢ € (0,7/2), My > 1 and
a real a, the sector S, o = {A | ¢ < larg(A —a)| < m, A # a} is in the resolvent set
of B, and

M,
A =B)71| < 5 _°a|, for any A € Sq.

Recall that for a sectorial operator B one can introduce a scale of fractional power
spaces X = Range(B~%), such that X = X° and X' = Dom(B), equipped with the

norm ||y|| = ||B*y||, where B* is a fractional power of B (a > 0).

Theorem 1.3.2 (Henry, [30]). Assume that B is a sectorial operator in a Hilbert
space X, 0 < a<1land f:U — X, withU an open subset of R x X* and f(7,y) a
locally Holder continuous function in 7 and locally Lipschitzian in y. Then, for any

(T0,%0) € U there exists Ty = To(m0,y0) > 0, such that the initial value nonlinear
PDE problem:

d

_y+8y:f(77y>7 7—>7—07

dr (1.52)
y(To) = Yo,

has a unique solution y on (1o, 70 + 1p).
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In order to apply the theorem, we will consider X = L?(R), X® = H'(R) with
a=1/2and U = (O, UQTT> x H'(R). Next, we will prove that the operator —88—; is
a sectorial operator and that the function A satisfies the conditions assumed by f in
the previous theorem. For the first purpose, we first recall a lemma from [30].

Let Ap denote the closure of the Laplacian operator.

Lemma 1.3.3 (Henry, [30]). The operator -Ap is a sectorial operator in L?(R").

2
Therefore, by Lemma |1.3.3| the operator 92 is a sectorial operator in L?(R).
x
.t I rr . : I g
Proposition 1.3.4. For v < 5T 2! the case of a call option and v > 3 2
o o

in the case of a put option, the function J : U — X given by 18 well defined,

18 locally Holder continuous in 7 and locally Lipschitzian in .

Proof. Note that function V' is given by the classical Black-Scholes formula for Eu-

ropean call or put options. Thus, depending on the kind of option we have:

e for a call option:
2 2
V(r,z) = K exp(z) exp <—D0—27') N(d}) — K exp <—7“—27') N(d3),
o o
e for a put option:

2 2
V(r,x) = Kexp (—7“—27') N(—d;) — K exp(x) exp <—D0—27') N(—d7),
o o

+ (r — Do+ 0%/2)% +(r—Dy—0?/2)%
x4+ (r 0 J/)JQT7 d;:x (r 0 a/)JQT’ (1.53)

Vor Var
with Dy = r — rg and N(z) represents the distribution function of the standard
N(0,1) random variable.

In order to prove that J(7, ) € L*(R), we need to study the behaviour of function

dy =

J(7, ) in the whole domain. For this purpose, we rewrite function J(, ) as follows

J(T’ 90) = Jl(T’ 90) + J2<Ta ‘70) )
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where

RT9)a) = 7ele) 252 (w)  and Jylr@)(x) = € hir,e ().

Due to ¢ € HY(R), then J;(7,¢) € L*(R). Next, we need to prove that function
Jo(T,0) € LA(R).

‘]2(7—7 90) (1’) = 67$h(7-7 6_7190@(;))

1 2r
= — exp(yx) exp (— 3 (1 — 0'_2R) T+

2rr 2 op
(1—?> —|—;]’T>

" Ko? [(1 — Rp)ApG(7, 77" p)” +[(1 = Ro)Ac + sp] (7, e_w(pﬁ]
_ _Kia? (1 - Rp)\p (exp <@1x - @27'> V(r, Ke®) + K90($>>7

+ [(1 — Re) + sp| (exp <@1x + @2T> V(r, Ke®) + Kgp(m)>+] (1.54)

with

So, a choice to prove that Jo(7,) € L*(R) consists in proving that J3(7,¢) €
L*(R), with
J3(7,p)(x) = exp (@135 + @QT)V(T, Ke®).

Thus, we will study the limits of J3(7,¢) when © — +oo. First note that de-
pending on the option type and taking into account the behaviour of the terms in the

Black—Scholes solution, we deduce:

e When z — oo,

d 00 = N(j)—1, N(=dj)—0
dy—o00 = N(dj)—1, N(=dj) —0.

and we obtain:
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— For a call option,

J3(1,¢)(x) = Kexp ((@1 + 1z + (@2 — DO%) 7') N(dy)

2
— Kexp <@1x + <®2 — TF) T) N(d3).

Thus, if we impose ©; +1 < 0 and ©; < 0, then e®1+D* and €®1* tend to

1
zero. Thus, for v < ~5 = T—Z, we deduce that function J3(7, ) € L*(R).
o

— For a put option,

Jo(m o) (@) = K exp (@11‘ + (@2 - r%) T> N(—d)

~ Kexp ((@1 + 1)+ (@2 - DO%) T) N(=d?).

In this case, J3(7,¢)(x) — 0 for all ¥ € R. Thus, J5(7, ) € L*(R) for all
v e R.

e When x — —o0,
dj - —o00 = N(dj)—0, N(—dj)—1
dy - —o00 = N(dj) =0, N(—dj;)—1.

— For a call option,

J3(1,¢)(x) = Kexp ((@1 + 1z + (@2 — DO%) 7') N(dy)

— Kexp <@1x + <@2 — r%) 7') N(d3).

In this case, J5(7,¢)(x) — 0 thus J3(7,¢) € L*(R) for all v € R.

— For a put option,

Jo(m o) (@) = K exp (@11‘ + (@2 - r%) T> N(—d)
~ Kexp ((@1 + 1)+ (@2 - D%) T) N(=d?).
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Choosing ©; such that ©; + 1 > 0 and ©; > 0, we get e®1+)* — 0 and
©12 0. Thus, J3(7,¢)(x) — 0 which means that J5(1,) € L*(R) for

In the previous results we have used that N(d) — 0 faster than e* — oo when
T — 00 Or T — —00.
Hence, Jo(T,) € L3(R) if v < —% - :;—I; for an European call option and v >

1 TR

2 o
H'(R) — L*(R) is well defined.

Next, we will prove that J is locally Lipschitz in ¢, i.e.
for all ¢, py € H'(R) .

— — — for an European put option. Therefore, under this assumptions on v, J(7, )

[ (7, 1) — (T, 902)||L2(R) < Lyl — 802||H1(R) )
For this purpose, we estimate the difference

Pr(a) ~ 29 (w) + € h(r, ) ()

J(7,01)(x) — J(1, @2)(95)‘ _
(vl - 278502( )+ (e () ‘

< Plaia) = )] + 27| 0) - S 0)

+ e Ly, |e‘”gol(x) — e‘“@@(m)‘
dpi(z)  Opa(x)

< (0 + L) lpa(o) = galo)] + 2y |25 2
X1 = xe| and [x7 —xz | < |xi -

27
] ©; - Moreover, we introduced the con-

Y

where we have used the fact that |X1 — ;r |
+

2r
with x; = V(7, )+K6(2 =)= | (-7

stant
2
Li= = (100 = Re)Asl + (1 = Reo)re +sr] )

Then, by integration we get

[ W@ = I d < 62+ L [ feao) -
Iy Ips
) - 2 @)

+ (27)?
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which is equivalent to

17(7.01) = T (7, 2) 72y < L5 1 = 22llinge, -

where L; = max{y?+ Ly, 2v}. Therefore, J is locally Lipschitz in the second variable
©.

Next, we prove that J is locally Lipschitz continuous in 7. Thus, for 7,7 €
[0, %QT} , we obtain

(1 9) @) = (@) = [ (b, 7 ) @) = h(rase ) (@)

— | _ e(wa)x% [(1 — Rp)\p (g~(7—17q;)* — g~(7'2,$>7>

g

+[(1 = Re)de + s (cj(rl,:cﬁ - g~(7'2733)+>] '

< ‘_e(w—a)wi

Ko?
+ (1 = Re)Ac + sp| |V (1, )e P = V(mp, e 77| )

( (1= Rp)Ag| |V (71, )e "™ = V(rp, - )e 7|

=M |V(71, e P — V(my, -)e_ﬁ”‘

where G(7,¢) = V(7,-)e " + Ke=*=1%¢p and

2
M= ‘—ewa)xﬁ (|(1 — Rp)Ag| + |(1 — Re)Ae + sFy) .

2
Moreover, function e is Lipschitz continuous in 7 in the interval {O, —T].

Then, using that V' € C((0, %T), X)) we can apply that V' is also Lipschitz continuous

in 7. Therefore, in terms of the norm, we get

T
HJ(ﬁ,w)—J(Tz,w)IIQZ/ |J(ﬁ,<p)—J(Tz,w)\QdTSCIIﬁ-TzIILQ(OL;T)7
0 ;

where C' = MLy and Ly is the Lipschitz constant associated to function V (7, z)e ™",
As J(1, ) is Lipschitz continuous in 7, in particular it is Holder continuous in 7.

]
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Corollary 1.3.5. For any initial condition ug € H*(R) there exists Ty = Tp(0,ug) > 0
so that the initial value problem has a unique solution in (0,Tp).

Corollary follows from Proposition [1.3.4] and Theorem [1.3.2, and provides
the existence and uniqueness of a local solution, as Ty = T5(0, up) is a local time. In
order to extend it to any interval (0,7") for a given T' > 0 we need to apply Corollary
3.3.5 in [30.

Proposition 1.3.6. The following inequality holds:
17 )2y < KO (14 10lagwy ) for all (7,6) € (0,00) x H'(R),  (1.55)

where IKC is continuous in (0,00). Therefore, there exists a unique solution of problem

1.50) defined on the entire time interval (O, ";T]

Proof. First, we note that the Lipschitz continuity properties also hold for 7 € (0, c0)
and prove the inequality ([1.55)). Thus, for any (7, ¢) € (0,00) x H*(R) we have

[ (7, @)HL?(R) <|[J(r,¢) = J(r, O)HL?(R) + || J (7, O)HLQ(R)
< Lylle = Oll gy + (7, 0)|| 2y
= (Lo + 10y ) (el +1)
where L is the Lipschitz constant for J, so that we can take
K(r) = Ly + (7, 0| 2y

which is continuous in 7 on (0, c0).
Next, we can apply Corollary 3.3.5 in [30]. Thus, we consider u(r, -) as the unique

solution of ([1.50) at time 7y = Tp/2 obtained from Corollary [1.3.5] so that from
Corollary 3.3.5 in [30], the unique solution of (1.50) through (7o, u(70,)) exists for
all 7 > 75. Therefore, we obtain existence and uniqueness of solution of ((1.50)) in

(0.57].

O
Corollary 1.3.7. There exists a unique solution of Problem
Proof. Tt follows from the existence and uniqueness of solution of the equivalent prob-

lem (|1.50)). [
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1.4 Numerical methods

In order to solve the previous models, in this section different numerical methods
are proposed. We will mainly focus on nonlinear problems, similar methods being
used in the corresponding linear ones. Moreover, we only develop the problem with
collateral, as we can consider the model without collateral as a particular case.

On one hand, as the initial domain of the problem is unbounded in variable S,
a localization procedure to define a suitable finite domain is required and adequate
boundary conditions are deduced and implemented. On the other hand, the time
discretization is made using a semi Lagrangian method combined with a piecewise
linear finite element spatial discretization.

The previous set of numerical methods is proposed to solve problem , the
solution of which is the adjustment value considering CVA, DVA, FCA and CollVA.

In order to state the problem as an equivalent initial value problem, the
change of time variable 7 = T" — t is considered, then is transformed into the

following forward in time problem:

oU  o® ,0%U U
Y S . — = — — sy X
or 25 852 TRsas—i‘?"U )\Bhe Sx
~(1=Rp)A\s(V+U—=X)" = (1= R)Ac(V +U — X)* (1.56)
U0,S)=0.

Moreover, as we propose to solve (1.56) by a finite element method, we write it in

divergencial form:

oU 0 <0_2528U oU

- - 2_ - e
or 95\ 2 as)”" rr)S5g T U= ~Ashe

— (1 — RB)/\B(V -+ U - X)i — (1 — Rc)/\c(v + U - )()+ — SxX . (157)

1.4.1 Method of characteristics

Analogously to other advection—diffusion equations, we propose a semi-Lagrangian

discretization combined with finite elements. More precisely, for time discretization
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we use a characteristics method first proposed in financial setting in [50]. It is based
on a finite difference scheme for the discretization of the material derivative, i.e.,
the time derivative along the characteristic lines. For this purpose, we consider the
material derivative of function U:

DU 0oU 90U dS

Dr o Tosar
for a given function S = S(7). Thus, we can write equation as:

DU o*> 0 [ ,0U .
D_T_?ﬁ (S %> +T’U— —/\Bhe—(l—RB))\B<V+U—X)

— (1—Rc))\c<v+U—X)+ —SxX. (158)

We will call velocity the coefficient of the advective term in (1.57), i.e. (0% —1g)S.
Then, we introduce Ny > 0, a time step A7 = T'/Np, the time discretization given

by ™ =nAr for n =0,1,2,..., Ny and the final value ODE problem:

Ox _ o? —rp)x(t
or ( rR)X(T) (1.59)
X(r) =S,

the analytical solution of which is:
X(8, 7" 7") = Sexp((rp — o) AT)

for n = 0,1,..., Ny — 1. Note that function x represents the characteristic curve
associated to the velocity passing through point S at time 771,

We approximate the material derivative in by a first order quotient, so that
equation (|1.58)) is approximated by:

nt+l _ 71N n 2 n+1
e 2 (e
= —Aghe — (1 = Rp)Ag(V + U™ — X))~
— (1= R)Ae(V +U — X)T — sy X. (1.60)

We can evaluate U™ o x™ at each step of (1.60]) in the mesh points by piecewise linear

interpolation.
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1.4.2 Fixed point scheme

In order to solve the nonlinear equation ([1.60]) at each iteration of the characteristics

method, we propose a fixed point algorithm. Thus, the global scheme can be written

in the following way:

Algorithm 1.1

1. Let Np > 1, e >0, U° given.
2. Forn=0,1,2,...,Np — 1
o Let Un—i—l,O ="
e For k =0,1,2,..., we compute UnTHF+1 satisfying:
(TzAT i 52 8Un+1,k+1
2 08 08
=U"o X" — AT [Aghe + (1 — Rp)Ap(V" + U™THF — X))~
+(1 = Re)Ae (VM + UM HF — X)F + 55 X] (1.61)

(1 + TAT) Un+1,l<:+1 .

||Un+1,k+1 _ Un+1,k||

until < €.

U+

1.4.3 Boundary conditions

As previously indicated, we will use a finite element method to discretize the previous
equations and approximate the solution. Thus, we need to truncate the unbounded
domain [0, +00) into a bounded one, so that the solution is not affected by the trun-
cation in the region of financial interest. We will assume S € [0, Sw], where Sy, > 0
is a large enough value; a typical choice in financial problems is S,, = 4K where K

represents the strike of the option.
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Next, we deduce the boundary conditions from the partial differential equation.

More precisely, let us introduce function f, defined by:
FOV)=Aghe + (1= Rp)Ap(V — X)™ + (1 = Re)Ae(V — X)F +sx X, (1.62)

representing the right hand side of (1.60)).
The boundary condition at S = 0 is obtained just by replacing S = 0 in ((1.56]).
Thus, we obtain the nonlinear ODE:

0.U +1U =—f(U+V).

This equation is discretized by a characteristics (in this case, equivalent to an implicit

Euler) method combined with a fixed point scheme:
Un+1,k+1(0) . Un(o) + rAT Un+1,k+1<o) — _ATf(Un+1,k(0) + VnJrl(O)) 7

for K > 0 and n > 0, so that a nonhomogeneous Dirichlet boundary condition is
obtained at each step of the global algorithm:
1
Un-f—l,k—i—l 0) = —(Un 0) = A |:>\ he
(0) 14+ rATt (0) i

+ (1 = Rp)Ap(V™H(0) + U™4(0) — X))~
4 (1= R)A(V™HL(0) + U™ R (0) — X)) + sxx}) . (1.63)

In order to deduce the boundary condition at S = S, we first multiply equation
(1.56) by S~2. Next, by taking the limit when S tends to infinity the following
property is obtained:

511—%022_55 =0. (1.64)
Then, following [19], when S — oo we consider a solution of the form:

U= Hy(t)+ Hi(7)S, (1.65)
where Hy(7) and H;(7) are coefficients not depending on S. Next, by assuming
52% — 0 when S — oo in ([1.56)) we have

g_(j —rng—g+rU_ —f(U+V) (1.66)
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when S — oc.
Discretizing ({1.66]) by the characteristic curve, we have:

(L4 rAr) U = U o X" — A7 f(UMHF V) (1.67)

where X" = x(S,7""!; 77) is solution of the final value problem

d(T N ’”;() (1.68)
() =S,

Thus, the characteristic curve is given by x(S, 7" 7") = Sexp(rgAT).

Introducing the expression ([1.65)) into each fixed point iteration ([1.67]), we obtain:
(1 + A7) (Hy T HPPMS )
=U"oxX" — AT [Aghe + (1 — Rp)Ap(V" + U"HF — X))~
+(1 = Re)Ae(VMH 4+ UMY — X)F + ¢ X . (1.69)

If we choose Hy TR — ) a nonhomogeneous Dirichlet boundary condition is de-
duced:

Un—i—l,k:—i—l (Soo) — H?—i_l’k—i_lsoo

= (o) ()

(1+7rAT)
— A7 [Aghe + (1 = Rp) (V" (Ss) + UM (S5) — X)™
+(1 = Re)Ae(VT(Sa) + UMH4(S0) — X)F + sx X] ) . (1.70)

Thus, (1.63)) and (1.70]) are evaluated at each iteration of the fixed point algorithm
as a previous step to the stating of the linear system of equations issued from the

finite element method.

1.4.4 Finite element method

As we mention at the beginning of the section, we use the semi-Lagrangian method

for the time discretization jointly with finite elements for the spatial discretization.
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Therefore, at each time step, n = 0,1,2,..., Ny — 1, and each fixed point iteration,
k=0,1,2,..., avariational formulation for (1.61)) is posed: find U"*1*1 € H1(0, S,.)
such that:

S S 2 n+1,k+1
1 A n+1,k+1 - A / | g2~
(147 7')/0 U ©dS 7'0 35(25 55 )gpdS

Soo Soo
_ / (U™ o x™)(S)pdS — Ar [ FU™Y 4 V™ )0dS, Ve € HL(0, Su),
0

0

or, after applying Green’s theorem,

Un+1 k+1 a
_ (pdS

Soo
1 A n+1,k+1 A _/
(1+r T)/O U ©dS + AT 55 B3

Soo Soo
= / (U™ o x™)(S)pdS — At FUMYF vt hpdS | Vo € Hi(0, Ss) -
0 0

For a fixed natural number Ng > 0, we consider a uniform mesh of the computa-
tional domain © = [0, S|, the nodes of which are S; = jAS, j =0,... Ng+1, where
AS = 5. /(Ns+1) denotes the constant mesh step. Associated to this uniform mesh
a piecewise linear Lagrange finite element discretization is considered.

n+1,k+1

More precisely, we search U, € W, such that, for all ¢, € W},

S, 2 n+1,k+1
= Lkl o 20Uy Ion
(14 rAT) i U, cphdS—l—A7'2 0 S 55 99 "as
Sco
~ [ wrenn®eds - o [t e v ads,
0 0

where the finite element spaces are

Wh = {Sph : (07500) — R/Qph S C(Oa SOO)?QOh“SjijvLﬂ € Pl}’
Who = {on € Wi/pn(0) = 0,01(Ssc) = 0},

P1 being the space of polynomials of degree less or equal than one.
The coefficients of the matrix and right hand side vector defining the linear system
associated to the fully discretized problem are approximated by adequate quadrature

formulae. In particular, Simpson, three nodes Gaussian, midpoint and trapezoidal
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formulae have been used for the different terms, depending on the degree of the result-
ing polynomials to be integrated in each term. Finally, the system of linear equations
is solved by a partial pivoting LU factorization method. The implementation has

taken into account the sparse structure of the global matrices.

Remark 1.4.1. The value of the derivative without counterparty risk, V"L, can be
obtained at each time step as the solution of the Black—Scholes equation for options
with dividends:

8V 1 0?V oV

52529V 9V v ‘
8t S 532 + (r DO)S@S rV =0 in [0,T) x [0, 00) (1.72)

V(T,S): H(S) S>0,

where Dy = r—rg. Thus, depending on the type of financial derivative we have differ-
ent payoff functions. In some cases, the value of the derivative admits an analytical
expression. For example, in the three cases here treated these expressions come from

the well-known formulae:

o (Clall option:
V(t,5) = Sexp(=Do(T — t))N(d1) — K exp(—r(T — t))N(dz)
o Put option:

V(t,S) = Kexp(—r(T' = t))N(=dy) — Sexp(=Do(T" — t))N(—d)

o Forward:
V(t,S) = Sexp ((UZ + —?*’b - ) (T — t))
—Kexp((a (—IZ——) >(T—t)>
where:
g = log(S/K) + (r — Dy + 0%/2)(T — t)
e oVl —t
i, — log(S/K) + (r — Dy — a?/2)(T — t)

oVT —t
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and N (z) represents the distribution function of the standard N'(0, 1) random variable.
Equivalent expressions to the first two formulae had been introduced in Proposition

in terms of variables x and T.

1.5 A Monte Carlo method

In the previous sections, the problems which model the total value adjustment associ-
ated with the European options have been posed. Moreover, some numerical methods
based on finite element method for spatial discretization and semi-Lagrangian method

for time discretization have been proposed to solve the PDEs in a numerical way.

Nevertheless, it is usual to obtain the total value adjustment in terms of expecta-
tions [12, 42]. In this section, we apply Monte Carlo simulation technique to compute

the total value adjustment for European options depending on one stochastic factor.

We assume that the price, S;, follows a general geometric Brownian motion, thus

satisfying:

dSt = ’l"RStdt + UStth, (173)

where rr and o have been described in Section as the rate paid for the underlying
asset in a repurchase agreement and the volatility of the price, respectively, and W,

denotes a Wiener process.

Next, we focus on the problem without collateral; the case with collateral can
be computed by a similar procedure. As in Section [1.2| we distinguish two cases
depending on the mark—to—market value at default, M: the risky derivative value

leading to problem (|1.15)), or the risk—free value leading to problem ({1.16]).

Using Feynman—Kac theorem, we can obtain the expected value of the XVA, U,
from the partial differential equations which model the adjustments. Then, the total

value adjustment at the time instant ¢ is given by the following expressions:
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° IfMZ‘/},

N / e KT (1= Rp)Ap(V (4, S(w)) + Ulu, S(u)))”

t

U<t7 St) = Et

+(1 = Ro)re(V(u, S(u)) + U(u, S(u)))*

s (Vi(w, S(u)) + Ulu, S())*] du | S, = s]
__E, [(1 Ry /t O (1, S()) + U, S(u))) it | S, = s]
_E, [(1 ~ Re)Ae /t L O (V (. S(0)) + U, S(a0))) e | S, = s]
g, {SF /t L D (V w, S(w) + U, S(u))) e | S, = 3} |

We are interested in finding the value of the adjustment at the initial time,

when the derivative is priced. Then, the XVA value at current time, t = 0, is

given by:
U(0,Sp) = Eq| — /0 " gy (1= Rp)Ap(V (u, S(u)) + U(u, S(u)))~
+(1 = Re)re(V(u, S(u) + U(u, S(u)))*
s (Vi(w, S(u)) + U, S()))*] du | So = s]
_ _E, {(1  Rp)As /OT TV (u, S(w)) + U(w, S(u)))~du | So = s]
_E {(1 ~ Re)he /0 UV w, S()) + U, S(u))) du | Sp = s]
R, {SF /O UV, S () + U, S(0))) du | So = 3} |
M=V,
U(t,S;) =E,| — /t ' e~ J AT (1 RNV (u, S(u))~
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+(1 = Re)AeV (u, S(w)* + sV (u, S(u)*] du | S; = s

- _
= / e~ A= (] _ RNV (u, S(u))"du | S; = s
/e |

T
_E, / e~ (1 _ RNV (u, S(u))Hdu | Sy = s
t

T
- E; / e~ rHAB A=) Y (4, S(u))Ydu | Sy = 3] .
¢

Thus, the value at current time ¢ = 0 is given by:

T u
U(O, S) :EO — / e fO (r+Ap+Ac)dr [(1 — RB)ABV(U, S(u))_

0

+(1 = Re)AeV (u, S(u)™ + sV (u, S(w) "] du | Sp = s]
=—E, _/T e~ rtAsTA (] _ RNV (u, S(u)) "du | Sy = s]

- T
—E / e~ rPAtA (] _ RNV (u, S(u))Tdu | Sy = s}
LJo

- T
- E, / e~ rHAB A LY (, S(u)) Y du | Sy = s] :
Lo

For both values of the mark—to—market, the risky derivative value or the risk—free
value, the previous expression of the XVA has been split up into three terms, each
one of which represents a kind of adjustment: credit value adjustment (CVA), debit
value adjustment (DVA) or funding value adjustment (FVA), respectively.

In order to obtain the numerical value, a discrete approximation of the integrals
which appear in the expression of the expected value has to be used. For this purpose,
we consider a set of fixed points 0 =ty < t; < ... < tyn, = T, with T" the maturity
time, when the payoff is received. Taking into account the fixed instant times, we
denote by S; = S(t;),i = 1,2, ..., Ny, the asset price at the i—th instant of time. We
approximate those values, solution of the stochastic differential equation , by

the Fuler-Maruyama scheme:
SZ‘:Si_l—f—TRSi_lAt—l—O'Si_lAVVi, i:172,...,NT,
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where At = t; — t;_; is the size of the time interval and AW, = W, — W,_; is the
independent Brownian increment, which follows a normal distribution N (0, v/ At).

Finally, in order to compute the XVA when M = ‘7, a fixed point implementation

is carried out at each time step.

1.6 Numerical results

Following the numerical methods introduced in Section [1.4] in the present one we give
some numerical results which show the behaviour of the adjustment according to the
asset price value. In order to illustrate the good behaviour of the proposed numerical
strategy, we have first compared the results obtained in specific cases for which an
analytical solution is known. Moreover, other examples in which we compute the

XVA in different situations are also presented.

In the following tests we have used some common parameters, which are gathered
in Tables [[LT] and [[.2]

Table 1.1: Financial data for numerical tests

o=0.25 K =15 T =0.5 Soo = 4K
r=0.03 rr = 0.015 Rp=04 Re=04

Table 1.2: Financial data for numerical tests

o=0.25 r=0.04 rr = 0.06 Soo = 20
T7=0.5 K = 10e™"T A = 0.04 Ac = 0.04
Rp =03 Re =03 rp, = 0.08 rp. = 0.08
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1.6.1 Test 1: Convergence

We first study the error and the order of convergence of the applied numerical meth-
ods, for which we take advantage of the analytical solution of the XVA problem in
particular cases [15]. For example, we consider a not collateralized call option bought
by B, with M = V and funding costs. Note that as we consider sp = (1 — Rp)Ap,
the analytical expression of the XVA is:

U(t,S) = —(1 —exp(=((1 = Rp)Ap + (1 = Re)Ac)(T = 1))V (£, 5).

Table 1.3: Relative errors in norm L>((0,T) x L?*([0,S])), convergence ratios and

order. Example with finite element scheme (Test 1). The input parameters used are

from Table and A\g = 0.02, A\c = 0.05

Time steps Space steps Error R Order
400 50 0.02232872 - -
800 100 0.01192059 1.87312280 0.90544548
1600 200 0.00617545 1.93031711 0.94883787
3200 400 0.00315299 1.95860211 0.96982435
6400 800 0.00160323 1.96665313 0.97574253

As we can observe in Table [1.3] the experimental order of convergence obtained
with the discrete norm L>((0,7) x L?([0,S.])) is one.

In Figures[L.1] [I.2) and [I.3] we show the XVA value as a percentage of the risk—free
value, V. We can observe the relevance of the choice of the mark—to—market value
at default (either V' or ‘A/), as well as the funding costs. These results correspond to
time ¢ = 0 and the set of financial parameters are taken from Table [L.1]

Notice that in the four considered cases, with and without funding costs and both
possibilities of the mark-to—market value, the value of XVA grows as the default
intensity of C' increases. Moreover, in the cases which do not consider funding cost
the XVA remains constant, independently of the changes of the default intensity of

B, A\g. Nevertheless, when funding costs are considered, the XVA increases with Ag.
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Figure 1.3: XVA in the cases M = Vand M = V for counterparty hazard rate,
Ao = 5% (Test

Concerning the fixed—point algorithm introduced in Section , we have
not proved its theoretical convergence. However, convergence is attained in a reduced
number of iterations (less than five) in all the experiments for European options. We
have used € = 107! as the tolerance for the relative quadratic error between two

iterations.
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1.6.2 Test 2: European put option

In this example we analyze the time evolution of the CVA and FVA, in terms of the
spot value. We have considered the case in which no collateral is posted in the trade.

We assume counterparty B buys a put option from C|, the strike depending on
the repo rate (K = 10e"2T), and a maturity period of 0.5 years. The rest of financial
parameters are given in Table [1.2]

We have used Ng = 600 nodes and Ny = 1000 time steps. The same discretization
parameters have also been used in the subsequent tests.

Figure |1.4] shows the total value adjustment for the European put option. The
XVA value is negative because it represents the decrease in the risk—free put value
due to the probability of default from both counterparties.

Figure [1.5] shows the credit value adjustment surface for the put option. The
function takes negative values, since it represents the amount that B has to charge to
C due to C’s probability of default. The value is null when the option expires, because
at maturity date the exposure at the counterparty default disappears. Furthermore,
the absolute value is larger when the put option is in the money. In this case, B will
be interested in exercising and will be (more) exposed to C’s default.

Figure represents the funding cost adjustment surface for the same European
put option. The value is negative because it represents the funding costs that B
charges to C'; i.e., B will pay less money to C' due to B’s incurring in funding cost
associated to the financing agreements. Thus, the FCA increases when the option is
in the money, as the funding needed to pay the prime in the money is larger than if

the option is out of the money.

