
 

 

 

 

Transcriptional analysis reveals new factors 

involved in the biofilm formation ability of 

Acinetobacter baumannii. 

 

Soraya Rumbo Feal

 

Doctoral thesis 

2018 

 

 

Directors: Dr. Margarita Poza Domínguez and Dr. Germán Bou Arévalo 

Tutor: Dr. Margarita Poza Domínguez 

 

 

 

Programa de doutoramento en Ciencias da Saúde 

 

 

 

 

 





 

 

 

Los directores de esta tesis doctoral, la Dra. Margarita Poza Domínguez, Doctora en 

Biología por la Universidad de Santiago de Compostela e Investigadora del Instituto de 

Investigación Biomédica de A Coruña y el Dr. Germán Bou Arévalo, Doctor en 

Ciencias Biológicas por la Universidad Autónoma de Madrid, Jefe de Servicio de 

Microbiología del Complejo Hospitalario Universitario A Coruña (CHUAC) y profesor 

asociado de la Universidad de Santiago de Compostela  

 

CERTIFICAN: 

 

Que Dña. Soraya Rumbo Feal, Licenciada en Biología por la Universidade da Coruña, ha 

realizado en el Servicio de Microbiología y en el Instituto de Investigación Biomédica 

(INIBIC) del Complejo Hospitalario Universitario A Coruña, bajo su dirección y tutela, el 

trabajo “Transcriptional analysis reveals new factors involved in the biofilm formation 

ability of Acinetobacter baumannii”, el cual, reúne todas las condiciones para ser 

presentado como Tesis Doctoral con mención internacional. 

Y para que así conste, y surta los efectos oportunos, firmamos el presente certificado en A 

Coruña, mayo del 2018. 

   

 

 

 

 

 

 

 

 

 

Dra. Margarita Poza Domínguez 

Directora 

Tutora 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dr. Germán Bou Arévalo 

Director



 

  



 

5 

 

 

 

 

 

 

 

 

 

 

 

ACKNOWLEDGMENT 



 

6 

 

 



Acknowledgment 

 

7 

 

Cando estaba a escribir o meu traballo de fin de mestrado faláronme por primeira vez da 

importancia que tiña na investigación a cooperación e o recoñecemento ao traballo feito. 

Nunca esquecín esas palabras e sei ben que esta tese que presento débese ao esforzo de 

moita xente e que non podería ter chegado ata aquí sen tanta axuda. Aínda que todas esas 

persoas merecen moito máis, non teño mellor maneira de comezar isto que dándolles as 

grazas. 

En primeiro lugar, quero dar as grazas aos meus directores de tese, sen os que este 

traballo non sería imaxinable. A Germán, por abrirme as portas a un grupo de 

investigación incrible e estar sempre aí para aportar melloras a todo o que facemos. A 

Marga, por preocuparte de que traballemos ben pero, sobre todo, de que esteamos ben 

dentro e fóra do laboratorio. Porque só unha persoa xenial consigue contaxiar a súa 

ilusión ata cando todo sae mal. 

A todas as persoas do laboratorio, que son moito máis que compañeiras de traballo. A 

Astrid, porque en todos estes anos non lembro un momento no que necesitase algo e ti 

non estiveses aí, pola risa contaxiosa e por “acollerme tan ben na túa familia”. A Laura, 

porque gran parte deste traballo é teu, polo bo humor permanente e por todos os festivais 

compartidos (e os que nos quedan). A Meri, por ensinarme tanto cando era a túa pupila, 

por estar sempre disposta a axudar e por algunha que outra aperta. A Ana, por ser tan 

auténtica e transparente e por tanta tolerancia cando te escandalizas coas nosas historias. 

A Mariló, por contar tanto falando tan pouco e por tantos momentos de diversión fóra do 

laboratorio. A Eva, porque sempre tes unha frase que consegue que chore coa risa e por 

botar unha man antes de que o pida. A Juan, por ser un home sabio e por facer tan sinxelo 

traballar en equipo. A María José, por ser un exemplo de sentido do humor e paciencia. A 

Alex, por empeñarte en que pensemos por nós mesmas e por tratar de ser sempre xusto. A 

Marta, por ser capaz de recibirme sempre cun sorriso ata cando estás ata arriba de 

traballo. A Juan Carlos, por tomarte con bo humor todas as bromas. A Silvia, por ser tan 

xenerosa. A Begoña, Kelly, Maricuchi, Patri, Miriam, Mariki, Lucía, Laura F, Antón, por 

facer que este sexa un gran sitio onde traballar. Á xente do servizo de Microbioloxía do 

CHUAC e a todas as persoas que agora non traballan con nós pero que para min seguen a 

formar parte do lab: Carlos, Clara, Jesús, Susi, Patri, Jose... Non imaxinades canto 

aprendín de vós! 



Acknowledgment 

 

8 

 

A Luis Actis, por acollerme tan ben no grupo de investigación, polas correccións 

incansables e por conseguir que aprendese tanto en só uns meses. A Brock, Steve, Emily, 

Theresa e todas as persoas da Miami University que fixeron da miña estancia alí unha 

experiencia única. 

Tamén quero dar as grazas a todas as persoas que escolledes acompañarme no día a día. 

A Sara, Maruxa e Inés, porque de vós aprendo tanto, que son mellor cando me 

acompañades e porque trouxestes unha chea de persoas marabillosas á miña vida. Non 

imaxino contar con mellores amigas. Aos meus sãotomeños favoritos e a Jose, pola vosa 

facilidade para facer viables as ideas máis tolas. A Joaquín, por ser un exemplo de como 

traballar con creatividade e ilusión. Ás bailadoras, gaiteiros, tamborileiras e pandereteiros 

que converteron un milleiro de días en inesquecibles. Ás persoas coas que compartín 

viaxes, festivais, ceas, noites de festa, cafés interminables, solsticios e foliadas. Ás 

persoas que sufristes a miña falta de tempo e ás que estabades aí para dar ánimos. Porque 

no sei se podería rematar isto sen todas vós, pero de seguro que non sería tan feliz 

facéndoo. 

Por último, non quero rematar sen darlle as grazas a miña familia. Aos meus pais, por 

tanto amor, xenerosidade e apoio. Por ensinarme a importancia do respecto aos demais, 

do pensamento crítico e do esforzo e polo privilexio de medrar rodeada de libros e 

cancións. A Borja e Omar, por tantos bos momentos compartidos, non podería ter 

mellores compañeiros de viaxe para a vida. Ao meu bisavó, as miñas avoas e os meus 

avós, que con tanto esforzo construíron o mellor que teño, unha familia incrible. A todas 

as persoas que a diario me ensinades que a familia non é con quen compartes alelos, se 

non quen estades aí para festexar os bos momentos e sodes as primeiras en acudir nos 

malos. En especial, a todas esas mulleres que coidades de nós sen descanso e que, sen ser 

as miñas avoas, nais ou irmás, tratástesme sempre como se o forades, porque para ben ou 

para mal, se son quen son, é por vós. 

 



 

9 
 



 

10 
 

 

  

 



Index 

 

11 
 

INDEX 

 
INDEX ............................................................................................................................ 11 

INDEX OF FIGURES OF THE INTRODUCTION SECTION .................................... 13 

INDEX OF TABLES OF THE INTRODUCTION SECTION ...................................... 13 

ABREVIATIONS ........................................................................................................... 15 

RESUMO ........................................................................................................................ 19 

RESUMEN ..................................................................................................................... 21 

ABSTRACT .................................................................................................................... 23 

1. INTRODUCTION ................................................................................................... 25 

1.1. Genus Acinetobacter ............................................................................................... 28 

1.2. Acinetobacter baumannii ........................................................................................ 29 

1.2.1. Clinical relevance ............................................................................................. 30 

1.2.2. Antibiotic resistance ......................................................................................... 31 

1.2.3. Pathogenicity and virulence factors .................................................................. 34 

1.2.4. Animal models .................................................................................................. 47 

1.3. Small RNAs in bacteria ........................................................................................... 50 

1.3.1. Regulatory roles of small RNAs ....................................................................... 54 

1.3.2. Small RNAs in A. baumannii ........................................................................... 59 

2. OBJECTIVES .......................................................................................................... 61 

3. CHAPTERS ............................................................................................................. 65 

3.1. CHAPTER I: Whole transcriptome analysis of Acinetobacter baumannii assessed 

by RNA-sequencing reveals different mRNA expression profiles in biofilm compared 

to planktonic cells........................................................................................................... 67 

3.2. CHAPTER II: Contribution of the A. baumannii A1S_0114 gene to the interaction 

with eukaryotic cells and virulence ................................................................................ 89 



Index 

 

12 

 

3.3. CHAPTER III: Global assessment of small RNAs reveals a non-coding transcript 

involved in biofilm formation and attachment in Acinetobacter baumannii ATCC 

17978 ............................................................................................................................ 105 

4. DISCUSSION ........................................................................................................ 131 

5. CONCLUSIONS ................................................................................................... 144 

6. REFERENCES ...................................................................................................... 148 

ANNEX......................................................................................................................... 179 

SUPPLEMENTARY MATERIAL CHAPTER I ........................................................ 181 

SUPPLEMENTARY MATERIAL CHAPTER II ....................................................... 189 

SUPPLEMENTARY MATERIAL CHAPTER III ...................................................... 201 

SUMMARY ................................................................................................................. 213 

CURRICULUM VITAE .............................................................................................. 225 

 



Index 

 

13 
 

INDEX OF FIGURES OF THE INTRODUCTION SECTION 

Figure 1. SEM image of A. baumannii ATCC 17978. 50000x 

Figure 2. Biofilm formation steps. 

Figure 3. Type IV pili pulls the cell body along surfaces by cycles of polymerization, 

surface adhesion, and retraction. 

Figure 4. Cis-encoded sRNAs 

Figure 5. Trans-encoded sRNAs. 

 

INDEX OF TABLES OF THE INTRODUCTION SECTION 

Table 1. Major mechanisms of antimicrobial resistance in Acinetobacter baumannii. 

 



 

14 
 



Abreviations 

 

15 
 

ABREVIATIONS  

Ac-505: acinetin 505 

ACB complex: Acinetobacter calcoaceticus-Acinetobacter baumannii complex 

ACP: acyl carrier protein 

ADC: Acinetobacter-derived cephalosporinase 

AHL: acyl-homoserine lactone 

AMP: adenosine monophosphate 

bp: base pair 

Cas: CRISPR-associated 

cDNA: complementary deoxyribonucleic acid 

CFU: colony-forming unit 

Cys: cysteine 

CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats 

Da: dalton 

DNA: deoxyribonucleic acid 

G+D: guanine-cytosine 

Gly: glycine 

h: hour 

IDSA: Infectious Diseases Society of America 

kb: kilo base pairs 

LB: Luria-Bertani 

LQ/MS: liquid chromatography/mass spectrometry 

MDR: multidrug resistant 

MIC: minimal inhibitory concentration 

mRNA: messenger ribonucleic acid 



Abreviations 

 

16 

 

NGS: next-generation sequencing 

NRPS: non-ribosomal peptide synthase 

OD600: optical density at 600 nanometers 

OMPs: outer membrane proteins 

OMVs: outer membrane vesicles 

PBPs: penicillin-binding proteins 

PCP: petidyl carrier protein 

PDR: pandrug resistant 

PLase: phospholipase 

PNAG: poly-β-(1-6)-N-acetylglucosamine 

RT-qPCR: reverse transcription quantitative polymerase chain reaction 

RBS: ribosome binding site 

RNA: ribonucleic acid 

RNA-seq: RNA sequencing 

RND efflux pump: resistance-nodulation-cell division type efflux pump 

rRNA: ribosomal ribonucleic acid 

RT-PCR: reverse transcription polymerase chain reaction 

SEM: scanning electron microscopy 

spp.: species 

sRNA: small ribonucleic acid 

TFP: type IV pili 

TPS: two-partner secretion 

µm: micrometer 

 



 

17 
 

 



 

18 
 



Resumo 

 

19 
 

RESUMO 

Acinetobacter baumannii é un patóxeno nosocomial que posúe unha enorme capacidade 

de adaptarse a condicións desfavorables, o que o converte nun importante problema de 

saúde pública.  

Os perfís de expresión xénica durante a formación de biopelículas en A. baumannii 

resultaron diferentes en comparación con células libres planctónicas en fase exponencial e 

estacionaria. Confirmouse que os xenes A1S_1507, A1S_3168, A1S_2042, A1S_0302 y 

A1S_0114 que codifican unha proteína de fimbria, una proteína dun pilus, un regulador 

transcripcional, unha proteína hipotética e un transportador de grupos acilo, 

respectivamente, están implicados na capacidade de formación de biopelículas en A. 

baumannii. Ademais, demostrouse que o xene A1S_0114 participa na adherencia a 

superficies bióticas e abióticas, en virulencia e na síntese dun metabolito denominado 

acinetin 505. 

Así mesmo, atopáronse moléculas de sRNAs que se expresan diferencialmente nas 

biopelículas con respecto ás células planctónicas. Entre eles, destacou o sRNA 13573, 

altamente expresado en células sésiles, que resultou estar implicado na formación de 

biopelículas e na adherencia a células eucariotas. 

Neste traballo, descríbense, dúas novas dianas terapéuticas que participan na patoxénese 

de A. baumannii: o xene A1S_0114 e o sRNA 13573. 
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RESUMEN 

Acinetobacter baumannii es un patógeno nosocomial que posee una enorme capacidad de 

adaptarse a condiciones desfavorables, lo que lo convierte en un importante problema de 

salud pública.  

Los perfiles de expresión génica durante la formación de biopelículas en A. baumannii 

resultaron diferentes en comparación con células libres planctónicas en fase exponencial 

y estacionaria. Se confirmó que los genes A1S_1507, A1S_3168, A1S_2042, A1S_0302 

y A1S_0114 que codifican una proteína de fimbria, una proteína de un pilus, un regulador 

transcripcional, una proteína hipotética y un transportador de grupos acilo, 

respectivamente, están implicados en la capacidad de formación de biopelículas en A. 

baumannii. Además, se demostró que el gen A1S_0114 participa en la adherencia a 

superficies bióticas y abióticas, en virulencia y en la síntesis de un metabolito 

denominado acinetin 505. 

Asimismo, se encontraron moléculas de sRNAs que se expresan diferencialmente en las 

biopelículas con respecto a las células planctónicas. Entre ellos, destacó el sRNA 13573, 

altamente expresado en células sésiles, que resultó estar implicado en formación de 

biopelículas y en la adherencia a células eucariotas. 

En este trabajo, se describen, dos nuevas dianas terapéuticas que participan en la 

patogénesis de A. baumannii: el gen A1S_0114 y el sRNA 13573. 
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ABSTRACT 

Acinetobacter baumannii is a nosocomial pathogen with a notable ability to adapt to 

stress conditions and develop resistance to multiple antimicrobial compounds, becoming 

a remarkable public health problem.  

Gene expression during biofilm formation in A. baumannii showed different profiles 

compared to planktonic cells in exponential and stationary phase of growth. We could 

confirm that genes A1S_1507, A1S_3168, A1S_2042, A1S_0302 y A1S_0114 coding a 

fimbrial protein, a pilus assembly protein, a transcriptional regulator, a hypothetical 

protein and an acyl-carrier protein, respectively, are involved in biofilm formation ability 

of A. baumannii. Furthermore, the A1S_0114 gene showed to play a role in attachment to 

biotic and abiotic surfaces, in virulence, and in the biosynthesis of a metabolite named as 

acinetin 505. 

Moreover, an important number of sRNAs differentially expressed in biofilm associated 

cells compared to planktonic cells were determined. Among them, the 13575 sRNA, 

highly expressed in biofilm, resulted to be involved in biofilm formation and in adherence 

to eukaryotic cells. 

In the present work, two new therapeutic targets involved in the pathogenesis of A. 

baumannii are described: the A1S_0114 gen and the 13573 sRNA. 
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According to World Health Organization, infectious diseases are responsible of almost 

30% of the 56 million deaths estimated per year worldwide (1). By the end of World War 

II, it was thought that microbial infections were under control due to the discovery and 

mass-production of penicillin and the efficiency of vaccines available (2). Since then, the 

access to potent and safe antimicrobial agents reduced the morbidity and mortality 

associated with formerly fatal diseases (3).  

However, nowadays some infectious diseases are considered as a remarkable public 

health problem, both in developing and developed countries. The misuse of antibiotics 

has been associated with the adaptation of bacteria to these drugs and the subsequent 

emergence of multidrug resistant (MDR) strains. This fact is especially dangerous in 

hospital environments, wherein patients with compromised immune system are 

particularly vulnerable to infectious diseases. About a million people acquire some type 

of nosocomial infection in the United States every year and 75,000 die as a result (4). The 

growing number of antimicrobial-resistant pathogens, which are associated with 

nosocomial infection, suppose a significant burden on healthcare systems and have 

important economic costs (5). 

The pathogens that currently cause the majority of hospital infections and effectively 

avoid the action of antibacterial drugs are known as “ESKAPE” pathogens. This group is 

formed by Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 

Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species (3). 

Increasing rates of infection due to methicillin-resistant S. aureus, vancomycin-resistant 

E. faecium and pandrug resistant (PDR) Gram-negative pathogens such as Acinetobacter 

species or P. aeruginosa, leaves clinicians without therapeutic options being forced to use 

previously discarded drugs, such as colistin. Although this antibiotic causes 

nephrotoxicity, it is considered a last-line therapeutic option for infections caused by 

MDR A. baumannii (6, 7). The absence of new compounds effective against these 

pathogens would have a terrible effect on public health. Thus, it is necessary to find new 

targets that would allow us to design new therapeutic tools for treating infections caused 

by MDR bacteria. 
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1.1. Genus Acinetobacter 

Acinetobacter is a genus of Gram-negative bacteria belonging to the family 

Moraxellaceae within the order of Gammaproteobacteria. It comprises strictly aerobic, 

non-fermenting, non-motile, catalase-positive, oxidase-negative organisms with a DNA 

G+C content of 39% to 47%. The cells are 1.5 µm in length, with a shape varying from 

coccoid to coccobacillary (8). Members of this genus are considered ubiquitous 

organisms and can be recovered from different kind of samples of soil and water. Most 

Acinetobacter strains are metabolically versatile and able to grow in a simple mineral 

medium. Many species of this genus have also been recovered from human clinical 

specimens and have some significance as human pathogens considering that they cause a 

number of nosocomial infections (9, 10). 

The first organism of this genus was described in 1911 by Beijerinck, who named it as 

Micrococcus calco-aceticus, and it was isolated from soil by enrichment in a  calcium-

acetate-containing minimal medium (11). Since then, members of the genus have been 

classified under a variety of different names till 1954, when Brisou and Prévot proposed 

the current designation (12). However, when Baumann et al. published their 

comprehensive study based on nutritional and biochemical properties, this classification 

became more widely accepted (13). One of the biggest improvements on the history of 

this genus was in 1986, when Bouver and Grimont distinguished 12 genospecies based on 

DNA-DNA hybridization studies (14). Currently, the genus comprises 56 species with 

valid names (http://www.bacterio.net/acinetobacter.html, last accessed May 2018). 

Six of these species, including A. baumannii, A. calcoaceticus, A. nosocomialis, A. pittii, 

A. seifertii and A. dijkshoorniae, are very closely related and difficult to distinguish by 

phenotypic properties so it has been proposed to refer to these species as the A. 

calcoaceticus-A. baumannii complex (ACB). Indeed, taxonomic studies based on DNA-

DNA hybridization, as well as comparison of housekeeping gene sequences or genome-

wide analysis, demonstrated that the ACB complex represents a phylogenetically well-

defined subgroup within the genus (15-18). This group of organisms comprises the most 

clinically relevant species that have been implicated in the majority of both community 

acquired and nosocomial infections caused by these pathogens (9). 

http://www.bacterio.net/acinetobacter.html
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Acinetobacter spp. are among the most frequent causes of hospital-acquired bacterial 

infections, being considered responsible for 2-10% of all Gram-negative hospital 

infections (19). Furthermore, the incidence of infection due to MDR strains of this genus 

continues to increase globally (6). They have been involved in a wide range of infections, 

particularly in critically-ill patients with impaired host defences, including pneumonia, 

skin and soft-tissue infections, wound infections, urinary tract infections, meningitis, and 

bloodstream infections (20).  

The most important human pathogen of this group is A. baumannii, which is often 

encountered in intensive care units and in long-term care facilities (21). As mentioned 

above, it has been classified by the IDSA (Infectious Diseases Society of America) as one 

of the six most important multidrug resistant microorganisms in hospitals worldwide (6). 

 

1.2. Acinetobacter baumannii 

 

A. baumannii is a non-fermentative, 

oxidase-negative, non-flagellated Gram-

negative coccobacillus. It is commonly 

isolated from medical environments and 

equipment, medical personnel, and 

hospitalized patients. This 

microorganism is considered as highly 

prevalent in nature and as well as a 

common component of human flora. 

However, A. baumannii is not a 

ubiquitous organism and strains from this species are mainly isolated from medical 

environments and hospitalized patients (22, 23). The ability of A. baumannii to resist 

desiccation and persist on hospital environments together with the facility to develop 

resistance to multiple antimicrobial agents were the main causes of the emergence of this 

bacterium as a relevant human pathogen (24). 

Figure 1. SEM image of A. baumannii ATCC 17978. 

50000x 
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Multiple studies indicate that A. baumannii intrinsically has a higher virulence potential 

than other Acinetobacter spp. Peleg et al. showed that A. baumannii strains were more 

letal to the wax moth larva of Galleria mellonella than strains of A. baylyi and A. lwoffii 

(25). In a different study, all the strains of A. baumannii tested were lethal in neutropenic 

mice, unlike A. junii, which was nonlethal (26). Comparison of clinical outcomes in 

patients infected with A. nosocomialis, A. pittii and A.baumannii resulted in a nearly 9-

fold reduction in mortality in non-baumannii species compared to A. baumannii. Similar 

results were found using a G. mellonella model (27). 

 

1.2.1. Clinical relevance 

A. baumannii causes a wide variety of infections. Most of the cases involve the 

respiratory tract, although bacteraemia, urinary tract infections, endocarditis, meningitis, 

and wound infection may also occur (28). A study performed in Spain in 2010 showed 

that the predominant type of infection caused by this pathogen was pneumonia (38.4%), 

followed by skin infection (20.5%), tracheobronchitis (9.9%), urinary tract infection 

(9.9%), and intraabdominal infection (9.9%) (24). Infections are more common in 

patients suffering from an underlying disease or who have undergone major surgical 

problems. A. baumannii can easily enter the body through open wounds, intravascular 

catheters and mechanical ventilators, which facilitate the establishment of an infection 

(19). 

Hospital-acquired pneumonia occurs most typically in patients receiving mechanical 

ventilation in the intensive care setting. The crude mortality of ventilator-associated 

pneumonia caused by A. baumannii has been reported to be between 40% and 70% (29-

31), although it is controversial whether this mortality is directly attributable to this 

pathogen. However, several studies have concluded that nosocomial infection caused by 

A. baumannii is associated with increased attributable mortality (32, 33). 

 Mortality associated to severe A. baumannii infection is significantly high, especially 

when the isolate is resistant to carbapenems. Crude mortality for carbapenem-resistant A. 

baumannii infections ranges from 16 to 76% (34). In addition to clinical complications, 

the emergence of drug resistance has also resulted in an additional economic burden on 
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health systems (23). Risk factors contributing to mortality in patients with carbapenem-

resistant A. baumannii bloodstream infections include the severity of illness, underlying 

malignancy, presence of a catheter, intubation, history of transplant, higher age, septic 

shock, concurrent pneumonia, inappropriate antimicrobial therapy, prolonged ICU stay, 

and renal failure (35-37). 

A. baumannii is responsible for occasional sudden outbreaks that are difficult to control 

(38, 39). The local circumstances of clinical units and their environment determine the 

type of infection and the consequent risk of dissemination, which could cause an outbreak 

(40). Such outbreaks may be a reflection of the extreme pressure conditions that hospital 

emergency units have, leading to breakdowns in infection control procedures and to the 

epidemic spread of A. baumannii (19). 

Less commonly, A. baumannii may cause community-acquired infections, including 

pneumonia and bacteraemia. These type of infections are usually associated with alcohol 

abuse, diabetes, cancer or bronchopulmonary disease and mortality rates can be as high as 

60% (19, 20). A. baumannii has been also associated with infections subsequent to 

injuries in conflict areas, as Iraq or Afghanistan, or following natural disasters (40).  

 

1.2.2. Antibiotic resistance 

Multidrug resistant A. baumannii is recognized to be one of the most difficult 

antimicrobial resistant Gram-negative bacilli to control and treat. Aside from a big 

resistance island in its genome, A. baumannii has the capacity to rapidly acquire 

additional resistance genes from other bacterial species (41). This genetic plasticity 

allows this microorganism to adapt to stressful conditions and to develop antibiotic 

resistance, which may evolve into a multirresistant pattern following the acquisition of 

different resistance mechanisms (20, 42). The rapid global emergence of A. baumannii 

strains resistant to all β-lactams, including carbapenems, illustrates the potential of this 

organism to respond quickly to changes under selective environmental pressure (9). 

Reports describing infections caused by PDR strains that are resistant to all clinically 

used antibiotics are specially alarming and represent a challenge for clinicians treating 

infections caused by these strains (43-45). 
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Thanks to advances in sequencing and computational techniques, genomic comparative 

analyses of different strains have revealed the ability of A. baumannii to acquire genetic 

material that contributes to the pathobiology of the bacteria (23). The major resistance 

mechanisms that have been identified in A. baumannii are summarized in Table 1. 

Table 1. Major mechanisms of antimicrobial resistance in Acinetobacter baumannii. 

Antimicrobial 

agent 

Resistance mechanism Protein References 

β-Lactams Inactivating enzymes AmpC, CTX-M, OXA-23, 

-40, -51, NDM, VIM, IMP 

(46-52) 

 Decreased outer 

membrane protein 

expression 

CarO, Omp33-36 (53-55) 

 Efflux pumps AdeABC (56) 

 Altered penicillin-

binding protein 

 

PBP2 (57) 

Fluoroquinolones Target modification GyrA, ParC (58) 

 Efflux pumps 

 

AdeABC, AdeFGH (58, 59) 

Aminoglycosides Aminoglycoside 

modifying enzymes 

AAC, ANT, APH (60-62) 

 Ribosomal 

methylation 

ArmA (63, 64) 

 Efflux pumps 

 

AdeABC (65) 

Tetracyclines Ribosomal protection TetM (66) 

 Efflux pumps 

 

AdeABC, TetA, TetB (67) 

Rifampicin Target modification 

 

RpoB (68) 

Colistin Target modification 

 

PmrCAB (69) 

 

The most prevalent mechanism of β-lactam resistance is the enzymatic degradation by β-

lactamases. As penicillins, cephalosporins, and carbapenemes are included in the 

preferential treatments for many infectious diseases, the presence of these enzymes play a 

critical role in the selection of appropriate therapy (70). Most of A. baumannii clinical 

isolates are now resistant to cephalosporins, including those of third- and fourth-
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generation. The mechanism most frequently associated with resistance to cephalosporins 

is the over-expression of the chromosomal cephalosporinase AmpC (or ADC, 

Acinetobacter-derived cephalosporinase), related to the presence of the insertion sequence 

ISAba1 upstream of the gene (46, 71).  

In the recent past, carbapenems used to be the most adequate antibacterial agent used to 

treat A. baumannii infections. However, the resistance to these compounds has been 

recently reported with increasing frequency. The most significant mechanism of 

carbapenem resistance is the production of carbapenemases. These enzymes are β-

lactamases  that can be sorted into class A, B, C, or D, following Ambler classification 

(72), being the class D carbapenemases the most frequently found (73). Several 

phylogenetic subgroups of class B β-lactamases have been identified, including the 

chromosomally encoded and naturally produced OXA-51/69 and five clusters of acquired 

carbapenemases (OXA-23, -40, -58, -143, and -235) (74). Non-OXA carbapenemases 

have also been acquired by A. baumannii, such as NDM-1, that has been detected 

worldwide since 2011 (75). Furthermore, the production of TEM-1, a class A β-lactamase 

unable to hydrolyse carbapenems, has been associated with resistance to sulbactam, a β-

lactamase inhibitor used to mitigate the hydrolysis of ampicillin or cefoperazone by class 

A β-lactamases (76). 

β-Lactam resistance has also been attributed to nonenzymatic mechanisms (9). Thereby, 

changes in outer membrane proteins (OMPs) reduce the transport into the periplasmic 

space, limiting the access to penicillin-binding proteins (PBPs) and leading to resistance 

to these compounds (77). For example, the decreased expression of the outer membrane 

porin Omp33-36 and the loss of the porin CarO have been associated with carbapenem 

resistance (53, 54).  