1.6.3 Test 3: European call option and forward including

funding costs

Now, according to the counterparties which take part in the agreement, we compare

the risk—free value and the risky value considering and not considering funding costs.
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Figure 1.5: CVA4DVA surface for European put option (Test . Input arguments
are given in Table

50



-0.1
-0.2
-0.3
20
10 03 04
0.2
0.1
Stock price 0 o Time

Figure 1.6: FCA surface for European put option (Test . Input arguments are given
in Table and Sp — (1 - RB)AB

We have studied the value for an European call option with strike K = 10e"#*” and a

maturity time of 3 years; the rest of the input parameters are taken from Table

On one hand, if we assume the trade takes place between banks before the crisis,
these counterparties are considered to be risk—free. Therefore, no CVA is taken into
account and the FCA is negligible; thus the price is equal to the derivative value

without counterparty risk.

Let us now assume that counterparty B is a bank, and C'is a risky client. Thus,
the bank will charge C' a credit value adjustment on the trade, i.e., the price B charges

to C' is equal to the risk—free price plus CVA.

On the other hand, if the trading takes place after the financial crisis, the banks
are no more considered parts without counterparty risk (risk—free). Moreover, they
charge a prime due to funds lending in the capital market and counterparty B will
not be able to fund the premium of the trade at the risk—free rate anymore. This

means that B will incur in a funding cost in the agreement. Hence, the price that B
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will offer to counterparty C' is the risk—free value plus CVA and FCA. These three
situations are represented in Figure

1 2 T T T
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Figure 1.7: European call option values with CVA and FCA (Test |

A similar test concerning a forward contract has been done. The risk—free value
and the risky values (with and without funding costs) are presented in Figure
for the mark—to—market equal to the risky derivative (nonlinear model) and in Figure
[1.8(b)]for the mark—to-market equal to the risk—free derivative (linear model). We can
appreciate that when the forward has a positive value, B has the choice of exercising
the contract thus being exposed to C' default. On the other hand, if the forward has
a negative value, then B may not be interested in exercising the contract, so that
all the counterparty risk (from the point of view of B) is included in DVA. As we
can observe, the computed results are similar in both cases. So, there is not a big

difference in the choice of the mark-to—market close out.
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Figure 1.8: Forward values with CVA and FCA (Test

1.6.4 Test 4: Collateralized European options

In this example we study again a Furopean put option bought by B. However, in
this example the trading is now on a collateralized derivative and we use model 3 of
Section m The strike is K = 10e"*T and the maturity time is equal to 0.5 years.
The rest of the parameters are in Table and the collateral rate is ro = 0.05. Thus,
we show in Figure the difference between the fully collateralized and a partially
collateralized derivative prices. The difference is positive, because it represents the
additional amount that has to be paid by B if the derivative is collateralized. So,
this price increases as the collateral is larger, thus the exposure facing C’s default is
lower. Therefore, the price of a collateralized European put option is larger than the
not collateralized one. This difference between both of them is the CollVA.

In Figure [I.10] the XVA surface is represented when the trading takes place with
a collateralized derivative. We show the variation in the XVA value for different col-
lateral values, which are in all cases a percentage of the derivative risk—free value. As
expected, if the derivative is not collateralized, X = 0 and the XVA value corresponds
with the results obtained in Figure[1.4l Nevertheless, the XVA values decrease when

the derivative approaches to the fully collateralized case.
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Moreover, we compare the three particular models explained in Section [I.2.2]
Figure[I.1T]represents the computed XVA value according to the different assumptions
made about counterparty B’s bond. We can observe that for a stock price in the
money area, the results obtained using model 2 and model 3 are similar, whereas the
XVA is higher in absolute terms if model 1 is employed. In any case, the differences
between the models are negligible.

In all cases, tests have been performed by using MATLAB on an Intel(R) Xeon(R)
CPU E3-1241 3.50GHz computer. In all examples, the elapsed computational time is

less than 25 seconds.

1.6.5 Test 5: Monte Carlo simulation

In this test, we estimate the XVA of an European put option by Monte Carlo tech-
niques. In Table we show the value for the nonlinear problem and in Table
the solution for the linear one , both given in Section The parame-
ters are K = 10, » = 0.03, rgp = 0.06, 0 = 0.3, t € [0,0.5], A\g = 0.04, A\c = 0.04,
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Figure 1.11: XVA according to the different collateral models (Test 4)

sp = Ap(l—Rp), Rp = 0.3 and Rc = 0.3. For each problem, we show the asset value
S, the XVA value obtained by the finite element method, the XVA value obtained by
Monte Carlo techniques and the 99% confident intervals with Monte Carlo simulation
in t = 0. As expected, the XVA value computed from the PDE model belongs to
the 99% confidence interval obtained by classical Monte Carlo techniques, which in
the case with M = V have been combined with a fixed point iteration algorithm.
The elapsed computational time needed to compute the value in one only node us-
ing Monte Carlo techniques with Np = 10000 paths and Ny = 1000 time steps is
284 seconds when M = V and 319 seconds when M = V. The PDE is solved with
Ng = 401 for S € [0,5K] and Ny = 400. The elapsed computational time in that
case is 16 seconds for the mesh when M = V and 10 seconds when M = V.
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Table 1.4: Total Value Adjustment for European option with M = 1%
Partial
differential Monte Confidence
S equation Carlo interval
0.0 -0.27060363  -0.27417357  (-0.27417357 , -0.27417357)
2.5 -0.20087696 -0.20349478 (-0.20384583 , -0.20340337)
5.0 -0.13116267  -0.13296892  (-0.13336176 , -0.13246800)
7.5 -0.06425927 -0.06512770 (-0.06535973 , -0.06420641)
10.0  -0.01944521  -0.01949560  (-0.01968523 , -0.01892315)
12.5 -0.00375659 -0.00379364 (-0.00382113 , -0.00353373)
15.0 -0.00054124 -0.00054131 (-0.00058505 , -0.00049654)
17.5 -0.00006629 -0.00006448 (-0.00007087 , -0.00004932)
20.0 -0.00000752 -0.00000586 (-0.00001422 , 0.00000304)
22.5  -0.00000083  -0.00000064  (-0.00000084 , -0.00000034)
25.0 -0.00000009 -0.00000007 (-0.00000023 , -0.00000002)
27.5  -0.00000001  -0.00000001 (-0.00000001 , 0.00000000)
30.0 -0.00000000 -0.00000000 (-0.00000000 , -0.00000000)
Table 1.5: Total Value Adjustment for European option with M =V
Partial
differential Monte Confidence
S equation Carlo interval
0.0 -0.26898638 -0.26878065 (-0.26878065 , -0.26878065)
2.5 -0.19967652  -0.19964729  (-0.19986386 , -0.19943072)
5.0 -0.13037896 -0.13082446 (-0.13126011 , -0.13038882)
7.5 -0.06387518  -0.06389601  (-0.06445993 , -0.06333210)
10.0 -0.01932858 -0.01922398 (-0.01959828 , -0.01884968)
12.5  -0.00373389  -0.00374918  (-0.00389034 , -0.00360801)
15.0 -0.00053793 -0.00053692 (-0.00057657 , -0.00049727)
17.5 -0.00006588 -0.00006122 (-0.00006932 , -0.00005311)
20.0 -0.00000747 -0.00000539 (-0.00000629 , -0.00000450)
22.5 -0.00000083 -0.00000102 (-0.00000173 , -0.00000032)
25.0  -0.00000009  -0.00000005  (-0.00000008 , -0.00000003)
27.5 -0.00000001 -0.00000001 (-0.00000001 , -0.00000000)
30.0  -0.00000000  -0.00000000  (-0.00000000 , -0.00000000)
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Chapter 2

One stochastic factor model for

American options with XVA

2.1 Introduction

In the previous chapter we have modelled the total value adjustment associated with
European options. With this purpose, a selffinancing portfolio was built. Moreover,
we assumed a constant behaviour of intensity of default from each counterparty. In
the present chapter, we study the total value adjustment in the case of American
options. A similar framework than for European—style options is considered.

As we mentioned in the Introduction, the hedging strategy is imposed by taking
into account the period of time where it can be exercised. Then, we built the port-
folio following [I5], where non arbitrage opportunities are also imposed. As a result,
analogous models to European options are posed in terms of linear and nonlinear
complementarity problems, depending on the mark—to—market value. As we did with
European options, several models are also obtained if different risks are taken into
account and the appropriate adjustments are applied when pricing the derivative.

Similar numerical methods to the European case are suggested. Additionally, the
augmented Lagrangian active set algorithm is introduced to solve the discretized sys-

tem. Moreover, after modelling by linear and nonlinear complementarity problems,

29



the solution of the risky derivative value is written in terms of expectations. Next, we
extend the works by Longstaff and Schwartz [38] and Glasserman [28] for the approx-
imation of the riskless American option value in order to obtain the approximation
including counterparty risk. In this way, a dynamic programming technique is imple-
mented: at each time step an optimal stopping problem is solved, an optimal exercise
criterion is stated and the expected discounted payoff of the option price under this
criterion is computed. Finally, both methods, finite element discretization and Monte
Carlo techniques, are used to compute the total value adjustment as the difference

between the risky and the risk—free values.

The scheme of the chapter is the following. In Section we introduce the
model of the American options considering counterparty risk. In Section the
numerical methods to solve the complementarity problems are proposed. Section
introduces an alternative way to obtain the risky derivative value by means of Monte
Carlo techniques. Finally in Section different results obtained with the numerical

methods introduced along the chapter are shown.

Most of the results in this chapter are included in [2] and [4].

2.2 Mathematical model

In this section, as we did for European options in Chapter[I], we deduce several models
which represent the American options value including different adjustments when
counterparty risk is considered. As a result, linear and nonlinear complementarity
problems are obtained. Unlike the European options, in this chapter we do not
deduce a problem which directly models the XVA. On the opposite, we obtain the
XVA value as the difference between the risky derivative value, and the risk—free

value, i.e. U = V-V.
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2.2.1 Pricing with counterparty credit risk and funding costs

We consider a similar scenario to that of European options: two bonds of counter-
parties B and C and the underlying asset with no default risk, the processes of which
will be modelled by the SDEs given in (1.1)).

Thus, we consider a derivative trade between two default counterparties, the issuer
B and the buyer C'. From the point of view of the seller the risky derivative value
at time ¢ is denoted by V (¢, Sy, JB, JC), where J2 and JC are the same jump pro-
cesses defined in the case of European options. The counterparty risk—free American
option price is denoted by V(¢,S;), which can be computed using the Black—Scholes
complementarity problem for American options (see [51], 52], for example).

Conditions of the defaultable American option price upon the default of different
counterparties are given by f. In order to derive the value of the American
option with counterparty risk, we consider the self-financing portfolio II;, used in the

European option case (see Section , which at time ¢ is given by:
I, = A(t)S; + ap(t) P, + ac(t)Po, + v - (2.1)
As the portfolio is self-financing, its change is given by
dIl, = A(t)dS; + ap(t)dPg, + ac(t)dPe, + (ry + reye — e — rrYR)(E)dE . (2.2)
In addition, to avoid arbitrage opportunities we introduce the hedging inequality:
dIl, +dV, < 0. (2:3)

The change in the derivative value is obtained by applying It6’s lemma for jump
diffusion, and is given by (1.6]):

~ AV oV 1, ,0%V - -
Vi = Z-dt + Z=dSi + 5 QSdet + AV, dJP + AVg,dJf
oV a? 1,20V 1% ~ ~
( 5 trRggt 253 5 S2> dt+ 08,5 < dW, + AV, dJE + AVe,dJE , (2.4)
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where V and all partial derivatives of V are evaluated at point (¢,.S;, JB, J). More-

over, we use the notation introduced in ([1.7)

AV, = V(t,5,1,0) = V(t,5,,0,0),
AVg, =V (t,8,,0,1) — V(t,S,,0,0),

which can be computed using the default conditions and (| -
Keeping in mind expressions and (| . we deduce the following inequality:

A(t)dS; + ap(t)dPs, + ac(t)dPe, + (ryg + 1eYpe — TVpe — TRYR)AE

ov 9V 0V - 5
< - <8—dt + 555+ aQSE@dH AV, dJF + AVcthf) , (2.5

analogous to ((1.8). According to the SDEs in (|1.1]) we obtain:

A(t)dS; + ap(t)(rp, Pp,dt — Pp,dJP) + ac(t)(rp. Po,dt — Pg,dJE)

+ (ryf + rEYE — TYPe — TR’VR)dt

oV oV 92V
< — - 2q27 ¥V B C .
< ((% dt + anSt + a S; 552 dt+AVBdJ +AVCdJ ) (2.6)

Choosing, as in ((1.10)), the following weights,

1%
Alt) = -2
( ) 837
AVp, Vi — (M;" + RgM,")
— =— 2.
aslt) = 5 ) 1)
AV, V, — (M; + ReM;
ac(t): Ct:_t ( ¢ T o t)
FPe, Pe,
we remove all risks in the portfolio II;. Thus, equation (2.6)) leads to
aprp, Pp + acrp,Po + (ryp + revp = 1ype = TRYR)+
8V 1, 02V
— +-0°5*—— <0. 2.8
Tt 957 = (28)
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As we did for European options (cf. page , we consider the equivalences vp, =
apPp,, 7, = acPe,, rp =1+ sp and vp = vp — Yp,, and write apPp, and acFe,

in terms of the mark—to-market value to deduce:

aprp, Pp 4+ acrp. Po + 7’7; +TEYE — TYPe — TRVR
=—(r+Ag+ )\C)‘A/ + spyp — rrRAS
+ /\B(RBM_ + M+) + /\C(RcM+ + M_) .

Thus, we introduce the previous expression in (2.8) to obtain the inequality that

models the value of the derivative including the counterparty risk:

OV + AV —rV < Mg+ M)V + spM™T
—Ap(RgM™ + M%) = Ac(ReM™ + M), (2.9)

where the operator A is defined in ([1.13). Thereafter, the complementarity problem

which models the American options price in the presence of counterparty risk reads:

LOV)=08V+ AV = (r+ Ag + Ac)V

—spM*T + Ag(RgM~ + M) + A¢(ReM* + M=) <0
V(t,S) > H(S) (2.10)
LYV —H)=0

where H denotes the payoff function.

According to the choice of the mark—to-market value, two different complemen-

tarity problems are obtained:
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° IfMZ‘/},

(

Li(V)=0,V + AV —rV
—(1= Rp)AgV~— = (1 = Re)AVH —spV T <0
V(t,S) > H(S) (2.11)
Li(V)(V—-H)=0
\V(T,8) = H(S).

o f M=V,

(

Lo(V) =0,V + AV — (r + Ap + M)V
+(RAB + A\c)V™ + (RcAe + Ag)VT —spVT <0
V(t,S) > H(S) (2.12)
Lo(V)(V—H)=0
V(T,S) = H(S).

\

Thus, the price of an American option including counterparty risk is the solution of

either a nonlinear or a linear complementarity problem.

Remark 2.2.1. In the particular case of American options, where the payoff is always
positive, problem becomes linear. We prefer to study a more general obstacle

problem (not only restricted to American options) in which function H can be negative.

In order to compute the XVA value, the Black—Scholes equation for American
options without counterparty risk has to be previously solved. More precisely, the

risk—free price, V, is solution of the classical problem:

(E(V) =0,V + AV — 1V <0

Vit 5) 2 H(5) (2.13)
EVY(V—H) =0

\v(1.9) = H(S).
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Finally, the XVA value is obtained after solving the two obstacle problems and is
given byU:f/—V.

2.2.2 Pricing with counterparty credit risk, funding costs

and collateral

As we have done for European options, we deduce the American option value when a
collateral is included in the contract between both counterparties. Then, due to the
presence of collateral, the risk of the contract is reduced.

Considering a similar scenario, we assume an agreement between counterparties
B and C'. Moreover, a self-financing portfolio is built, the main difference with the
case without collateral is that now the portfolio only hedges the derivative when
the counterparty does not default; in other case, the difference between the hedge
portfolio and the derivative is the hedge error.

We make the same assumptions that in Section for collateralized European
options. Then, B has a portfolio made up of two bonds, P, and P,. The different
bonds and the asset price that take part in the contract satisfy the SDEs given by

) @

When one of the counterparties defaults, the risky derivative value is given by the

conditions ((1.23)) and ([1.24]). The hedging inequality is given by (12.3)), where now the

portfolio is made up of
Ht = A<t>st + PBt + aC(t)pCt + ’}/(t) - Xt ) (214)

and the financial instruments are the same than in the European case (cf. Section
1.2.2)).

Then, replacing the expressions given in Section [2.2.1]in the hedging equation and
removing the risky terms as we did for European options in Section [1.2.2] we obtain
the following inequality

~

ov ~
E+AV+O&17’1P1+0627”2P2—|—Oéc)\cpc—’f’XXSO, (215)
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analogous to (|1.35)).

Next, let us consider the case when the counterparty B defaults. In this situation

the derivative value is the solution of the complementarity problem

OV . -
ﬁx(V) = E ‘|—.AV — (7“ + )\B —+ )\c)v — )\Bhe
+)\BQB(M,X) + )\Cgc(M,X) — SxX < 0
U(t,5) > H(S) (2.16)
Lx(V)(V—H)=0

~

V(T,5) = H(S).

The difference between ([2.16) with the complementarity problem (2.10) obtained
in the case without collateral is the presence of the terms Agh. and sxX. Further-

more, the terms gg and go are now more general than in the non collateralized case.

As in the European case, when counterparty B defaults a hedge error arises.
Nevertheless, while the issuer B is alive, B will incur a cost or gain of size Agh. per
time unit.

Once again, depending on the chosen of the mark-to-market two different com-

plementarity problems are obtained:

o If M =1V,

Ls(V) =8,V + AV =1V = Agh. + (Rg — DAp(V — X)~

+(Re — DAc(V = X)T = sxX <0
V(t,S) > H(S) (2.17)
L;(V)(V=H)=0

~

\V(T,5) = H(S).
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o [f M=V,

(

LiV) =08V + AV — (r + A + Ac)V — Agh,
+(Ag+ e —sx)X + (Mg + A\cRe)(V — X)*
+(Ac + ApRp)(V - X)” <0 (218
V(t,S) > H(S)
Ly(V)(V—-H)=0
\V(T, S) = H(S).

According to the different assumptions made on counterparty B bonds (presented
in Section [1.2.2)), three particular different models are posed

Collateral model 1: Perfect hedging

We consider that all risks are perfectly hedged, so h, = 0. Thus, we get

he = gB(Mt;Xt>+PDt_Xt = gB(Mt,Xt)—i-al(t)RlPh—|—062<t)R2P2t—Xt =0. (219)

Then, the complementarity problem that models the American option price is
reduced to

oV

Lx(V) = =+ AV = (r+ Ag + Ao)V

+Acgo(M, X) 4+ Apgp(M, X) — sx X <0
V(t,S) < H(S)

Lx(V)(V = H(S)) =0

V(T,S) = H(S),

and depending on the mark—to—market value, we obtain
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o If M =1V,
( ~ ~ ~ ~
L3(V) =0,V + AV —rV

+A5(Rs — 1)(V = X)" 4+ Ae(Re — 1)(V = X)T —sxX <0

A~

V(t,S) > H(S)
Ly(V)(V—H)=0

~

V(T,5) = H(S).

\

o f M=V,

¢

LiV)=0V+AV — (r+ X g+ Ac)V + (Mg + Ao — sx)X
+(Ag + AcRe)(V — X)* + (A\e + ApRp)(V — X)~ <0

§V(t,S) > H(S)

Ly(V)(V—=H)=0

~

\V(T,9) = H(S).

Due to the nullity of the hedge error, funding cost vanishes and only CVA, DVA and
CollVA are included in the XVA.

Collateral model 2: Two bonds model

In this model, we assume that counterparty B has two bonds. More precisely, a zero
recovery bond P; and a bond P, with recovery Ry which is equivalent to the recovery
rate of counterparty B on a derivative trade, i.e. Ry = Rp.

Assuming the funding constraint introduced in (|1.34])
Vi+ Pp, — X, =0, (2.20)

we write
Pg, = a1() Py, + ao(t) P, = —(V, — X,).

t

Now, taking into account this assumption, the general complementarity problem

(2.16) turns into:

68



~ OV . .
Lx(V) = 50 + AV = (r+ s+ Ac)V = Ap(1 = Rp)(M = X)*
+)\BgB(M,X) + /\Cgc(M,X) - SXX S 0
V(t,8) > H(S) (2:21)
Lx(V)(V =H)=0

~

V(T,8) = H(S).

and, depending on the mark-to—market value,

o If M =1V,

(L,(V) =8,V + AV — D
+X5(Rg = D(V = X)+ Ac(Re — 1)(V = X)* — sy X <0

~

V(t,S) > H(S)
Ls(V)(V—H)=0

~

\V(T,9) = H(S).

e If M=V,

(L.V) =0V + AV — (r + Ap + A0)V + (hg + Ao — sx) X
+(AsRp 4+ AcRe)(V — X)T + (Ao + AgRp)(V — X)~ <0

V(t,S) > H(S)

L(V)(V—-H)=0

~

\V(T,9) = H(S).
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Collateral model 3: One bond model

Finally, only one bond from B, with recovery rate Rp, is considered. Taking a;(t) =0
in (2.20) we set Pg, = au(t)Ps,. Under this assumption, the following complementar-
ity problem modelling the risky derivative value is obtained:

ov

ﬁx(‘/}) == E + A‘7 — (T + )\B(l — RB) + /\0)‘7

_)\B<RB - 1)X -+ )\Cgc(M, X) - SxX S 0

~

V(t,S) > H(S)
Lx(V)(V=H)=0

~

V(T,8) = H(9)

and the complementarity problems related to the possible choices of the mark—to—

market value are:

oIfM:‘/},

¢

Ls(V) =8,V + AV — (r+ Ag(1 — Rp))V

tAo(Re = D)(V = X)T = (sx + As(Rp — 1)) X <0
V(t,S) > H(S)
Ls(V)(V—-H)=0

~

V(T 5) = H(S).

e [f M=V,

.

LiV) =0,V + AV — (r + Ap(1 — Rp) + A\c)V + AcRe(V — X)*
AV =X)"+ (A= Ap(Rp—1) —sx)X <0

V(t,S) > H(S)

L(V)(V—-H)=0

~

V(T,S) = H(S).
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2.2.3 Mathematical analysis

We have not done a detailed study of the existence and uniqueness of solution of
the one—dimensional problem . However, we will analyze the two—dimensional
problem in the forthcoming Chapter [ proving the existence and uniqueness of solu-
tion.

The one—-dimensional problem can be faced in a similar way: with the adequate
changes of variable 7 =T —t, = In (S/K), u(r,x) = U(t,S) and v(r,x) = V (¢, 5),
we can write on the XVA variable as:

(£(w) = 2% — Au+@(r,u) + () <0
< u(t,S) > (1, x)

L(u) (u—1) =0

u(0,5) =0,

\

so that the application of Theorem is straightforward. Further details are given
in Chapter

2.3 Numerical methods

In order to solve the previous models, we propose in this section some numerical
methods. We develop the problem with collateral, as the problem without collateral
can be considered as a particular case. Moreover, as we made in Section for the
European options case, we focus on the nonlinear problems, similar methods being
used in the linear ones.

We have developed an approach based on the method of characteristics for time
discretization jointly with a finite element method for spatial discretization. Due
to the fact that the domain is unbounded in variable S, a localization procedure is

required. Once again, reasonable boundary conditions are deduced and implemented.
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Unlike European options, where a XVA problem was directly solved, for American
options we compute the derivative value considering counterparty risk and the risk—
free derivative value, and then we obtain the XVA as the difference of both. Then, we
propose the numerical methods to solve the risky derivative problem; since there is
not an analytical solution for the classical Black—Scholes inequality, similar methods

are applied to obtain the risk—free American option value.

Thus, we solve problem ([2.17)), the solution of which is the risky value considering
CVA, DVA, FCA and CollVA. Problems that do not consider a collateral can be

assumed as a particular case, and we will use the same set of numerical methods.

Once again, in order to write the problem (2.17) forward in time, the change of
variable 7 = T'—t is applied. Then, the following non linear complementarity problem

is obtained:

v o 0%V 1%

£3(V) = E — ?S 8—512 — 7']@3@ —|—7"V + )\Bhe
—(RB — 1)/\3(‘7 — X)_ — (RC — 1))\0(‘7 — X)+ +sxX >0
V(r,S) > H(S) (2.22)

Ls(V)(V—H)=0

\V(T.9) = H(S).

Moreover, we rewrite the equation in divergencial form, in order to be solved by

a finite element method:

SV 9 (o2 0V , v
,Cg(V) = E — % (75 %> +<O’ —TR)S%—FT’V—F)\Bhe

—(Rg — DAg(V = X)" = (Re — DAc(V = X)F +5xX >0
V(r,5) > H(S) (2.23)
Ls(V)(V—H)=0

~

\V(T,8) = H(S).
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2.3.1 Method of characteristics

In order to solve the problem, we propose a semi-Lagrangian discretization combined
with finite elements.

With this purpose, as we made for European options, we rewrite the inequality
in terms of the material derivative. Applying the time discretization explained in
Section the first inequality in (2.23)) is approximated by:

n/irn+1 _ _

‘7n+1 _ ‘//\'n o Xn 0._23 SZ a‘//\'n—l—l
AT 2 08

) + T"7n+1 + )\Bhe

— (R — DAp(V™' = X)™ — (Re — DAc(V"™ = X))t 45y X >0, (2.24)

forn =0,1,2,..., Npr—1 (Np being the number of time steps), where ‘7”() = ‘7(7”, )
and X" = x(S,7""!; 1) represents the characteristic curve passing through point S

at time 77"1, so that function y satisfies the final value ODE problem ([1.59)).

2.3.2 Fixed point scheme

As we have proceeded for European options, in this section we introduce a fixed point
algorithm at each iteration of the method of characteristics, in order to linearize the
nonlinear inequality (2.24). The global scheme is shown in Algorithm [2.1]

2.3.3 Boundary conditions

We follow a similar reasoning as in European options: we truncate the unbounded
domain [0, 00) into a bounded one, [0, S| (with S, large enough), so that the solution
is not affected by the truncation in the interest region from the financial point of view.

In this section, we propose adequate boundary conditions for problem . We

recall the function (1.62)) introduced for FEuropean options
F(V) = Aghe — (Rg — 1)Ap(V = X)™ — (Re — DAc(V — X)* + sx X

in order to simplify the right hand side of (2.25)), that also takes part in (2.23]). The
boundary condition at S = 0 is obtained by replacing S = 0 in the first inequality of
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Algorithm 2.1

1. Let Np > 1, e >0, V° given.
2. Forn=0,1,2,... , Np—1

o Let V710 — {»

e For k=0,1,2,..., we compute e satisfying:
~ 2AT O oY/ n+Lk+1
1 Ar) Prtlh+l o Y g2
(L+rar) > 85 95

> ‘7”' o Xn — AT [)\Bhe — (RB — 1))\3(‘771—&-1,14: — X)_
—(Re — DAc(VHhE - x)* 4 sxx] (2.25)

‘7n+1,kz+1(5) > H(S)
Egz("}nﬂ,kﬂ) ("}n+1,k+1 N H) _

H"}n+1,k+1 . f}n+1,kH

until _
||Vt Lk

(2.23)). Thus we deduce the nonlinear inequality

~ ~

O,V +rV > —f(V).

This inequality is discretized by the method of characteristics (in this case equivalent

to the implicit Euler method), combined with a fixed point scheme
‘7n+1,k+1(0) i "}n(o) +r AT ‘7n+1,k+1(0) > _ATf("}nH,k(O)) :

for £k > 0 and n > 0, so that a nonhomogeneous Dirichlet boundary condition is

obtained at each step of the global algorithm:

—~ 1 ~ ~
n+1,k+1 > n . o . n+1,k . —
v )2 A <V (0) — A7 [/\Bhe (R — DAg(V™ 4 (0) — X)

—(Re — DAc(V™H(0) — X)* + SXX]) .

74



In order to simplify the notations, let

1

F= 5 (710 = A7 [Ashe — (Be = DAS(V™14(0) - X)-

—(Re — DAc(V™HR(0) — X))+ + sXX]> .

Moreover, the value on the boundary has to satisfy the obstacle condition; thus,

the following boundary condition is proposed:
VHLRL(0) = max (f, H(O)) .

In order to deduce the boundary condition for problem at § = S, we
compute the boundary condition for the associated European option problem, as a
particular solution of the American option problem, for which we follow the procedure
in Section m Thus, if ‘75 denotes the value of the associated European option,

taking the limit when S tends to infinity the following condition is obtained

. 0V
lim

dim = =0. (2.26)

Then, following [19], when S — oo we consider a solution of the form:
Ve = Ho(7) + Hi(7)S, (2.27)

where Hy(7) and H;(7) are constant coefficients with respect to variable S.

Discretizing the associated equation in S,

oV Ve  ~ -
8—: — 7“358—; + Ve =—f(Ve), (2.28)

on the characteristic curve we have:
rn+1 irn n
Ve = Va8 ox

A F VI = —f(Ve), (2.29)

where x™ = x(S, 7""1; 7") is the solution of the final value problem

R
d(T | Rz( ) (2.30)
(") =S
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Thus, the characteristic curve is given by x(S,7"™;7") = Sexp(rgA7). Introducing
(2.27)) into each fixed point iteration of equation ([2.29)), we obtain two more simple

equations:

(14 rA7T)HJ T =0
(14 rAT)HPTFS = (‘75” o X")(Sx) — AT [)\Bhe +sx X
(R~ DAn(TEH(8.0) = X)™ — (e — VAT (5) - )]

so that H""*™ = 0 and the following expression of Ve is deduced:

f}gn-i—l,k-l—l(SOO) _ HIL-}-I,]{H—ISOO
1 A’VL n
= e (7 o8 = ArAsh

— (R — DAV (Ss) — X)~

— (Re — DA(VIT(S2) — X)* + sXXD . (2.31)

Moreover, as we did at S = 0, the derivative value has to satisfy the obstacle condition.
Then we impose the following boundary condition at S = S, for each fixed point

iteration:

Prrlktl(§ ) = max (175”“”““(500), H(Soo)> . (2.32)

As a result, nonhomogeneous Dirichlet conditions are obtained for both boundaries

of the domain.