The natural role of efflux pumps is to remove chemicals that could damage the 

membrane, but they have also the ability to expel a wide variety of antibiotics (77). The 

genome of a multidrug-resistant A. baumannii encodes also a wide variety of multidrug 

efflux systems (61), being the AdeABC a major mechanism of resistance with a broad 

substrate affinity that includes β-lactams, aminoglycosides, erythromycin, 

chloramphenicol, tetracyclines, fluoroquinolones, trimethoprim, or ethidium bromide (9, 

78). 
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The presence of genes coding for aminoglycoside-modifying enzymes is highly-prevalent 

in multidrug resistant A. baumannii strains where different classes of enzymes have been 

described, such as acetyltranferases, nucleotidyltransferases, and phosphotransferases 

(60). Another aminoglycoside resistance mechanism is the production of 16S ribosomal 

RNA methyltransferases that protects the 16S rRNA through the methylation of a guanine 

residue in the aminoglycoside-binding site (79). 

Also, single amino acid changes in proteins that are targets of different compounds may 

be responsible of a higher resistance profile. Thus, modifications in RpoB, GyrA and 

PmrCAB proteins cause resistance to rifampicin, fluoroquinolones or colistin, 

respectively, in A. baumannii (68, 69, 80). 

 

1.2.3. Pathogenicity and virulence factors 

A. baumannii has a unique ability in surviving in the hospital environment and in 

developing resistance to antibiotics, leading to troublesome hospital outbreaks and 

therapeutic challenges (81). New advances in genetics and molecular biology, such as 

genomic analyses, elaboration of gene knockout mutant strains, or transposon mutant 

libraries, have facilitated our understanding of its physiology and allow us to identify 

different virulence factors (82).  

The success of A. baumannii can be attributed to several factors such as its ability to form 

biofilm and its resistance to desiccation on abiotic surfaces. Biofilms are sessile 

communities formed by cells embedded in an extracellular matrix that confers resistance 

to numerous antimicrobial agents and products of the immune system (83). Thus, 

organisms that are able to grow in this sessile lifestyle are extremely difficult to eradicate. 

Furthermore, under desiccation conditions, A. baumannii undergoes morphological 

changes, such as thicker cell walls, that contribute to its persistence on solid surfaces (84). 

Ethanol also enhances the growth of the bacteria under high concentrations of salts, which 

increases the virulence of A. baumannii (85, 86). The ability of A. baumannii to adhere to 

host cells is also an important virulence factor since it is considered the initial step of the 

colonization and subsequent infection processes (87). Despite the etymology of the term 
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Acinetobacter (a-kineto, nonmotile), motility has been reported several years ago in this 

genus and it has been related to virulence although its role remains unclear (88, 89). 

 

1.2.3.1. Attachment and biofilm formation 

Bacteria have the ability to adhere to solid surfaces leading to a slippery coat. This mode 

of existence constitute a major component of the bacterial biomass in many different 

conditions (90). This biofilm is a structured consortium of bacteria embedded in a self-

produced polymer matrix consisting of polysaccharides, proteins and extracellular DNA 

(91). Biofilms are complex structures and constitute a protected mode of growth for 

bacteria that allows them to survive in a hostile environment. These sessile communities 

can promote the multiplication and dispersion of non-sessile individuals (83).  

 

Figure 2. Biofilm formation steps. Modified from Coughlan et al. 2016 (92). 

The process of biofilm formation is dynamic and complex and involves three stages 

(Figure 2). The first stage initiates with reversible attachment of bacteria to a favourable 

surface. Attachment occurs seconds after the bacterial cells detect the required 

environmental signals (93). During the maturation stage (second stage) the cell aggregates 

begin to grow in layers in a three-dimensional manner (94). This stage is mostly 

characterized by cell-to-cell interactions and the formation of important surface 

components that contribute to the structure of the biofilm (93). The third stage consists of 

detachment and dispersion. At this final step, sessile communities can give rise to 

planktonic bacteria that are able to rapidly multiply and disperse to colonize new surfaces. 
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The nutritional status of the environment usually dictates bacterial behaviour, including 

the biofilm dispersal response (95, 96). 

Bacteria embedded in biofilms exhibit a set of properties that differ substantially from 

free-living bacteria, mainly due to the structural and functional characteristics of the 

matrix that protects them (97). Bacterial biofilms are resistant to antibiotics, to 

disinfectant chemicals, to phagocytosis and to other components of the innate and 

adaptive inflammatory defense system of the host (91). Thus, a high number of chronic 

bacterial infections involve bacterial biofilms, which are not easily eradicated by 

conventional antibiotic therapy. Biofilm infections share clinical characteristics: biofilms 

grow slowly and symptoms associated with the infection show up late, sessile bacterial 

cells release antigens and stimulate the production of antibodies, but even in healthy 

individuals biofilm infections are rarely resolved by the host defense mechanisms (83). 

A. baumannii has a remarkable capacity to attach and adhere to medical devices, such as 

catheters, respiratory equipment, environmental surfaces, and has a notable ability to 

colonize both biotic and abiotic surfaces forming biofilms (98). Adherence to host cells 

represents the initial step of colonization or infection. Such capacity is in accordance with 

the reported ability of some strains to survive for a long time on abiotic surfaces under 

desiccation conditions (99).  

The adherence of A. baumannii to biotic and abiotic surfaces usually results in biofilm 

formation which, in turn, is related with persistence in medical environments and 

antimicrobial resistance, causing disease (23). Adherence and biofilm formation to both 

abiotic and biotic surfaces have showed a high variability among different strains (100, 

101). Furthermore, there are significant variations in the cell density and biofilm 

structures formed on these surfaces depending on the strains (101). These variations may 

be influenced by common factors such as nutrient availability, bacterial surface 

components, quorum sensing abilities, and regulatory networks (102). Growth 

temperature and concentration of extracellular free iron also affect the amount of biofilm 

formed on abiotic surfaces, as well as the presence of blue light and ethanol (86, 87, 103, 

104). 

Nowadays, a number of genes have been reported to play a role in adherence and biofilm 

formation on abiotic and biotic surfaces. However, there seems to be no direct correlation 



Introduction 

 

37 
 

between adhesion on host cells and biofilm formation on abiotic surfaces (98). A study 

comparing the ability to adhere to eukaryotic cells and to form biofilms of different 

strains reported that there is not a clear relationship between these two abilities (100).  

 Type I pili 

Type I pili are one of the most common protein structures present on the pathogen 

surfaces, playing a major role in adherence and/or biofilm formation of Gram-negative 

bacteria (105). One example is the csuE gene, which truncation causes a decrease in 

biofilm formation but does not affect the ability of the mutant strain to adhere to 

bronchial epithelial cells (106). This gene is part of the operon csuA/BABCDE, that 

encodes an usher-chaperone assembly system and mediates pilus production required for 

the initial steps of bacterial attachment on abiotic surfaces in A. baumannii ATCC 19606
T
 

(107). This operon is controlled by a two-component regulatory system that includes a 

sensor kinase encoded by the bfmS gene and a response regulator encoded by the bfmR 

gene. Inactivation of bfmR resulted in abolition of the whole operon expression, no pili 

production and loss of biofilm formation on plastic (108). Accordingly, experiments 

performed with a bfmS knockout strain showed that this sensor kinase mediates not only 

biofilm formation, but also adherence to biotic surfaces, serum resistance, and antibiotic 

susceptibility (109). 

Another type I pilus was found in the A. baumannii MAR002 clinical strain. This pilus 

showed to by encoded by the operon LH92_11070-11085, playing a role in biofilm 

formation and attachment to eukaryotic cells. The inactivation of the major subunit of this 

system, encoded by the LH92_11085 gene, significantly reduced bacterial attachment to 

human alveolar cells and biofilm formation on plastic surfaces (110). This gen, 

homologue to A1S_2091 from A. baumannii ATCC 17978, was described as one of the 

most abundant proteins present in the pellicle matrix of different clinical strains, together 

with proteins CsuA/B (111). The subunit encoded by the A1S_1510 gene, which is part of 

the fimbrial operon A1S_1510-1507, was also abundant in the pellicle samples (111). 

Taken together these data suggest that the above mentioned pili systems are essential for 

biofilm formation. 
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 Type V secretion systems 

The type V secretion systems encompasses the autotransporter proteins, the two-partner 

secretion system (TPS) and the type Vc family proteins. It has been reported that the TPS 

pathway mediates the translocation across the outer membrane of large effector proteins 

involved in interactions between the pathogens and their hosts (112). However, most of 

the autotransporter proteins remain to be characterized (113).  

The autotransporter Ata, a surface protein in the adhesion ability of A. baumannii, is 

critical for biofilm formation since its deletion resulted in a lower biofilm production 

(114). This protein also mediates the adhesion of bacterial cells to collagen type IV of 

eukaryotic cells, being demonstrated its role in virulence since mice infected with A. 

baumannii ATCC 17978 wild type strain resulted in higher levels of mortality than those 

mice infected with the ata-negative strains (114). 

The TPS AbFhaB/FhaC of A. baumannii AbH12O-A2 clinical strain was reported to be 

involved in adhesion since the inactivation of this system significantly decreased bacterial 

attachment to human alveolar cells. Moreover, the TPS AbFhaB/FhaC is implicated in 

fibronectin-mediated adherence and plays a role in A. baumannii virulence (115).  

 Membrane-associated proteins 

The bacterial adhesin Bap (biofilm-associated protein) was identified by Loehfelm et al. 

as an important factor for the development of mature biofilm structures (116). 

Transposon-mediated inactivation of bap gene leaded to a remarkable decrease in the 

biofilm thickness produced by the clinical strain A. baumannii 307-0294 (116). A 

different study proved that biofilm formation on abiotic surfaces by A. baumannii strains 

is inhibited using a Bap-specific antibody, confirming that this protein is expressed at the 

cell surface and that it is associated with biofilm formation (117). Bap has also been 

described as a surface structure involved in adherence to human bronchial epithelial cells 

and neonatal keratinocytes (118). 

One of the most abundant porins in the outer membrane, OmpA, has been described as 

implicated in attachment to plastic and in the interaction with human epithelial cells and 

Candida albicans filaments (119-121). In A. baumannii, OmpA is a well-characterized 

virulence factor as it has been shown to induce apoptosis in human epithelial cells, to 
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promote invasion of epithelial cells by interacting with fibronectin and to be necessary for 

persistence of the bacteria in the mouse lung (122-124). Furthermore, OmpA is involved 

in antimicrobial resistance and its disruption decreases the minimal inhibitory 

concentrations (MICs) of several antibiotics (125). 

 Surface polysaccharides 

Exopolysaccharides, apart from surface proteins, form a key component of A. baumannii 

biofilms. Poly-β-(1-6)-N-acetylglucosamine (PNAG) is the major polysaccharide polymer 

and it is synthesized by proteins encoded by the pgaABCD locus (126). Although the 

deletion of this locus has no effect on biofilm formation under static conditions, very 

striking differences were observed when cultures were grown with vigorous shaking, 

suggesting that PNAG may be essential for maintaining the integrity of the biofilm (126). 

PNAG has also been described as a virulence factor that protects bacteria against innate 

host defenses (102, 126). 

 Quorum sensing 

Cell population density is a mechanism used for bacteria to control adherence and biofilm 

formation (23). Quorum sensing is an important global regulatory system in bacteria that 

provides mechanism to coordinate the behaviour of individual bacteria in a population. In 

Gram-negative species, acyl-homoserine lactones (AHLs) are mainly employed as 

signalling molecules able to control biofilm formation (127). Luo et al. (128) showed that 

A. baumannii ATCC 19606
T
 cells cultured in the presence of N-Hexanoyl-L-homoserine 

lactone over-expressed the csuA/BABCDE genes and had higher biofilm densities than the 

control strain. Accordingly, the addition of a quorum quenching lactonase, an enzyme 

that degrades AHL, caused the disruption of biofilm formation in A. baumannii S1 strain 

(129). 

An autoinducer synthase coded by abaI gene was proved to be responsible for the 

production of AHL in A. nosocomialis strain M2 (130). The deletion of the above 

mentioned gene caused a decrease in the ability to form biofilm in the mutant strain 

compared to the wild type strain. Furthermore, the addition of ethyl acetate extract from 

wild type cells restored the capacity of the mutant strain to form normal biofilms, 

suggesting that this biofilm defect was due to a loss of AHL signal (130). 
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The production of AbaI-dependent AHL activated the transcription of A1S_0112-

A1S_0118 genes in A. nosocomialis strain M2 (131). This set of genes, along with 

A1S_0119, was predicted to be involved in the biosynthesis of a secondary metabolite 

(105, 131). Insertions in genes A1S_0112 and A1S_0115 in A. baumannii 17978hm made 

this strain unable to form pellicle, a specialised type of biofilm localised at the interface 

between air and liquid (132). 

 Environmental factors 

Different cues as temperature, light or concentration of extracellular free iron are relevant 

for the interaction of A. baumannii with the host and also affect the amount of biofilm 

formed (23). Blue light modulates biofilm and pellicle formation through blsA gene, 

which codes for a protein that carries a blue-light-sensing-using flavin domain and is an 

active photoreceptor protein (104). While the incubation of A. baumannii ATCC 17978 

for 4 days in LB at 24°C under blue light produced no biofilm on glass tube, this strain 

formed biofilm on the tube walls as well as pellicles when incubated under the same 

conditions in darkness (104).  

Other culture conditions as temperature, shaking or the surface material may vary the 

amount of biofilm formed by a strain, as Tomaras et al. reported (107). Thus, A. 

baumannii ATCC 19606
T
 formed more biofilm at 30°C than at 37°C, under stagnant 

conditions and in polystyrene or polypropylene tubes than in borosilicate ones (107). A 

recent study indicated that even though A. baumannii has the ability to form biofilm on 

different materials such as glass, porcelain, stainless steel, rubber, polycarbonate or 

polypropylene, the amount of biofilm formed varied significantly being polycarbonate the 

surface wherein more biofilm was developed (133). 

 

1.2.3.2. Motility 

The lack of flagellar genes in A. baumannii resulted in the assumption that this 

microorganism is unable to move or at least to show swarming motility, which is 

mediated by flagella (102). However, A. baumannii spreads rapidly over surfaces, 

probably due to twitching, and displays differential motility in response to different 
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factors (23). Movement on the surface of semi-solid media diminishes as the 

concentration of agar or agarose increases as well as different types of agar affect the 

motility response (101, 131, 134). Furthermore, different strains display different motility 

patterns and not all strains move on semi-solid surfaces (101, 131). Although the type of 

motility displayed by A. baumannii has not been fully elucidated, previous studies suggest 

that it may vary in response to illumination, quorum sensing or other factors (23, 104, 

131). 