Remark 2.3.1. Note that in the particular case of American options, at each step of
the fixed point iteration the boundary condition considered in 15 always equiva-
lent to the payoff, H(Sx). The previous calculation is more interesting for a general
derivative product, where the involved obstacle is different. Then, the mazimum in
does not always take the same value.
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2.3.4 Finite element method

Next, we proceed with the spatial discretization. As we previously mentioned, a finite

element method is applied. First, we introduce a convex closed subset
K = {o € H'(0.52) / 9(0) = V(0), ¢(Sx) = V(Sx) and o > H(S)},

and a spatial discretization of nodes S; for j = 1,2,..., Ng, similarly to what we
did in Chapter [I} At each time step, n = 0,1,2,..., Ny — 1, and each fixed point
iteration, £ = 0,1,2, ..., a variational formulation for is posed after applying
Green’s theorem: find V1441 € K such that:

Soo N .
(1 + T'AT) / Vn+17k+1(<,0 - Vn+1,k+1)ds
0

2 (S pyntLktl g(, _ [ntlktl
+ArT / 52 L as
0

oS oS

-~

Soo .
Z / (Vn ° Xn)(S)(SO _ Vn+1’k+1)d8
0

Seo N ~
— At FOVMTERY (o — Vrrbkhgs - e € K.
0

Associated to this uniform mesh a piecewise linear Lagrange finite element dis-

cretization is considered.

More precisely, we search thﬂ’k“ € KCp, such that:

Seo N
(1 + TAT)/ th+1,k+1<gph _ th+1,k‘+1)d5
0

2 Soo rnt1,k+1 _ {ntlk41
+Ar / g T Oen = Vi T g
0

08 08
- /OSW(UZ{” o X")(S)(en — VT )ds
-ar [T - s, ek, (28)
where the finite element space IC, is given by:
Kn={on:(0,5%) = R:pnlis; s, €PLforj=1,2,...,Ne—1, ¢, € l%}
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The coefficients of the matrix and right hand side vector defining the linear system
associated to the fully discretized problem are approximated by adequate quadrature
formulae. Once again, Simpson, three nodes Gaussian, midpoint and trapezoidal
formulae have been used for the different terms. Finally, the system of linear equations
is solved by the augmented Lagrangian active set algorithm, which is introduced in

the next subsection.

2.3.5 An Augmented Lagrangian Active Set method

In this section we introduce the Augmented Lagrangian Active Set (ALAS) algorithm
[35] to solve the discretized obstacle problem obtained after applying the numerical

techniques previously described.

For the pricing of American options, the unknowns V" and V71441 satisfy com-
plementarity problems associated to linear and nonlinear partial differential equations
and , respectively. In order to explain their numerical solution, let us
first focus on the nonlinear problem for VrtLk+l - After a time discretization by the
method of characteristics and a spatial discretization with finite elements, the fully

discretized problem can be written in the form:

n+1k+1 n+1,k+1
Yol s gy (2.34)
(Ah‘”}hn-s—l,k-s-l _ bz+1,k+1> <‘7hn+1,k+1 _ \I/h> —0

forn=0,1,...,Npr —1and k = 0,1,..., where ¥, denotes the discretized exercise

value, H(S), which also coincides with the value at maturity.

Following [6], the ALAS algorithm proposed by [35] has been implemented to solve
(2.34)). For this purpose, we introduce a multiplier P, in order to write (2.34) in the
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equivalent form:

p
A rn+1,k+1 1,k+1 1,k+1
hvn+ k+ P;:+ K+ F’H’ k+

Lkt >0
" " (2.35)
P}?H,kﬂ <0

rn+1,k+1 n+1,k+1
(Vi —0,) Py =0.

Note that the last equation in and should be understood as componen-
twise.

ALAS algorithm consists of two steps. The first step decomposes the domain into
active (that is, nodes where P"""*™' < 0) and inactive (nodes where P;'""**' = ()
regions. In the second step, a reduced linear system associated to the inactive part
is solved.

First, let N := {1,2,..., Ngor} be the set of degrees of freedom. For any decom-
position N'=Z U J, the principal minor of matrix A, is denoted by [Ap]zz, while
[Ap]z.7 is the codiagonal block indexed by Z and J. Therefore, for each time step
n + 1 and each fixed point iteration k£ + 1, ALAS algorithm computes the decompo-
sition N = ZHhRHL g 7otLktL gueh that V7 and PP are the solution of

the following system:

n41,k+1 n+1,k+1 _ yn+1,k+1

[PI:LJrLkJrl]i _ 07 Vi € In+1,k+1

for a given positive parameter 5. In the previous equations, Z"*H#+1 and Jn+iA+!
represent the inactive and the active sets, respectively. Namely, the iterative al-

. . n+1,k+1 n+1,k+1 1,k+1 1,k+1

gorithm builds sequences {V," """}, {Py,, "7 by {Z5H }n and { T ),
: Sl k+1 1,k+1 :

converging to V,'" k1 P KHL - ntlk+l gnd JrtbRHL pegpectively, through the

following steps:

n+1k+1 n+1,k+1 . n+1,k+1 n+1,k+1
L. Let be Vg = U and Py = min{b,, — AV ,0} < 0.

Choose > 0. Set m = 0.
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2. Compute

nt+lk+l min{O, P;:;Lk+l + 5(‘//\27:—11,]6"‘1 . \Ijh)}

h,m
Tat = {j € N [Qrit 5 < 0}
Tyt = (i € N Qp i = 0}

141 : .
3. If m > 1 and g7+ = 777" then convergence is achieved.

4. Let V and P be the solution of the linear system:

AhV + P= by,
P=0 on ZI"™" and V=¥, on JrthAL (2.36)

Set \7,:;1];“ =V, P,Z:rr:jrklﬂ = min{0, P}, m = m + 1 and go to step 2.

It is important to notice that, instead of solving the full linear system in ([2.36)), the

following reduced system on the inactive set is solved:

[Anlzz[V]z = [bilz — [Anlz.7[V]s

where we have denoted Z = Z" 141 and J = J7T L4+ Therefore, after applying

the ALAS method to problems (2.17)) and (2.13]) or to problems (2.18]) and ([2.13)),

we can compute the XVA value as U, = ‘A/h — V4. Analogously, the XVA is computed

when collateral is not included in the contract.

2.4 A Monte Carlo approach

In this section, we introduce the most used methodology to price derivative products
with counterparty risk. The derivative value is expressed in terms of expectations,

then Monte Carlo methods are involved.
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We mainly follow Longstaff and Schwartz [38] and Glasserman [28] in order to
obtain the approximation of the risk—free option price and the risky option price. In
this way, we finally compute the total value adjustment as the difference between
both prices. A dynamic programming technique is implemented: at each time step
an optimal stopping problem is solved, an optimal exercise criterion is stated and the
expected discounted payoff of the option price under this criterion is computed.

We focus on problem and , as the problem considering collateral can
be solved using a similar procedure.

First, we introduce the description of the numerical algorithms implemented to
compute the value of the risky option in the linear case, and in a second part, we
present their adaption to numerically solve the analogous nonlinear complementarity

problem.

2.4.1 The linear problem (M =V)

As we have introduced in Section 1.5, we assume that S; follows a general geometric

Brownian motion, thus satisfying:
dSt = TRSt dt + O'St th s (237)

where rg is the rate paid for the underlying asset in a repurchase agreement, o is its
volatility and W; is a Wiener process.

Unlike the European option, which can only be exercised at maturity time 7', an
American option can be exercised at any time t € (0,7]. We denote its exercise value
at any time ¢t € (0,7] as

h*(t, Sy) = H(S:), (2.38)

where H(S;) represents the payoff of the option. Note that the price process S; is

Markovian.

In our numerical approach, the value of V' solving (2.13) will be estimated by a

classical Monte Carlo technique for American options without counterparty risk.
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In a first step, we consider problem (2.12)). Let g be the function defined by:
g(V) = (RB/\B + )\C)V_ + (RcAC + )\B)V+ — SFV+ .

Following [43] we can deduce that, in terms of expectations, the risky derivative value

at time ¢ = 0 for the underlying value Sy is given by:

~

VO(SO) = sup K,

T7€To

e "Th (1, S;) + /OT e "g(V(u,S(w)))dul,

where 7o = r + Ap + A¢ and 7T; is the set of admissible stopping instants in [t, 7).

In order to price the option, we first discretize the time interval by introducing a
finite and increasing set of instants, 0 =ty <t; <ty < ... <tyn, =T C[0,T].

We will assume that the option can only be exercised in ¢; (i = 0,1,..., Np).
Therefore, we are approaching the American option by a Bermudan one. Taking into
account the fixed instant times, we denote by S; = S(¢;), i = 1,2, ..., Ny, the asset
price at the 1—th exercise opportunity. We approximate those values, solution of the

stochastic differential equation (2.37)), by the Euler-Maruyama scheme:
Si = Sz;l + TRSiflAt + O'Sz;lAWi, = 1, 2, . ,NT s (239)

where At = t; — t;_; is the size of the time interval and AW, = W, — W,_; is the
independent Brownian increment, which follows a normal distribution N (0, v At).

A dynamic programming formulation

Considering the previous time discretization for the asset price evolution, the Amer-
ican option with counterparty risk can be priced through a dynamic programming
approach. Thus, in a particular time instant ¢ = t;, the risky derivative value is given

by

~

Vi*(s) = sup E

i
T€T:,

et (7,8 —|—/ e g (V (u, S(u))) du ‘ S = s] :
ti

If we compute Vi*(s) for i = Np,...,1,0 (thus, from ¢ = T to t = 0), we define a

strategy for pricing American options.
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We know the option value at maturity (ty, = T):
Vi, (s) =h*(T,s)

for a given underlying value s. At time ¢ = ty,._1, an investor will choose to exercise
the option if and only if the payoff at this instant is greater than the discounted
expected value to be received if the investor decides not to exercise. From this con-

sideration, we have:

17;}T_1(s) = max {h*(tNT_l, s),

tNT
Bty [DNT—LNTVﬁT(SNTH / ety =1 g(V (u, S(u))) du ) Snp1 :s] }

INp—1

where the discounting factor is defined by D;_;; = e "0i~t-1) Thus, the recursive

formula is given by:
Vi (s) = h*(T.s),  Sny =s,

V1 (s) = max < h*(t;_1,s),

71—

Eti—l

t;
D;_1,V7(S;) + /
tio

i—1

et g (V (u, S(u))) du ‘ Sio1 = s] } , (2.40)

fOI’i:NT,NT—l,...,l.
Note that we are interested in obtaining the discounted values at t, = 0, so we

consider
hi(s) = Dosh*(t:,s), Vi(s) = Do;Vi*(s) (i=0,...,Np).

Taking into account that 170(5) = 1//\3‘(5) and the recursive expression given in ([2.40)),

we obtain:

Vivz (8) = hvp(s)

\A/i_l(S) = Doi1Vi" ()
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= Dy ;—1 max {h* (tic1,s), By, Di—l,i‘//\;*(si)

t;
4 / e—TO(u_t’Fl)g(V(U, S(U))) du ‘ Si—l = S] }
ti—1

= max{hi_l(s), E,_, DO,z’—lDi—l,i‘Z‘*(Si)

t;
—|—/ Dyiae” g (V(u, S(u))) du ‘ Si-1= S] }
ti—1

i

t;
DoV (S)+ [ e gl (w Sw))du | Si-i = ] } |
ti—1

= max {hi1(5)7 Eti—l

for i = Ny, Ny — 1, ..., 1. Introducing the discounting factor in the payoff and in the

functions, the previous expressions can be simplified:

b [ e st | s - ] } L (24

i—

fort = Np,Np—1,...,1.

Optimal stopping rule and continuation value

In the previous section we have approximated the option value in a recursive way.
However, it is also important to price the option through stopping rules and exercise

region. In that sense, any stopping time 7 determines the sub—optimal value

~

Vi (So) = Eo hT(ST)+/OT e "g(V(u, S(U)))dUI :

Our aim is to choose the optimal stopping time, which will be determined by
T* = min {Ti € {tl, N ,tNT} : hl(Sz) 2 ‘Z(Sz)} y (242)
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so that the exercise region associated to XA/z at the i—th exercise date is the set

{s : hi(s) = @(s)}.

After defining the optimal stopping rule we introduce the continuation value,
which is the value of holding instead of exercising the option. This continuation value

can be computed in a recursive way as:

CvNT (3) =0,
~ tit1
Ci(s) = By, | Vi1 (Si1) +/ e "%g(V(u,S(u)))du ‘ S;i=s|,
ti
for i = Ny —1,...,0, where V; is obtained as the solution of the recursive dynamic

programming problem. Moreover, according to (2.41)) the option value is given in

terms of the continuation and exercise values as follows:
Vi(s) = max{h;,C;}, i=1,...,Nr.
Thus, the optimal stopping rule can be rewritten as
7 = min {n e {th, .ty hi(S) > ci(si)} . (2.43)

In terms of the optimal stopping time, the option value is determined by

Vi (So) = Eo

hoe(S,0) + /0 " g (V (u, S()) du] |

Lower bounds estimator using least-squares regressions

We now introduce the approximations, x;(s), of the continuation values, C;(s). Sev-
eral authors, cf. Longstaff and Schwartz [38] for example, have proposed a least—
squares regression to estimate these values from the simulated paths. In this way, the

value C;(s) can be obtained as the regression of

~

tit1
Vi (Sin) + / e g(V (u, 5(u))) du
t;
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on the current state of the asset price s. Thus, C; is approximated by a linear
combination of known functions of the current state using a least—squares regression
that leads to coefficients «;.

Following this idea, we introduce how to approximate the continuation values
considering counterparty risk. We will write the continuation value as a linear com-

bination of basis functions as follows:

R tit1
Ci(s) = Ey, | Vig1(Sisa) +/ e "%g(V(u,S(u)))du ‘ S; = 3]
t;
J
Z m% = b?¢(8) ) (2'44)
where b; = (b, ...,b;;)T are the regression coefficients at time ¢; and

U(s) = (Yi(s), . 1s(s))"

is the vector of basis functions.
Different bases can be used to approximate the continuation value. We focus on

the weighted Laguerre polynomials:

¢J($) :e_x/QLj_l(x), j = 1,2,...

where L; is the j—th Laguerre polynomial.
Next, we determine the expression of the regression coefficients b; using a least—

squares optimization technique. Let ¢ the function to minimize:

tit1 2
e "g(V(u,S(u)))du ‘ S; —s]> ] :

In order to minimize, we vanish the derivatives with respect to b;, so that we get:

R tit1
Vit1(Sig1) +/ e ""g(V(u, S(u))) du ‘ Si = 3])] =0
¢

Qp(bl) = Eti

(d}(&)Tbi — E,

‘Z‘H (Sit1) + /

ti

E,,

7

i

¥(Si) (1#(51)%@' — Ey,
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or, equivalently,

~

By [1(S:)0(S:)T] b = By, [w@-) By Vi (Si0) | Si]}

+E,

7

/tti+1 e "g(V(u,S(u)))du ’ Si=s

i

~

=K, [¢(8:) Vigr (Siv)] +Ey, [9(S) By,

i

tit1
/ e "g(V(u,S(u)))du ‘ S; = s” :
t
Thus, the expression of b; is approximated by f;, which satisfies the linear system:
AL B =dy

where A?’ and df’ can be easily estimated by Monte Carlo simulations. For this
purpose, let us consider independent paths (S;1,5;2,...,5n,) (J = 1,2,..., Np),
that can be deduced by (2.39), and assume that the value V;41(S;11) is known at

time ¢;. Then, A;p is a Ny X Np matrix with coefficients:
1 &
(AD)ik = < > Wi(S1.) Yi(S.)
Np =
and d;ﬁ is the Npr—array with the k—th element given by

N, N, )
1 —~ 1 & bivr
(@) = 5 D (850 Wi (Sienn) + 5= D n(S3) / e g(W (u, S(u))) du,
Jj=1 j=1 ti

where S;; and S;; 41 correspond to the same trajectory. Moreover, W denotes the
risk—free value estimated by the classical Longstaff-Schwartz algorithm while /MZH is
the estimation of the risky value in the previous time step.

Thus, the continuation value C; can be approximated by:
ki = BI(S) (2.45)
and the risky derivative value can be replaced by its estimated value
W\i-‘rl = max {hz‘+1(5¢+1), liz‘+1} .
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All these steps are merged in Algorithm [2.2]

Let us remark that in Algorithm [2.2] we have to apply an inner Monte Carlo
method at each step of time and for each asset price path, what makes this solution

very expensive from the computational point of view.

With the aim of reducing this computational cost, we introduce a second alter-
native to solve the same problem (Algorithm . In this alternative, we propose to
compute the risk—free derivative value, W, for a set of asset prices at each instant time
of the discretization used to obtain the risky derivative value. The classical Longstaff—
Schwartz algorithm is employed. Then, in each integral, the risk—free derivative value
has to be evaluated in the state of the asset price at instant ¢;. Instead of the exact
value, we propose the use of the interpolated value computed from the set of fixed

values previously obtained for different asset prices.

Low—biased estimator using optimal stopping rule

After obtaining the regression coefficients, we compute the value of the American
option with counterparty risk, by simulating a new set of paths independent from the
previously used prices. Then, the optimal stopping strategy is determined with the

previous algorithm, given the state of the asset price S;. Thus,

? min{n € {tl,...,tNT} hZ(SZ) Z/il(sl)}
By using this stopping strategy, with the second set of paths, the risky American

option value is estimated as

Wg(S@) =E, h?(S?) + /OT e oY [(RB)\B + )\C)W(u, S(u))f

+(ReAe + Ap)W (u, S(w)t — spW (u, S(u)) "] du| . (2.46)
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Algorithm 2.2 Regression coefficients ; (without interpolation)

1. Simulate Np independent paths {S;1,S5}2,...,5n;} (for j =1,..., Np) of the
asset, prices process.

2. At maturity time tNT, /WNT(SJ,NT) = hNT(Sj,NT>'
3. Apply backward induction for i = Np —1,..., 1.

e Compute the classical Longstaff-Schwartz approximation with Sp = Sj;
for the time interval [t;, T] to obtain W;.

e Given the estimated value /I/I7jﬂ-+1 and W;,; (j=1,...,Np), compute §; as
the solution of the linear system AYS; = dV.

e Estimate the continuation value x;(S;;) = 87 ¥(S;:) (=1,...,Np).
e Compute /Wzkfl = max{h;(S;,), ki(S;.)}-

4. Save the regression coefficients [3; to compute the risky derivative value.

Algorithm 2.3 Regression coefficients ; (with interpolation)

1. Simulate Np independent paths {S;1,S;2,...,S;n,} (for j =1,..., Np) of the
asset prices process.

2. Apply forward induction for : = 0,1, ..., Ny — 1. Compute the risk—free deriva-
tive value for different asset values in the time interval [t;, T').

3. At maturity time .., /WNT(SJ',NT) = hn, (S Ng)-

4. Apply backward induction for i = Np —1,...,1.

Interpolate the risk—free derivative value for the asset price S;; at time ¢;.

Given the estimated values /I/T7j7i+1 and W, (j =1,..., Np), compute j3; as
the solution of the linear system AYS; = d' .

Estimate the continuation value r;(S;;) = 874(S;;) (j =1,...,Np).
Compute W\kal = max{h;(5;:), xi(S;:)}-

5. Save the regression coefficients (3; to compute the risky derivative value.
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Taking into account the expression of the risky derivative value XA/O(SO), given by

~

Vo(So) = sup Eq

T7€To

h(r,S;) + /OT e~ "ot [(RB)\B + Ao)V(u, S(u))”

+(RcAe + M)V (u, S(u)* — spV (u, S(u))*] du]

> Eo | ha(S5) + /0 ?e*m” [(RAB + Ac)W (u, S(u))~

+(ReAe + Ap)W (u, S(w)t — spW (u, S(u))"] du] = WO(SO) ,

we deduce that the estimator defined in (2.46)) is a low—biased estimator which pro-
vides a lower bound of the theoretical value. The algorithm that provides the low

estimator is shown as Algorithm [2.4]

Algorithm 2.4 Derivative value estimation

1. Load regression coefficients 3; (i =1,..., Np).

2. Simulate Np independent paths {S;1,Sj2,...,Sjn,} (for j =1,..., Np) of the
asset prices process from the first one used.

3. Apply forward induction for i =1,... Nyr—1land j=1,..., Np.

e Compute the continuation value x;(S;;) = 85 (S;:) (j=1,...,Np).
e Compute the payoff functions h;(S;;).

4. At maturity time ty,., /WNT(SJ,NT) = hn, (S;ny) and Cn,.(Sjn,) = 0.
5. Compute W;o(So) = hi+(S;) (" = min{i € {1,..., Ny} : hi(S;) > r5(S;0)}).-

6. Calculate the estimated value of the option: Wo(Sp) = Nip Zjvzpl /V[7j70.

Duality. Upper bounds estimator using martingales

As we have seen in the previous paragraph, the estimator of the American option,

obtained by using least square regression, was a lower estimator on the real American
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option value. In this section an upper estimator using martingales is considered. For
this purpose, we follow the works of Haugh and Kogan [29] and Rogers [46]. Both
have established dual formulations which represent the price of an American option
through a suitable minimization problem. The duality technique minimizes over a
class of supermartingales or martingales and leads to a high—biased approximation,
therefore obtaining upper bounds on prices.

As we have seen in , the discounted value 172(81) satisfies the recursive for-

mulation
Vap(s) = h(T,s), Sy, =s

‘//\;,1(5) = max {hil(S), Eti—l

i)+ | " e [(Rudg 4 M)V (u, S(u)-

+(ReAe + Ap)V (u, S(w)™ — spV(u, S(u))"] du ‘ Si = 5] } :

for i = Ny, Ny —1,...,1. From the previous recursive formula, the following inequal-

ity is obtained:

~

R tit1
Ti(S) > By, | Via(Sisa) + / e [(Ruhs + o)V (u, S(u))
t;

+(ReAe + Ap)V (u, S(u)* — sV (u, S(u))*] du ‘ 3

> Ky, [‘/}i—i-l(si—i—l) ’ Sz} ;

for2=0,..., Ny — 1. Thus, we can conclude that ‘//\; is a supermartingale [43].

On the other hand, the American option price satisfies:
Vi(Si) > hi(Si), i=0,...,Np.

Thus, the value function process V;(S;) (i = 0, ... Ny) is the minimal supermartingale
dominating h;(.S;) at each exercise time t;.
Let M = {M,;,i =0,...,Nr} be a martingale, with My = 0. By the optimal

stopping theorem of martingales, the expected value of a martingale at a stopping
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time is equal to the expected value of its initial value. Then, for any stopping time

T € {t1,t2,...,tn, }, we have E[M,] = My = 0 and we can deduce:

Eo

he(S7) + /OT e "g(V(u, S(u))) dUI

=K, hT(ST) + /OT e—roug(v(u’ S(u))) du — MT]

< B | max (hi(SZ-) + /0 " g (V (. S () du — M)] (247

Moreover, in terms of the infimum over martingales M with initial value My = 0,

we obtain

Eo

h-(S-) + /OT e " g(V(u, S(u))) dUI

S inf EO
M

i=1,..., o

ma. (hi<si)+ /0 Y g (Vi S(u)))du—/\/li>] o (248)

which holds for any stopping time 7. Thus, the American option price written in

terms of the supremum over 7 leads to the following inequality:

h-(S-) + /OT e " g(V(u, S(u))) dUI

max (hi(si)+ /0 Y g (V(a, S(u)))du—/\/li>] (2.49)

for every martingale M. The minimization problem on the right hand side is known
as dual problem.

Next, let us consider the stochastic process defined by:
My =0, Mi=) Ay, i=1,... Nr, (2.50)
k=1

where Ay = ?k(Sk) —E;,_, [?k(Sk) | Sk—1]. We can easily prove that this process is a
martingale, so that it satisfies ([2.49)).
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Taking into account the definition of A, we have
Be o [Ai | Sica] =Ky, [‘71'(51') — By, [Vi(Si) | Sia] | S,-_l} = 0.

For this purpose, first we have

7 i—1
]Etz‘—1[Mi | Sifl] = Eti—] [ZAk ’ Sz‘fl] = ZAk = Mz;l, (2.51)
k=1 k=1

which shows that M satisfies the martingale property.

Furthermore, we can also prove [28]:

~

Vo(So) = Eo

_max, {hi(Si) + /0 i e "g(V(u,S(u)))du — ./\/lz}] : (2.52)

Thus, inequality (2.49)) holds for our particular choice of martingale.

Next, we use backward induction to prove that

Vi(S;) = Ey, | max {hz(Sz) + /t i e "%g(V(u, S(u)))du,

tit1
B (Sian) + / e (V (1, S(w)))du — A,

t;

tito
hi+2<Si+2) + / eiroug<V(U,, S(u)))du — A/L'+2 — Ai+17 ey
t

i

tNT
hn, +/ e "g(V(u,S(u)))du — An, — ... — Ai—i—l} ‘ Si] . (2.53)
t;

For the maturity time ¢x,, we have Vi, (Sx,) = Ay, (Sny) = Elling (S, | Sny]. So,

equality ([2.53)) is satisfied.
Next, we assume that (2.53)) is satisfied at time ¢;. We obtain

~

Vie1(Sio1) = max {hil(Sil)aEti [Vz‘(Si) + /:1 e ""g(V(u,S(u)))du ) Sm] }

= Etiﬂ

max {hil(Siﬂ, Eti |:‘Z(Sl)
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+ /ttjl e "%g(V(u, S(u)))du ‘ Sic1

I

+ /ttjl e " g(V(u, S(u)))du — Al} ’ Si-1

)

= ]Etifl

max {hi_l(si—l)v i(Si)

= Etiq

max {hi_l(Si_l), hi(S;) + /t e "g(V(u, S(u)))du — A,

tit1
hi+1(5i+1) + / e_roug(V(U, S(u)))du — A1 — Ay,
t’L 1

hvy (Sxy) + / T g (V (u, S(0))) it — Ay — o — Az} ‘ sH] ,

ti—1

so that (2.53)) also holds for t;_;. Finally, at t = ¢, the American option value is given
by

t1

=V1(5) +/ e "%g(V(u, S(u)))du — Ay. (2.54)
0

Moreover, according to ([2.53))

Vi(S1) =By,

t1

max {h1(51) + / 1 e ""g(V(u, S(u))) du,

ha(S2) + / 2 e " g(V(u, S(u))) du — As,

t1

ha(Ss) + / e g (V(u, S(u)) du — Ag — A,

t1

t1

hovy (Swy) + / o e (V (4, S(u))) du — Ay — ... — AQ} ‘ 51] . (2.55)
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Then, we have

~

‘/O(SO) - Etl

max {hl(Sl) 4 /0 " gV (u, S(u))) du — A,

ha(S5) + /0 2 g (V (. S(u))) du — Ag — A,

ha(Ss) + /;3 e g(V (1, S(u)) dut — Ag — Ay — Ay, ...

hvy (Swy) + /OtNT e (V (4, S(u))) du — Ay — ... — Al} ‘ 51] . (2.56)

In consequence, we get

~

Vo(S0) = Eo

max {hi(Si)+ /O tiero“g(V(u,S(u)))du—Mi}], (2.57)

i=1,...Np

which proves inequality for the martingale defined by . Moreover, by
we have obtained an upper estimator for the American options price with
counterparty risk.

Our next goal is, for practical purpose, to find a computable estimated martingale

M close to the optimal one, M, in order to obtain the following estimated value of

Vo:

Wo(So) = Eo

which is the so called duality estimator.

Next, the computation of such martingale is detailed. We construct the martingale
/T/l\i. Thus, we follow the definition given in 1. to find the suitable martingale.

—~

My =0, M;=3"A, i=1,...,Np, (2.59)
k=1

where Ay, is given by A; = /V[Z(Sl) - ]Etifl[/WZ(Si) | Si—1]. Then, M satisfies the

general martingale property.
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Note that ﬁk is now expressed in terms of the estimated value of the American
options, which was given by

o~

where k; was defined in (2.45)). In (2.45) the vector ; and the function bases ¢ are

the same as for the least square method.

Next, we explain how to estimate the martingale value. For this purpose, we
assume that we have simulated the main Monte Carlo paths {S;;,7 = 1,..., Np}.
Then, for each S;_; we simulate N; successors {5';“, k=1,...,Nr}, and estimate the

conditional expectation Eti_l[iv}(si) | Si—1] by

By W) | i) = 5 D WilS) (2.61)

where /VIZ(SM) is calculated as in 1} Then, the estimated value ﬁl is given by
o~ 1 —

which gives the upper—biased estimator.

Finally, Algorithm [2.5] sketches the computation of this dual estimator.

Confidence intervals

We take into account the lower and upper estimators developed in the previous sec-
tions to propose confidence intervals that contain the American option price.
We denote by V and V the lower and upper estimators, respectively, both com-

puted with Np paths. Then, the (1 — «) confidence interval is given by

sy(Np) — 7 (V,
(v a2 T a2,

where sy (Np) and sy-(Np) denote the respective sample standard deviations and 2,/

represents the (1 — a/2) quantile of the normal distribution.
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Algorithm 2.5 Dual estimator using martingales

1. Load regression coefficients §;, i = 1,..., Ny given by Algorithms [2.2] or

2. Simulate Np independent paths {S;1,S;j2,...,Sjn,} (for j =1,..., Np) of the
asset prices process.

3. Set the initial martingale M\o =0

4. For each j =1,..., Np, apply forward induction for i =1,..., Nr.

Compute the continuation values x;.
Estimate the American option price, /MZ(SM) = max{h;(5;;), ki(5;:)}-
Simulate N; subpaths {SM, 5’27“ o SNM-} starting from S, ;.