 Type IV pili 

The type IV pili (TFP) are organelles with polymeric 

organization that extend several micrometres from the 

cell body (135). Due to their ability to assemble and 

disassemble rapidly, TFP participate in processes such 

as natural transformation, twitching motility, and 

adherence to abiotic and biotic surfaces (136). By 

cycles of polymerization, surfaces adhesion, and 

retraction, TFP pull the cell body along surfaces 

mediating twitching motility (Figure 3) (135). Thus, an 

insertion in pilT, coding for an ATPase required for the 

retraction of the TFP, impaired surface motility of A. 

nosocomialis strain M2 (131). Furthermore, pilA, pilD, 

and pilT mutants of this strain lost their ability to be 

naturally transformable and did not exhibit twitching 

motility (136). The major fimbrial subunit, PilA, is 

highly variable among A. baumannii strains and these 

differences are correlated with their motility abilities (100). 

 Lipopolysaccharide and exopolysaccharide 

Production of lipopolysaccharide and exopolysaccharide is required for motility in many 

Gram-negative bacteria. Mutations in genes involved in their synthesis may cause a 

decrease in motility (137-139). In A. baumannii 307-0294 strain the motility phenotype is 

affected by the activity of the glycosyltransferase LpsB (140), as well as by the protein 

tyrosine kinase PTK and the polysaccharide export outer membrane protein EpsA, 

Figure 3. The type IV pili pulls the 

cell body along surfaces by cycles of 

polymerization, surface adhesion, 

and retraction. Modified from Maier 

and Wong. 2015  (135). 
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required for capsule polymerization and assembly (141). Mutant strains harbouring 

transposon insertions in lpsB, epsA, and ptk resulted in a reduction in motility. These 

strains were capable of some motility but their movement was significantly diminished 

and the pattern varied from the wild type strain (142). Furthermore, the presence of 

Congo red in the medium, a dye that inhibits the production of exopolysaccharide, 

produced a wide variety of changes in motility of several A. baumannii strains (142). 

 Quorum sensing 

Several bacterial pathogens utilize quorum sensing cell communication to coordinate 

multiple virulence factors, such as motility, once a population size threshold is reached 

(143). Accordingly, the addition of a non-native AHL enhances twitching motility in A. 

baumannii ATCC 19606
T
 strain (128). Furthermore, the loss of the autoinducer synthase 

AbaI, present in different strains of A. baumannii and A. nosocomialis strain M2, cause 

decrease in motility and the phenotype is restored when exogenous AHL is added (131). 

The altered expression of genes regulated by the AbaI quorum-sensing pathway results 

also in deficiencies in the motility pattern. Insertions in genes A1S_0112, A1S_0113 and 

A1S_0115, which are up-regulated by quorum sensing, cause non-motile phenotypes 

(131, 132). 

The intercellular communication mediated by AHL requires protein receptors. This role 

seems to be played by AbaR in A. baumannii, a LuxR-type receptor that activates the 

transcription of QS target genes (144). Some non-native AHLs act as AbaR antagonists 

inhibiting A. baumannii motility (145). Furthermore, the presence of AidA, a hydrolase 

enzyme with quorum quenching activity, was recently related with a non-motile 

phenotype in several A. baumannii strains (146). 

 Environmental factors 

Motility is dependent upon different environmental signals that may vary its pattern 

(142). Light is a ubiquitous cue that may cause physiological changes in many organisms. 

Due to the production of light-sensing photoreceptors, different bacteria are able to detect 

and respond to light (104). Thereby, while A. baumannii ATCC 17978 cells grew only 

around the inoculation point in the presence of blue light, bacteria moved away from the 
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inoculation site covering almost half of the surface when motility plates were incubated in 

darkness (104). 

Motility phenotype is dependent upon the medium richness, and extracellular stressful 

conditions applied to the bacteria can alter them (142). Accordingly, the addition of a sub-

inhibitory concentration of antibiotics such as ampicillin and kanamycin or the 

disinfecting agent triclosan reduced the motility of different isolates of A. baumannii 

(142). Other stressful conditions, as an increased osmolarity or the addition of 1% ethanol 

reduced motility of all strains (142). 

 

1.2.3.3. Iron acquisition 

Competition for iron by potential pathogens is essential to establish an infection. 

Although iron is one of the most abundant elements in environmental and biological 

systems, ferric iron is not readily available for bacteria either in the environment or in the 

human host due to its low solubility under aerobic conditions and its chelation by 

compounds as heme, lactoferrin and transferrin (147). This micronutrient plays an 

essential role in diverse cellular processes such as electron transport, nucleic acid 

biosynthesis, and protection from free radicals (148).  

Bacteria can survive and divide under iron-limiting conditions by exploiting different 

strategies for high-affinity iron acquisition, including production of siderophores, ferric 

iron chelators that are released outside cells, uptake of exogenous chelators, as heme and 

heterologous siderophores, and acquisition of ferrous iron (102). Low free-iron 

concentration in host organisms is used by pathogens as a stimulus to express not only 

iron-acquisition systems, but genes coding for virulence factors, such as hemolysins, 

toxins and proteases (149). 

 Siderophores 

Siderophores are low molecular weight compounds with high affinity for iron. Once they 

are secreted from the cell and sequester ferric iron from the extracellular environment, 

siderophores are transported back into the cell through specific outer membrane receptors 

(150). The best-characterized siderophore in A. baumannii is acinetobactin, which was 



Introduction 

 

44 

 

initially described in the ATCC 19606
T
 strain (151, 152). Impairment of acinetobactin 

biosynthesis and transport in A. baumannii ATCC 19606
T
 affects the virulence of the 

strain, significantly reducing its ability to persist and kill the host in a G. mellonella 

larvae infection model (153). The expression of entA gene, which is essential for the 

biosynthesis of the acinetobactin precursor 2,3-dihydroxybenzoic acid, is also needed for 

the full virulence of the ATCC 19606
T
 strain (154). Furthermore, a study showed that 

acinetobactin production occurred significantly more frequently in clinical isolates 

compared with avirulent isolates of A. baumannii (155). 

Apart from acinetobactin, different gene clusters encoding siderophores, including cluster 

A1S_1647-1657, cluster A1S_2562-2581, cluster orn73-entD, and cluster ABAYE1888-

1889, have been described in several A. baumannii strains (156). Cluster A1S_1647-1657 

is as extended as acinetobactin among A. baumannii strains, being present in all genomes 

analysed except SDF. Cluster A1S_2562-2581 is found in A. baumannii ATCC 17978 

and A. baylyi ADP1 strains. Cluster orn73-entD seems to be present only in strain 8399, 

while cluster ABAYE1888-1889 was studied in all strains except in ATCC 17978 and 

ADP1 (156-158). 

 Other iron-uptake systems 

The production and secretion of siderophores is an energy intensive mechanism of iron 

uptake, but bacteria can adapt to iron limited environment through the expression of a 

range of iron acquisition mechanisms (156). A major route for bacterial iron assimilation 

is the direct uptake of ferrous iron by using the Feo system, which consists of the 

cytosolic FeoA protein, the inner membrane permease FeoB, and the putative 

transcriptional repressor FeoC (159). Sequenced genomes of A. baumannii showed the 

presence of genes encoding for a Feo transport system in these specie (160, 161). 

 A. baumannii also uses heme as an iron source since two clusters encoding functions 

related to heme uptake have been identified (160). The chromosomal cluster annotated as 

A1S_1608-1614 in ATCC 17978 could be involved in the transport of heme from the 

periplasm into the cytoplasm (23). Genes of this putative operon encode two heme-

binding protein A precursors and ABC-type transporter proteins that could be implicated 

in iron acquisition from heme (162). The second cluster, present in ACICU, AB0057 and 

SDF strains, includes an outer membrane receptor gene, the hemO gene involved in 
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oxidative cleavage of heme to release iron, as well as a tonB gene, which is part of a 

protein complex that mediates energy transduction from the inner to the outer membrane 

(160).  

 

1.2.3.4. Other virulence factors 

Multiple virulence factors that promote bacterial colonization and infection of the host are 

required for the pathogenesis of the bacteria (102). Despite extensive research into the 

virulence potential of A. baumannii, little is still known about its pathogenic repertoire. 

Although an increasing number of genomes have been sequenced and phenotypic analysis 

have allowed us to identify of several factors responsible of its pathogenicity, relatively 

few virulence factors have been described to date (147). 

Probably the best-characterized virulence factor of A. baumannii is OmpA (23). OmpA is 

a porin, an outer membrane protein responsible of modulating cellular permeability. As 

previously mentioned, this protein is not only involved in attachment to biotic and abiotic 

surfaces, but also in pathogenesis of this microorganism. Purified OmpA binds to host 

epithelial cells, targets mitochondria, and induces apoptosis (119, 122). The ompA gene 

was shown to be involved in persistence of A. baumannii in the lung, assessed using a 

murine pneumonia model (124), as well as in biofilm formation and surface motility, 

which highlights its role on the pathogenesis of A. baumannii (121, 131). 

The Omp33-36, which acts as a water passage channel, is also associated with A. 

baumannii cytotoxicity. Its deletion reduces adherence and invasion of human lung 

epithelial cells (163). Purified Omp33-36 induces apoptosis and modulates autophagy in 

human cells (164). Decreased expression of genes encoding the porins CarO and OprD-

like are also associated with attenuated virulence in a mouse model (165). 

The cellular envelope is associated with several factors that may contribute to 

pathogenicity in mammalian infection disease models (166). The production of capsular 

polysaccharides occurs in many isolates from patients with A. baumannii infections (167). 

Experiments with capsule-defective mutants have demonstrated the role of capsular 

exopolysaccharide of A. baumannii in virulence in a mouse septicaemia model as well as 
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in a rat soft tissue infection model (141, 168). Capsular polysaccharides are also involved 

in antimicrobial resistance as mutants have lower intrinsic resistance to peptide antibiotics 

(166). In addition, the presence of antibiotics induces hyperproduction of capsular 

polysaccharides which increases virulence in a mouse model of systemic infection (166). 

Lipopolysaccharide is the major component of the outer leaflet of the outer membrane 

and it is an immunostimulatory molecule that plays an important role in bacterial 

resistance to external stressful conditions (169). In A. baumannii, lipopolysaccharide 

plays a major role in virulence and survival of the bacteria as assessed by animal model 

experiments (147). Mutant cells with truncated lipopolysaccharide showed a decreased 

resistance to human serum and a reduced survival rate in a rat model of soft tissue 

infection (140). Furthermore, modification of lipopolysaccharide contributes to resistance 

to many clinical antibiotics, such as colistin (69). 

Some Gram-negative bacterial species secrete outer membrane vesicles (OMVs) during 

bacterial growth. OMVs are 20-200 nm diameter spherical vesicles that have been shown 

to participate in quorum sensing, biofilm formation, gene transfer, and transport of 

virulence factors (170, 171). Pathogen-host interactions may be mediated by OMVs 

through the delivery of diverse virulence factors to the interior of host cells, allowing the 

pathogens to interact with the host without a close contact (172). A study showed that an 

A. baumannii strain that produced abundant OMVs containing virulence factors was able 

to induce more cytotoxicity and stronger innate immune response in host cells (173). Due 

to the importance of OMVs in virulence, these structures have been used as candidates for 

acellular vaccines (171). 

Phospholipases (PLases) are lipolytic enzymes that catalyse the cleavage of phospholipids 

in bacterial membranes and are considered virulence factors in many bacteria. 

Degradation of phospholipids affects the stability of host cell membranes, and may 

interfere in the host immune response (174). According to the cleavage site on their 

substrate, PLases are classified into different groups: carboxyl ester acyl hydrolases, 

PLases C, and PLases D. Carboxyl ester acyl hydrolases include PLase A, PLaseB and 

lysophospholipase A (174). PLases C and D have been described in several pathogenic 

bacteria, playing a role in virulence (175, 176). Disruption of A. baumannii PLase D 

causes a reduction in its ability to thrive in serum, a deficiency in epithelial cell invasion, 
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and diminished pathogenesis in a murine model of pneumonia (177). Accordingly, the 

inactivation of a PLase C gene causes a modest decrease in the cytotoxic effect caused by 

A. baumannii on epithelial cells (178). 

PBPs are commonly involved in resistance to β-lactam antibiotics. However, PBPs 

contribute to bacterial cell stability by participating in the biosynthesis of the 

peptidoglycan layer (23). PBPs are usually classified into high-molecular-mass and low-

molecular mass. High-molecular-mass PBPs enable peptidoglycan polymerization and 

insertion into the cell wall (179). Low-molecular-mass PBPs, such as PBPs 7 and 8, 

contribute to cell separation and peptidoglycan remodelling (180). The inactivation of 

PBPs 7 and 8 caused a significant decrease in the survival of the A. baumannii mutant 

strain in rats’ soft tissue and pneumonia infection models (181). β-Lactamase PER-1 has 

also been suggested to be a virulence factor as several PER-1-producing strains adhered 

to eukaryotic cells while all PER-1-negative strains showed a lack in cell adhesion (182). 

 

1.2.4. Animal models 

Animal models are a necessary tool in order to evaluate novel treatments, characterize the 

host immune response, and identify bacterial virulence factors. The first report describing 

an animal model for A. baumannii infection was published in 1997 (183). Since then, the 

development of new animal models allowed an increase of information available about A. 

baumannii pathogenesis (23). The use of animal models allows researchers to investigate 

human diseases resembling the progression of the infection as occurs in human patients. 

However, it is utopic to hope that laboratory animals can truly reproduce human diseases. 

Performing animal models requires complex facilities to maintain and handle large 

number of animals, thus non-mammalian models have emerged recently as useful tools to 

study microbial pathogenesis (81). Many research teams all over the globe have been 

implementing a simple model system for the host-pathogen interaction assays. 

Accordingly, invertebrate models have become popular as they are less expensive, less 

ethically challenging, and more efficient, as well as they allow the assessment of a larger 

number of bacterial mutant strains than the common murine models in the same 

experiment (184). The most commonly used invertebrate models include the 



Introduction 

 

48 

 

Caenorhabditis elegans worm model, the Drosophila melanogaster fly model, the G. 

mellonella caterpillar model, and the Dictyostelium discoideum amoebic model (81). The 

identification of virulence determinants in a wide range of human pathogenic bacteria 

have been described through the use of these models worldwide (185). 

Non-mammalian models have been used to study A. baumannii pathogenesis since 2004, 

when a C. elegans killing assay was implemented to measure survival of worms after 

exposure to this pathogen with and without ethanol (85). Following this work, C. elegans 

and D. discoideum were used to screen an A. baumannii transposon-generated library for 

isolating mutants with attenuated virulence in presence of ethanol (162). Instead of using 

a killing assay, mutants of this study were tested for the reduction of brood size in C. 

elegans and the inhibition of D. discoideum. A recent study from Vallejo et al. (186) 

showed that the C. elegans fertility model was able to detect virulence differences 

between several A. baumannii strains and the results obtained were validated in a murine 

sepsis model. Furthermore, C. elegans models have been performed not only to examine 

the virulence features of different A. baumannii strains (187-189), but also to study the 

interaction between this pathogen and C. albicans. Therefore, this model can be used to 

investigate the complex dynamics of a polymicrobial infection (190). 

G. mellonella, the larval stage of the wax moth, has also been used as model for infection 

caused by A. baumannii (25). In this model, caterpillars are infected by injecting the 

pathogen into the hemocel of the animal. Peleg et al. showed that the rate of G. 

mellonella killing was dependent on the infection inoculum and on the virulence of the 

strains injected. Furthermore, treatment of lethal A. baumannii infection with proper 

antibiotics prolonged the survival of G. mellonella caterpillars (25). This model has been 

used to evaluate the in vivo efficacy of different treatments against multidrug-resistant A. 

baumannii strains (191, 192). Different proteins that play a role in pathogenesis have also 

been identified using G. mellonella models, such as the acinetobactin-mediated iron 

acquisition system or the proteins involved in the synthesis of 1,3-diaminopropane or 

phospholipase D (153, 193, 194). 

Despite the advantages of non-mammalian models, mammalian infection model systems 

remain the gold standard for pathogenesis-based research. Mammalian models of A. 

baumannii infection allow the characterization of a host response similar to that found in 
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human infections and permit the study of antibiotic regimens for the treatment of 

infections (23).  

Due to the low virulence of most A. baumannii strains in mice, high infection doses are 

required to establish infection. Alternatively, several studies have employed 

immunocompromised mice to facilitate infection or porcine mucin mixed in the 

inoculum, as it protects bacteria from rapid innate immune clearance (23). Although, 

these models may mask host-microbe interactions that are important in determining host 

outcome, they likely expose virulence functions that become relevant in the context of an 

infection (195). 

Lung infection models in small rodents, produced by either intratracheal or intranasal 

inoculation, have been thoroughly reported in A. baumannii since this pathogen mainly 

causes pneumonia (81). Earlier mouse models of pneumonia were performed to test the 

pharmacodynamics properties of various antibiotics where animals were infected through 

intratracheal instillation (183, 196). One of the first studies using intranasal inoculation in 

a murine pneumonia model was carried out to identify the importance of the 

lipopolysaccharide-induced inflammatory response to A. baumannii infection (197). 

The pneumonia model has also been employed for characterizing virulence factors 

involved in respiratory infections. Thus, the role of OmpA on A. baumannii pathogenesis 

was determined infecting C57BL/6 mice intratracheally in order to perform an 

experimental pneumonia model. The bacterial burden in mice infected with an OmpA 

defective strain was significantly lower than in those infected with the wild type strain 

(120). Even though the most of the animal models have employed mice, models using 

other species have also been implemented. Hraiech et al. compared the fitness and lung 

pathogenicity of two isogenic A. baumannii strains in a rat model of pneumonia, 

concluding that mutations in the pmrA gene, related to colistin resistance, lead to a 

reduced virulence (198). 

Animal models for studying soft tissue infection by A. baumannii have also been 

performed. Rat soft tissue infection has proved to be an efficient model to discriminate 

among the differences in virulence abilities of various A. baumannii isolates (199). The 

utilization of mutant strains for challenge in this type of infection model allowed the 

identification of genes essential for growth in vivo (199). Above mentioned studies 
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performing rat soft tissue infections demonstrated that a capsule-positive phenotype and 

an integral lipopolysaccharide are important for in vivo survival of A. baumannii (140, 

141). 

Models of A. baumannii causing sepsis have also been reported recently. Although the 

source of infection, usually intraperitoneal instillation, is an important difference between 

this model and the human disease process, this model has been extensively performed due 

to its easy inoculation, high mortality, and the possibility of measuring bacterial loads in 

multiple organs (23). Several A. baumannii virulence factors, such as the acinetobactin, 

the Omp33-36 or the autotransporter Ata, have been identified through intraperitoneal 

mouse sepsis models (114, 153, 163). Mouse septicemia models have also been employed 

to characterize the efficacy of vaccines and to evaluate the effect of antibiotic resistance 

on virulence and fitness (200, 201). 

 

 

1.3. Small RNAs in bacteria 

Bacteria have specific regulatory molecules for controlling gene expression. RNAs 

transcripts are well-known regulators and their roles cannot be ignored in any organism. 

In bacteria, an important number of these RNA regulators exist as short transcripts (50-

300 nucleotides) that act on independently expressed targets and that are commonly 

referred to as small RNAs (sRNAs) (202). Regulatory RNAs can modulate transcription, 

translation, mRNA stability, and DNA maintenance or silencing through a variety of 

mechanisms, such as changes in RNA conformation, protein binding, base pairing with 

other RNAs, or interactions with DNA (203). 

First sRNA was discovered in 1981. It was 108 nucleotide long, named as RNA I, that 

blocked ColE1 plasmid replication by base pairing with the RNA that is cleaved to 

produce the replication primer (204). This sRNA and some others were identified by gel 

analysis due to their abundance or simply by chance (203). Since 2001, new sRNAs have 

been discovered by systematic computational searches or by direct detection using 

cloning-based techniques or microarrays using probes in intergenic regions (205, 206). 

The availability of bacterial genome sequences have led to the identification of an 
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increasing number of regulatory RNAs. Recent technical advances, including 

multilayered computational searches and deep sequencing, have allowed the prediction of 

hundreds of candidate regulatory RNAs (207, 208). 

Riboswitches, the simplest bacterial RNA regulatory elements, are defined as sequences 

found at the 5’ end region of mRNA, or less frequently at the 3’ end region, that adopt 

different conformations in response to environmental signals that act as ligands (209). 

They usually consists of two parts: the aptamer region, which binds the ligand, and the 

expression platform, which regulates gene expression through alternative RNA structures 

that affect transcription or translation (210). Upon binding of the ligand, the riboswitch 

changes conformation, creating alternative hairpin structures which form or disrupt 

transcriptional terminators or antiterminators, or which occlude or expose ribosome 

binding sites (203). Generally, the riboswitches in Gram-positive bacteria affect 

transcriptional attenuation, while more frequently inhibit translation in Gram-negative 

(211). 

Some sRNAs interact with proteins regulating their activity by sequestering them from 

normal targets, particularly RNA binding proteins, or producing more complex outcomes, 

as the modification of an enzymatic activity (202). Small RNAs that regulate RNA 

binding proteins typically work by mimicry, since those sRNAs contain the protein 

recognition sequence. Noted examples are CsrB and CsrC sRNAs of Escherichia coli, 

which modulate the activity of CsrA, an RNA-binding protein that regulates mRNA 

translation and stability (212). Other sRNAs bind proteins with enzymatic activity, 

inhibiting, activating or modifying their function, such as the E. coli 6S RNA, which 

binds to the housekeeping form of RNA polymerase regulating transcription (213). 

Most characterized sRNAs regulate gene expression by base pairing with mRNAs. Some 

of them, known as cis-encoded sRNAs, have extensive potential for base pairing with 

their target mRNA while trans-encoded sRNAs have more limited complementarity with 

their targets (203). The first group is encoded in cis on the DNA strand opposite the target 

RNA and share extended regions of complete complementarity with their target. 

Regulatory mechanisms employed by these sRNAs encompass transcriptional 

attenuation, inhibition of translation or promotion of RNA degradation or cleavage 

(Figure 4) (214). 
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Figure 4. Cis-encoded sRNAs. Modified form Waters and Storz. 2009 (203). 

Early identified cis-encoded antisense RNAs were found opposite to replication genes of 

plasmids or to transposase genes, controlling maintenance and stability of mobile genetic 

elements (215). Many of these sRNAs are components of type I toxin-antitoxin systems. 

These two-gene elements consist of a stable toxin and an unstable cis-encoded RNA 

antitoxin that base pairs with the toxin mRNA, inhibiting its translation and leading to 

degradation (216). 

Trans-encoded sRNAs consist on a diverse family of short, usually untranslated, 

transcripts that share only limited complementarity with their target mRNAs regulating 

their translation and/or stability (203). Most of them are global regulators of gene 

expression and are often induced in response to stress or inside of host cells (217). In 

contrast to cis-encoded sRNAs, each trans-encoded sRNA typically base pairs with 

multiple mRNAs. Thus, a single sRNA may globally modulate a particular physiological 

response, in the same manner as a transcription factor does, but at a post-transcriptional 

level (203). 

The majority of the regulation mediated by trans-encoded sRNAs blocks gene expression. 

Base pairing between the sRNA and its target mRNA usually leads to repression of 

protein levels through translational inhibition, mRNA degradation, or both (Figure 5) 

(218). However, sRNAs can also activate expression of their target through an anti-

antisense mechanism whereby base pairing of the sRNA disrupts an inhibitory secondary 

structure which sequesters the ribosome binding site (RBS) (219). In many cases, the 

RNA chaperone Hfq is required for trans-encoded sRNA-mediated regulation, 
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presumably to facilitate RNA-RNA interactions due to the limited complementarity 

between the sRNA and the mRNA target (203). 

 

Figure 5. Trans-encoded sRNAs. Modified from Waters and Storz. 2009 (203). 

Recently, an adaptive microbial immune system named Clustered Regularly Interspaced 

Short Palindromic Repeats (CRISPR), has been identified and provides resistance to 

viruses as well as prevent plasmid conjugation in bacteria and Archaea (220). Immunity is 

acquired by integrating short fragments of foreign DNA into CRISPR loci. Following 

transcription and processing of these loci, the CRISPR RNAs guide the CRISPR-

associated (Cas) proteins to invading complementary nucleic acid, which results in target 

interference (221). 

CRISPR-Cas systems are highly diverse, which is probably a result of the dynamic 

selective pressure that is imposed by invading mobile genetic elements (221). CRISPR 

sequences are variable DNA regions which consist of a ~550 bp leader sequence followed 

by series of repeat-spacer units (222). Spacer regions contain sequence homologous not 

only to foreign DNA but also to endogenous chromosomal regions of the bacteria. This 

self-targeting was proposed to lead to a form of autoimmunity, suggesting a role in 

regulation of endogenous gene expression (223). Adjacent to the CRISPR DNA array are 

several Cas genes. Two to six core Cas genes seem to be associated with most CRISPR 

systems (222). 
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The functionality and the role of CRISPR-Cas system are not fully established. It may 

promote bacterial fitness through protection against bacteriophages increase indirectly the 

survival rate and the ability to infect host cells. Alternatively, CRISPR-Cas system might 

have a direct influence by regulating endogenous virulence factors (224). 

 

1.3.1. Regulatory roles of small RNAs 

Bacteria live in between markedly different environments, which require detection, 

integration, and response to different conditions and subsequent realignment of the 

bacterial physiology and metabolism. Signals detected include changes in temperature, 

nutrient availability, or cues from the host and neighbouring bacteria (215). Gene 

expression is regulated at many different levels, beyond transcriptional control at the 

DNA level. Regulatory RNAs are recognized as important factors in many physiological 

and adaptive responses in bacteria (225). Some of them have been identified as previous 

missing links in the regulatory pathways that allow bacteria to sense population density, 

to modulate and to modify cell-surface properties, to fine-tune their metabolism during 

cell growth, and to regulate virulence gene expression (226). 

 

1.3.1.1. Role of small RNAs in biofilm formation 

Biofilm structure protects bacteria from a damaging environment. Biofilm formation is 

one of the most complex physiological processes in bacteria. Thus, the decision-making 

process of bacteria to form biofilm or not should be precisely and dynamically regulated 

in response to environmental changes (227). Although transcriptional regulation is the 

most well studied form of controlling biofilm production, post-transcriptional regulation 

allows bacteria to rapidly adjust to the changing environment. Post-transcriptional 

regulatory mechanisms monitoring biofilm formation include RNA-binding proteins and 

cis- and trans-acting small RNAs (93). 

The c-di-GMP RNA is implicated in controlling several cellular functions including 

virulence, motility, and adhesion, but its principal role consists on modulating the switch 
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that controls the transformation from motile planktonic lifestyle to the sessile biofilm 

state (228). High c-di-GMP levels promote the synthesis of exopolysaccharides, as well 

as the auto-aggregation and the surface adhesion, which locks the cells in a sessile state. 

In contrast, low c-di-GMP concentrations inhibit biofilm formation and the production of 

adhesive surface organelles, stimulating swimming and swarming motility (229). 

One of the best characterized regulatory elements is CsgD, the global transcription factor 

that integrates signals to control biofilm formation in E. coli and Salmonella (93). CsgD 

induces the expression of the csgBAC operon, required for the production of curli 

fimbriae and cellulose, two factors needed for biofilm formation, as well as the 

production of c-di-GMP or the repression of flagellar operons favouring the biofilm-

formation phenotype (230). CsgD can be repressed by several sRNAs, such as OmrA, 

OmrB, GcvB, McaS, and RprA, that respond to various stress conditions (231). The non-

coding RNA McaS disfavours biofilm formation by binding and exerting inverse control 

on csgD and the flhCD operon, the master regulator of flagella expression in E. coli and 

related bacteria (232). In the absence of McaS, csgD upregulation occurs and an increased 

McaS expression activates the synthesis of flhDC (232, 233). However, the McaS-

dependent regulation of biofilm seems to be complex, and also activates PNGA leading to 

a CsgD independent pathway of biofilm formation (233). 

RpoS, the general stress response sigma factor, is activated by the sRNA RprA, which 

targets several branches of the CsgD network in response to environmental cues (234). 

Cell transition into stationary phase activates RprA and subsequently csgD expression 

and curli biosynthesis (234). The non-coding RNAs OmrA and OmrB are induced during 

high osmolarity conditions and their over-expression inhibits curli and cellulose 

production (235). 