Compute the estimation of the martingale differential 31

o~

Obtain the martingales M\Z =M1+ ﬁz

ti —~
5. Set Woi(Sp) = max (hi(sj,z’) +/ e ""g(V(u, S(u)))du — Mj,z‘>~
0

i=1,....,Np

6. Compute the dual estimated value as W\O(SO) = Nip Zjvzpl Wo’j<50>.

2.4.2 The nonlinear problem (M = XA/)

In the previous section we have deduced how to price the American option value
considering counterparty risk, when the mark—to—market is equal to the risk—free
derivative value. Two alternative algorithms have been proposed, transforming the
classical Longstaff-Schwartz scheme. More precisely, Algorithm consists of two
nested Monte Carlo methods while Algorithm combines a Monte Carlo method

with an interpolation technique.

Now, when the mark—to—market value is equal to the price of the derivative with
counterparty risk (M = XA/), in the corresponding complementarity problem ([2.11))

we identify a nonlinear dependence on the solution V. In this case, Feynman-Kac

97



theorem [43] provides the risky American option value at time ¢t = 0, which satisfies:

‘70(50) = sup Eq

7€To

e "Th* (1, S,) + /0 ' e G(V(u, S(u))) du|

where function g is defined by:
G(V)=—(1 = Rp)AgV ™ — (1 = Ro)AV T — spVT.

Recall that the asset prices follow the geometric Brownian motion process defined
in . Once again, to simulate a continuously exercisable American option the
period of time is discretized in Np + 1 time steps. Thus, the asset price value at each
time step is approximated by FEuler-Maruyama scheme like in ([2.39)).

Now, using a dynamic programming formulation the American option value can

be written in a recursive formula

vNT(s) =h(T,s), Sn,.=S5s

~

‘/1;1(5) = Inax {hil(S), ]Eti—l

t; R
DoV (S)+ [ eGP S(u) du | Siei = ] }
ti—1
for : = Ny, Nr — 1,..., 1, the discounting factor being defined as
D 1;= e T(ti—ti—1)
Introducing the discounting factor in each term, the recursive formula becomes:

?NT(S) = h(Ta 3) ) SNT =S

Vi_1(s) = max {hi_l(s), E;, .

XZ-(SZ-)%—/:l e g (V(u S(u))) du ‘ Si—q :s]},

fori=1,..., Np.
Next, we write the continuation value, which is also approximated by a regression

function, as follows:

Ci(s) = Ey,

D (Sir) + / GV (u, S(u))) du | 5 = ]

—zw )= 5(s). 269
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Let us remark that the main difference with respect to the case where the mark—
to—market is equal to the risk—free derivative value arises in the continuation value,
which leads to a different expression of d;ﬁ. Furthermore, the continuation value at
time ¢; is defined in terms of the risky derivative value in the previous time step, which
has been previously computed, and the risky derivative value at the same instant of

time.

In order to deal with the nonlinear feature of this problem, we propose a fixed

point algorithm to compute coefficients §; as the estimators of b; (Algorithm [2.6)).

Algorithm 2.6 Regression coefficients 3; with fixed point iteration

1. Simulate Np independent paths {S;1,S;2,...,S;n,} (for j =1,..., Np) of the
asset prices process.

2. At maturity time ¢y, WNT(SJ7NT) = hn, (Sjng)-
3. Set the tolerance e.
4. For i = Ny —1,...,1, perform a fixed point algorithm:
e Initialize ¢/ = 0 and set /I/IZOZ = ﬁ/\j,iH.
e Given the estimated value /W?j,iﬂ (j=1,...,Np), compute A¥.
e [terate the following steps while e > €
— Compute d¥"* in terms of /T/I7fl
— Compute ; as the solution of the linear system A;”ﬁf = d;/”e.
— Estimate the continuation value x;(S;;) = 87¢(S;;) for j =1,..., Np.
— Compute /I/I7fjl = max{h;(S;,), ki(S;.)}-
e — T

]|W-“1H and set £ =/¢+1
],l

5. Save the regression coefficients (3; to compute the risky derivative value.

Therefore, to obtain the lower estimator of the risky derivative value at time t = 0

we apply Algorithm [2.4] using the f; coefficients obtained with Algorithm
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Using a similar procedure to the one followed in the linear complementarity prob-
lem (when M = V'), an upper estimator of the derivative value can be obtained. In
this case, after computing the regression coefficients 5; by Algorithm [2.6] we apply
Algorithm to obtain the estimator of the American option value. Remark that
function ¢g(V') in Algorithm is replaced by function ﬁ(‘/}) Again the confidence
intervals are obtained like in Section 2.4.1]

2.5 Numerical results

In this section, we show the results obtained for American options bought by counter-
party B, the value of the parameters being the same than in the analogous example
for European options in Chapter Il For the ALAS algorithm, we consider 3 = 10°
and the stopping test parameter equal to 1077, thus obtaining the convergence in two

or three iterations.

2.5.1 Test 1: American call option

In Figure [2.1| we compare the American call option value considering different adjust-
ments upon risk free value. The maturity time is 7' = 3, and the rest of the input
parameters are given in Table[I.2] As in the European call option case, when counter-
party B buys a call option, the price that B has to pay by the risk—free derivative is
higher than the amount that has to be paid for an option if default risk and funding
costs are considered. Moreover, as expected in an option that pays no dividends,
risk—free value is the same for both options; in other case, when risky values are con-
sidered the American option value is larger than the European one, due to the fact

that the American option can be exercised before the maturity date.
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Figure 2.1: American call option value (Test D

2.5.2 Test 2: American put option

In Figures|2.2(a)|and [2.2(b)}, the exercise region for an American put option is repre-

sented in white. The example corresponds with an American put option bought by
B with the same data than the call option in Test [I, except the maturity date which
is T" = 0.5 years. We can see that in the case with counterparty risk this region is
larger than the same area in the case of an American put option without counterparty
risk. According to these regions, we can interpret Figure [2.3] which represents the
XVA surface for an American put option. We can observe that the XVA is negative
because it represents the discounted value upon the risk—free value, due to the risk
exposure of counterparty B. Moreover, in terms of absolute value this is larger when
the asset value approaches the exercise area because the buyer B is more interested
in exercising the option. Moreover, when the spot price is in the exercise region,

the XVA surface tends to zero. This is due to the fact that the risky value and the
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risk—free value reach the exercise price, so that XVA = V-V=0. Finally, the XVA

value is zero at maturity, because the counterparty is no more exposed.
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(a) Risk—free American put option (b) Risky American put option

Figure 2.2: Exercise region (white) for an American put option (Test }
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Figure 2.3: Total Value Adjustment surface for American put option (Test )
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2.5.3 Test 3: Collateralized American option

In this example, we study again an American put option. However, the derivative in
the contract is collateralized. As we did for European options, we show the results of
model 3 of Section[2.2.2] We have used the same parameters than for the collateralized
European option model (cf. Test [4]in Chapter, where the collateral rate is r = 0.05
and the rest of the parameters are given in Table [I.2]

Thus, we show in Figure the difference between the fully, partially and non
collateralized derivative prices. As for European options, the difference is positive,
because it represents the additional amount that has to be paid by B if the derivative
is collateralized. This price increases as the collateral is larger, thus the exposure
facing C’s default is lower. Therefore, the price of a collateralized American put
option, out of the exercise region, is larger than the not collateralized one. We can
also appreciate how this difference is null for asset prices in the exercise region, which

is almost equal for all collateral amounts. This difference between both of them is

the CollVA.

0.01
= =100% collateralised
- 70% collateralised
0.008 F 200 B [TTTTE 50% collateralised
! \
g v
8 0.006 ! \
£ I
Q \
g 1
5 i '
g 0.004 | A
a . \
E \
l:. \
0.002 [ ARY
E NN
[ ——— . w B T
0 5 10 15 20
Stock price

Figure 2.4: Collateral Value adjustment for different amount of collateral (Test D
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In Figure [2.5] we show the XVA for a contract with a collateralized derivative.

The variation of the XVA is represented according to the percentage of risk—free

derivative which has been collateralized. As expected, when the derivative is totally

collateralized, the total value adjustment in absolute terms is lower, because the

exposure facing C' decreases. Moreover, when the derivative is not collateralized,

(X =0) the XVA value corresponds with the results shown in Figure
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Figure 2.5: XVA surfaces for different collateral values (Test D



2.5.4 Test 4: Some results on the linear problem (M =V)

In the previous examples, the mark—to-market value was the derivative value con-
sidering counterparty risk. In the present test we show the values obtained for an
American put option when the mark—to-market is the risk—free value. We consider
the same value of parameters than in the previous test. In Figure [2.6| we compare the
value adjustments at current time, for both linear and nonlinear problems. Moreover,
for each case, the XVA including or not including FCA are plotted. Finally we can
conclude there is not a big difference in the choice of the mark-to-market close out,

being the total value adjustment more negative when M is the risk—free derivative
value.
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(a) Case with M =V (b) Case with M =V

Figure 2.6: Forward values with CVA and FCA (Test

2.5.5 Test 5: The influence of parameters in the model

Next, we show how the different parameters of the model affect the value of a put

American option. The results correspond with the nonlinear problem, where the

mark-to—market is the risky derivative value. In the previous example, we have

proved that a similar behaviour is obtained for the linear one. In Table we can
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appreciate how the intensity of default from B and the recovery rate from the same
counterparty have an effect on the derivative value. Nevertheless, in Table the
derivative value changes according to the probability of default and recovery rate of
counterparty C. As expected, when the intensity of default from each counterparty
increases, the derivative value decreases. A similar behaviour, on the opposite sense, is
found when the recovery rate grows. Moreover, we can appreciate that the derivative
value is larger for a long maturity term, as a large maturity period increases the
uncertainty.

The common parameters for both tables are K = 15, 0 = 0.3, rg = 0.015, » = 0.05
and sp = (1 — Rp)Ap.

Table 2.1: American put option, with A\c = 0.08 and Rc = 0.3 (Test }

T Mg Rp S=5 S =12 S =20
0.04 0.1 10.00000000 3.13308090 0.16323770
0.5 10.00000000 3.14166452 0.16437717
05 0.2 0.1 10.00000000 3.07218167 0.15345619
0.5 10.00000000 3.10268759 0.15878868
06 0.1  10.00000000 3.00469239 0.13213340
’ 0.5 10.00000000 3.03875867 0.14589116
0.04 0.1  10.00000000 3.77230534 1.20695426
0.5 10.00000000 3.82986828 1.24530828
3 02 0.1 10.00000000 3.40960804 0.93051979
0.5 10.00000000 3.58192861 1.07095180
0.6 0.1 10.00000000 3.06610652 0.54715149
' 0.5 10.00000000 3.23836762 0.76713906

We have not theoretically proved the convergence of the fixed point iteration.

Nevertheless, all tests have converged in a reduced number of iterations.
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Table 2.2: American put option, with Ag = 0.06 and Rp = 0.4 (Test )

T M Rc S=5 S =12 S =20
0.04 0.1 10.00000000 3.14387856 0.16466381
0.5 10.00000000 3.15302397 0.16581763
05 0.2 0.1 10.00000000 3.07911138 0.15476659
0.5 10.00000000 3.11155725 0.16016080
0.6 0.1 10.00000000 3.00621647 0.13321601
' 0.5 10.00000000 3.04341163 0.14711791
0.04 0.1 10.00000000 3.84500310 1.25519575
0.5 10.00000000 3.90880999 1.29601308
3 09 0.1 10.00000000 3.44731946 0.96278708
0.5 10.00000000 3.63539725 1.11044543
0.6 0.1 10.00000000 3.07521571 0.56160892
' 0.5 10.00000000 3.26143931 0.79122318

2.5.6 Test 6: A Monte Carlo simulation

We now present some numerical results obtained with the previously described Monte
Carlo algorithms. Our aim is to compare the efficiency of these methods with the

algorithms proposed to solve the analogous complementarity problem formulations.

In all examples, the initially chosen financial parameters are: K = 15, r = 0.04,
TR — 006, g = 025, RB = Rc = 03, )\B = )\C = 004, Sp — (1 _RB))\B and T'= 0.5.
We will also show the sensitivity of the option price with respect to parameters Ap,

Ao, Rp and Ro by shifting these initial values.

For the numerical simulation with Monte Carlo techniques, we have used Np = 500
paths and Ny = 1000 time steps. In particular, for Algorithm [2.2) we have additionally
considered 8 inner paths, while for Algorithm we use Ny = 50. Moreover, we
consider a basis consisting of three Laguerre polynomials in the regression formula
(2.44]).

In Tables to we include results issued from the solution of the comple-
mentarity problems, for which we have discretized the spatial domain with Ng = 601

nodes and we have used Np = 200 time steps.
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Example with mark—to—market M =V

In this test we focus on the linear problem, posed when M = V', on an American put
option.

Table presents some numerical results obtained when the mark-to-market is
M = V. More precisely, for different underlying prices, the numerical solution of the
linear complementarity problem , the lower and upper estimators
and the 99% confidence interval are shown jointly with the excercise value.

The numerical solution of is computed with the numerical techniques de-
scribed in Section and [4]. We can appreciate that it lies in the confidence interval,
except in the first critical case for S = 0 where Monte Carlo approximation is very
close to the exercise value. For the larger underlying prices (S > 25), all values
become naturally close to zero, as expected.

A similar behaviour is observed with Algorithm [2.3, where the risk—free price V' is
interpolated from the values previously obtained in a thin mesh for the asset, instead

of being computed by an inner Monte Carlo algorithm (see Table .
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In order to compare the efficiency of algorithms and [2.3, we have measured
the elapsed CPU time in both cases. In all examples, tests have been performed with
Matlab on an Intel(R) Xeon(R) CPU E3-1241 3.50 GHz computer. Algorithm
takes 55134 seconds for computing the lower estimator and 37390 seconds for the
upper estimator. However, Algorithm [2.3| only needs 5.4863 seconds to obtain the
regression coefficients. Nevertheless, note that Algorithm needs a large computa-
tional time to previously obtain the risk—free derivative value on the thin mesh used
to interpolate. More precisely, it takes 122960 seconds to obtain the lower and upper
estimators of the risk—free derivative price for the whole set of asset nodes. Further-
more, Algorithms and take 0.0759 and 2.1875 seconds, respectively, for the
computation of the risky American option price.

All these computational times correspond to the approximation of the option price
for just one asset price. We can observe that the interpolation of the risk—free option
values implies a larger time in obtaining the lower and upper estimators for a unique
initial asset price. Nevertheless, once the values of the risk—free derivative on the
fine mesh are available, the computation of the option price for several asset prices
by Algorithm (interpolation) is much more efficient than by Algorithm (inner
Longstaff-Schwartz scheme). Indeed, only six additional seconds per asset price are
required in Algorithm [2.3]

Alternatively, the numerical solution of the complementarity problem is
clearly more efficient, as only 6.89 seconds are needed to approximate the solution on

a mesh of 601 nodes (each node represents an initial asset price) and 200 time steps.

Example with mark—to—market M = v

Table shows the results obtained in the example with mark-to-market M = 1//\',
which corresponds to problem . The associated Monte Carlo technique has been
described in Section 2.4.2] In this example, Algorithm [2.6] takes 6.2608 seconds, while
the numerical methods [4] employed to approximate the solution of the nonlinear

complementarity problem take 270 seconds with a 601 nodes mesh and 200 time

112



steps. We point out the good agreement between the values computed from the PDE
formulation and the confidence intervals obtained with the proposed Monte Carlo
technique.

As we have done in Test [5] for the finite element case, we show how Monte Carlo
techniques also reflect the influence of different parameters on the option value. Table
2.6/ shows, for an initial price Sy = 20, the numerical solution of the complementarity
problem, the Monte Carlo lower and upper estimators, and the confidence intervals
computed for different values of the intensity of default Ag. As expected, we appre-
ciate that for increasing values of this parameter both estimators decrease. We have
observed the same effect when we have fixed A\p and taken different increasing values

for the intensity of default A\q.

Table 2.6: American put option value considering counterparty risk and M = 1%
(Algorithms and [2.5). Effect of the intensity of default. Sy = 20, Ac = 0.04,
Rp = Re = 0.30.

Complementarity
problem Lower Upper Confidence
AB approximation estimator  estimator interval
0.04 0.04802108 0.04942329 0.31842569 ( 0.01289458 , 0.33546431)
0.10 0.04715281 0.04930002 0.31715650 ( 0.01287656 , 0.33380921)
0.30 0.04439205 0.04895565 0.30504576 ( 0.01282437 , 0.32139431)

A similar behaviour, in the opposite sense, is observed when we increase the

recovery rates Rp or Re. Tables [2.7 and [2.8 show the obtained results for Sy = 20.

Table 2.7: American put option value considering counterparty risk and M = v
(Algorithms and . Effect of the recovery rate. Sy = 20, A\g = Ao = 0.30,
Re = 0.30.

Complementarity
problem Lower Upper Confidence
Rp approximation estimator  estimator interval
0.10 0.04005223 0.04732412 0.29536326 ( 0.01512059 , 0.31200451)
0.30 0.04107955 0.04766287 0.30351023 ( 0.01513649 , 0.32043366)
0.90 0.04435412  0.04790897 0.31169431 ( 0.01514366 , 0.32841816)
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Table 2.8: American put option value considering counterparty risk and M = 1%

(Algorithms and [2.5)).

Effect of the recovery rate. Sy = 20, Ap = A\¢ = 0.30,

Rp = 0.30.
Complementarity
problem Lower Upper Confidence
Re approximation estimator  estimator interval
0.10 0.04005223 0.04732412 0.29615655 ( 0.01512059 , 0.31268850)
0.30 0.04107955 0.04766287 0.30497545 ( 0.01513649 , 0.32197302)
0.90 0.04435412  0.04790897 0.31058947 ( 0.01514366 , 0.32782823)
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Chapter 3

Two stochastic factors model for

European options with XVA

3.1 Introduction

In the previous chapters, and also in [4], a one factor model to price the adjustments
associated to European and American options with counterparty risk has been ana-
lyzed and numerically solved. In particular, funding value adjustment (FVA), debit
value adjustment (DVA) and credit value adjustment (CVA) have been considered.
Furthermore, the model in [4] is extended to incorporate the collateral value adjust-
ment (CollVA), in case that a collateral is used to guarantee the obligations related
to the options contract. In this model, constant default intensities for both coun-
terparties have been considered, so that a model depending on just one underlying
stochastic factor (the underlying asset) is deduced and numerically solved.

However, counterparties default intensities do not always exhibit constant be-
haviours. In a general framework, intensities might follow a stochastic process [27].
In the present chapter we focus on the European options pricing and the correspond-
ing XVA adjustments when stochastic intensities are assumed. More precisely, we
state PDE models for the derivative value, from the point of view of an investor,

when the trade takes place between two counterparties: an investor and a hedger. If
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we consider stochastic intensities of default for both counterparties then a model with
three stochastic factors is obtained [27]. Our approach is based on the same frame-
work and assumptions as in [27], although with the additional hypothesis of a zero
default intensity for the hedger, thus leading to a two stochastic factors model. The
three factors model could be approached by the theoretical analysis and numerical
methods that we present in this chapter.

As in [27], we include all the components in the pricing of uncollateralized deriva-

tives with counterparty risk, with the following assumptions:
e The price of a derivative should reflect all of its hedging costs.

e Since in a high percentage of uncollateralized transactions the presence of an
investor (risk taker) and a hedger (risk hedger) is implied, the price of the
derivative should just reflect the hedging costs transmitted by the hedger.

e The hedger will only be willing to hedge the fluctuations in the price of the

derivative that he will experience while not having defaulted.

e There is neither CVA nor FVA to be applied to fully collateralized derivatives
(with continuous collateral margining in cash, symmetrical collateral mechanism

and no threshold, minimun transfer amount, etc).
Moreover, we will consider the following market assumptions:
e There is a liquid credit default swap (CDS) curve for the investor.
e There is a liquid curve of bonds issued by the hedger.
e Continuous hedging, unlimited liquidity, no bid-offer spreads, no trading costs.

e Recovery rates are either deterministic or there are recovery locks available so

that recovery risk is not a concern,
as well as the following model assumptions:

e Only the investor is defaultable.
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e The underlying asset follows a diffusion process under the real world measure.

e The underlying asset of a derivative is unaffected by a default event of the

investor.

e The investor credit spread is stochastic and follows a diffusion process correlated

with the asset price under the real world measure.

Keeping in mind these assumptions, in the present chapter we state a PDE for-
mulation by means of suitable hedging arguments and the use of It6’s Lemma for
jump—diffusion processes [43]. After arguing the hedging strategy, as we did in Chap-
ter [1} different linear or nonlinear PDEs arise depending on the choice of the mark—
to—market value at default. For the nonlinear PDE formulation we develop the math-
ematical analysis of the model to obtain existence and uniqueness of a solution in
the appropriate functional space on a bounded domain. For this purpose, we use the
tools of nonlinear parabolic PDEs involving sectorial operators [30].

In addition, we propose a set of numerical methods to solve the PDEs for both
choices of the mark—to—market value. First, we truncate the unbounded domain and
formulate suitable boundary conditions at the boundaries of the localized domain,
following some ideas in [23]. Next, we propose a time discretization based on the
method of characteristics combined with a finite element discretization in the asset
and spread variables. The method of characteristics has been proposed in [44] in the
context of fluid mechanics problems and used in finance in [50] for vanilla options, in
[23, [7] for Asian options or in [I7] for pension plans. For the nonlinear PDE a fixed
point iteration algorithm is additionally proposed.

This chapter is organized as follows. In Section [3.2| we propose the mathematical
model. Section [3.3] is devoted to the mathematical analysis of the nonlinear PDE
problem that models the price of the XVA. Furthermore, we prove the existence
and uniqueness of solution. In Section [3.4] we describe the numerical methods we

propose to compute a solution of our models. In Section 3.5 we show and discuss the
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numerical results for some illustrative examples. Most of the results in this chapter

are included in [5].

3.2 Mathematical model

In this section, we deduce the models for European options and their associated XVA
pricing when the counterparty risk and funding costs are taken into account. The
main difference with the one factor model presented in Chapter [I] comes from the
consideration of stochastic default intensities instead of constant ones. As previously
indicated, we assume an investor as a risky counterparty and consider that the issuer’s
intensity of default is null. Thus, the underlying asset price S, and the short term
CDS spread of the investor h, are modelled by means of stochastic processes satisfying

the following stochastic differential equations (SDEs):

S, = (r(t) — q(t)) Sy dt + o (t) S, dW? | (3.1)
dhy = (u"(t) — M"()o"(t)) dt + o"(t) dW]", (3.2)

where (r(t)—q(t)) and (u"(t)— M"(t)o"(t)) are the (respective) drifts of the processes.
Moreover, r(t) denotes the risk—free interest rate, ¢(¢) is the asset dividend yield
rate, M"(t) is the market price of investor’s credit risk, o (¢, S) and o”(¢, h) are the

volatility functions, and W% and W} are two correlated Wiener processes
pdt = dW; dW}

such that p is the instantaneous correlation between S; and h;.

In terms of the spread, the default intensity of the investor, \;, is defined as:

hy
A= —— .
t 1_R7 (33)

where 0 < R < 1 denotes the investor recovery rate.
We consider a derivative trade between a hedger and an investor, where only the

last one is defaultable. The main risk factors in the trading are the market risk
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due to changes produced in the asset value, investor spread risk and investor default
instant. Thus, from the point of view of the investor, the derivative value at time ¢
is denoted by V, = ‘A/(t, S, hy, JI) and depends on the spot value of the asset (S;), on
the spread of the investor (h;) and on the investor default state at time ¢ (J!). Note
that J! = 1 in case of default before or at time ¢, otherwise J/ = 0. The price of
the same derivative between two default—free counterparties (risk—free derivative) is
denoted by V, = V(t, S,). The risky derivative price V; includes adjustments (such as
DVA, FCA and/or CollVA) into valuation, whereas the risk—free derivative price V;
does not include any counterparty risk adjustment.

The price of the risky derivative upon default of the investor is given by:

~

V(t, St, ht, 1) = RM+(t, St, ht) + M_ (t, St, ht), (34)

where M (t, Sy, hy) denotes the mark—to-market price. Moreover, Z* = max(Z,0) and
Z~ =min(0, 2).

In terms of the mark—to—market condition , we introduce AV as the variation
of V at default, which is given by:

AV, = RM;} + M, -V, (3.5)

where M; = M(t, Sy, hy). Note that, this expresion corresponds with in Chapter
[, i.e. the variation of the risky derivative value when counterparty C' makes default.
As we have considered in the model for constant intensities of default and following
the literature [15], we only consider two possible choices for M;: either the risk—free
either the risky derivative value. In order to state the pricing model of the risky
derivative, this one is hedged by a self-financing portfolio, 1I;, which is designed to
hedge all underlying risk factors.

With this aim, the hedger will trade with different financial instruments in order

to hedge the following risk factors:

e Market risk: a fully collateralized derivative is employed to hedge this kind of
risk. We denote by H; the net present value associated to that derivative, from

the point of view of the hedger.

119



e Spread risk and default risk of the investor: the hedger will trade with two
credit default swaps with different maturity times. The first one, CDS(¢, ¢+ dt),
for which the buyer pays a premium h(t)dt at time t 4 dt, presents a short
maturity date. If the default time takes place before the maturity time t + dt,
the buyer of the protection receives (1 — R), where R denotes the recovery rate
at time ¢ + dt. Moreover, the premium h(t)dt is such that CDS(¢,t + dt) = 0.
The second credit default swap, CDS(¢,T), represents the amount of money

guaranteed until a longer maturity time, 7' > ¢.

Thus, from no arbitrage arguments we have \Z = II;. Let us assume that the portfolio

at time t, II;, is made up of:
e «(t) units of the net present value of a fully collateralized derivative H,
e () units of cash in collateral accounts,
e 7(t) units of a long term credit default swap,
e £(t) units of a short term credit default swap,
e ()(t) units of a short term bond,

such that:

I, = a(t)H(t) + B(t) + v(t)CDS(¢, T') + e(t)CDS(¢, t + dt) + Q(t)B(t, t + dt) . (3.6)

The hedger trades on bonds that mature on ¢ + dt to match the spread duration of
the uncollateralized derivative, imposing that the net buyback is equal to ‘Z This is

known as a self-financing condition of the replication strategy, so that
V, = Qt)B(t,t +dt), (3.7)

which implies that the number of units of B(t,t + dt) is given by:
v,
Ut) = =—F=.
®) B(t,t + dt)
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Therefore, as a consequence of the self-financing condition, the portfolio evolution
comes from the changes in each component:

dV, = a(t)dH(t) + dB(t) + v(t)dCDS(t, T)

-~

Vi

Applying It6’s lemma for jump diffusion processes [43], the change dV, of V, from
t to t + dt is given by:

_ ov ov ov
dV, = E(tv Staht) dt_"%(tv Staht) dSt—}—%(t’ St?ht) dhy
(05)252 0*V (Uh)2 0°V S _h o*V
+( > 952 T2 o P77 Sggap ) S dl

FAV(t, 8, hy) dJ]

% v, OV (09)28282V  (oM)2 02V
- (EHT Vg T MG T s T e o
02V 1%
+pa®otS 55 ah> (t, i, hy) dt + 0—55%(1&, Sy, hy) AW
ha‘/} h i I
+o %(tﬂgbht) th +AV(t7 Staht) th . (39)

Then, let us show the evolution of the rest of financial instruments in the portfolio.
The cash amount §(t) is a sum of —«a/(t) H(t) and —~(¢)CDS(¢, T') that has been posted
to the hedger. Thus, the change in 3(t) is given by

dB(t) = ( — a(t)H, — ~(t)CDS(t, T)) c(t) dt,

where ¢(t) represents the accrual rate, that is the rate of interest that is added to the
principal of a financial instrument between cash payments of that interest.

Applying 1t6’s lemma [40] to the fully collateralized product

OH OH 9282 92H
dH; = <8t+(r_Q)SaS+ (o ; 852> (t, St he) dt
+ USSta;tI(t, St he) AW . (3.10)
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The differential change in the short term CDS and bond are respectively given by:

dCDS(t,t + dt) = h(t)dt — (1 — R)dJ], (3.11)
dB(t,t +dt) = f(t)B(t,t +dt)dt, (3.12)

where f(t) represents the EONIA rate, i.e. the weighted average of overnight euro
interbank offer rates (EURIBOR) for inter-bank loans.
Applying It6’s lemma for jump—diffusion, the change of the long term CDS is

_(CDSt,T) , » o wOCDS(t,T)
dCDS(t,T)—( o W= M) —
h\2 92
(02) g CgigtaT)) dtﬂ,h% AWl + ACDS(t, T)dJ!,  (3.13)

where ACDS represents the variation of the CDS price at default.
Next, replacing (3.9)—(3.13) into equation ({3.8]), the latter can be written as:

a1 23 on 5 952 2 o

2V vV Z?AV ~
h S S h I
—i—paaSasah) dt +o SanW hdwt—l-AVth

3
:a(t)((a—H—f‘( 9528 | ( (o°)" )t+ SS thS)
t)

ot oS 2 852
{(8CDS (t,T)

ov ov ov $)262 92V M2 5217
< (= )82+ (b — Moty 2 () )

—<a(t)H(t) +(H)CDS(L, T)> )dt + +(

ICDS(T) | (o )282CDS(
o )

+ (p" = M"a™)

1 OCDS(t,T)

o dW! + ACDS(t,T) dJ}

v,

mf(t)B(t, t4dt)dt. (3.14)

+e(t) (h(t)dt (- R)djg) +

In order to obtain a risk—free portfolio, we remove the risky terms in (3.14]) with
the following choices of coefficients:

9V /as _ AV/on _ACDS(t,T) AV
o) =3m7s "= aepseryan W W TR iR

(3.15)
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Moreover, as in [4] we consider the Black—Scholes equations modelling H(t) and

CDS(¢t,T):

OH (09252 02H OH
OCDS(,T)  (o")? a2CDS(t,T) .. 9CDS(t,T)
ot 5 g W= M) —
- (t,T) — cCDS(, T) = 0. (3.17)

Next, by using - the hedging equation (3.14) is simplified to:

OV (65)2820%V  (o")2 92V s p
wt T et e T Y asan

0H
_ H—(r—SZE ) — acH
o' (c (r—gq)S (95) ac

+7 (—%ACDS@ T)— (p" — M"o")

aCDS(t,T)
oh

in [0,7) x (0,00) x (0,00) where «, 7 and ¢ are given by (3.15)).
Thus, the derivative price is modelled by the following final value PDE problem:

) +eh+ fV  (3.18)

~ ~

A
%‘; + LspV + —VRh fV =0, in [0,7) x (0,00) x (0,00),

V(T, S,h) =G(9),

(3.19)

where G(S) represents the option payoff and the differential operator Ly is given by

- _ (03)252 82V (gh)2 62 82V
LoV =5+ 5 gz TP 553
)% W OV
+ (r — )S%nt(u — M"o") — e (3.20)

In order to write Zgh in terms of the spread h, we use the relationship between

the drift of the spread (u"* — M"c") and the investor’s intensity of default :
= Mo = —kX. (3.21)

Thus, using the relationship (3.3)) between h; and ); in (3.21]), we get

K

h h __h
— M -
. “ 1-R
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Therefore, the differential operator (3.20)) turns into:

(C5PS2PV (M2OPV | g L VOV b oV
2 o5zt o o TP gt r—a)s

LanV = 98 "1—Ron"

(3.22)

According to expression (3.5) and the possible choices for the mark—to—market value
at default, different kinds of PDEs arise: the risk—free derivative value leads to a linear
PDE, while the risky one gives rise to a nonlinear PDE. Therefore, two alternative
problems are posed:

~

o If M =V, anonlinear PDE model for the risky derivative value is obtained:

N LV — fV=hV* — in0,T) x (0,00) x (0,00),
ot (3.23)

~

V(T,S,h) = G(S).

o [f M =V, we obtain a problem governed by a linear PDE:

o
oV . h . h
-  — — +
o+ LV (1_R+f)v e AL

in [0,7) x (0,00) x (0,00),  (3:24)

\V(T,8,h) = G(S).