Although most regulatory RNAs directly interact with mRNA targets, this is not the only 

mode of action of sRNAs. The above mentioned small RNAs CsrB and CsrC interact 

with the protein CsrA and prevent the latter from binding to several biofilm-relevant 

mRNAs (236). Cells entering into stationary phase induce CsrB and CsrC, which 

sequester and inactivate CsrA. This fact switches from the production of flagella to the 

synthesis of the biofilm matrix component PNAG (237). 
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As described above, biofilm formation and development is an intricate process involving 

finely altered gene expression, requiring complex and well-coordinated regulation. Small 

RNAs can contribute to post-transcriptional regulation and make to rapidly adjust and 

fine-tune gene expression required for the cell during biofilm formation (93).  

 

1.3.1.2. Role of small RNAs in metabolism 

Changes in nutrient abundance trigger major switches in gene expression and require 

coordination of global regulatory networks. These calculations that depend on the kind 

and amount of nutrients usually implicate transcriptional regulators and RNA regulators 

(238). One of them is the previously mentioned Csr (carbon storage regulatory) system, 

which ensures connections between carbon metabolism and other traits in many bacteria. 

In E. coli, CsrA is the repressor that regulates carbon starvation and glycogen 

biosynthesis, biofilm formation, motility, virulence, quorum sensing, and stress response 

system by binding to conserved sequences in its target mRNA that alter their translation 

and/or turnover (237). The sRNAs CsrB and CsrC, antagonize its activity during the 

exponential growth phase and repress metabolic pathways related to the stationary phase 

(212). 

Amino acids may also be used as energy sources by bacteria and the regulation of their 

catabolism may involve sRNA. In Bacillus subtilis, the sRNA Sr1 controls AhrC, a 

transcriptional activator of rocABC and rocDEF (239). These operons encode catabolic 

and transport enzymes required for the use of arginine. Sr1 transcription is stimulated by 

the presence of L-arginine or stationary-phase entrance and it is repressed when sugars 

are used as the energy source (240).  The sRNA GcvB is also involved in the regulation 

of amino acid catabolism. It is induced by high concentrations of glycine and regulates 

oppA and dppA mRNAs, which encode oligopeptide and dipeptide periplasmic binding 

proteins, respectively (241).  

As a nutrient, iron is required for the operation of many important enzymes in central 

metabolism, as well as synthesis processes. The sRNA RyhB of E. coli is a key regulator 

of iron homeostasis that modulates cellular physiology under iron-starvation conditions 

by regulating a large set of genes that primarily encode iron-containing enzymes (242). 
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sRNAs with similar functions have been identified in different Gram-negative species, 

such as PrrF1 and PrrF2 of P. aeruginosa (238). In E. coli and P. aeruginosa, the 

production of sRNA associated with iron assimilation is regulated by the Fur repressor 

(243).  

 

1.3.1.3. Role of small RNAs in virulence 

Pathogenic bacteria possess intricate regulatory networks that temporally control the 

production of virulence factors, and enable bacteria to survive and proliferate after host 

infection. Regulatory RNAs are now recognized as important components of these 

networks (226). Small RNAs have an impact on bacteria pathogenicity as they participate 

in regulation of biofilm formation, motility, and cellular metabolism. Moreover, several 

sRNAs have been identified as regulators of different virulence factors (238). 

Vibrio cholerae pathogenicity as well as its life cycle are considered well studied models 

for the understanding of molecular processes involving virulence gene expression. Two 

sRNAs regulators that affect pathogenicity of V. cholerae are TarA and TarB, both of 

which are controlled by the master virulence regulator ToxT (226). TarA negatively 

regulates the major glucose transporter PtsG (244), whereas TarB down-regulates the 

secreted colonization factor TcpF and the transcription regulator VspR (245, 246). VspR 

modulates the expression of several genes, including dncV, which encodes a di-nucleotide 

cyclase and is required for efficient intestinal colonization (246). A mutant strain lacking 

TarA is compromise for mouse colonization in competition with wild type, suggesting its 

role in the in vivo fitness showed by V. cholerae (244). However, the tarB knockout strain 

outcompetes the parental strain, indicating that TarB is a negative regulator of virulence 

of V. cholerae (245). 

The expression of a variety of genes that play an important role in the virulence and 

survival of P. aeruginosa is affected by the sRNAs RsmY and RsmZ, analogous to E. coli 

CsrB and CsrC, which act sequestering the transcriptional regulator RsmA (247). RsmA 

controls the switch between acute and chronic infection through the regulation of motility 

and biofilm (248). 
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These and many other examples indicate that sRNAs are required for a coordinated 

response and play a crucial role in virulence. Despite the increasing number of identified 

sRNAs, only a few of them have been functionally characterized (238). Thus, further 

studies are required in order to fully decipher the role that regulatory RNAs play in 

pathogenicity. 

 

1.3.1.4. Role of small RNAs in antibiotic resistance 

Traditionally, efforts to find novel therapeutic treatment options have been focussed on 

bacterial proteins as drug targets. However, regulatory RNAs have proven to be important 

factors for the bacterial response and resistance to antibiotics (249). Mechanisms 

controlling antibiotic resistance genes at the post-transcriptional level generates an 

immediate response, which is beneficial when antibiotic concentrations increase rapidly 

(249). sRNAs play a key role in regulatory circuits controlling antibiotic resistance 

through various processes, including antibiotic uptake, modifications of the cell envelope, 

drug efflux pumps, and DNA mutagenesis mechanisms that facilitate the emergence of 

novel mechanisms of resistance (250-253). 

Antimicrobial resistance in E. coli is modulated by the sRNAs MicF, GcvB, and RyhB, 

which regulate genes required for antibiotic uptake. MicF represses translation of the 

porin OmpF, a major antibiotics uptake pathway. Deletion of micF gene increases the 

susceptibility to cephalosporins and norfloxacin whereas its over-expression increases the 

resistance of E. coli against these antibiotics (250). GcvB represses the mRNA of the 

serine transporter CycA and the iron-responsive sRNA RyhB sensitizes E. coli to colicin 

Ia (254). 

Several sRNAs regulate genes coding for drug efflux pumps, active transporters that 

pump toxic substances, including antibiotics, out of the cell. The AcrAB-TolC multidrug 

efflux pump is negatively regulated by the sRNA SdsR. This sRNA binds and represses 

the tolC mRNA, which encodes the porin of AcrAB system, preventing the efflux of 

lipophilic antibiotics (252). Thus, over-expression of SdsR reduces resistance to 

novobiocin and several quinolone antibiotics (250, 252).  
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Recently, a library of E. coli strains overproducing and lacking sRNAs was screened for 

altered susceptibility to various antibiotics. Over-expression of 17 out of 26 sRNAs 

affected resistance or susceptibility to antibiotics suggesting that sRNAs are important 

elements in controlling antibiotic resistance genes (250). 

 

1.3.2. Small RNAs in A. baumannii 

Small RNAs have proved to be a class of gene regulators of several cellular processes in 

bacteria. Although expression patterns and regulatory mechanisms employed by sRNAs 

are well understood in Enterobacteriaceae such as E. coli or Salmonella (255, 256), 

researchers are still not able to confirm whether sRNA-mediated regulation in A. 

baumannii is analogous to these well-studied systems (257). 

The first study reporting sRNAs in A. baumannii was performed by Sharma et al. (258), 

wherein a total of 31 putative sRNA were predicted by a bioinformatic approach. Three 

of them, named AbsR11, AbsR25 and AbsR28, were detected by Northern blot and did 

not show similarity with previously described sRNAs. Differential expression profile of 

AbsR25 in presence of varying amounts of ethidium bromide suggested an expression 

influenced by environmental or internal signals. 

Recently, Weiss et al. have identified 78 sRNAs in the A. baumannii AB5075 strain 

based on RNA sequencing (RNA-seq) results (259). Using conservation analysis six types 

of similar sRNAs were identified, with one found to be particularly abundant and 

homologous to regulatory C4 antisense RNAs found in bacteriophages. Additionally, two 

sRNAs were found to be antisense to phage-derived transcripts, giving them the potential 

to exert broad regulatory influence. 

Only the sRNA Aar has been studied as a regulatory RNA in A. baylyi. Over-expression 

of Aar in trans did not affect bacterial growth but seven mRNA targets were upregulated 

in stationary growth phase. All those seven mRNAs were shown to be involved in A. 

baylyi amino acid metabolism (260). This sRNA is conserved in A. baumannii, as Aar 

homologs were found in A. baumannii strains SDF, AB307-00294, AB5075, ACICU, 

AYE, and ATCC 17978  (259, 260). 
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The role of the RNA chaperone Hfq, involved in the regulation of diverse genes via 

sRNAs, has been studied in A. baumannii ATCC 17978 (261). In the absence of the hfq 

gene, the mutant strain exhibited retarded cell growth and reduced biofilm formation, 

airway epithelial cell adhesion and invasion, and survival in macrophage. The loss of hfq 

gene also caused a decrease in outer membrane vesicles secretion and fimbriae production 

and affected transcription of genes involved in stress response. Taken together, these data 

indicate that Hfq plays a critical role in environmental adaptation and virulence in A. 

baumannii by modulating stress response and virulence factors (261). 

So far, very few regulatory RNAs have been defined in A. baumannii and the mechanisms 

of RNA-mediated gene regulation remain unknown. Thus, multiple efforts are required to 

understand how genes are regulated by sRNAs in this pathogen. 
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A. baumannii is one of the most important pathogens that cause hospital infections and 

constitutes a remarkable public health problem due to its ability to develop antibiotic 

resistance and to adapt to stressful conditions. The capacity of A. baumannii to form 

biofilm allows its resistance to desiccation, to antimicrobial agents, and to survive to the 

host immune system. The understanding of the different steps that regulate A. baumannii 

biofilm formation may offer the key to explain its virulence mechanisms. 

Thus, the objectives of the present study were the following: 

1. The study of the gene expression patterns of A. baumannii planktonic and sessile 

cells. 

2. The identification of genes involved in biofilm formation in A. baumannii. 

3. The characterization of the A1S_0114 gene and the study of its role in different 

biological processes including attachment to eukaryotic cells, virulence, and 

biosynthesis of metabolites. 

4. The description of sRNAs in A. baumannii and the comparison of their expression 

in different lifestyles, including biofilm. 

5. The description of sRNAs implicated in biofilm regulation. 

6. The study of the role of the 13573 sRNA in biofilm formation and attachment. 



 

64 
 

  



 

65 
 

 

 

 

 

 

 

 

 

 

 

3. CHAPTERS 



 

66 
 

  



Chapter I 

 

67 
 

3.1. CHAPTER I: Whole transcriptome analysis of Acinetobacter 

baumannii assessed by RNA-sequencing reveals different mRNA 

expression profiles in biofilm compared to planktonic cells 

 

A. baumannii has become an important opportunistic pathogen because of its genetic 

plasticity, which enables its adaptation to stressful conditions and to develop antibiotic 

resistance. Furthermore, the A. baumannii ability to colonize both biotic and abiotic 

surfaces and to grow in a sessile lifestyle plays an important role in the capacity of the 

microorganism to persist and spread in the hospital environment.  A deep understanding 

of the mechanisms that promote biofilm formation is essential to identify new therapeutic 

targets. Thus, transcriptome sequencing is a goal tool to gain insight into the differences 

in genes expressed under diverse conditions. 

This chapter is focused on a transcriptome analysis performed over different A. 

baumannii ATCC 17978 lifestyles. Transcripts from sessile biofilm cells, as well as 

planktonic cells from exponential and stationary phase, were analysed by Illumina RNA-

seq in order to recognise distinct expression patterns and to detect genes that were 

differentially expressed.  

Although many genes were constitutively expressed, results showed clearly particular 

patterns in biofilm and in planktonic cells. A total of 1621 genes were over-expressed in 

biofilm compared to planktonic cells and 55 genes were exclusively expressed in sessile 

cells. Some of these genes were involved in transcriptional regulation, amino acid 

metabolism and transport, and iron acquisition. Genes encoding efflux pumps, a fimbrial 

protein, Csu proteins or an acyl carrier protein were also detected. 

Five genes encoding an acyl carrier protein (ACP) (A1S_0114), a hypothetical protein 

(A1S_0302), a fimbrial protein (A1S_1507), a pilus assembly protein (A1S_3168), and a 

transcriptional regulator (A1S_2042) have been demonstrated to play a role in biofilm 

formation as their disruption caused a decrease in this capacity of the mutant strains 

compared to the wild type ATCC 17978 strain. 

The gene A1S_0114 was deleted from the genome to obtain a stable mutant (Δ0114). 

This knockout strain produced significantly less biofilm than the wild type strain. The 
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role of the A1S_0114 gene in the ability of A. baumannii to form biofilm was confirmed 

and the mutant strain was complemented with a plasmid harbouring A1S_0114 gene, 

restoring the wild type phenotype. The loss of the A1S_0114 gene caused a reduction of 

the expression level of the surrounding genes A1S_0109, A1S_0112, and A1S_0113 

during the stationary phase of growth. Since A1S_0109 encodes the only homoserine 

lactone synthase described to date in A. baumannii, these results also confirmed that 

quorum sensing plays a role in biofilm formation. Moreover, the A1S_0112-0118 cluster 

of genes could constitute an operon involved in biofilm formation and quorum sensing as 

all these genes are over-expressed in biofilm-associated cells compared to planktonic 

cells. 
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3.2. CHAPTER II: Contribution of the A. baumannii A1S_0114 gene to 

the interaction with eukaryotic cells and virulence 

 

The previous transcriptomic analysis described in chapter I allowed us to identify and 

characterize the A1S_0114 gene of A. baumannii ATCC 17978 as a key factor involved 

in biofilm formation, due to its high expression level in biofilm-associated cells compared 

to planktonic cells. Furthermore, several genes from the A1S_0112-A1S_0119 cluster 

which expression is activated through a quorum sensing pathway, have been shown to be 

involved in biofilm biogenesis and surface motility. This gene cluster was predicted to act 

as a non-ribosomal peptide synthase (NRPS) and to participate in the biosynthesis of an 

uncharacterized secondary metabolite. 

Thus, the aim of this chapter was to deepen the role of the A1S_0114 gene in different 

biological processes such as attachment to eukaryotic cells, virulence or synthesis of 

metabolites as well as decipher the relationship with its neighbouring genes. Firstly, in 

silico analysis of the region containing A1S_0112 to A1S_0119 genes indicated that they 

could form a polycistronic operon. RT-PCR assays confirmed these results and a review 

of their functions suggested that they could be involved in the production of secondary 

metabolites. 

The implication of the A1S_0114 gene in biofilm formation was confirmed by scanning 

electron microscopy (SEM). SEM Images showed that the ATCC 17978 cells attached 

and formed multicellular structures on abiotic surfaces unlike the A1S_0114 defective 

strain, which was unable to form three-dimensional structures. 

Adhesion experiments to A459 human epithelial alveolar cells were also performed. 

Adherence of the strain lacking the A1S_0114 gene was significantly lower than the wild 

type strain. Complementation of the knockout strain resulted in a restored attachment 

ability. SEM images supported these observations since while the ATCC 17978 strain 

could damage the surfactant layer and many bacteria were adhered to eukaryotic cells, 

only a few mutant cells were observed in the case of the defective strains lacking the 

A1S_0114 gene. These data suggest that the A1S_0114 gene plays an important role not 
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only in attachment to abiotic surfaces but also in adhesion to eukaryotic cells, which 

remarks its potential role in pathogenesis. 

Thus, the role of the A1S_0114 gene in virulence was tested through three different 

animal models. A C. elegans fertility assay showed that the number of viable eggs was 

almost twice higher in worms infected with the knockout mutant strain compared to those 

infected with the wild type. Similar results were observed using a G. mellonella killing 

assay. A higher survival rate was obtained when larvae were infected with the mutant 

strain. The murine pneumonia model showed that lungs from mice infected with the 

mutant strain had a lower bacterial burden than those infected with the ATCC 17978 

strain, which confirms and extends the previous results demonstrating the role of the 

A1S_0114 gene in virulence. 

A liquid chromatography/mass spectrometry (LQ/MS) analysis of culture supernatants 

allowed us to detect the presence of a 505.28 Da molecule, named as acinetin 505 (Ac-

505), that was present in the ATCC 17978 strain and absent in samples from the knockout 

strain. Ac-505 (C23H43N3O7) resembles a three-amino acid lipopeptide with non-standard 

linkages between amino acids as well as to the hydrocarbon moiety. 

Altogether, data support the implication of the A1S_0114 gene of A. baumannii in 

virulence and suggest its involvement in the biosynthesis of the Ac-505 metabolite. 
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3.3. CHAPTER III: Global assessment of small RNAs reveals a non-

coding transcript involved in biofilm formation and attachment in 

Acinetobacter baumannii ATCC 17978 

 

Small non-coding RNAs regulate a wide range of functions and modulate many aspects 

of cellular metabolisms in bacteria. RNA regulators, acting at the post-transcriptional 

level, are less costly and faster to produce. However, little is known about the 

involvement of sRNAs in controlling biofilm formation and only a few have been 

described in A. baumannii. 

The objective of this chapter is to characterize the small RNA transcriptome of A. 

baumannii ATCC 17978 and to compare the expression of these sRNAs in both 

planktonic and biofilm-associated cells with the aim of finding possible candidates 

involved in biofilm formation. For this purpose, high throughput RNA sequencing was 

performed for exponential and stationary growth phase cells as well as for biofilm 

associated cells. 

A total of 255 putative sRNAs were selected as differently expressed in some of the three 

growing conditions. All detected sRNAs were located in the chromosome except sRNA 

29, which was located on plasmid pAB2. From them, a total of 185 putative sRNAs were 

differentially expressed in biofilm or stationary phase compared to exponential phase. In 

biofilm cells, 28 putative sRNAs were up-regulated and 32 down-regulated with respect 

to planktonic cells. One of these sRNAs, the 13573 sRNA, showed a 120-fold over-

expression in biofilm cells with respect to planktonic cells. Moreover, 9 sRNAs were 

exclusively detected in biofilm cells and 21 were only present in planktonic cells. Deep 

sequencing results were corroborated using RT-qPCR procedures for six sRNAs only 

expressed in biofilm and the 13573 sRNA. 

The high level of expression of the 13573 sRNA in biofilm-associated cells suggested its 

potential role in biofilm regulation. A knockout mutant strain (Δ13573), as well as a 

strain over-expressing the 13573 sRNA (13573), were constructed in order to elucidate its 

role in pathogenesis. Repression and over-expression of the 13573 sRNA in their 

respective strains were confirmed by RT-qPCR using Taqman probes. 
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Biofilm assays showed that the lack of the 13573 sRNA caused a slight but non-

significant reduction on biofilm production. However, the over-expression of 13573 

resulted in a 2-fold increase of biofilm formation compared to the wild type strain. SEM 

imaging revealed that the 13573 sRNA over-expressing cells develop tridimensional 

biofilm structures unlike the ATCC 17978 strain, which was not able to build such 

structures. The knockout strain cells showed a more disorganized pattern than cells from 

the parental strain. 

Adhesion to eukaryotic cells experiments indicated that the 13573 over-expressing strain 

attached to A549 alveolar cells 30 fold more than the wild type strain. Adhesion ability 

decreased in the 13573 knockout strain, but this effect was restored in the complemented 

strain, which reached higher values than the ATCC 17978 strain. SEM analysis of 

polarized human cells infected with the different strains revealed that the over-expression 

of the 13573 sRNA allowed bacteria to form tridimensional biofilm over the epithelial 

cells. As expected, the knockout strain showed a reduced adherence to eukaryotic cells 

compared to the wild type strain. 

Overall data indicated that the analysis of the sRNA transcriptome showed different 

patterns in biofilm-associated cells compared to both exponential and stationary phase 

cells. This analysis highlighted the presence of a remarkably over-expressed sRNA, 

named as 13573, in biofilm-associated cells. Phenotypic characterization of the 13573 

sRNA revealed its role in biofilm formation and attachment to abiotic and biotic surfaces. 
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MDR bacterial infections are becoming increasingly common in the hospital and 

community setting, emphasizing the need for new strategies that can effectively treat 

them. Over time, bacteria can develop resistance to existing drugs, making infections 

difficult, if not impossible, to treat. This scenario motivates prospective research towards 

the discovery of new antimicrobial active substances. Pioneering approaches, 

methodologies and technologies have promoted a new era in antimicrobial discovery. 

RNA sequencing procedures are evolving technologies that allow us to discover RNA 

expression profiles of any organism (262, 263). The low cost of sequencing combined 

with an increasing data output have accelerated RNA-seq based studies. Therefore, these 

new tools may be very useful to find new genes and resolve the structure of transcripts 

(264). 

RNA-seq has also become a standard method to analyse gene expression in bacterial 

infections since it can reveal infection-relevant RNA expression changes (265). 

Facilitating quantitative computational analysis, advances in RNA-seq technology have 

revolutionized the study of bacterial transcriptomes (266). Thus, transcriptional analyses 

have leaded to the identification of several A. baumannii genes involved in different 

biological processes related to pathogenesis and resistance to different compounds (267-

269). 

In the present study, Illumina RNA-seq was used to set up the transcriptional pattern of A. 

baumannii ATCC 17978 in biofilm-associated cells compared to planktonic cells. Several 

studies tried also to untangle the factors that regulate biofilm formation using different 

approaches such as proteomic analysis or random transposon mutagenesis (132, 270, 

271). Thereby, this is the first study that uses RNA sequencing for identifying new factors 

involved in biofilm production and maintenance. 

Our data showed notable differences in gene expression between biofilm and planktonic 

cells of A. baumannii ATCC 17978 strain, being 55 genes exclusively expressed in sessile 

cells. Some of them had been previously described as related to biofilm formation. One 

example is the type I pili encoded by csuA/BABCDE operon that seems to be required for 

attachment to plastic surfaces although is not involved in adherence of A. baumannii 

ATCC 19606
T
 to human cells (106, 107). Accordingly, our results showed that csuA and 
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csuB were exclusively expressed in biofilm cells and csuA/B, csuC, csuE, and csuD were 

highly expressed in biofilm cells compared to planktonic cells. However, the role of this 

operon in the ATCC 17978 strain remains unclear since previous in silico analyses 

revealed a deletion in the 5’-end of csuA/B, which could result in the abolishment of 

CsuA/B production, and a single bp insertion in csuB that truncated the open reading 

frame  (100, 101). 

Tomaras et al. reported that the expression of Csu usher-chaperone pili assembly system 

is controlled by BfmR/S, a two-component regulatory system that acts in response to 

environmental signals (108). As previously mentioned, both genes are involved in several 

biological processes related to virulence such as biofilm formation, adherence, and serum 

resistance (108, 109). Our data revealed an over-expression of the bfmR gene in biofilm-

associated cells compared to stationary cells even though it did not result to be a biofilm-

specific gene, which could cause the over-expression of genes belonging to the 

csuA/BABCDE operon. 

Our data revealed that some other transcriptional regulators were only expressed in 

biofilm, but most of them are still uncharacterized and their functions remain unknown. 

One of these regulators is the A1S_2042 gene, related to the TetR family, a widely 

distributed group of transcriptional repressors that are involved in multidrug resistance, 

catabolic pathways, and pathogenicity (272). The disruption of this gene exclusively 

expressed in sessile cells caused a decrease in the biofilm formation ability of the mutant 

strain, suggesting that the A1S_2042 gene could participate in biofilm regulation. 

Pili and fimbria are important elements for bacterial adhesion to biotic and abiotic 

surfaces as well as for motility (105). Genes A1S_1507, coding for a type I pili protein, 

and A1S_3168, coding for the TFP PilW, were selected for disruption in the present work 

since they were over-expressed in sessile cells compared to planktonic cells. Mutant 

strains showed a reduced capacity to form biofilm, confirming the role of these genes in 

the process. The A1S_1507 gene belongs to the A1S_1510-1507 chaperone-usher system, 

which was identified by Nait Chabane et al. as a pellicle-associated operon well 

conserved among different A. baumannii strains (111). Overall data indicated that pili and 

fimbria play a remarkable role in biofilm formation (105, 111). 
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Iron acquisition systems are important virulence factors, such as acinetobactin, which was 

proved to be required for A. baumannii ATCC 19606
T
 strain to persist within epithelial 

cells (153). Our data reflected the expression of some genes related to acinetobactin 

(A1S_2380 and A1S_2388) and ferredoxin (A1S_0945 and A1S_1779) only in biofilm 

cells and the over-expression of many genes involved in iron acquisition and transport 

compared to planktonic cells. These results correlate with those obtained by Marti et al. 

(271) that detected the over-expression of four siderophore iron uptake systems in cells in 

a late state of pellicle development. Modarresi et al. showed that low iron levels promoted 

siderophore activity, AHL production, and biofilm formation in several A. baumannii 

strains (273). Thus, iron starvation conditions in sessile cells could promote the 

expression of genes involved in the iron uptake process. However, the presence of this 

metal in the culture medium differentially affects biofilm formation depending on the 

strain (274), and the relationship between the iron-associated process and biofilm 

formation still remains unclear. 

The Bap protein of A. baumannii, homologue to the staphylococcal biofilm-associated 

protein, has been widely characterized as an important factor for the development of a 

mature biofilm structure as well as for adherence to biotic surfaces (116, 118). This 

protein has been described as highly polymorphic among strains (275). The bap gene is 

disrupted in the A. baumannii ATCC 17978 strain genome, resulting in the A1S_2724 

and A1S_2696 loci, separated by 30 kb due to chromosomal rearrangements (116, 275). 

In the present study those genes, homologues to bap, were found as over-expressed in 

biofilm-associated cells compared to exponential cells, suggesting that they may play a 

role in the biofilm formation ability of the ATCC 17978 strain. 

A membrane-associated protein OmpA has been extensively related with biofilm 

formation (121). However, our data did not match previous reports and revealed that 

ompA gene expression was down-regulated in biofilm-associated cells. Expression level 

of this protein in biofilm is a controversial issue since while Cabral et al. found it as up-

regulated in biofilm cells (270) and Marti et al. detected three mass isoforms of the 

OmpA protein under-expressed in pellicles (271). This phenomenon could be due to the 

utilization of different A. baumannii strains or to variations in the culture conditions, that 

could modify the structure and the amount of the biofilm formed (98, 276). OmpA was 

suggested to act in the initiation step of biofilm formation and iron starvation conditions 
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of the maturation step could decrease its expression (271). In the present study, other 

proteins as CarO (A1S_2538) and OprD-like (A1S_0201) were found as over-expressed 

in biofilm cells. Accordingly, these proteins were found to be up-regulated in previous 

proteomic studies (270, 271). The over-expression of these porins could complement the 

decrease of OmpA production, contributing to membrane permeability. 

Moreover, in our work, many genes involved in amino acid metabolism and transport 

were up-regulated in biofilm compared to planktonic cells, corroborating the results 

previously obtained by Cabral et al. (270). Accordingly, we also detected an over-

expression of genes encoding efflux system components, including a resistance-

nodulation-cell division type (RND efflux pump) in biofilm cells. Efflux pumps may 

contribute to the inherent resistance of biofilm-forming bacteria to antibiotics. 

Twelve genes, found as exclusively expressed in biofilm, encoded uncharacterized 

proteins. One of them, the A1S_0302 gene, was selected for disruption because of its high 

level of expression in biofilm cells. The corresponding mutant strain was significantly 

deficient in biofilm formation ability compared to the parental strain. Further studies are 

required in order to determine the role that this gene could play in biofilm formation and 

maintenance. 

The gene A1S_0114, which encodes an ACP, was over-expressed in biofilm cells and its 

expression level was the highest detected. Surrounding genes, from A1S_0112 to 

A1S_0118, were also found as significantly over-expressed in biofilm compared to 

planktonic cells, suggesting that these genes could act as an operon. A previous 

transcriptome analysis revealed that the expression of this cluster was activated by 

quorum sensing, pointing out the relationship between these genes and the homoserine 

lactone synthase encoded by the A1S_0109 gene (131). In the present work it was 

demonstrated that the loss of the A1S_0114 gene caused a noticeable decrease in biofilm 

formation ability. Complementation of the knockout mutant strain with a copy of the 

A1S_0114 gene resulted in a partial restoration of the biofilm production ability. 

Expression of A1S_0109, A1S_0112 and A1S_0113 genes was conditioned by the 

expression of the A1S_0114 gene, since its complete deletion caused a decrease in the 

expression level of these surrounding genes during the stationary phase of growth. Taking 

together these data indicate that all these genes could act as an operon where its 
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disruption could have polar effects. This could explain the partial restoration of the 

biofilm formation ability of the mutant during complementation procedures. 