Next, in order to pose the PDEs modelling the XVA, the risky derivative value
is split up into V=V+U , where V' is the value of the risk—free derivative and U
represents the XVA. Thus V satisfies:

oV |
o L5V = V=0, in [0,77) x (0,00), (3.25)
V(T,S)=G(S),

where the classical linear Black—Scholes operator Lg is given by

(0%)s20° oV

ESV = 5 w

Therefore, the XVA price U satisfies either a linear, either a nonlinear problem

depending on the choice of the mark—to—market:
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o If M = \7, we obtain the nonlinear problem:

O Lol — fU = h(V +U)*, i [0,T) x (0,00) x (0,00).

ot (3.26)
U(T, S, h) =0.

o If M =V we obtain the linear problem:

CoU h o
E—FﬁShU—(m-i-f)U—hV ,

in [0,7) x (0,00) x (0, 00), (3.27)

\U(T,8.h) =0.

As our goal is to solve numerically problems and by a finite element
method, we first proceed to localize the problems on a bounded domain. For this
purpose, let us consider 2 = (0,5,) X (0, hy) for large enough values of S, and
heo, so that the choice of these values does not affect the solution in the domain of
financial interest. In the bounded domain we need to impose appropriate boundary
conditions to be satisfied by U. For this purpose, we first consider the conditions

satisfied by the risky value V and the riskfree value V at S = 0 and S = S+, that is

V(t, S, h) = V(t, Sx0) = Vio(2),

~ (3.28)
V(t,0,h) =V(t,0) = V,(t),
where the values of V() and Vp(t) are respectively given by
Se — K, for a call option,
Vao(t) = (3.29)
0, for a put option,
0, for a call option,
Vo(t) = (3.30)

K exp(—f(T —1t)), for a put option.

Moreover, the boundary h = 0 corresponds to zero spread, which is equivalent to a

null intensity of default. Therefore, when h = 0 the derivative has no counterparty risk
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and behaves like the risk—free derivative, so that we impose the reasonable condition
V(t,S,0)=V(t,5).
In order to impose the boundary condition on U at h = h., we introduce the

matrix
1 [ (0%)28%  podohsS

A= (3.31)

poSahS (o)

and we assume that U satisfies the Neumann condition (AVU - 77) = 0 for h = h,
where 77 represents the unit outer normal vector on 0f).

Next, we introduce the new time variable 7 = T — t to write problem (|3.26)

forward in time. We also rewrite the boundary conditions, previously formulated for

17, in terms of U. Thus, the problem reads:

.
Z—Z—EShUJrfU:—h(VJrU)*, (S,h) €, 1€ (0,T]
U(T,Sx,h) =0,
U(r,0,h) =0,
(3.32)
U(r,S,0) =0,
(AVUﬁ)(Ta Sa hoo) = 07
\U(O,S,h):O.

For the linear equation in , we consider the same boundary conditions.

In Section 3.4 (Numerical methods) we consider a bounded computational domain
and, using the properties of the differential operator, we show that prescribing a
boundary condition at the boundary S = 0 is neither necessary for the analytical nor

the numerical solution.

3.3 Mathematical analysis

As we have done in Chapter (1| for the model depending on one stochastic factor, in

this section we study the existence and uniqueness of solution of problem (3.32). The
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mathematical analysis for the linear problem can be studied as a particular
case of the previous one. The work presented by Henry [30] is also followed to prove
the existence and uniqueness of solution for bi-dimensional problems.

For the mathematical analysis of the model , we transform the associated
PDE into an equivalent one governed by a sectorial operator. Thus, we introduce in

(3.32) the following change of variables:

S

z=In (?) . u(r,z,h) =U(r, S, h) .

Note that © € (—00, % ). Therefore, we introduce a new truncation by considering

the bounded domain Q = (g, Z) X (0, hso) and the following problem is posed:

%—l—Au:H(T,u), in (0,7] x Q
(T, Too, h) =0,
u(T, g, h) =0,
(7 20, ) (3.33)
u(r,x,0) =0,

(AVu - 7)(7, 2, hoo) = 0,

u(0,z,h) =0,
\
where Au = —div (A\VU), with the constant matrix A given by:

P L (05?2 poSah
2 podch (o

The matrix A is positive definite if and only if |p| < 1. Moreover, H is given by:

H(t,0)(x,h) = —h(V (1, Ke*) + @(z,h)" — cop(z,h) — c1 g—i(x, h)
—ca(h) %(w, h), Vr e [0,T], p € H%(Q), (3.34)
with
co = f 1= ﬂ (r—2q) ca(h) = "
' 2 ’ 1-R



In the definition of H we use the notation I' = {(z,h) € 8Q/h # ho} and the
space HE(Q) = {v € H'(Q)/v = 0 on I'} with the norm:

HUHHI(Q /§|Wy2 dx dh, (3.35)

which is equivalent to the usual norm in H*(Q) (see [1], for example).

In Section we have introduced the definition of sectorial operator (Definition
1.3.1). Recall that for a sectorial operator B one can introduce a scale of fractional
power spaces X = Range(B~%), such that X = X° and X! = Dom(B), equipped
with the norm ||y|| = ||B“y||, where B* for o > 0 is a fractional power of B.

Moreover, Theorem [1.3.2] introduced in Chapter [I] stablishes the hypotheses re-
quired to prove the existence of a unique solution of non linear problem . In
order to apply Theorem , we will consider X = L2(Q), X* = HL(Q) with
a=1/2;andU = (0,T) x H%(ﬁ) We will prove that operator A in is a secto-
rial operator and that function H satisfies the conditions assumed for f in Theorem

1.3.2] For the first purpose, we first recall a lemma by Henry.

Lemma 3.3.1 (Section 1.3, Henry [30]). If B is a bounded below, self-adjoint densely

defined closed operator in a Hilbert space X, then B is sectorial.

Proposition 3.3.2. The operator A in is a self-adjoint closed operator bounded

from below. Therefore, A is sectorial.

Proof: In order to prove that A is self-adjoint, for all ¢, x € H%((AZ) we compute
(Ap,x) = /A(Acp, X) dxdh = — /A div(AVy)y dz dh
Q Q
= /Aﬁw - Vydzdh — /A(va n)ydy = /A AV - Vxdzdh
O o9 Q
where the last equality holds thanks to the boundary conditions. Moreover, we have
(@, Ax) = /(90, Ax) dx dh = / o div(AVY) dz dh
Q

/Vg@ AVdedh / gpAVX n)dy = /Vgp AVdedh
o0
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The matrix A is symmetric, hence we prove that (Ap,x) = (p, Ax). Therefore, A is

a self-adjoint operator in H} ().

Next, we prove that the operator A is bounded from below.

(p, Ap) = — /A o div(AVy) dx dh = — [ div(AV) e dz dh
Q Q

—/Ango'Vgpdxdh—/Ago(A\Vgp)dy—/Azzl\Vw-Vgoda:dh
Q o0 Q

_ /(A‘w,w) dz dh > )\mm/ Vol dz dh = Apin |12,
Q Q r
where we have used that A is a positive definite matrix and A, = min(c(A)) > 0 is

the minimum of the eigenvalues of A.

Thus, from the previous lemma we have shown that A is a sectorial operator. []

Proposition 3.3.3. The function H : U — X given by is well defined, locally

Lipschitz continuous in 7 and locally Lipschitzian in .

~

Proof:  First note that function ¢y belongs to L>*(2). Moreover, function V is
given by the classical Black—Scholes formula for European call or put options, so
that = — V(r, K e®) € L2(Q). Therefore, (V(r,-) + @)t € L*(Q) for any function
¢ € HL(Q), thus implying H(7,¢) € L*(Q) so that H(r,.) : L*(Q) — L2(Q) is well
defined.

Next, we prove that H is locally Lipschitzian in ¢, i.e.

IH (7, 01) = H(T,02) |12 < Lit llor — @2l - for all g1, 2 € Hp(Q).

For this purpose, let us estimate the difference

0 0 0 0
H(rp) = Hreo)| < el |50 = 22+ lea®)] |52 = 2|+ laol 1 = 2]
FIRL V) 400" = (Vi) +¢2) |
Op1  Opy g1 Oy
< _r-_re _r-_re
< ol Ox Ox lea(h)] Oh Oh

+ |co + R| o1 — 2l
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where we have used the fact that |x{ — x3 | < [x1 — xz, with x; = V(7,-)+ ;. Then,
by integration we get

8801 0ps 2
|H(r, 1) — H(r,00)” dwdh < |e,* | |52 - 22
Q

dx dh
ox v

— D1 8902 _ / 2
2 2
dx dh — dx dh
_I_CQ /ﬁ ah ah T +CO §|901 (p2| x
and, in terms of the norm,
[H(7, 1) = H(T, 02) |l 12 ) < La o1 — @2l (3.36)

with Ly = max{|c1|, ¢, Co ¢}, where the new constants are ¢ = max{|cy(h)| /h €
[0, hool}, €0 = max{|co + h| /h € [0, hoo]} and Cy > 0 is the constant associated to the
Poincaré—Friedrichs inequality.

Next, we prove that H is locally Lipchitz continuous in 7. Thus, for 7y, 7 € [0, 7T

we compute

[H(r,0) = H(ra, o)l < R [(V(m,) +0)" = (V(n) + )]
< oo [VI(7150) = VT2,

where we have used the inequality |x{ — x3| < [x1 — xzl, with x; = V(7,-) + ¢.

Therefore, in terms of norms we have

VH(r1,9) = H(ra )lagy < W V(7 ) = Vi WPy - (337)

Next, using that V € C*((0,T), X), and V is Lipschitz continuous in 7, we obtain
that H(7,u) is a Lipschitz function in 7. O
We introduce a corollary similar to Corollary to prove the existence of a

unique local solution of problem (3.33)).

Corollary 3.3.4. For any initial conditionug € HL(Q) there exists Ty = Ty(0, ug) > 0
such that the initial value problem has a unique solution in (0,Tp).

The previous corollary follows from Theorem and provides the existence and

uniqueness of a local solution, as Ty = Tp(0,up) is a local time. Finally, in order to
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extend it to any interval (0,7) for a given 7' > 0, as we did in Section [1.3|for the one
dimensional model, we need to apply Corollary 3.3.5 in [30].

Proposition 3.3.5. The following inequality holds:
1, )l 2@y < K@ L+ Il ) » for all (7,0) € (0,00) x HEQ),

where K is continuous in (0,00). Therefore, there exists a unique solution of problem
defined on the entire time interval (0,T].

Proof: First, we note that the Lipschitz continuity properties also hold for 7 € (0, c0)
and prove the stated inequality. Thus, for any (7,¢) € (0,00) x HA(Q) we have

IN

I1H(7,0) = H(7,0)|| 20 + [1H (T, 0)[| 125
< Lulle- 0||H1£(§) +[[H(r, O)HL?(Q)

< (Lu+1HEO @) (Il +1)

| H (7, 90)||L2(§)

where Ly is the Lipschitz constant for H, so that we can take
K(7) = Lu + [H(7,0)[l 2 »

which is continuous in 7 in the interval (0, 00).

Next, we can apply Corollary 3.3.5 in [30]. Thus, we consider u(7p, -) as the unique
solution of at time 79 = Ty /2 obtained from Corollary , so that from the
Corollary 3.3.5 in [30] the unique solution of through (79, u(7o,)) exists for all
T > 79. Therefore, we obtain existence and uniqueness of solution of in (0,77.
O

3.4 Numerical methods

In this section we describe the numerical techniques we propose to solve the nonlinear
problem (3.32)). The corresponding linear problem can be considered as a particular

case and is solved by similar methods.

131



The numerical approximation is mainly based on finite elements for spatial dis-
cretization. As usually in European options, we choose the maximum for the asset
price coordinate, S, equal to four times the strike price. Concerning the spread
coordinate we consider the interval [0, hy, With he = 0.2 = 20% as a large enough
value to not affect the numerical solution in the region of financial interest.

In order to solve it with a finite element method, we rewrite the PDE in in
a divergence form. Thus, we use matrix A from and the vector

((0%)? = (r—q) S
b= S h , (3.38)

so that the PDE in (3.32) becomes:

g_U — dV(AVT) 4 b- VU + fU = —h(V + U)*,  (S,h) € Q. (3.39)

T

3.4.1 Time discretization and the method of characteristics

For the time discretization we use a semi-Lagrangian method, also known as the
method of characteristics, first used in finance in [50]. As in the one factor model [4],

we introduce the material derivative of U, i.e.

DU 8U oU 85 oU Oh
Dr Ot (95 87' Oh Ot

for given functions S = S(7) and h = h(7). Thus, in our problem the material

derivative term is given by:

DU  0U S\2 ou pooh K oUu
D7_87+<(")_<7’_q>)535+< >t 8") o (3.40)
and equation becomes:
%  div(AVU) + fU = —h(V + U)* . (3.41)
-

Taking into account the advective term in (3.40]), we introduce Ny > 0, a constant
time step A7 = T/Nrp > 0, the time instants 7" = nA7 (n = 0,1,..., Ny) and the
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ODE problems associated to the computation of the characteristic curves:

dx1 ( 9\ 2 ) dx2 poah K
i~ ) =), & 2 T 1-Rr™ (3.42)
xi(r"h) = 8, Xo(T"h) = h,

the solution of which, x(7) = x((S,h),7""!;7) represents the characteristic curve
associated to the vector field b passing through the point (S, k) at time instant 77+
This characteristic curve, given by a two components expression, is a generalization

of the characteristic curve introduced in Section in particular:

x1(7) = Sexp (—((O'S) —r+q)(r" — )

Xa(7) = —% + (h + %) exp (%_{(r”“ — 7)) :

Next, using the method of characteristics we approximate the material derivative in
(3.41)) and pose the semi-discrete problem:

pyntl _pgn n
X div(AVU™) 4+ fUm = —p(V+L 4 gntly+
N (3.43)

UO(S,h) =0,

where X" = x(7") = x((S,h), 7" 7") and U"(:) ~ U(7",-). A piecewise bilinear
interpolation method will be applied to evaluate U™ o x™ in (3.43) at the nodes of the

finite element mesh.

Remark 3.4.1. When applying the method of characteristics, the displaced points
on the characteristic line can be outside the domain. In that case, we consider the
intersection of the characteristic curve x((S,h), 7", 7™) with the boundary of the

domain and interpolate the function on that new point.

3.4.2 Fixed point scheme

Due to the nonlinearity of the problem ([3.43)), a fixed point scheme is proposed in each
iteration of the method of characteristics. As a result, the global scheme, sketched in

Algorithm [3.1] is implemented.
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Algorithm 3.1
Let Ny > 1, n =0, e > 0 and U° given
Forn=0,1,2,..., Ny —1

1. Let U™ =U" k=0,e=¢c+1
2. For k=0,1,...,
e Search U"1F+1 golution of:
(14 ATf) U AT div(AVU ™) = Urox™— A7 b (VLU ER) T

||Un+l,k+l o Un-i—l,k”

e Compute the relative error: e = [

until e < ¢

3.4.3 Boundary conditions

In Section we have considered appropriate boundary conditions in order to prove
the existence and uniqueness of a solution of . We will now adapt them for the
numerical solution of the equivalent problem . First, we introduce the notation
xo =T, 1 =S and x5 = h, and the domain Q* = (0,2°) x (0,27°) x (0, 23°) , where
250 =T, 27° = Sy and z5° = ho. The boundary of Q* is

2

o =y ury),

i=0

where we use the notation
{(ZL‘(),ZL’l, 1’2) € 0N /ZL’Z = 0}, (344)
= {(xp,x1,22) € 0N [/ x; = x°}. (3.45)

Then, the PDE in problem ({3.32)) can be written in the form:

2
ov
Zb”& 8 ]Zoja—mj-irco‘/:go
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where the involved data are defined as follows:

0 0 0
0 (03)2 ) pUSJh
B(x()axl?xQ) = (b’L]) = T ! 2 = ’ 00(370,.7/'1,1‘2) - _f7
S _h hy2
0 PO (")
2 2
—1
p(xo, 21, 22) = (pj) = (r —q)an ) go(wo, 21, 22) = (V +U) "y
X2
—K
1-R

Following [41], that includes the theory of Fichera [25], we introduce the following

subsets of I in terms of the normal vector to the boundary pointing inwards 2%,

—

m = (mg, mq, ma):

2
Zoz{xeaﬁ*/ZbUmim]—:O}, 21289*—20,
i,j=0
2 2 b
22—{x620/2<pi—za$w>mi<0} :
i=0 j=0 "7

In our particular case, we have

SO=Tp ulytuly, St=Tpfuly - ulyt and S2=T7".

Thus, the boundary conditions must be imposed over the subset ' U ¥? [41], which
matches with the set Ty~ UTTT UTy " UTy™ .

After studying the boundaries which need a boundary condition to be imposed in
order to solve the problem, we proceed to their effective deduction. Let us remark that
the condition imposed on the boundary Iy~ corresponds with the initial condition.
On the boundary I';'", corresponding with the nodes (S, k), a similar reasoning to
the one in Section is applied. We divide equation by S? and pass to the
limit, so that the following condition is obtained [23] [19]:

lim — =0. (3.46)



Analogously to [19], we search a solution of the form
U(r,S,h) = H(7)S + Hy(T)h* + Hs(7)Sh + Hy(T)h + Hs(7), (3.47)

where Hy(7), Ha(T), H3(7), Hy(T) and H5(7) are independent of S and h.

92
More precisely, assuming S?— — 0 when S — oo in (3.32), we have:

052
oU 1, ,,0U g, 0 ou  h ooU . N
87_—2(0) 57 0aSahaS—(r—q)S&g—l—kal_Rah+fU— RV +U)T.

This equation can be equivalently written as:

g—U — div(AVU) +5- VU + U = —h(U + V)", (3.48)
=

where the matrix A and vector b are defined as follows:

S _h
0 P77 s —(r—q)8
A= : b= 3.49
pgsahS (oh)?2 pooh LA (3.49)
2 2 2 1-R
By using the method of characteristics in (3.48)), we pose:
Un-‘rl —U"o Xn o~ 1 1 4
A —div(AVU"™) + fU"™ = —-h(U+ V)™, (3.50)
-
where x™ = x((S, h), 7"1;7") is obtained from the solution of the problems:
dxi dxa2 poah K
i~ - ax &~ 2 1-R™ (3.51)
xi(r") =8, Xa(T"H) = h,

and its components are given by

X7 = Sexp((r—q)AT),

. (1=R)d%"p (1= R)oSchp —K
Xy = 5 + | h+ 5 exp 1_RAT .
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Now, replacing the solution (3.47)) in each fixed point step of the discretized equa-
tion in (3.50)), we obtain the following equation:

(14 ATf)HPTFS 4 (1 4+ Arf)HYy T p?
~ At <(0h)2H;z+17k+1 n pasth;m,th)

3poSol

+ (1+ A7f) Hy P S5h — Ar SHy ™ (14 Arf) Hy T

S h
_ ATPUQJ HZJrl,kJrl + (14 ATf) H;H,kﬂ

— —ATh(Vn+1 + Un+1,k)+ +U"o Xn )

n+lk+1l _ ppntlk+l  pntlk+l  ppntl k4l
H; = H, = Hj =H,

If we choose = 0, the following nonho-

mogeneous Dirichlet boundary condition is deduced:

_ATh(VnJrl + Un+1,k)+ + U™ o Xn
1+ A7f '

UL (S R = HQH’HI _ (3.52)

Note that this Dirichlet condition on F’{’Jr tends to the boundary condition proposed
in for S = Sy when A7 tends to zero.

Next, we analyze the boundary conditions on I'y" and Iy . First, note that on
I';” we have h = 0, which means that the probability of default is zero. Thus, the
value with counterparty risk is equal to the risk—ree value and then U(r,S,0) = 0.

Thus, we will impose
U™(S,0) =0, forn=0,1,..., k=0,1,... .

Following (3.32)), for h = hy, we impose (AVU™F - 7i) = 0.

3.4.4 Finite element method

As we have already mentioned, we use the finite element method for spatial discretiza-
tion. For this purpose, a triangular mesh of €2 and the associated finite element space
of piecewise linear Lagrange polynomials are considered. First, at each time step
n=20,1,2,..., Ny — 1 and each fixed point iteration £ = 0,1,..., by using Green’s

formula the following variational formulation is posed:
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Find U4 e {p e H'(Q)/o =00on Ty, ¢ = HI ™" on T'F}, such that:

/ (1+ATHU 1 pdS dh + At / AVU" 70 dS dh
Q Q

= /(U" ox")pdS dh — AT/ (VM UMY Yo dSdh, Vo € HNQ),
Q Q
where H}(Q) = {p € HY(Q) /o =0 on TP ULy }.

Next, for fixed natural numbers Ng > 0 and N, > 0, we consider a uniform
mesh of the computational domain €2, the nodes of which are (.5;, h;), with S; = iAS
(t=0,...,Ng+1)and h; = jAh (j =0,..., N, +1), where AS = S /(Ng+ 1) and
Ah = hoo/(Np, + 1) denote the constant mesh steps in each coordinate. Associated
to this uniform mesh, a piecewise linear Lagrange finite element discretization is

considered. More precisely, we introduce the finite element spaces

Wh = {QO}L € C<ﬁ)/80h’T] € ,Pl, VE € T},
Whj* = {gph € Wh/(ph =0 on FT’JF U F;’i},

in order to find U; LA W, satisfying the boundary conditions and such that:

/ (1+ ATHU 0, dS dh + AT / AVUT Y, dS dh
Q Q

_ / (U o X", dS dh — AT / V™ 4 UMY dSdh, Yo € Wi, .
Q Q

Quadrature formula based on the midpoints of the edges of the triangles has been
used to obtain the coefficients of the matrix and the right hand side vector which
define the linear system associated to the discretized problem. Moreover, the system

has been solved by a partial pivoting LU factorization method [20].

The risk—free derivative value V' is analytically given by the Black—Scholes formula
for European options with a dividend yield [52]. We proceed as in Chapter (1] to
transform the problem ([3.25)) in a model for an option which pays dividends.
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3.4.5 Monte Carlo method

As we have made for the one dimensional model in Chapter we also compute
the XVA value in terms of expectations. With this purpose, the multi—-dimensional
Feynman—Kac theorem is applied on the nonlinear and linear PDEs.
We will assume that the evolution of the asset price and the evolution of the spread
under the risk neutral measure are described by the following stochastic differential

equations:

dS, = (r(t) — q(t)) Sy dt + o%(t) S, dW; % |
dhy = (u"(t) — M"(t)o"(t)) dt + o"(t) thhQ ,

where dW%% and dW"® denote two correlated Wiener processes under measure @,
such that pdt = dWS2dW™?. The parameters which take part in the SDEs have
been described in Section B.2]

Next, applying Feynman—Kac theorem, the following expressions on the XVA at

time instant ¢ are deduced:

o If M=V,
T u
Ut S, h) =2 | — / e S (V o, S(w) h(w)
t
+
+ U(u, S(u), h(u))) du| S, =S, h = h] .
o If M=V,
T wl n +
U(t,S, h) =E? —/ e i (ﬁJff)dTh(V(u, S(u),h(u))) du | Sy = S, hy :h] :
t

Then, the XVA value at the current time is given by the following expressions:
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° IfMZ‘/},

(0,8, h) =9 | — /0 Lol 4 (V (u, S(u) h(u)
+U(u, S(u), h(u))>+du | So = S, ho = h]
_ES| - /0 : PV (u, S() h(w)
+U(u, S(u), h(u))>+du | So = S, ho = h] .
o If M=V,

T
U(0,S,h) = ES _]/ eﬁ(fafﬂﬁh(V@hS@oJuu»>+du150::1h0:i1
0

:E§—/%@%Wm@@ﬁ@ﬁwﬁum&:&m:4.

The expressions in the previous integrals are discretized on a time mesh and approxi-
mated by numerical formulae. For this purpose, we consider Ny > 0 and a set of fixed
instant times ¢t =0 < t; < ... <tn, =T, being T' the maturity time. Thus, denoting
S; = S(t;) and h; = h(t;) and using Euler-Maruyama scheme, the simulated asset

price S(t;) and the simulated spread h(t;) are derived as follows:
Sj = Sj_l (1 + (T — q)At) + USSj_lAVVJS
hj =hj1+ (n— Ma")At + " AW}

for j = 1,..., Ny, where At is the size of the time interval and AW} (i = S,h) are
independent Brownian increments which follow a normal distribution A/(0,v/At). In
order to build correlated Brownian processes, the Cholesky factorization is applied.
Moreover, to reduce the discretization error the number of time steps Ny must be
large enough.

As in Chapter [T} a fixed point iteration is implemented to compute the XVA when
M=V.
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3.5 Numerical results

In this section we present some examples to illustrate the performance of the models
and the numerical methods in order to reproduce the expected behaviour of the risk—
free value V', the risky value YA/, and the associated total value adjustment U, for
different European options.

In all the tests we have used the same financial data, which are given in Table 3.1}

Table 3.1: Financial data for numerical tests

¥ =0.3 o =10.2 p=0.2 K =15 T=0.5
r=20.3 q=0.24 R=0.3 k= 0.01 f=0.04

The XVA represents the amount that has to be discounted from the risk—free
derivative value due to the investor probability of default. We have developed the
model from the point of view of the investor, thus we expect the XVA to be negative,
as we can observe in the following examples. Moreover, we have considered both
values for the mark—to—market, M = Vand M = V', so that a nonlinear problem and
a linear one are formulated and numerically solved.

In practice, due to the great difference in S and h ranges of values, we have scaled
the equations and solved the problem in the computational dimensionless domain

Q = [0,1] x [0, 1], with step sizes AS and Al in the respective directions.

3.5.1 Test 1: Convergence

Table [3.2 shows the order of convergence of the proposed algorithm when the XVA
of a call option is computed. Following [23], we use the convergence ratio C'R

Unja = Unjal|

CR = | ,
[0 =Tl

from which we compute the experimental order of convergence p = log,(C'R). In Table

3.2 we can see how the computed values of p tend to one, which is the expected order
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of convergence taking into account that we use the piecewise linear finite elements

and a first order time discretization.

Table 3.2: Empirical illustration of the order of convergence (p) for Test

AS=Ah Ar CR P
273 1/10

24 1/20

277 1/40  2.02925134 1.02094757
276 1/80  2.01447211 1.01040183
27

28

29

1/160 2.00729238 1.00525078
1/320 2.00367719 1.00265010
1/640 2.00185420 1.00133690

3.5.2 Test 2: European call options

In this example, we study a European call option sold by the investor. Figure |3.1
shows the total value adjustment (XVA) for the European call option at ¢ = 0. In
this and all forthcoming examples we consider Ng = N, = 200 and A7 = 0.001.

We can observe that the XVA becomes more negative when the underlying asset
price increases, that is, when the option is “in the money”. In this framework, the
buyer will be more interested in exercising the option and will be more exposed to
seller’s default. Moreover, when the spread is higher, the total value adjustment

increases in absolute terms.
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Figure 3.1: XVA for a European call option (Test )

3.5.3 Test 3: European put options

In this example we assume that the investor sells a Furopean put option. In Figure
(left) the total value adjustment associated to this option is represented. In this
case, the XVA is more negative when the asset price approaches to zero, that is when
the put option is “in the money”. Moreover, the XVA increases with the probability
of default of the investor.

Next, the option value with counterparty risk is also shown in Figure (right).
Note that the difference between functions represented in both figures provides the

price of the European option without counterparty risk.

3.5.4 Test 4: The linear problem (M = V)

In this test, we show the total value adjustment when the mark—to-market is chosen
to be equal to the risk—free derivative. In Figure [3.3] we show the XVA associated to
European call and put options, respectively. Thus, if these values are compared with

the computed XVA when mark—to—market is equal to risky derivative (see Figures
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Figure 3.2: XVA (left) and price (right) of a European put option (Test (3)

and , we can conclude that there is not a significative difference between the

choices of the mark—to-market close out.

0- 0~
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0.6 0.05 06~ 0.05
25 25
20 20
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5 o 01 spread 5 0.1 spread
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Figure 3.3: XVA for European call (left) and put (right) options (Test EI)

3.5.5 Test 5: Monte Carlo simulation

Finally, with this test we show the value obtained using the equation given in expec-

tation terms. With this purpose, Monte Carlo techniques explained in Section [3.4.5
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have been used with Ny = 1000 time steps and Np = 1000 paths of asset price and

spread. Moreover a 99% confidence interval has been built.

Table 3.3: Total value adjustment for an European put option with M = V. The
parameter values of the problem are: K =15, T = 0.5, 0 = 0.3, 0" = 0.2, p = 0.2,
r=20.3,¢=024, k=0.01, R=0.3, f =0.04.

Finite Confidence

S h Elements interval

0.0 0.00 -0.00000000 (-0.04871611 , 0.05091447)
27.0 7 -0.00000000  (-0.00007702 , 0.00029186)

3.0 -0.24748739  (-0.30204694 , -0.22295254)

9.0 0.05 -0.01164486  (-0.13335754 , -0.09750527)
15.0 -0.01994645  (-0.02350389 , -0.01447736)
24.0 -0.00001699 (-0.00023914 , 0.00017289)

9.0 -0.22398023  (-0.26166560 , -0.22317681)
12.0 -0.11223931 (-0.12786952 , -0.10594350)
15.0 0.10 -0.04017497 (-0.04563772 , -0.03546747)
18.0 -0.01065965  (-0.01236094 , -0.00746687)
27.0 -0.00007311  (-0.00010830 , -0.00002189)
18.0 -0.01575309  (-0.02016913 , -0.01561121)
21.0 0.15 -0.00346883 (-0.00491944 , -0.00318176)
24.0 -0.00066395  (-0.00083117 , -0.00048701)
21.0 -0.00441313  (-0.00612804 , -0.00433967)
27.0 0.20 -0.00015780 (-0.00045110 , -0.00004559)
30.0 -0.00002719  (-0.00045110 , -0.00004559)

We can observe that the numerical solution of the PDE model belongs, in all cases,
to the confidence interval associated with the Monte Carlo simulation technique. The
elapsed time to compute the XVA by the finite element method with Ng = N, = 200
and Ny = 500 is 38314 seconds. On the other hand, the Monte Carlo resolution takes
21.9014 seconds for a only initial price. It is easy to deduce that the resolution of the

PDE is more efficient that the Monte Carlo simulation for a large number of nodes.

145



Table 3.4: Total value adjustment for an European put option with M = V. The
parameter values of the problem are: K =15, T = 0.5, 0° = 0.3, 0" = 0.2, p = 0.2,
r=203,¢=0.24, k=0.01, R=0.3, f =0.04.

30.0 -0.00002680  (-0.00003033 , -0.00001152

Finite Confidence

S h Elements interval
0.0 0.00 -0.00000000 (-0.01264495 , 0.08785706)
27.0 -0.00000000  (-0.00009733 , 0.00035472)
3.0 -0.24483526  (-0.27005760 , -0.19318396)
9.0 0.05 -0.11509726  (-0.11970139 , -0.08462493)
15.0 -0.01973870  (-0.02108726 , -0.01220414)
24.0 -0.00019265  (-0.00022632 , 0.00022493)
9.0 -0.22124095 (-0.24111938 , -0.20488754)
12.0 -0.11087184  (-0.11799153 , -0.09700050)
15.0 0.10 -0.03968885 (-0.04207405 , -0.03236791)
18.0 -0.01053191  (-0.01110796 , -0.00659774)
27.0 -0.00007226  (-0.00010330 , -0.00001913)
18.0 -0.01553640 (-0.01867646 , -0.01460365)
21.0 0.15 -0.00342128 (-0.00456478 , -0.00296129)
24.0 -0.00065490  (-0.00077348 , -0.00045896)
21.0 -0.00434864 (-0.00565678 , -0.00406874)
27.0 0.20 -0.00015550 (-0.00040484 , -0.00004905)
(- )
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Chapter 4

Two stochastic factors model for

American options with XVA

4.1 Introduction

In this chapter, we extend the model introduced in Chapter 2/ to price the American
options considering counterparty risk and compute the associated total value adjust-
ment. In Chapter [2| a one dimensional model was deduced and analyzed to price the
derivative value. In a first step, funding value adjustment (FVA), debit value ad-
justment (DVA) and credit value adjustment (CVA) were considered, and the model
was later modified in order to include collateral value adjustment (CollVA). Moreover
the intensities of default from both counterparties —the hedger and the investor—
were considered constant. Thus, a model depending on one stochastic factor, the
underlying active, was presented.

Nevertheless, default intensities from counterparties do not always exhibit con-
stant behaviour. In particular, if both risky counterparties are considered to have
stochastic intensities of default, a three underlying stochastic factors model is ob-
tained [27].

In this chapter, as we have done in the previous one for European options, we

consider that only the investor is defaultable and presents an stochastic intensity
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of default. Similar hypotheses as in the European options model introduced in the
previous chapter are assumed (see page [L16]). Thus, we can analogously deduce the
two-dimensional PDE models for the derivative value V from the point of view of the

investor.

We follow an approach based on complementarity problem formulation by means
of suitable hedging arguments and the use of Ito’s lemma for jump—diffusion pro-
cesses, which extends the classical Black—Scholes inequality for American options.
After imposing the hedging strategy, different kinds (linear or nonlinear, depending
on the assumption of the mark-to—market value at default) of complementarity prob-
lems arise: a mark—to—market value equal to the riskless derivative leads to a linear
complementarity problem involving the value of the riskless derivative, while a mark—
to—market value equal to the risky derivative leads to a nonlinear complementarity

problem.

In order to state the existence and uniqueness of the solution for the nonlinear
complementarity problem we follow the methodology introduced by Jeong—Park [34],
based in previous works by Brézis [10, [11]. Fichera [26] and Stampacchia [48], [49] [36]
have also done important contributions to the analysis of variational inequalities and

complementarity problems.

In addition, we propose a set of numerical methods to solve the complementarity
problems for both choices of the mark—to—market value. For this purpose, we truncate
the unbounded domain and pose suitable boundary conditions at the boundaries of
the resulting bounded domain, following some ideas in [19]. After this truncation, we
propose a time discretization based on the method of characteristics combined with
a finite element discretization in the asset and spread variables. For the nonlinear
complementarity problem, a fixed point iteration algorithm is proposed. Finally, the
Augmented Lagrangian Active Set (ALAS) algorithm is used to solve the discretized

complementarity problems.

The plan of the chapter is the following. In Section [4.2] we pose the complemen-
tarity problems deduced from the hedging arguments. In Section we present the
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mathematical analysis of the previous problems. Section 4.4 presents the numerical
methods and Section [4.5] shows some illustrative numerical results. In order to vali-
date these results, some tests have also been solved by the Monte Carlo techniques

described in [2].

4.2 Mathematical model

In this section, we obtain the models for American options considering counterparty
risk. The main difference with the one factor model introduced in Chapter [2] comes
from the consideration of stochastic intensities of default instead of constant ones.
Moreover, assumptions and techniques similar to those ones of Chapter [3|for European
options will be used, namely self-financing portfolio and non—arbitrage scenarios. For
these reason, we will not enter into the details and make reference to the previous
chapters.

As in Chapter [3| we assume an investor as a risky counterparty and consider that
the issuer’s intensity of default is null. Thus, the underlying asset price S, and the
short term CDS spread of the investor A are modelled by the system of stochastic
differential equations f.

Thus, we consider a derivative trade between a hedger and an investor, where
the latter has probability of default. The risky derivative value from the point of
view of the investor, at time ¢, is denoted by I//\'(t, Sy, hy, J1), and depends on the spot
value of the asset (S;), on the spread of the investor (h;) and on the investor’s default
state at time ¢ (J/). Remind that J/ = 1 in case of default before or at time ¢,
otherwise J! = 0. The risk-free American option value, corresponding to the same
contract between two free—bankruptcy counterparties, is denoted by \A/(t, S;) and does
not include any counterparty risk adjustment, whereas the risky derivative price ‘//\;
includes adjustments such as DVA, FCA and/or CollVA into valuation.

As we introduced in Chapter [3] the intensity of default of the investor can be
given in terms of the spread by . Moreover, the price of the derivative in case
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the investor goes bankrupt is given by , where M (t, Sy, hy) denotes the mark—
to-market value, Z+ = max(Z,0) and Z~ = min(Z,0). We also define AV as the
variation of the derivative value, ‘7, when the investor defaults and is given by .

The hedger will trade with different financial instruments to hedge the market
risk, the spread risk and the investor’s default risk, described in page [119, Thus, in
order to derive the value of American options with counterparty risk, we consider the
same self-financing portfolio built for European options in , I1;, which is designed
to hedge all underlying risk factors:

I, = a(t)H(t) + B(t) + y(t)CDS(¢, T) + e(t)CDS(¢,t + dt) + Q(t)B(t, t + dt) . (4.1)

Furthermore, as we did in Chapter [2| for one stochastic factor American options, in

order to avoid arbitrage opportunities we introduce the following hedging inequality:
dV; < dIl,. (42)

Next, by applying It6’s Lemma for jump diffusion processes, we obtain the variation

dV, of the derivative value 17} introduced in 1D Thus, replacing the change of the
portfolio and the change of the derivative in (4.2)), the hedging equation is transformed

into:
oV OV OV L, 00V 1, 0%
(at T OSigg U= Mo g+ 5 Sige 50 G
PV oV
+pUSUhStasah> (t, St, ht>dt + O'SSt%<t, St, ht)thS
haf/ h > I
+ 0o %(t, St7 ht>th + AV(t, St, ht)djt
< «(t)dH(t) + dp(t) + v(t)dCDS(¢t, T)
+ &(t)dCDS(t,t + dt) + LdB(t,t +dt) . (4.3)

B(t,t + dt)

In the previous inequality, we have taken into account the self-financing condition of
the replication strategy (3.7)).
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Next, we proceed as in Chapter 3} we introduce the variation of the other financial
instruments that take part in the portfolio, we apply Ito’s lemma for jump—diffusion
and we remove the risky contributions with the choice of coefficients . Finally,
we consider the Black-Scholes equations (3.16])—(3.17) modelling H(¢) and CDS(¢, T'),
so that the hedging inequality becomes:

v 1 L2V 7 82V
or T30 ) et (J>8h2 po°0"S 5o
oV /05 OH\ V)0
< " oH ~
= 9H/0S ( (r=a)s 85) orjas )
oV/oh [ h W OCDS(,T)
8CDS(t,T)/6h< [ RACPSET) = (W' = Mo?) =

( ov/oh  ACDS(,T) AV 4)

oCDS(tT)/oh  1—-R 1—R>h+fv’

in [0,7") x (0,00) x (0,00). Then, the American option value when considering coun-

terparty risk is modelled by the following complementarity problem:

(. OV L~ AV .
=— — h—fV <
L(V) T + LspV + 7 _Rh fV <o
V(t,S,h) > G(S) (4.5)

LV -G) =
V(T,S,n) = G(S),

\

where G(S) represents the option payoff and the differential operator ESh is

~ 0?V 1 0?V 02V
LV = 282 4 —(oM)?—= Sohs
sn 2( R e
oV oV
—q)S— — M"o") —. 4.6
PSS+ (W - M) O (1.6
Thus, considering the relationship between h; and A; given in ({3.3]), we get
h_ aghh R
w'— M"o T Rh,
and, as a consequence, the differential operator (4.6) turns into:
o’V 1 02V 0?V oV k OV
LspV = 2627 4+ —(6M)2— + po®ohS —q)S— — —.
Sh 2( S s T e onos 0% T TR " o
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According to expression (3.5)) and the possible choices of the mark—to—market

value at default, two alternative complementarity problems are obtained:

o If M = ‘7, we deduce the nonlinear complementarity problem:

Ly(V) = %_Z VLl — U —hDF <0,
in [0,7) x (0,00) x (0, 00)

~

V(t,S,h) > G(S) (4.7)
Li(V)(V - G)=0

~

V(1.5 1) = G(S).

o If M =V, the following linear complementarity problem is derived:

p

£a) = G+ LoV = (2 47) 7

4u—Rw+—m1nga in [0,7) x (0,00) x (0, 0)
V(t,5,h) > G(S) (4.8)
Lo(VYV =G)=0
\Wﬂ&MzG@y

Moreover, the calculus of the XVA value, U = V- V', requires the previous
computing of the counterparty risk—free American option value. Thus, the following
linear complementarity problem which models the derivative value V' has to be solved:

L3(V) = aa—‘t/—i—/JSV—fVSO, in [0,7) x (0,00)

V(t,S) = G(9)
L(V)(V = G) =0
\V(T,5)=G(9),

(4.9)

where the operator Lg is given by

S\2 2
(") SQa—V—F(T—q)Sa—V.

LsV =55 55 53
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Remark 4.2.1. We will solve the previous problems considering G(S) as a general
function. However, notice that in the particular case of the American options, where

G(S) is a positive function, V= ‘7, and the nonlinear term disappears in .

In order to numerically solve problems and by a finite element method,
we proceed to localize the problems on a bounded domain. For this purpose, let us
consider © = (0, Sw) X (0, hoo) for large enough values of S,, and h., so that their
choice does not affect the solution in the domain of financial interest. As in Chapter
B, we need to impose appropiate boundary conditions on the risky derivative value
problem in the bounded domain. For this purpose, we consider the same boundary
conditions than for V and V as in the case of European options in Chapter . Then,
at S =0 and S = S, the derivative value is given by:

~

V(t,So0, h) = V (1, S00) = Vao(t), (4.10)

~

V(t,0,h) = V(t,0) = V(t),

where the values of Vo (t) and Vj(¢) are given by and ([3.30), respectively. When
h = 0, the derivative has no counterparty risk, which is equivalent to a null intensity
of default A. Thus, an appropiate condition is to consider ‘7(75, S,0) = V(t,S). In
order to impose the boundary condition at h = h.,, we introduce the matrix (3.31)
and assume a nonhomogeneous Neumann boundary condition on the risky derivative
value, (AV‘A/ 1) = (AVV -7) for h = hy, where 7i denotes the unitary normal vector

to 0f2 pointing outwards €.

In the next section, the existence and uniqueness of the solution of problem (4.7
are studied. For this purpose, we introduce the problem which models the XVA in
order to obtain a problem with homogeneous boundary conditions. Then, we split
up the risky derivative value, ‘7, as the sum of the XVA, U, plus the total value
adjustment, V', i.e. V=V+U. Introducing this breakdown in , the following
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nonlinear complementarity problem is deduced:

( oU ov
Li(U) = o + LspU — fU—-hU+ V)T < ~ o LsV + fV,

te0,T), (S,h)eQ
U(t, S, h) > G(S) — V(t,5)
{,ct(U) - ( - %—‘; — LV + fv)] [U—(G(S)=V(t,8)] =0
DT 5, ) — (4.11)
U(t,0,h) =
Ul(t, Soo, h) = 0
Ul(t,S,0) =

| (AVU - 7i)(7, S, hoo) = 0.

For the linear problem (4.8)), we consider the same boundary conditions.

Remark 4.2.2. In Section 4 (Numerical methods) we consider a bounded compu-
tational domain and, using the properties of the differential operator, we show that
prescribing a boundary condition at the boundary S = 0 is neither necessary for the

analytical nor the numerical solution.

4.3 Mathematical analysis of the nonlinear prob-

lem

In this section, we prove the existence and uniqueness of solution for problem (4.11]
for a given function V. Then, taking into account the existence and uniqueness of
the solution V' for the classical problem (4.9) (see [53], for example), we can state
the existence and uniqueness of solution for (4.7). The mathematical analysis of the
linear complementarity problem is much simpler.

Note that problem includes a final condition, so it is a final-boundary

value problem. Moreover, matrix A defined in (3.31) contains variable coefficients
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and degenerates at some boundaries. So, in order to write problem (4.11) in an
equivalent initial-boundary value problem with a constant matrix, we introduce the
time to maturity variable, 7 =T — ¢, as well as the new variables and unknown:

x:ln%, u(r,x,h) =U(t, S, h), v(r,z) =V(t,9).

Note that x € (—00,2), With 2o = In(S./K). Therefore, in order to get
a bounded domain, we introduce a new truncation to consider the domain Q =

(%0, Too) X (0, heo) and pose the nonlinear complementarity problem in (0,7') x {:

\

ou

L (u) = 9 +Au—DB(r,u) >, (z,h)€Q, T€(0,T]
u >
[Lr(u) = €] fu—y] =
u(0, 5, h) =
(4.12)
u(7, z9,h) =0
w(T, Too, h) =0
u(r,z,0) =
{(AVu - 7i)(r, 7, hos) = 0,
where
Au = —div (AVu) (4.13)
and matrix A is given by
(05)2  poSoh
2:% : (4.14)
poSat (o2

which is positive definite if and only if |p| < 1.
Associated to formulation (4.12) we introduce I' = {(z, h) € Q/h # hs} and the
Hilbert space

W=H.\Q) ={zc H(Q)/z=00nT},

155



which is equipped with the norm:

[ /f2 V2| dx dh .

Moreover, we denote by W* the dual space of W.
The operator ® : [0,T] x HL(Q) — L2(Q), involved in (4.12), is given by:

) )
O(7, ) (x, h) = co p(x, h)+e1 a—i(az, h)+ca(h) a—‘]f(x, h)+h(v(r, z)+¢(z, b)), (4.15)
for all 7 € [0,7] and ¢ € Hll(f\l), where:
S\2
KR
w=—-f, a=-TLir-g, am=-7n

Finally, functions ¢ and ¢ involved in (4.12) do not depend on h and are given by

(1, x) = G(Ke*) —v(r,x),

Ura) = =g (ra) + 50V g (r) + (7= a = 50°7) Gotra) = folra).

(4.16)

4.3.1 Variational formulation

In this section, we first use subdifferential calculus tools to formulate the nonlinear
complementarity problem (4.12)) in the framework of semilinear parabolic variational
inequalities. In this way we can apply the results in [34] to obtain the existence and
uniqueness of solution of problem (4.12)).
For this purpose, first following [34] we introduce the functional space
Y = L*(0,T; W) N C([0,T]; L*(Q)) N W (0, T; W*)
and the operator H : Y — L?(0,T; W*), defined for each 7 € (0,7] as
ou
H(“)(T’ ) - _E(Tv ) - AU<T7 ) + @(77 U(Ta )) + K(T’ ) : (417)

Therefore, problem (4.12)) can be equivalently written as:
Find u € Y such that

H(u) <0, u>v, Hu)(u—1)=0, (4.18)
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jointly with the initial condition and the homogeneous boundary condition on A = h.
As the function ¢ depends on 7 (i.e. the obstacle function is time dependent in

this obstacle problem), then we introduce for each 7 € [0, T the closed convex set
K(r)={2eW/z>¢(r,")inQ}.

Associated to each convex set, we introduce the indicatrix function ¢ : W — (—o0, 00|

of the convex set K(7) as

0, if z € K(1),
+00, if z¢ K(7),

which is a lower semicontinuous, proper convex function. The subdifferential of ¢ is

a maximal monotone multivalued operator denoted by d¢, which is defined by:
w e dp(u) <=  éu) < P(z)+ (w,u—=z2), VzeW,

where (-, -) denotes the duality pairing between W* and W.
In the next proposition, we reformulate the nonlinear complementarity problem (|4.18)

in terms of the subdifferential d¢(u).

Proposition 4.3.1. For u(r,-) € K(7) and 7 a.e. in (0,T), the following conditions

are equivalent

Proof:
1. Let us assume that v € K(7) satisfies (P,) .

e Let be e € HY(Q) such that e =0 on ' and € > 0 in ©, so that z = u+¢ €
K(7). As H(u) € 0¢(u) we have

¢(u) = o(2) < (H(u),u = 2) = (H(u), —¢).
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Moreover, as u, z € K(7) then ¢(u) = ¢(z) = 0, so that

(H(u),€) <0

for any € > 0. Therefore, H(u) < 0 and the first condition in (P;) is
satisfied.

o Asu(r,-) € K(r) then u > 1.
e Next, for a given 7 € (0,T) we consider the set
O (r) = {(x.h) € Q/ ulr,x.h) > ¥(r,2)}
which is an open set in . Next, we take w € HE(Q) N L*(Q) such that
w # 0 and ||w||H%(§) =1.
For r > 0, we consider the functions
u(r,z,h), if (2,h) ¢ Q¥ (7)
u(r,x, h) £ rw(x, h), if (z,h) € QT (7).

vy (@, h) =

Let (o, ho) € Q7 (7), so that u(r, 2o, ho) > ¥(7, z9) and
vE (0, ho) = u(T, 20, ho) & 7wW(20, ho) -

Then, vE(zg, ho) > (7, 2o) for 7 sufficiently small.

Finally, using the definition of subdifferential operator and that v and

u(T,-) belong to K(7), we get
(H(u), rw)(zo, ho) > 0.

Since w # 0 and r > 0, we get H(u) = 0 in Q* (7). Therefore, the third

condition in (P;) is proved.
2. Assuming that condition (P;) is satisfied, then we need to prove that
(H(u),u—z) — d(u) + ¢(z) >0, Vze HAQ).
We distinguish two cases:
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o If 2 ¢ K(7) then ¢(z) = 400 and ¢(u) = 0. Moreover, we have

[t - z>dﬁ] < M) sy 16 — 2l -

Then, the left hand side is finite and

(H(u),u—2) = (H(u),u —¢) + (H(u), ¢ - 2),

so that
(H(u),u—z) — p(u) + ¢p(2) = +00 > 0.

o If 2 € K(7) then ¢(z) = ¢(u) = 0, so that

where the last inequality follows from H(u) < 0 and ¢ — z < 0.
Therefore, we have proved that (P,) holds. O
From Proposition [4.3.1] we obtain that problem (4.18]) is equivalent to finding u €

K(7) a.e. 7 € (0,71, such that

Ou

5, AU+ 00(u) > O(u) +¢ (4.19)

jointly with the initial condition and the homogeneous Neumann boundary condition
at h = heo.

4.3.2 Existence and uniqueness of solution

In the previous section, the nonlinear complementarity problem (4.12)) has been equiv-
alently formulated in the form (4.19)), which fits to the framework of [34] to obtain the
existence and uniqueness of solution for semilinear parabolic variational inequalities.

More precisely, we will apply the following theorem.
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Theorem 4.3.2 (Jeong—Park [34]). Let A be a continuous operator satisfying the

Garding’s inequality and f(t,x(t)) be a Lipschitz continuous function in x(t). Assume

that k € L*(0,T;V*) and xo € D(¢). Then, the problem

dx(t)
S+ Aa(t) + 90(2() 3 f(tx(t) £ k), 0<t<T (4.20)
2(0) = o,

has a unique solution x € L*(0,T;V)NC([0,T]; H) and there exists a constant Cy
depending on T such that

ummms0(1+mﬂH+MmmmwQ-

Furthermore, if k € L*(0,T; H) then the solution x belongs to W42(0,T; H) and
satisfies

|ummmmﬂsc(r+wwH+mmmmm)-

In order to apply Theorem {.3.2) we will consider H = L*(Q), V = HA:(Q2), and

the functions f = ®, k = ¢ and prove the following proposition.
Theorem 4.3.3. The following statements are satisfied:
1. The continuous operator A defined in (4.13|) satisfies Garding’s inequality, i.e.:
(Az,2) Z @ l|2ll @) — w2 ll2ll7a@) V2 € HNQ), (4.21)
with w; > 0 and wy € R.
2. 0 € L*(0,T; L*(Q)) C L*0,T; W*).
3. Let D(¢) = {z € Hﬁ(ﬁ) /P(2) < oo} and ug = u(0,z,h). Then, ug € D(o).
4. ®(1,) is Lipschitz continuous on variable @, i.e.
[B(7, 1) = (7, 02)l 12 @) < L o1 — @2llmg) -
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Therefore, the nonlinear variational inequality has a unique solution u €

-~ -~ ~

L*(0,T; HE () NC([0,T]; L*(Q)); in particular u € W20, T; L*(Q)) and satisfies

[ullyroomie@) < Cr (1 + [luoll 2 @) + W”Lz(o,T;HIl,(Q))) : (4.22)
Proof:

1. From the definition of A in (4.13]), the operator is linear. Moreover, we have

(Au,v) = [ (—div (AVu))vdQ = [ AVu Vo dQ)

Q Q

< M|Vl 2y VOl 2@ = M llull gy 10lm @)

for M > 0. Therefore, A is continuous. In order to prove Garding’s inequality,
we consider that

(Au, u) = [ (—div (AVu))udd) = /

Q Q

n 3 2
AVuNVudQ > Apin ||u||H%(§) :
where Apin > 0 is the minimum of the eigenvalues of A. Thus by taking w; =

Amin and wy = 0, we obtain (4.21)).

2. From the definition of ¢ in (4.16]):

(7.0 = =g (ra) 50V g (r) + (r =g 50°7) Goira) = folra)

where v is the solution of the following complementarity problem

(<0, v>G, ((v—G)=0,

with G(z) = G(Ke®).
If we consider a put option G(z) = K (1 — e®)T. As in the region v > G we get

¢ =0, we just consider the region v = (G, so that

U, x) = —%(US)QK«EI— (7" —q- %(05)2) Ke*—fK+fKe* = (qg—r+f)Ke*—fK .

Therefore, in this region we have
(U, ) < lg—r+ f]Ke™ + fK,
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so that ¢ is bounded. In particular, we have

|€|i2(O,T;L2(§ = / / |€ T, T | dQ dT < 0.
Analogously, we can proceed in the case of call options. Then, we have proved
that ¢ € L2(0,T; L2(€2)). Moreover, since L%(Q) C W*, then ¢ € L2(0,T; W*).

3. It is easy to check that u(0,z,h) = ug(z, h) =0 > (7, z), thus ug € D(¢).

4. The operator (7, ) : [0,T] x H:(Q) — L%(Q) has been defined in (4.15). We

can deduce that
‘(I)(T, 901)(‘Ta h) - @(7’, 902)('I7 h)‘

= |h(o(r.2) + o1, b)) — h(v(r,2) + ol b))

0 0
+ oo h) = copalw, ) + e St h) — e (o, )
I Dpa
b)) - ) 52w 1)
0
<Jea 1 = al + | |52 00 = S22 )

+la)] |22

0 0
St (o) - 52w
Then, by integration in Q, we get:
[ 10 o0 b) = B @ W dodh
Q

<l hl* [ lor(e) = galar ) d

2
+erf? /‘a% aff(:c,h) dz dh
+ | /’a% 8522(95 h)| drdh.

In terms of the norm, we get:

[2(7, 1) — O(7, (702>HL2(§) < Li||[Ver — V902HL2(§) + o ller — <P2HL2(§)
< Laller = e2ll
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where ¢g = max{|co+ h|: h € [0, hs]}, &2 = max{ca(h): h €[0,hx]}, L1 =
max {|c1|,é}, Lg = max {Cyéy, L1} and Cy > 0 is the constant associated to
Poincaré—Friedrichs inequality. Then, ® is Lipschitz continuous in the second

variable .

Thus, thanks to Theorem the nonlinear differential problem (4.19)) has a unique
solution u € WY2(0,T; L%(Q)) that satisfies the estimation (4.22). O

Corollary 4.3.4. There exists a unique solution u € Y of problem .

Proof. Tt follows from Proposition 4.3.1. O

4.4 Numerical methods

In this section we describe the different numerical techniques proposed to compute the
derivative value considering counterparty risk. The risk—free derivative value modelled
by is computed by the techniques introduced in Chapter [2| for one dimensional
problems. We will describe the numerical methods for approximating the solution of
the nonlinear problem , the linear case being solved by similar methods.

The numerical approximation is mainly based on finite elements combined with
the method of characteristics. As usually in vanilla options, we consider the maximum
value for the asset price S, as four times the strike price. Similarly, we consider the
interval [0, hoo| for the admissible spread values, where h, is eight times the reference
value for the spread.

In order to compute the risky derivative value using a finite element method, we

rewrite the complementarity problem (4.7) forward in time and in divergence form:

£1(V):E—div(AVV)va-VV—i—fV—i—hV*ZO in (0,7] x

(

~

V(r,S,h) > G(S)
51(‘7)(‘7 -G)=0

~

V(0,S,h) = G(9),

(4.23)
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where matrix A and vector b are defined in (3.31]) and (j3.38]) respectively.

4.4.1 Method of characteristics

As we did for European options in Chapter 3] for the time discretization a semi—
Lagrangian method —also known as the method of characteristics— is applied [50].

We consider a time discretization 7 (n = 0,1,..., Np), with Ar" = 7ol —
not necessarily constant. Taking into account the advective term, the problem (4.23))

is approximated by

(

‘/}n—l—l _ ‘771 o Xn
ATm

Loyt = — div(AVV™ )

F VP 4 (VY >0,
VO(S,h) =0, (4.24)
V(S h) > G(S),

LYV - G) =0,

\
forn=0,1,2..., Np—1, where V"(-) = V(r",-) and x" = x(7") = x((S, h), 7" 77)
represents the characteristic curve passing through point (S, h) at time 77!, Then
function y is the solution of the final value ODE problem (3.42)). The components of

x" can thus be deduced and are given by:
Xt = Sexp (—((0%) —r + ) (7" — 1))

n __ (1 — R)Usahp (1 — R)Usahp —k n+1 n
X2 = S (R o (T =T )

A piecewise bilinear interpolation method is applied to evaluate Vo x" in |D at

the nodes of the finite element mesh.

4.4.2 Fixed point scheme

Due to the nonlinearity of problem (4.24)), a fixed point scheme is proposed at each
iteration of the characteristics method. Thus, the global scheme is shown in Algorithm

T
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Algorithm 4.1

Let Ng > 1,n=0,¢ >0 and V° given
Forn=1,2,..., Ny — 1:

L Let VM0 = Un k=0, e=c+1
2. For k=0,1,...
e Secarch V" 1A+1 solution of:
(1 + ATnf) ‘7n+1,k+1 A diV(AV‘//\'n—&—l,k—&—l)
> Vmo " — Ar" b (VLR (4.25)
f}n+1,k+1<s7 h) > G(S)
Evlm(‘/}n—o—l,k—&-l)(‘/}n—o—l,k—&-l B G) —0

||‘7n+1,k+1 N ‘7n+1,k”

e Compute the relative error e = =
[Vt k|

until e < e.

4.4.3 Boundary conditions

In Section [£.2] we have introduced some appropriate boundary conditions for problem
in order to prove the existence of a solution of . Next, we adapt such
conditions for the numerical analysis. With this aim, we follow the same reasoning
made in [41] in a similar way than in Chapter |3| to obtain the boundary conditions
needed to compute the derivative value considering counterparty risk.

First, we introduce the notation zo = 7, 1 = S and x3 = h, and the domain
O = (0,25°) x (0,29°) x (0,23°), where x® = T, 23° = Sy and z3° = hy. The

boundary of I'* is 9Q* = |J7_,(I'*~ |JT'**) where we have used the notation

77 = {(zo, 21, 22) € 00" Jz; = 0}
Uy = {(z0, 21, 22) € 00 Ja; = 37} (4.26)
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Then, the partial differential inequality in problem (4.23) can be written in the

form:
2

9%V oV
Zbda axj—l—]z::p]a +COV<gO

1,J=0

where the involved data are defined as follows:

0 0 0
S\2 S h
0 (0°) 22 po°o "
B('I‘U)'Tl)xQ) = (b’bj) = 2 2 ) C[)(l'o,xl,l‘g) - _f’
0 pdsvhx (")
2 ! 2
—1
] (r - g -
pl@o, 21, 22) = (p;) = ) go(wo, 21, w2) = Vw2
K
— i
1—R

Following [41], in terms of the normal vector to the boundary pointing inwards

QF, m = (mp, my, my) we introduce the following subsets of I'*:

2
0 = {x €T/ bimm; = 0} , =T -3,

1,5=0

2 2
Y2 = 0 — Y . .
{xe /ZZ:;(bZ ;a%)mz<0}

In our particular case, we have

0 *,— *, 4 *,— *,+ *,— *,4 2 *,—

As a consequence, the boundary conditions must be imposed over the subset X! J X2
[41], which matches with the set I'y ™ (JTT Uy~ Uy ™.

After studying the boundaries which need a boundary condition to be imposed
in order to solve the problem, we proceed to obtain them. Note that the condition
imposed on the boundary T'y~ corresponds with the initial condition which is given

by the problem.
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On boundary I'}"", corresponding with the nodes (S, k), we proceed in a similar
way to Chapter [2| following a result obtained in Section for European options. In
fact, we compute the boundary condition for the associated European option problem.
We recall the procedure applied in Section [3.4.3] We divide the equation associated
to by 52, so that the following condition is obtained:

A
o agr =0 20
where ‘75 denotes the associated value to the European option.

Reasoning in a similar way to [19], we look for a solution of the form
Ve(r,S,h) = H\(7)S + Ha(7)h* + Hy(7)Sh + Hy(r)h + H(7), (4.28)

where Hy(7), Ha(T), H3(7), Hy(T) and H5(7) are independent of S and h.
0*Ve
05?

More precisely, assuming S2 — 0 when S — oo in the European option

equation, we have

Ve 1, ,,00Ve o, 0Ve Vs
e - _ g —(r —a)S2E
or 27 ) g P70 g T 953
— = — . 4.2
In terms of the divergence operator, equation (4.29) is written as:
Ve e~ o ~ ~
a— — div (AVVg) +b-VVe+ fVe = -V h (4.30)
-

where the matrix A and vector b are given by |D Discretizing the material
derivative in (4.30]) on the characteristic curve, we pose:
‘76714-1 o ‘7571 o Xn
ATn
where the characteristic curve ™ = x((.9, h), 7", 7) is the solution of the final value

problems (3.51)) and its components at time 7" are given by:

— div (AVVPY) + fUR = — (VY (4.31)

X1 = Sexp((r—q)At"),
VS h _ p\.Sh _
X5 = _(1=FRotarp + (h—|— U= RoTolp p) exp< i AT”) .

2K 2K
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Now, replacing the solution (4.28)) in each fixed point step of the discretized equa-
tion in (4.31)), we obtain the following equation:

(1+A7"f) H S+ (14 Arm f) Hy V0
_ A" ((O_h)2H;1+1,k+1 I pasahHgH,th)

S +h
(14 A p) HIF R gl - A 2PT T

SH;HJCH
1,k+1 PUSUh 1,k+1
—f-(l—f—ATnf) H;H— ’ h—ATnTH;iH— G
+ (L AT ) HPP T = DA (VR R £ VR o XM (4.32)

If we choose, similarly to the European options case,

1,k+1 1,k+1 1,k+1 1,k+1
H{H‘,'ﬁ' :H;H—,-f— :H’gn-i-,-‘r :HZH-,-F :0’

the derivative value Vg satisfies the following equation:

VI (S, ) = HTHR
—AT”(V;+1’k)+h + V& ox"

L+ A f (4.33)

Note that for American options we have an obstacle problem. Taking into account the
complementarity restriction, the following nonhomogeneous Dirichlet boundary condition

is imposed:
VAL (S, ) = max (V2T (S0, 1), G(S))

—AT”h(V”+1’k)+ +V"o x"

Let us remark that this Dirichlet condition on I’*{’Jr tends to the continuous boundary
condition proposed in for S = S, when A7" tends to zero.

Finally, we analyze the boundary conditions on F;’Jr and I'y”. We make the same
reasoning used in the mathematical analysis to impose continuous boundary conditions.

First, note that on I'y’~ the spread value is null, i.e. h = 0, which means that the probability
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of default from the investor is null. Thus, the derivative value considering counterparty risk

is equal to the risk—free value and then 17(7', S,0) =V (r,S). Thus, we impose
V(S 0) =V™E(S),  forn=0,1,...,Np, k=0,1,....
On boundary F;’Jr, a non homogeneous Neumann boundary condition is considered:
(AVV) -t = (AVV) -7,

where matrix A is given by (3.31)).

4.4.4 Finite element method

For the spatial discretization of (4.25) a triangular mesh of Q and the associated finite
element space of piecewise linear Lagrange polynomials are considered. First, we introduce

the convex closed subset
K={peH(Q)/p=Vtbktlon Iy, o= YR on I'T and ¢ > G(S)}.

Thus, at each time step n = 0,1,2,..., Ny and each fixed point iteration £k = 0,1,..., the
following variational formulation is posed:

Find V7t+bk+1 € K such that:

/(1 + ATnf)‘/}n+1’k+1(§0 B f}n—&-l,k—i—l) dsS dh + AT”/ Av‘/}n—&-l,k—i-l V((p . ‘7n+1,k+1) dS dh
Q Q
— A" / L(AVVTEEEEL ) (o - TrELEE gy > / (V™ ox™)(p — V™ THEFL) dS dh
ry Q

_ A / (TN (o — DY a5 dh, Ve e K
Q

Next, for fixed natural numbers Ng > 0 and Np, > 0, we consider a uniform mesh of the
computational domain €2, the nodes of which are (S;, hj), with S; =4iAS (i =0,...,Ng+1)
and h; = jAh (j =0,...,Np+1), where AS = S /(Ns+1) and Ah = hoo /(Np+1) denote
the constant mesh steps in each coordinate. Associated to this uniform mesh, a piecewise
linear Lagrange finite element discretization is considered. More precisely, we introduce the

finite element spaces

Wy = {goh € C(Q)/@h‘j € Pr, VT]' S T},
Kn={eneW,/on= V on FI’+ UTy  and ¢, > G(S)},
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in order to find 17,? FLAFL KCp, satisfying the boundary conditions and such that:

/Q(l +A7nf)‘7hn+1,k+1 ((ph B "}hn—i-l,k+1) dS dh
+ A /Q AV Y (g, — VY a8 an

— AT" / AV ) (o — U0y
ry

2

2/ ("/\vhnoxn) (@h . "}}:LJrl,kJrl) deh—ATn/ h("}hrﬂrl,k)-i-(soh _‘7}:1+1,k+1) deh,
Q Q

for all ¢ € K. Quadrature formula based on the midpoints of the edges of the triangles
has been used to obtain the coefficients of the matrix and the right hand side vector which

define the linear system associated to the discretized problem.

After the time discretization with the method of characteristics and the spatial dis-

cretization with finite elements, the fully discretized problem can be written in the form:

Ah‘/}}:LJrl,kJrl > b2+1,k+1 ’
T 7 1,k+1
Pkt > g, (434)

(AU EREE LR (b gy =,

where V), denotes the discretized exercise value, G(S), which also coincides with the value

at maturity.

In order to solve problem (4.34)), the augmented Lagrangian active set (ALAS) algorithm
proposed by Kérkkéinen et al. [35] and applied in the one dimensional American options

problem is also employed. The details of the method can be found in Chapter [2| and in [4].

4.4.5 Monte Carlo method

In this section, as we have made for the one dimensional model in Chapter [2, we introduce
and compute the total value adjustment in terms of expectations. With this aim, we
combine the multi-dimensional Feynman—Kac theorem with the techniques introduced in

Section following Longstaff and Schwartz [38] and Glasserman [28§].
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As we have introduced in Section 4.2 we assume —under the risk neutral measure—

the following evolution of the asset price and of the spread:

dS, = (r(t) — q(t)) Sy dt + o°(t) S, dW 2 |
dhy = (u"(t) — M"(t)o" (1)) dt + o™ () AW |

where dW59 and dW"< denote two correlated Wiener processes under the measure @Q,
such that pdt = dWSQdW"Q. The parameters which take part in the SDEs have been
described in Section 4.2l

Following the notations for one dimensional American options, the expected values of

the risky derivatives are given by:
e If M=V,

Vg (s,h) = g(T,s,h), Sy =s, hny =h

~

‘/’i—l(sa h) = max {gi—l(sa h)aEti_l ‘/}’L(Su hz)

+ /ti efm”‘fl(f/(u,S(u),h(u))du|5i_1 = S,hi_l = h] }

ti—1

fori = Np, Ny —1,...,1 corresponding to the time instants ¢;. Moreover, g(T', S, h) =
G(S) represents the payoff, gi(S, h) = g(t;, S,h), my = f and f1(V) = —hV+.

o If M=V,

‘7NT(87 h) = g(T, S7h)7 SNT =S, hNT =h

~

‘/;,1(8, h) = Inax {gil(sa h)a B,

~

_+/“erWWﬁaq%suomuommsilz&hilzh]}

ti—1

h h
for i = Np, Ny —1,...,1, with ms <1—R+f> and fao(V) V h+V1_R.
As we have done for the European two dimensional model in Chapter [3, we have to use a

discrete approximation of the integral which appears in the expression of the risky derivative

value. For this purpose, we consider a set of fixed instant times t =0 <t; < ... <tn, =T
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with 7' the maturity time. Thus, denoting S(¢t) = S; and h(t) = h¢, and using Euler—
Maruyama scheme, the simulated asset price S(t;11) from S(t¢;) and the simulated spread

h(tj+1) from h(t;) are derived as follows:

S(tj+1) = S(t) 1+ (r — @)1 — 7)) + 0" Vb1 — 6 Z5 4

h(tjr1) = h(ty) + (n— Mo")(tj1 — t;) + 0" \/tj1 — 15 Z}}44

forj =1,..., Ny where Z{, ..., Z]{,P (for £ = S, h) are independent standard normal random
variables. This relies on the fact that W@ (t;,1) — W% (¢;) has a zero mean and standard
deviation /%11 — ?;. In order to build correlated Brownian processes, the Cholesky factor-
ization is applied. Moreover, the number of time steps N7 must be enough large in order

to reduce the discretization error.

4.5 Numerical examples

In this section we show the behaviour of the risk—free value V, risky value V and XVA
value U for American options. Thus, we study the evolution of these magnitudes depending
on the spot and the spread value. Following the work done for one dimensional models
and European two dimensional models in the previous chapters, we compare the numerical
solution obtained with the numerical techniques introduced in the previous section with the
results achieved by Monte Carlo method.

In all the following tests, the financial data are taken from Table For the first three
of them, which are solved by the Lagrange—Galerkin method, the spatial mesh is uniform
and consists of 160000 nodes (Ng = Nj = 400). On the opposite, we use a nonuniform time

discretization with nodes 7 = (n/Nr)T.

4.5.1 Test 1: American put options

In this first example, we study an American put option sold by the investor. The maturity
time is T" = 0.5 years and is discretized with Ny = 700 time steps. Figure shows the
American option value considering counterparty risk (left side) and the risk—free option
value (right side). The difference between them is the XVA and is represented in Figure

We can observe that it increases, in absolute terms, when the intensity of default from
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the investor (spread) increases. We notice how the XVA goes down when the option goes

to the “in—the-money” area and the value is null in the exercise region.

-
[$)]
-
[$)]

g10 810
a a
S 5
25 25
o 1 © 1
0 0
0 0.5 0 0.5
10 10
20 20
30 spread 30 spread
Stock price 0 P Stock price 0 P
(a) Risky derivative value (b) Risk—free derivative value

Figure 4.1: American put option value (Test [1)
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Figure 4.2: Total value adjustment (Test D

Next, Figure [£.3] shows the exercise region associated with the American option, con-
sidering counterparty risk (left) or risk—free situations (right). In the first case, the spread
value is 0.25. Note that the exercise region is slightly larger when the intensity of default

(spread) increases.
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Figure 4.3: Exercise regions (white) of Test
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4.5.2 Test 2: Long maturity time American put options

In this section, an American put option sold by the investor is also represented. Nevertheless
the maturity time is T = 2 years, and we take Ny = 1500 time steps. As expected,
comparing with Test |1} the XVA (Figure [4.4]) is more negative due to a longer exposure to

the risk. However, the behaviour of the total value adjustment is similar in both cases.

S
4]
[

Option price

1
-
/

0.5

40 30

20
Stock price

10 1 spread

Figure 4.4: Total value adjustment (Test D

Comparing the exercise regions (Figure [4.5) with the results obtained in Test (I, we
appreciate that for a long maturity time the exercise region is smaller. Nevertheless, we
obtain a similar behaviour in both cases, in the sense that the exercise region for a risky

option is larger than for a risk—free option.

4.5.3 Test 3: The linear problem (M = V)

We show the behaviour of the American option value when the mark—to—market value is the
risk—free derivative value. The maturity time is T = 0.5 years and Np = 700, similarly to
Test |1l We can observe a similar behaviour to the one found in the previous case. Moreover,
the value of the option (Figure and adjustment value (Figure are also similar, being
slightly more negative for M = V.
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4.5.4 Test 4: Monte Carlo simulation

Finally, with this test we show the total value adjustment obtained by Monte Carlo tech-
niques introduced in Section As we have made for one dimensional model in Section
ﬂ, we have computed two estimators (lower and upper) of the XVA. Moreover, we can ob-
serve that the XVA obtained by solving the nonlinear and linear complementarity problems
(Tables and respectively) are included in the 99% confidence interval.

In Chapter |2, we have solved the linear problem (for which the mark—to—market is M =
V') by two different algorithms, with an inner Monte Carlo algorithm or using interpolation
techniques. Both methods lead to similar results, although we have observed that the

elapsed CPU time is higher for the inner iteration algorithm. Therefore, in this chapter we

only compute the XVA when M = V by interpolation techniques.

Table 4.1: American option value with counterparty risk M = V. The parameter
values of the problem are: K = 15, T = 0.5, 0° = 0.3, 0" = 0.2, p = 0.2, r = 0.3,

¢ =024, k=001, R=03, f=0.04.

Finite Lower Upper Confidence

S h Elements estimator estimator interval

0.0 0.00 15.00000000 14.70298010 15.26299737 (14.70298010 , 15.28840736)
27.0 0.014580440  0.00137214  0.02527334 (-0.00022466 , 0.02730209)
3.0 12.00000000 11.99924144 12.14867741 (11.99700274 , 12.16485122)
9.0 0.05 5.999999999  5.99442104  6.33579807 (5.98367098 , 6.36138141)
15.0 1.308562527  1.00503811  1.42993109 (0.88792215 |, 1.46313845)
24.0 0.039359070  0.01276533  0.14500936 (0.00370968 , 0.15321851)
9.0 5.999999999  6.00132959  6.31694827 (5.99355616 , 6.34254985)
12.0 3.064549102  2.92497307  3.49060126 (2.78070521 , 3.52303705)
15.0 0.10 1.190349256  1.09738339  1.42209030 (0.97520402 , 1.45608435)
18.0 0.381342801  0.26845411  0.68720345 (0.20919729 , 0.71412533)
27.0 0.007162736  0.00244516  0.03743066 (-0.00000067 , 0.04178265)
18.0 0.330425270  0.26696364  0.63732297 (0.20669270 , 0.66098768)
21.0 0.15 0.085487636  0.07440162  0.43350934 (0.04256772 , 0.45153917)
24.0 0.020619582  0.01324925  0.25670856 (0.00186524 , 0.26792935)
21.0 0.071796388  0.06151416  0.45182906 (0.03261546 , 0.47117011)
27.0 0.20 0.003421215  0.00099960  0.11406895 (-0.00049202 , 0.11881908)
30.0 0.000742742  0.00009576  0.00089707 (-0.00014309 , 0.00258554)
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Table 4.2: American option value with counterparty risk M = V. The parameter
values of the problem are: K = 15, T = 0.5, 0° = 0.3, 0" = 0.2, p = 0.2, r = 0.3,
q=024, k=0.01, R=0.3, f =0.04.

Finite Lower Upper Confidence

S h elements estimator estimator interval

0.0 0.00 15.00000000 14.76015652 15.31754947 (14.60199696 , 15.37917273
27.0 0.014580440  0.00157526  0.03789128 (-0.00047226 , 0.04096308
3.0 12.00000000 11.92717148 14.30577857 (11.80632068 , 14.60534869
9.0 0.05 5.999999999  5.77587526  9.03605748 ( 5.60018068 , 9.24791036
15.0 1.310644569  1.07192257  3.11079144 (10.94555737 | 3.23919041
24.0 0.039554986  0.01108702  0.43742176 ( 0.00046278 | 0.45329951
9.0 5.999999999  5.63823578  8.49773982 (1 5.47119356 , 8.68419050
12.0 3.066098200  2.78677451  8.07659200 (12.61439440 , 8.32628955
15.0 0.10 1.194868136  1.12406653  2.77078546 (1 0.99821874 , 2.89558922
18.0 0.384468906  0.25563850  1.92442123 (10.19352922 | 2.00047634
27.0 0.007288464  0.00040263  0.02285157 (-0.00033044 , 0.02383561
18.0 0.335480535  0.26140404  1.70487679 (10.20130499 , 1.77073497
21.0 0.15 0.087669807  0.06821849  1.09391591 ( 0.03798815 , 1.13640329
24.0 0.021348419  0.00759706  0.52814862 ( 0.00026779 , 0.54853994
21.0 0.074863949  0.04667367  0.55078911 (1 0.02193558 , 0.57228007
27.0 0.20 0.003719381  0.00128050  0.01824716 (-0.00005382 , 0.02095550
30.0 0.000821669  0.00002521  0.00040568 (-0.00003973 , 0.00089052

The numerical solution of the complementarity problems have been computed with a

mesh of 201 x 201 nodes and 500 time steps and the elapsed time for such simulation is

55822 seconds. For Monte Carlo simulation, we have implemented Np = 1000 paths and

Nr = 1000 time instants in the nonlinear case, and only Np = 500 paths in the linear

case. In both problems, we have employed three bases. The Monte Carlo computing of the

risk-free option, previous to interpolation, needs 137160 seconds on a one-dimensional mesh

of 100 initial prices, which states the advantage of pricing this kind of options by solving

the complementarity problems.
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Conclusions

When a financial contract between two parts (the hedger and the investor) takes into account
the counterparty risk, different adjustments on the price of a derivative can be included
and the total value adjustment (XVA) must be identified. The goal of this work is the
contribution to the modelling, mathematical analysis and numerical solution of pricing

problems related to vanilla options including counterparty risk.

We have considered different behaviours for the intensity of default of each counterparty
of a contract. First, constant intensities of default have been assumed. Therefore, models
depending on one stochastic factor —the asset price— have been deduced. In a second step,
we have introduced an innovative aspect: the consideration that one of the parts —usually,
the investor— is defaultable. Then, a model depending on two stochastic factors— the
active price and the stochastic spread of the investor— is obtained. A further step could be
achieved by considering a stochastic spread for the hedger, thus leading to a problem with

three stochastic factors.

For a financial derivative without early exercise opportunity, as European vanilla options
or forward contracts, different linear and nonlinear PDEs arise, depending on the choice of
the mark—to—market close out. For a nonlinear partial differential equation, the existence
and uniqueness of solution are obtained through the theory of sectorial differential operators.
In order to solve such problem, we propose appropiate boundary conditions and numerical
schemes based on the method of characteristics, finite elements and fixed point iteration
techniques. The systems of linear equations at each step of the fixed point iteration are
solved by a LU factorization. In the case of linear PDEs, the mathematical analysis and

numerical simulation is achieved, as a particular case, by similar techniques.
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In order to compute the order of convergence of the numerical methods, we have per-
formed some one-dimensional tests for which an analytical expression of the XVA is known
[15]. For the bidimensional model the analytical solution is unknown, and the convergence
ratio is computed from the numerical solution obtained with different time and spatial dis-
cretizations [23]. As expected, a first order convergence is achieved in both cases. The
numerical examples also illustrate the good performance of these models and methods for
European vanilla options and forward contracts with and without collateral agreements, as
different expected financial behaviours are recovered. In addition, these results are in agree-

ment with the confidence intervals obtained by using Monte Carlo simulation techniques.

Furthermore, American options including counterparty risk are also modelled and ana-
lyzed. The possibility of an early exercise leads to models governed by linear and nonlinear
complementarity problems. Unlike the European options, for which the XVA is the solution
of the models we have proposed, for American options we obtain the total value adjustment

as the difference between the risky and the risk—free derivative values, i.e. XVA=V — V.

The existence and uniqueness of solution of the nonlinear complementarity problem is
studied through the theory of nonlinear functional differential problems. In order to com-
pute the risky derivative value, the Lagrange—Galerkin method proposed for the European
options is here combined with an augmented Lagrangian active set method to tackle the
additional inequality constraints involved in the formulation. Numerical examples are pre-
sented to ilustrate and discuss the behaviour of the models and the proposed numerical

methods.

Additionally, we express the option price in terms of expectations involving the optimal
stopping times. Moreover, when the mark—to—market is equal to the option price without
counterparty risk we propose two algorithms: a first one requiring two nested Monte Carlo
loops and a second one considering a suitable interpolation technique for the risk—free op-
tion price. When the mark—to—market value at default is equal to the risky option price,
a fixed point iteration is considered. The proposed techniques involve the computation of
lower and upper estimators to build up a confidence interval for the American option price.
These estimators are obtained by extending some previous results from [38] and [28]. This
methodology is written in detail for constant spreads, but has been extended to compute

the derivative value for stochastic intensities of default. Of course, it can be extended to
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other financial products with early exercise, such as callable bonds or Bermudan swaptions,

for example.

We have implemented all the developed algorithms, and integrated then in a compu-
tational tool based on MATLAB. Comparing the elapsed time consumed by the different
methods used to obtain the XVA, we appreciate that Monte Carlo methods require a larger
computational time than the finite element techniques, specially for solving the one di-
mensional models. Moreover, although both families of methods need very large times for
solving the two dimensional problems, the same behaviour is observed: the finite element
resolution on a fine mesh is much more efficient than the Monte Carlo method for a reduced
number of initial prices. The use of parallel computing techniques (like those ones related
to multi-CPUs or GPUs) would allow a high speed up of the involved algorithms. These
parallel computing tools result very efficient for the here considered Monte Carlo—based

techniques.

As a future work, following an idea previously introduced, we could implement parallel
computing techniques to improve the computational time for the American options solver.
Moreover, we can also address a model depending on three stochastic factors, issued from
considering stochastic spreads with two defaultable counterparties. Other types of financial
derivatives —exotic options, swaptions, ...— or new adjustments —such as capital value
adjustment, KVA, or marging value adjustment, MVA— can also be incorporated by the

methodologies developed in this thesis.
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Resumen extenso

En este trabajo se estudian modelos para la valoracién de algunos de los productos fi-
nancieros derivados mas usuales. En concreto, se aborda la valoraciéon de opciones europeas
y americanas, globalmente conocidas como opciones “vainilla”. La principal novedad de
este trabajo es la toma en consideracion del riesgo de contrapartida, es decir, la posibilidad
de quiebra de alguna de las partes que intervienen en el contrato.

La metodologia de cobertura introducida por Black y Scholes [§] y Merton [39] para las
opciones vainilla europeas no consideraba la posibilidad de que alguna de las partes del con-
trato pudiera caer en incumplimiento. Por otro lado, importantes instituciones financieras
han asociado el estallido de la crisis financiera de 2007 a una incorrecta gestién del riesgo,
ademas de a distintos fallos del sistema financiero. La complejidad de los nuevos derivados
financieros, ademas de la consideraciéon de una baja o nula probabilidad de quiebra, son dos
de los factores que derivaron en la crisis.

Con objeto de realizar una valoracién de los derivados financieros en un escenario mas
realista, diferentes ajustes —en funcién de las condiciones en que tiene lugar el contrato—

son propuestos sobre el derivado libre de riesgo de contrapartida:
e Ajustes debido al beneficio por liquidez (Funding Benefit Adjustment, FBA).

e Ajustes debido a los costes de financiacién de la entidad emisora (Funding Cost Ad-
justment, FCA). La diferencia de estos dos primeros, FBA y FCA, se denomina
Funding Value Adjustment (FVA).

e Ajustes para compensar el riesgo de quiebra de la contrapartida (Credit Value Ad-

justment, CVA).
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e Ajustes debido a la posibilidad de quiebra de la propia entidad emisora (Debit Value
Adjustment, DVA).

e Ajustes debido a la presencia de colateral como una forma de compensar la posibilidad

de quiebra de una de las partes (Collateral Value Adjustment, CollVA).

El conjunto de todos estos ajustes se conoce como Total Value Adjustment (XVA) y estd

dado por:
XVA = DVA — CVA + (FBA — FCA) + CollVA = DVA — CVA + FVA + CollVA..

Los objetivos de este trabajo pueden resumirse en:

e La deduccién de modelos para el cdlculo del XVA en opciones europeas y americanas,
con el fin de obtener una valoracién mas adecuada de acuerdo con las exigencias

actuales de los mercados financieros.
e El andlisis matematico de los modelos propuestos.

e La resolucién mediante un conjunto de técnicas numéricas adecuadas a las carac-

teristicas de los modelos.

En una revisiéon del estado del arte encontramos principalmente tres metodologias para
incluir costes de financiacién, riesgo de contrapartida y ajustes por la presencia de colateral
en la valoracion del derivado. Una primera aproximacién consiste en incluir los ajustes en
términos de esperanzas; un ejemplo donde se incluye el DVA puede verse en Brigo [12] y,
posteriormente, la inclusién del CollVA y costes de financiacién es abordado por Pallavicini
et al. [42]. La segunda aproximacion, introducida por Crépey [21} 22], desarrolla modelos
basados en ecuaciones diferenciales estocdsticas hacia atras. Mas recientemente, se propone
también la resolucién de ecuaciones diferenciales estocésticas en [9]. Finalmente, la tercera
aproximacién sigue los trabajos de Piterbarg [45] y Burgard y Kjaer [15], en los que se
utilizan argumentos de cobertura y el lema de It6 para deducir ecuaciones en derivadas
parciales (EDPs) cuya solucién nos proporciona el valor del derivado. Esta linea es también
seguida por Garcia [27] en un marco més general con spreads estocdsticos, obteniéndose

modelos dependientes de tres variables.
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El presente trabajo sigue la tercera de las lineas explicadas previamente. Planteamos
el valor de las opciones europeas como la solucién de un problema de Cauchy y el valor
de las opciones americanas como soluciéon de un problema de complementariedad, ambos
gobernados por ecuaciones en derivadas parciales.

Siguiendo [I5], en la primera parte de la tesis se estudia la valoracién de opciones euro-
peas y americanas. En ambos casos se considera un contrato entre dos partes, un vendedor
y un comprador, y se asume que ambas contrapartes tienen posibilidad de incumplimiento
de las condiciones firmadas en el contrato. Con el fin de obtener un valor del derivado
financiero que incluya los correspondientes ajustes debidos a los riesgos de contrapartida
se emplean estrategias adecuadas de cobertura para carteras autofinanciadas y se tienen
en cuenta las diferencias que presentan los dos tipos de opciones estudiadas en cuanto al
periodo de ejercicio.

Debido a la posibilidad de quiebra de cada una de las partes a lo largo de la vida del
contrato, es necesario, la aplicacién del lema de It para procesos de difusién con saltos [43].
En esta primera parte se consideran intensidades de quiebra constantes, lo que conduce, para
ambos tipos de opciones, a un modelo dependiente de un unico factor estocastico, el activo
subyacente. Ademas, se obtienen diferentes modelos en funcién de los ajustes incluidos: en
primer lugar se considera un contrato sin colateral (y, por tanto, solo se modelan el CVA,
DVA y FVA) para posteriormente estudiar la valoracién de opciones para contratos que
incluyen colateral (introduciendo el CollVA en el cdlculo del XVA).

Los modelos obtenidos para ambas opciones estan dados en términos del valor de mer-
cado del derivado. Siguiendo la bibliografia, es habitual considerar dos posibles valores de
mercado en el momento de quiebra: el valor libre de riesgo, que conduce a un modelo lineal,
y el valor con riesgo de contrapartida, que da lugar a un modelo no lineal. Segun el tipo de
opcion, se obtienen los siguientes problemas de EDPs, dados en términos de dicho valor de

mercado.

e Opciones europeas:

v N
E‘F.AV—(T—F)\B—F)@‘)V

= >\Bhe - ABQB(MMX) - )\CQC(Max) +SXXa (t75) € (OvT] X (0700)
V(T,S) = H(S).
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e Opciones americanas:

(o OV o -
Lx(V)= 9t + AV — (r+ A+ Ac)V — Aphe
+)\BQB(M7X) +)\CQC(M7X) —sxX <0, (ta S) € (O7T] X (0,00)

~

V(t,S) > H(S)
Lx(V)(V—H)=0

~

V(T,S)=H(S),

donde el operador A estd dado por:
2
Av = Lp2g20V rRsal :
2 052 oS
Dado que el comportamiento de la intensidad de quiebra de cada una de las partes que
intervienen en el contrato no es siempre constante, en una segunda parte de la tesis se
consideran comportamientos estocasticos, lo cual presenta un escenario mas acorde con la
situacion actual de los mercados financieros. Para este supuesto, seguimos el trabajo de
Garcia [27], donde la consideracién de intensidades de quiebra estocasticas conduce a un
modelo dependiente de tres factores: el activo subyacente y el spread de cada una de las
partes que intervienen en el contrato. Con el fin de reducir la dimensién del problema,
consideramos un contrato entre dos partes, el inversor y el asegurador, y suponemos que
la intensidad de quiebra es estocéstica pero solo una de las partes, en este caso el inversor,
puede quebrar. Se obtiene asi un modelo dependiente de dos factores estocasticos, el activo
subyacente y el spread del inversor.

Al igual que en el caso de intensidades de quiebra constantes, el estudio se realiza sobre
las opciones europeas y americanas. Nuevamente, aplicamos estrategias de cobertura en
funcién de los distintos momentos en los que la opcién puede ejercerse: solo a vencimiento
(en el caso de opciones europeas) o en cualquier instante hasta el vencimiento (en el caso de
opciones americanas). Se obtienen asi problemas de Cauchy para ecuaciones en derivadas
parciales que modelan el valor asociado a las opciones europeas y problemas de complemen-
tariedad para la valoracién de opciones americanas. Al igual que sucede con los modelos
unidimensionales, en funcién del valor que se asigne al valor de mercado se deducen pro-
blemas lineales y no lineales. De este modo, en funcién del tipo de opcién, se obtienen los

siguientes problemas en derivadas parciales:
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e Opciones europeas:

Vo o~ o AV o
o + LspV + mh - fV =0, en [0,7") x (0,00) x (0, 00),

~

V(T,8,h) = G(S).

e Opciones americanas:

~ ~

~ - o~ A ~
L) = %+£Shv+%h—fvgo, en [0,T) x (0,00) x (0, 50),

~

V(t,S,h) > G(S)
LVIV =G)=0

~

V(T,S,h) =G(S),

donde Lg, es un operador en derivadas parciales de segundo orden.

Recordemos que el objetivo del presente trabajo es obtener el valor de los ajustes, es decir
del XVA. En el caso de las opciones europeas, a partir del modelo del derivado con riesgo
se deducen los problemas de Cauchy que modelan el XVA, considerando que el valor con
riesgo puede descomponerse como suma del valor libre de riesgo mas el valor de los ajustes.

Se obtiene asi el problema de EDPs que modela directamente el valor de los ajustes,

aag + AU — TU = )\Bhe + )\B(‘/} — gB(M,X))
AoV = go(M, X)) + sx X, (t,S) € (0,T] x (0, 00)
U(T,S) =0.

En el caso de las opciones americanas, la dificultad que acarrean las inecuaciones que inter-
vienen en los modelos hace que el XVA tenga que calcularse después de obtener el valor con
riesgo y sin riesgo del derivado, solucién cada uno de ellos de los correspondientes proble-
mas de complementariedad obtenidos mediante estrategias de cobertura. El XVA se obtiene
como diferencia de ambos.

Se ha realizado el andlisis matemédtico de los modelos no lineales (obtenidos para los
distintos comportamientos de la intensidad de quiebra), estudiando la existencia y unicidad
de solucién. Tanto para opciones europeas como americanas, la metodologia introducida se

ha centrado en los problemas no lineales, considerando los lineales como un caso particular.
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El andlisis de las opciones europeas se ha abordado siguiendo los resultados introducidos
por Henry [30]. Estos prueban la existencia de solucién para problemas dados en términos
de un operador sectorial y una funcién lipschitciana definidos en un espacio de Hilbert. En
un primer paso se prueba un resultado de existencia local, para posteriormente demostrar
la existencia global de soluciéon. El problema unidimensional se estudia en el dominio no
acotado R, mientras que el estudio del modelo bidimensional se hace para un dominio

acotado donde el operador es sectorial.

El andlisis de las opciones americanas se ha planteado siguiendo el resultado introducido
por Jeong y Park [34] para inecuaciones variacionales semilineales parabdlicas. Para ello,
los problemas obtenidos han sido reescritos en términos de una funcién lipschitciana y un
operador continuo que satisface la desigualdad de Garding en espacios de Hilbert apropiados

y un operador subdiferencial definido para un espacio convexo adecuado.

Una vez probada la existencia y unicidad de solucién para los modelos de EDPs obtenidos

en la valoraciéon de ambas opciones, se proponen diferentes métodos para la solucién numérica.

En primer lugar, dado que el planteamiento de los problemas se hace sobre un dominio
no acotado, se realiza un truncamiento del dominio y se proponen las condiciones de con-
torno mas apropiadas desde el punto de vista financiero para resolver el problema en dicho
dominio. Para la obtencién de alguna de las condiciones se siguen las ideas de [19] intro-
ducidas previamente en [23]. La discretizacién temporal se realiza mediante un método de
caracteristicas que aproxima la derivada material en términos de la curva caracteristica, y se
combina con una discretizacién espacial basada en elementos finitos de Lagrange. Ademds,
los problemas no lineales se resuelven mediante un método iterativo de punto fijo. En el
caso de las opciones europeas, el sistema de ecuaciones lineales que se obtiene en cada paso
de tiempo se ha resuelto mediante una factorizaciéon LU. Sin embargo, la resolucién de las
opciones americanas conduce a problemas de obstaculo para los cuales se utiliza un método

de lagrangiano aumentado (ALAS) propuesto en [35].

Por otra parte, se ha utilizado también una metodologia més clasica en el ambito fi-
nanciero: a partir de los modelos en términos de EDPs, se ha aplicado el teorema de
Feynman—Kac para obtener el valor del XVA asociado a las opciones europeas en términos
de esperanza. Una vez obtenida la expresion del mismo, se calcula su valor mediante

técnicas clasicas de tipo Monte Carlo. En el caso de las opciones americanas, la expresién
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del XVA se ha deducido siguiendo los trabajos de Longstaff-Schwartz [38] y Glasserman
[28], obteniéndose ecuaciones de valoracién de las opciones americanas con riesgo de con-
trapartida. Esta metodologia considera diferentes instantes de tiempo de ejercicio; como
ocurre con las opciones de tipo Bermuda, una mayor consideracion de instantes de ejercicio
permitirda obtener una mejor valoracién. Los resultados obtenidos mediante esta técnica
se han comparado con los calculados mediante la resolucién de los modelos basados en
EDPs observandose que los primeros valores estan incluidos en los intervalos de confianza
obtenidos mediante técnicas de tipo Monte Carlo. Sin embargo, se observa céomo el tiempo
computacional empleado para la resolucion de las EDPs es menor que el tiempo necesario

para la valoracién de opciones mediante técnicas de Monte Carlo.

Finalmente, se han estudiado diferentes casos de opciones europeas y americanas, que

muestran el comportamiento esperado tanto del valor de la opcién como de los ajustes.

El esquema seguido en el trabajo ha sido el siguiente:

e El Capitulo 1| consta de una introduccién para poner en contexto la relevancia de
considerar el riesgo de contrapartida en la valoraciéon de opciones europeas. La valo-
racion del derivado se hace mediante técnicas de cobertura dindmica y con estrategias
de no arbitraje. En este capitulo se consideran contratos entre dos contrapartes, las
cuales pueden quebrar con intensidades de quiebra constantes, por lo que se obtienen
modelos de EDPs lineales y no lineales dependientes de un tnico factor estocéstico,
el activo subyacente. Se estudia la existencia y unicidad de soluciéon de los proble-
mas no lineales, considerando el problema lineal como un caso particular. El andlisis
matematico de este problema se hace sobre un dominio no acotado empleando teoria
de operadores sectoriales. Se proponen diferentes técnicas numéricas para la resolu-
cion de los problemas de EDPs obtenidos, el método de caracteristicas combinado con
elementos finitos asi como un esquema de punto fijo para los problemas no lineales. Se
introduce también una alternativa en la valoracion del XVA en términos de esperanza,
mediante técnicas clasicas de Monte Carlo. El capitulo termina con varios resultados
que muestran la relevancia de incorporar el riesgo de contrapartida en la valoracion
del derivado, compardandose los resultados obtenidos mediante la resolucién de las

EDPs con los obtenidos mediante técnicas de Monte Carlo.
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e El Capitulo [2| comienza con una breve introduccion sobre la valoracion de opciones
americanas incluyendo riesgo de contrapartida. Al igual que en el Capitulo [1] las
intensidades de quiebra son constantes y ambas partes que intervienen en el contrato
pueden quebrar. Utilizando técnicas de cobertura dindmica y estrategias de no ar-
bitraje se deducen problemas de complementariedad lineales o no lineales, segun la
elecciéon que se haga del valor de mercado en el instante de quiebra, dependientes de
un unico factor estocéastico. Se proponen diferentes técnicas numéricas para la res-
olucién de problemas con obstaculo. Combinado con las técnicas empleadas para el
problema de opciones europeas, se implementa un algortimo de lagrangiano aumen-
tado para resolver problemas con obstaculo. Ademds se propone la valoracién de
opciones americanas mediante técnicas de Monte Carlo, extendiendo el trabajo de
Longstaff y Schwartz. Al final del capitulo se presentan resultados numéricos que
muestran el comportamiento de la opciéon americana cuando se incluye riesgo de con-

trapartida en la valoracion.

e En el Capitulo [3] se presenta la valoracién de opciones europeas siguiendo un es-
quema similar al del Capitulo[I] La principal novedad respecto a éste reside en la
consideracién de intensidades de quiebra estocasticas. Ademads, se considera un con-
trato entre dos partes, donde solo el inversor tiene posibilidad de quebrar. Mediante
técnicas de cobertura dindmica se obtiene un modelo dependiente de dos factores es-
tocasticos, el activo subyacente y el spread del inversor. Después de la obtencion de
los modelos, se estudia la existencia y unicidad de solucién del problema no lineal. El
caracter sectorial del operador correspondiente se demuestra para dominios acotados.
Técnicas numéricas similares a las introducidas en el Capitulo|l|y adaptadas a mode-
los de varias variables son propuestas para la resolucién del problema bidimensional.
Finalmente se presentan los resultados obtenidos con dichas técnicas, donde se ob-
serva el comportamiento del XVA en funcién del precio del activo y de la probabilidad
de quiebra del inversor. El comportamiento respecto del precio del activo subyacente

es similar al obtenido para los problemas unidimensionales de opciones europeas.

e El Capitulo [4] presenta un esquema similar al de los capitulos anteriores. Se estudia
la valoracién de opciones americanas y, al igual que en el Capitulo [3] solo el inversor

puede quebrar considerandose la intensidad de quiebra estocéastica. Haciendo uso de
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técnicas de cobertura dinamica y estrategias de ausencia de arbitraje se obtienen mo-
delos de complementariedad asociados a ecuaciones en derivadas parciales lineales y
no lineales dependientes de dos variables espaciales, el activo subyacente y el spread.
Se estudia también la existencia y unicidad de solucién de dichos problemas siguiendo
la teoria de inecuaciones variacionales semilineales de tipo parabdlico. Para la ob-
tencion de una soluciéon numérica, se proponen métodos numéricos similares a los del
Capftulo [2] para la resolucién de problemas con obstdculo. Los resultados numéricos
presentados muestran la variacién en el valor del derivado debido a la incorporacion
de riesgo de contrapartida en la valoracién del mismo. En este capitulo también se
ha valorado la opcién americana considerando riesgo de contrapartida mediante las
técnicas de Monte Carlo detalladas en el Capitulo [2| adaptadas a modelos bidime-

nionales.

Todos los métodos y algoritmos propuestos se han implementado en un cédigo basado
en MATLAB. Se dispone asi de una herramienta de gran utilidad para la valoracién efectiva
de opciones europeas y americanas con riesgo de contrapartida. Por otra parte, los distintos
tests realizados muestran la ventaja de calcular el valor de las opciones y los distintos ajustes
mediante la resolucién de modelos basados en EDPs, frente a los métodos de Monte Carlo

mas utilizados por las compaiias financieras y bancos.

193



194



Resumo extenso

Neste traballo estiidanse modelos para a valoracién dalgins dos produtos financeiros deriva-
dos mais usuais. En concreto, abdrdase a valoracién de opciéns europeas e americanas,
globalmente conecidas como opciéns “vainilla”. A principal novidade deste traballo é a
toma en consideracion do risco de contrapartida, é dicir, a posibilidade de quebra dalgunha
das partes que interveinien no contrato.

A metodoloxia de cobertura introducida por Black e Scholes [8] e Merton [39] para as
opcidns vainilla europeas non consideraba a posibilidade de que algunha das partes do con-
trato puidese caer en incumprimento. Doutra banda, importantes institucions financeiras
asociaron o estalido da crise financeira de 2007 a unha incorrecta xestiéon do risco, ademais
da distintos fallos do sistema financeiro. A complexidade dos novos derivados financeiros,
ademais da consideracién dunha baixa ou nula probabilidade de quebra, son dous dos fac-
tores que derivaron na crise.

Con obxecto de realizar unha valoraciéon dos derivados financeiros nun escenario mais
realista, se proponen diferentes axustes —en funcién das condicidns en que ten lugar o

contrato— sobre o derivado libre de risco de contrapartida:

e Axustes debido ao beneficio por liquidez (Funding Benefit Adjustment, FBA).

e Axustes debido aos custos de financiamento da entidade emisora (Funding Cost Ad-
justment, FCA). A diferenza destes dous primeiros, FBA e FCA, denominase Funding
Value Adjustment (FVA).

e Axustes para compensar o risco de quebra da contrapartida (Credit Value Adjust-

ment, CVA).
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e Axustes debido 4 posibilidade de quebra da propia entidade emisora (Debit Value
Adjustment, DVA).

e Axustes debido & presenza de colateral como unha forma de compensar a posibilidade

de quebra dunha das partes (Collateral Value Adjustment, CollVA).

O conxunto de todos estes axustes conécese como Total Value Adjustment (XVA) e estd

dado por:
XVA = DVA — CVA + (FBA — FCA) + CollVA = DVA — CVA + FVA + CollVA..

Os obxectivos deste traballo poden resumirse en:

e A deducién de modelos para o cdlculo do XVA en opciéns europeas e americanas,
co fin de obter unha valoracién mais axeitada de acordo coas esixencias actuais dos

mercados financeiros.
e A andlise matematica dos modelos propostos.

e A resolucién mediante un conxunto de técnicas numéricas adecuadas 4s caracteristicas

dos modelos.

Nunha revisién da estado da arte atopamos principalmente tres metodoloxias para in-
cluir custos de financiamento, risco de contrapartida e axustes pola presenza de colateral
na valoracién do derivado. Unha primeira aproximacién consiste en incluir os axustes en
termos de esperanzas; un exemplo onde se incliie o DVA pode verse en Brigo [12] e, poste-
riormente, a inclusién do CollVA e custos de financiamento é abordado por Pallavicini et
al. [42].

A segunda aproximacién, introducida por Crépey [21 22], desenvolve modelos baseados
en ecuacions diferenciais estocéasticas cara atras. Mais recentemente, proponse tamén a
resolucién de ecuaciéns diferenciais estocasticas en [9]. Finalmente, a terceira aproximacion
segue os traballos de Piterbarg [45] e Burgard e Kjaer [I5], nos que se empregan argumentos
de cobertura e a lema de It6 para deducir ecuaciéns en derivadas parciais (EDPs) cuxa
solucién nos proporciona o valor do derivado. Esta lina é tamén seguida por Garcia [27]
nun marco mais xeral con spreads estocasticos, obténdose modelos dependentes de tres

variables.
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O presente traballo segue a terceira das linas explicadas previamente. Obtemos o valor
das opciéns europeas como a solucién dun problema de Cauchy e o valor das opciéns
americanas como solucién dun problema de complementariedade, ambos os gobernados

por ecuacions en derivadas parciais.

Seguindo [I5], na primeira parte da tese estudase a valoracién de opciéns europeas e
americanas. En ambos os casos considérase un contrato entre dous partes, un vendedor e
un comprador, e asimese que ambas as contrapartes tefien posibilidade de incumprimento
das condiciéns asinadas no contrato. Co fin de obter un valor do derivado financeiro que
inclia os correspondentes axustes debidos aos riscos de contrapartida empréganse estrate-
xias adecuadas de cobertura para carteiras autofinanciadas e ténense en conta as diferenzas

que presentan os dous tipos de opcidns estudadas en canto ao periodo de exercicio.

Debido & posibilidade de quebra de cada unha das partes ao longo da vida do contrato,
é necesario a aplicacién da lema de Itd para procesos de difusién con saltos [43]. Nesta
primeira parte considéranse intensidades de quebra constantes, o que conduce, para ambos
os tipos de opciéns, a un modelo dependente dun tnico factor estocastico, o activo subxa-
cente. Ademais, obténiense diferentes modelos en funcion dos axustes incluidos: en primeiro
lugar considérase un contrato sen colateral (e, por tanto, s6 se modelan o CVA, DVA e FVA)
para posteriormente estudar a valoracion de opciéns para contratos que inclien colateral

(introducindo o CollVA no célculo do XVA).

Os modelos obtidos para ambas as opcions estan dados en termos do valor de mercado
do derivado. Seguindo a bibliografia, é habitual considerar dous posibles valores de mercado
no momento de quebra: o valor libre de risco, que conduce a un modelo lineal, e o valor
con risco de contrapartida, que dé lugar a un modelo non lineal. Segundo o tipo de opcidn,

obténense os seguintes problemas de EDPs, dados en termos do devandito valor de mercado.

e Opcidns europeas:

v N
E‘F.AV—(T—F)\B—F)@‘)V

= >\Bhe - ABQB(MMX) - )\CQC(Max) +SXXa (t75) € (OvT] X (0700)
V(T,S) = H(S).
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e Opciéns americanas:

~ OV . ~
EX(V) = a +AV — (7""‘ AB +)\C’)V — )\Bhe
+)\BgB(M7X) +)\CQC(MaX) —sxX < 07 (ta S) € (O7T] X (0,00)

~

V(t,S) > H(S)
Lx(V)(V—H)=0

~

V(T,8) = H(S).

onde o operador A estd dado por

L,V oV

1
~o%8 +rpS—.

AV =575 55
Dado que o comportamento da intensidade de quebra de cada unha das partes que in-
tervefien no contrato non é sempre constante, nunha segunda parte da tese considéranse
comportamentos estocasticos, o cal presenta un escenario mais acorde coa situacién actual
dos mercados financeiros. Para este suposto, seguimos o traballo de Garcia [27], onde a
consideracién de intensidades de quebra estocasticas conduce a un modelo dependente de
tres factores: o activo subxacente e o spread de cada unha das partes que intervenen no
contrato. Co fin de reducir a dimensién do problema, consideramos un contrato entre dous
partes, o investidor e o asegurador, e supomos que a intensidade de quebra é estocéstica pero
sé una das partes, neste caso o investidor, pode crebar. Obtense asi un modelo dependente
de dous factores estocdsticos, o activo subxacente e o spread do investidor.

Do mesmo xeito que no caso de intensidades de quebra constantes, o estudo realizase
sobre as opcidns europeas e americanas. Novamente, aplicamos estratexias de cobertura
en funcién dos distintos momentos nos que a opcién pode exercerse: sé a vencemento (no
caso de opciéns europeas) ou en calquera instante ata o vencemento (no caso de opcidns
americanas). Obténense asi problemas de Cauchy para ecuaciéns en derivadas parciais que
modelan o valor asociado as opciéns europeas e problemas de complementariedade para a
valoracién de opcidns americanas. Do mesmo xeito que sucede cos modelos unidimensionais,
en funcién do valor que se asigne ao valor de mercado dedicense problemas lineais e non
lineais. Deste xeito, en funcién do tipo de opcién, obténense os seguintes problemas en

derivadas parciais:
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e Opcidns europeas:

Vo o~ - AV
E+£ShV+71_R

~

V(T,8,h) = G(S).

h—fV =0, en [0,T) x (0,00) x (0, 00),

e Opciéns americanas:

,
~

V. i o AV -
LV + LspV + mh— fV <o en, [0,7) x (0,00) x (0,00),

)=

~

V(t, S, h) > G(S)
L)V -G)=0

V(T,8,h) = G(S),

onde Lgp, é un operador en derivadas parciais de segunda orde.

Lembremos que o obxectivo do presente traballo é obter o valor dos axustes, é dicir do
XVA. No caso das opciéns europeas, a partir do modelo do derivado con risco dedtiicense
os problemas de Cauchy que modelan o XVA, considerando que o valor con risco pode
descomporse como suma do valor libre de risco maéis o valor dos axustes. Obtense asi o

problema de EDPs que modela directamente o valor dos axustes,

ou ~
B + AU — rU = Aghe + A\p(V — gp(M, X))

AV = go(M, X))+ sxX,  (t,5) € (0,T] x (0,0)
U(T,S) =0.

No caso das opcidéns americanas, a dificultade que carrexan as inecuaciones que intervenen
nos modelos fai que o XVA tefia que calcularse despois de obter o valor con risco e sen risco
do derivado, solucién cada un deles dos correspondentes problemas de complementariedade
obtidos mediante estratexias de cobertura. O XVA obtense como diferencia de ambos.
Realizouse a andlise matemdtica dos modelos non lineais (obtidos para os distintos
comportamentos da intensidade de quebra), estudando a existencia e unicidade de solucién.
Tanto para opciéns europeas como americanas, a metodoloxia introducida centrouse nos

problemas non lineais, considerando os lineais como un caso particular.
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A andlise das opcidns europeas abordouse seguindo os resultados introducidos por Henry
[30]. Estes proban a existencia de solucién para problemas dados en termos dun operador
sectorial e unha funcién lipschitciana definidos nun espazo de Hilbert. Nun primeiro paso
prébase un resultado de existencia local, para posteriormente demostrar a existencia global
de soluciéon. O problema unidimensional estiidase no dominio non acoutado R, con todo o

estudo do modelo bidimensional faise para un dominio acoutado onde o operador é sectorial.

A anilise das opciéns americanas expuxose seguindo o resultado introducido por Jeong—
Park [34] para inecuaciéns variacionais semilineares parabdlicas. Para iso, os problemas
obtidos se rescribiron en termos dunha funcién lipschitciana e un operador continuo que
satisfai a desigualdade de Garding en espazos de Hilbert apropiados e un operador subd-

iferencial definido para un espazo convexo adecuado.

Unha vez probada a existencia e unicidade de solucién para os modelos de EDPs obtidos

na valoracion de ambas as opciéns, proponense diferentes métodos para a solucion numérica.

En primeiro lugar, dado que a formulacién dos problemas faise sobre un dominio non
acoutado, realizase un truncamento do dominio e propénense as condiciéns de contorno mais
axeitadas desde o punto de vista financeiro para resolver o problema no devandito dominio.
Para a obtencién dalgunha das condiciéns séguense as ideas de [19] introducidas previa-
mente en [23]. A discretizacién temporal realizase mediante un método de caracteristicas
que aproxima a derivada material en termos da curva caracteristica, e combinase cunha
discretizacién espacial baseada en elementos finitos de Lagrange. Ademais, os problemas
non lineais resélvense mediante un método iterativo de punto fixo. No caso das opciéns
europeas, o sistema de ecuaciéns lineais que se obtén en cada paso de tempo resolveuse
mediante unha factorizacion LU. Con todo, a resolucién das opcidons americanas conduce
a problemas de obstaculo para os cales se utiliza un método de lagranxiano aumentado

(ALAS) proposto en [35].

Doutra banda, utilizouse tamén unha metodoloxia mais clasica no ambito financeiro: a
partir dos modelos en termos de EDPs, aplicouse o teorema de Feynman—Kac para obter
o valor do XVA asociado 4s opciéns europeas en termos de esperanza. Unha vez obtida a
expresion do mesmo, calctilase o seu valor mediante técnicas clasicas de tipo Monte Carlo.
No caso das opciéns americanas, a expresion do XVA deduciuse seguindo os traballos de

Longstaff-Schwartz [38] e Glasserman [2§], obténdose ecuaciéns de valoracién das opciéns
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americanas con risco de contrapartida. Esta metodoloxia considera diferentes instantes de
tempo de exercicio; como ocorre coas opcions de tipo Bermuda, unha maior consideracién
de instantes de exercicio permitira obter unha mellor valoracién. Os resultados obtidos me-
diante esta técnica compararonse cos calculados mediante a resolucién dos modelos baseados
en EDPs, observandose que os primeiros valores estdn incluidos nos intervalos de confianza
obtidos mediante técnicas de tipo Monte Carlo. Con todo, obsérvase cémo o tempo com-
putacional empregado para a resoluciéon das EDPs é menor que o tempo necesario para a
valoracién de opcions mediante técnicas de Monte Carlo.

Finalmente, estudaronse diferentes casos de opciéns europeas e americanas, que mostran
o comportamento esperado tanto do valor da opcién como dos axustes.

O esquema seguido no traballo foi o seguente:

e O Capitulo[I]consta dunha introducién para pér en contexto a relevancia de considerar
o risco de contrapartida na valoracion de opciéns europeas. A valoracién do derivado
faise mediante técnicas de cobertura dindmica e con estratexias de non arbitraxe.
Neste capitulo considéranse contratos entre dous contrapartes, as cales poden crebar
con intensidades de quebra constantes, polo que se obtenen modelos de EDPs lineais e
non lineais dependentes dun Unico factor estocéstico, o activo subxacente. Estudase a
existencia e unicidade de solucién dos problemas non lineais, considerando o problema
lineal como un caso particular. A andlise matemética deste problema faise sobre
un dominio non acoutado empregando teoria de operadores sectoriais. Proponse
diferentes técnicas numéricas para a resolucién dos problemas de EDPs obtidos, o
método de caracteristicas combinado con elementos finitos asi como un esquema de
punto fixo para os problemas non lineais. Introducese tamén unha alternativa na
valoracién do XVA en termos de esperanza mediante técnicas cldsicas de Monte Carlo.
O capitulo remata con varios resultados que mostran a relevancia de incorporar o
risco de contrapartida na valoraciéon do derivado, compariandose os resultados obtidos

mediante a resolucion das EDPs cos obtidos mediante técnicas de Monte Carlo.

e O Capitulo [2] comenza cunha breve introducién sobre a valoracién de opciéns ameri-
canas incluindo risco de contrapartida. Do mesmo xeito que no Capitulo |1} as inten-
sidades de quebra son constantes e ambas as partes que intervenen no contrato po-

den crebar. Utilizando técnicas de cobertura dindmica e estratexias de non arbitraxe
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dedtcense problemas de complementariedade lineais ou non lineais, segundo a elecciéon
que se faga do valor de mercado no instante de quebra, dependentes dun tnico factor
estocdstico. Proponiense diferentes técnicas numéricas para a resolucién de problemas
con obstaculo. Combinado coas técnicas empregadas para o problema de opciéns
europeas, se implementa un algoritmo de lagranxiano aumentado para resolver pro-
blemas con obstaculo. Ademais proponse a valoracién de opciéns americanas me-
diante técnicas de Monte Carlo, estendendo o traballo de Longstaff e Schwartz. Ao
final do capitulo preséntanse resultados numéricos que mostran o comportamento da

opcién americana cando se incliie risco de contrapartida na valoracién.

No Capitulo [3] preséntase a valoracién de opciéns europeas seguindo un esquema si-
milar ao do Capitulo [l A principal novidade respecto deste reside na consideracién
de intensidades de quebra estocasticas. Ademais, considérase un contrato entre dous
partes, onde s6 o investidor ten posibilidade de crebar. Mediante técnicas de cober-
tura dinamica obtense un modelo dependente de dous factores estocésticos, o activo
subxacente e o spread do investidor. Despois da obtencién dos modelos, estidase a
existencia e unicidade de solucién do problema non lineal. O carécter sectorial do
operador correspondente deméstrase para dominios acoutados. Proponense técnicas
numéricas similares as introducidas no Capitulo [1| e adaptadas a modelos de varias
variables para a resolucién do problema bidimensional. Finalmente preséntanse os
resultados obtidos con ditas técnicas, onde se observa o comportamento do XVA en
funcién do prezo do activo e da probabilidade de quebra do investidor. O comporta-
mento respecto do prezo do activo subxacente é similar ao obtido para os problemas

unidimensionais das opciéns europeas.

O Capitulo 4| presenta un esquema similar ao dos capitulos anteriores. Estidase a
valoracién de opciéns americanas e, do mesmo xeito que no Capitulo [3] s6 o investi-
dor pode crebar considerandose a intensidade de quebra estocastica. Facendo uso
de técnicas de cobertura dindmica e estratexias de ausencia de arbitraxe obtéfiense
problemas de complementariedade asociados a ecuaciéns en derivadas parciais li-
neais e non lineais dependentes de duas variables espaciais, o activo subxacente e o
spread. Estidase tamén a existencia e unicidade de solucién dos devanditos problemas

seguindo teorias para inecuacions variacionais semilineares de tipo parabdlico. Para a
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obtencion dunha solucién numérica, proponense métodos numeéricos similares aos do
Capitulo [2] para a resolucién de problemas con obstdculo. Os resultados numéricos
presentados amosan a variacién no valor do derivado debido & incorporaciéon do risco
de contrapartida na valoracién do mesmo. Neste capitulo tamén se valorou a opcién
americana considerando risco de contrapartida mediante as técnicas de Monte Carlo

detalladas no Capitulo [2| adaptadas a modelos bidimenionais.

Todos os métodos e algoritmos propostos foron implementados nun cédigo baseado en
MATLAB. Disponse asi dunha ferramenta de gran utilidade para a valoracién efectiva de
opcidns europeas e americanas con risco de contrapartida. Dutra banda, os distintos tests
realizados amosan a vantaxe de calcular o valor das opciéns e os distintos axustes mediante a
resolucién de modelos baseados en EDPs, fronte aos métodos de Monte Carlo mais utilizados

polas companias financeiras e bancos.
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