Several studies of different A. baumannii strains suggested that the gene cluster 

A1S_0112-0119 could be a polycistronic operon (131, 277). Bioinformatic analysis 

showed that all genes from A1S_0112 to A1S_0119 were transcribed in the same 

direction and either overlapped or were separated by small intergenic regions, which 

suggests the polycistronic nature of this operon. This fact was confirmed by the RT-PCR 

procedures performed. Allen and Gulick proposed this cluster to act as a NRPS where the 

A1S_0112 gene may act as an adenylation domain and the A1S_0115 gene as a multi-

domain NRPS protein containing condensation, adenylation, peptidyl carrier protein 

(PCP), and thioesterase domains (277).  Furthermore, this operon was shown to play a 

role in different processes in A. baumannii, since disruption of genes A1S_0112 and 

A1S_0115 in a hyper-motile variant of A. baumannii ATCC 17978 abolished motility and 

ability to form pellicles of the mutant strains (132). Similarly, another study evidenced 

that insertions in genes A1S_0113 and A1S_0115 significantly reduced the migration 

capacity of A. nosocomialis M2 strain (131). Thereby, a deeper analysis of the mutant 

strain lacking the A1S_0114 gene was done in the present study in order to clarify how 

this specific gene affects biofilm, adherence and other virulence factors. 

SEM analysis of bacterial biofilms revealed that the A1S_0114 gene was needed for 

developing multicellular structures associated with mature biofilm. When the ability to 

adhere to human alveolar cells of the mutant strain lacking the A1S_0114 gene was 

tested, the outcome showed a 60% of reduction in the number of attached bacteria 

compared to the wild type strain. The knockout strain complemented with the pWH1266 

plasmid harbouring a copy of the A1S_0114 gene was able to restore the ATCC 17978 

phenotype, verifying the involvement of this gene in the interaction of A. baumannii with 

biotic surfaces. These results were confirmed by SEM analysis of infected A549 human 

alveolar polarized cells. Micrographs presented extensive damage to the surfactant layer 

as well as to the epithelial cells caused by the ATCC 17978 strain and an important 

number of wild type cells attached to alveolar cells. However, although the A1S_0114 

defective strain was also able to destruct the surfactant, it showed a poor adherent 

phenotype.  
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Since the A1S_0114 gene seemed to take part in the adherence to both biotic and abiotic 

surfaces, expression of different genes involved in these processes were checked. Results 

of RT-qPCR showed an increase of the expression of csuA/B in the knockout strain 

compared to the wild type strain. The CsuA/BABCDE pili assembly system plays a well-

known role in attachment to abiotic surfaces and its presence in pellicles of different 

strains (107, 111, 271). However, the csuA/BABCDE operon up-regulation in the mutant 

strain may be irrelevant as this system may not be functional in the ATCC 17978 strain 

due to an insertion in csuB and a deletion in csuA/B (100, 101). Nevertheless, the lack of 

the A1S_0114 gene prompted an over-expression of other pili-related genes such as 

A1S_0690, A1S_1510, and A1S_2091. The A1S_0690 gene is part of the A1S_0690-

0695 operon, a putative FilF-like type III pili over-produced in pellicle and detected in 

OMVs (271, 278).  

The A1S_1507-1510 operon encodes a type I pili, widely related to biofilm formation, 

which is in accordance with our previous results that showed that the A1S_1507 gene was 

highly expressed in biofilm cells and its disruption caused a decrease in biofilm 

formation. This operon, controlled by the global regulator H-NS and repressed under iron 

limitation conditions (156, 188), was detected in pellicles together with the A1S_2088-

2091 operon (111). Furthermore, the A1S_2091 gene was highly expressed in biofilm 

compared to planktonic cells and the deletion of the LH92_11085 gene of A. baumannii 

MAR002 strain, homologous to A1S_2091, reduced bacterial attachment to A549 cells 

and biofilm formation on plastic surfaces (110). Expression of the virulence factor OmpA 

was also significantly reduced in absence of the A1S_0114 gene, in agreement with 

previous works that identified this porin as an important factor for biofilm formation and 

for the interaction with eukaryotic cells (121, 279). Overall, these results suggest that the 

A1S_0114 gene may influence the expression of genes related to attachment and biofilm 

production. 

In the present study, the involvement of the A1S_0114 gene in A. baumannii virulence 

has been demonstrated by using different animal models. Thus, gene deletion caused an 

increase in the number of viable eggs of C. elegans in a fertility assay, a rise in the 

survival rate of G. mellonella and a lower bacterial burden in lungs of infected mice in a 

pneumonia model. Furthermore, growth of the knockout strain was not affected by the 

lack of the acyl carrier protein encoding gene, indicating that differences between the 
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wild type and the knockout strain could be due to the role of the A1S_0114 gene as a 

virulence factor. Nevertheless, a study that combined transposon mutagenesis and next-

generation sequencing (NGS) techniques identified genes from the A1S_0112-0119 

operon as not necessary for persistence of A. baumannii ATCC 17978 in mice lungs 

(124). With a similar approach, Subashchandrabose et al. identified genes involved in 

survival in a leukopenic mouse model of bloodstream infection. Although no transposon 

insertion in the A1S_0114 gene was detected, mutants in the rest of the genes of the 

operon exhibited reduced fitness during growth within the host but they did not reach the 

threshold to be considered critical for bacterial survival (280). Variations between our 

results and these studies may be due to differences in the methodology, such as distinct 

mice strains and infection routes used. Another study showed that genes belonging to this 

operon were also under-expressed during bacteraemia in a mice infection model 

compared to in vitro cells (267). Murray et al. reported that the majority of A. baumannii 

genes previously identified as necessary for virulence were either under-expressed or 

their expression did not change in vivo (267). In fact, they noted a general down-

regulation of several genes involved in biofilm and pili biosynthesis, such as 

csuA/BABCDE and A1S_2088-2091 operons, the transcriptional regulator bfmR, and the 

homoserine lactone synthase abaI (267). These authors suggested that the reduced 

expression of those biofilm-related genes may be due to the planktonic state of the 

bacterial cells causing blood infection, explaining that these genes  could be required for 

virulence in later stages of  septicaemia or tissues infections (267). 

Due to the putative functions of the proteins encoded by the A1S_0112-0119 operon, 

Allen and Gulick indicated that it could be acting as a NRPS (277). The A1S_0112 gene 

encodes an acyl-CoA synthase/AMP-acid ligase that could activate and transfer fatty 

acids to ACPs via acyl AMP intermediates. The A1S_0113 gene, encoding an acyl-CoA 

dehydrogenase, is predicted to modify the intermediate product carried by an ACP or PCP 

domain. The acyl carrier protein encoded by the A1S_0114 gene is likely to contribute a 

tethered intermediate to the NRPS system involved in the biosynthesis of a secondary 

metabolite (277). The A1S_0115 gene is predicted to encode a four-domain 

(condensation, adenylation, PCP, and thioesterase) NRPS protein with a thioesterase 

domain most likely responsible for the release of acyl/peptide chains from their covalent 

attachment to the ACP/PCP domains (281). The A1S_0116 gene encodes a protein that 
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belongs to the superfamily of RND transporters and could be potentially involved in the 

secretion of the secondary metabolite synthetize by this operon. The A1S_0117 and 

A1S_0118 genes are annotated as hypothetical proteins (162), but in silico analysis 

showed that they could be related to porins and epimerase/dehydratase enzymes, 

respectively. Finally, the A1S_0119 gene encodes a phosphopantetheine transferase that 

is expected to perform the activation of the ACP. All these predictions are in accordance 

with the observation that the expression of the A1S_0114 gene is required for the 

production of the Ac-505 secondary metabolite. 

This compound, present in culture supernatants of the ATCC 17978 strain but absent in 

those from the knockout strain, seems to be a three-amino acid lipopeptide. However, 

bonds between the amino acids as well as to the hydrocarbon moiety are non-standard. 

Whereas the second and third amino acids are Cys and Gly residues linked via standard 

peptide linkage, they are connected to the Gly-containing moiety through the sulfur group 

of the Cys side chain forming a thioether bridge. The Cys-Gly moiety could be potentially 

derived from glutathione (L-γ-glutamyl-L-cysteinyl-glycine), a tripeptide found in high 

concentrations intercellularly in A. baumannii and that maintains a proper cellular redox 

state (282). Ac-505 may be the result of the glutathione-mediated de-activation of a 

secondary metabolite but the structure of this potential precursor remains unknown. 

Modification of this precursor by glutathione could explain that Ac-505 could not be able 

to restore the wild type phenotype when added to the mutant strain (data not shown). 

To summarize, we can conclude that the A1S_0114 gene affects A. baumannii biofilm 

formation, adherence to eukaryotic cells as well as virulence responses and that it is 

involved in the biosynthesis of a novel metabolite. Further analysis are required in order 

to determine the mechanisms by which this gene acts and if Ac-505 is responsible for 

these responses. 

Many genes have been described to date as involved in biofilm biogenesis and 

maintenance. However, little is known about the sRNAs that may be involved in this 

process regulation. Therefore, in the present work a transcriptional analysis of the sRNAs 

produced by planktonic cells and biofilm-associated cells was performed to identify those 

small RNAs of A. baumannii ATCC 17978 involved in biofilm formation. 
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The first sRNAs were discovered in E. coli in biochemical or functional screens, aided by 

their relative abundance (283). In the latest decades numerous studies used comparative 

genomics, secondary structure prediction, and computational analysis searching for 

promoters and terminators in intergenic regions to identify potential sRNA candidates 

(215). Shotgun cloning or microarray analysis of cDNA added new molecules to the pool 

of putative sRNAs (284, 285). The development of NGS technologies for cDNA 

sequencing has revolutionized the identification of novel noncoding transcripts (286). 

Recently, novel deep sequencing techniques as global mapping of transposon insertion 

sites, measuring translatomes using ribosome profiling, and analysis of RNA-protein 

complexes have facilitated the identification and functional characterization of multiple 

sRNAs (287-289). 

Consequently, following NGS procedures in biofilm and in exponential and stationary 

growth phase samples we were able to identify 255 putative sRNAs that were expressed 

in at least one of the conditions, being 185 of them differentially expressed. This number 

was significantly bigger than the data obtained by Weiss et al. where 78 sRNA were 

detected in A. baumannii AB5075 (259). However, conservation of sRNAs among 

different strains is infrequent not only in A. baumannii, but also in P. aeruginosa where 

multiple sRNAs exhibit strain-specific expression patterns (290, 291). Also, depending on 

the approach used for the library preparation or the timing for RNA extraction, different 

set of sRNAs could be detected (292).  

Accordingly, Sharma et al. predicted 31 sRNAs in silico from A. baumannii ATCC 17978 

(258) and only 18 of them were also detected in our study. A group of 10 of the 31 

sRNAs predicted by Sharma et al. were analysed in A. baumannii MTCC1425 and 3 of 

them showed positive signal on Northern blot. In particular, the sRNAs AbsR25 and 

AbsR28 described by Sharma et al. corresponded to the putative sRNAs 10452 and 22397 

described in the present study, respectively. Moreover, while they found variable 

expression level of the sRNA AbsR25 during different phases of planktonic growth (258), 

we did not find the sRNA 10452, its homologue, as differentially expressed under our 

experimental conditions. Moreover, the length of both sequences detected in the ATCC 

17978 and the MTCC1425 strains did not match, probably due to genomic variations 

between these strains or to the distinct bioinformatics approaches used. 
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We found 28 of the 185 differentially expressed sRNAs as over-expressed and 32 down-

regulated in biofilm compared to planktonic cells. Nine sRNAs were exclusively 

expressed in biofilm and 21 were only detected in planktonic cells. Gene expression of 

the sRNAs most over-expressed in biofilm was confirmed by RT-qPCR analysis, those 

being the 13573 sRNA and six sRNAs not present either in exponential or in stationary 

growth phase. The outcome obtained validated the results previously obtained by 

pyrosequencing, indicating that the profile of sRNAs produced is significantly different 

depending on the lifestyle. 

Small RNA 13573 was selected for further characterization due to its high over-

expression level in biofilm cells. The effect of the 13573 sRNA in different biological 

processes was investigated. Biofilm formation analysis showed that, the 13573 sRNA has 

an effect on the biofilm formation ability of the strain, since its over-expression prompted 

a 2-fold increase of biofilm formation. SEM images exposed that 13573 was able to 

develop a mature biofilm structures, unlike the wild type and mutant strains, which 

presented unorganized cells. Moreover, cells from the knockout strain showed more 

dispersion than the parental strain. Several sRNAs have been described as regulators 

implicated in biofilm formation in Pseudomonas, Vibrio, and in E. coli (93, 236). In 

previous works it was shown that over-expression of sRNAs RseX, CsrC or SgrS sRNAs 

from E. coli increased biofilm formation but its deletion did not cause the opposite effect 

(227). In fact, in the same study they detected that, after over-expressing and deleting 99 

sRNAs in E. coli, only a few deletions  had effects on biofilm formation (227). This 

correlates with the results that we have observed for the 13573 sRNA of A. baumannii 

ATCC 17978. The strain over-expressing the 13573 sRNA produced higher amount of 

biofilm than the wild type strain but its deletion did not affect biofilm formation. This 

effect could be due to several issues, such as redundancy of sRNAs acting on the same 

process, other sRNAs regulating the activity of transcriptional regulators involved in 

biofilm formation, or expression levels of sRNAs that do not reach the threshold to affect 

this biological process under particular experimental conditions. Therefore, we found that 

the over-expression of the 13573 sRNA has a remarkable effect on biofilm production but 

the impact of its deletion could be neutralized by other sRNAs. A more exhaustive study 

is required in order to untangle the mechanisms used by the 13573 sRNA to regulate this 

process. 
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Adhesion assays allowed us to elucidate the role of the 13573 sRNA on host-pathogen 

interaction. The ability to attach to A549 human alveolar cells decreased in the knockout 

strain lacking the 13573 sRNA compared to the ATCC 17978 strain. However, when the 

13573 sRNA was over-expressed, a significant higher number of bacteria were attached 

to the biotic surface. No colonies were detected when invasiveness ability of the strains 

was tested. Therefore all the CFUs counted after 24 h of incubation were due to the 

attachment capacity of the different strains. SEM analysis of bacterial strains infecting 

polarized A549 cells supported these previous results, revealing that only the strain over-

expressing 13579 sRNA was able to form a tridimensional biofilm over the cell layer. 

There is not a clear relationship between the ability to form biofilms and the capacity to 

adhere to biotic surfaces as described by Eijkelkamp et al. in different strains of A. 

baumannii (100). Data revealed that not all the genes involved in biofilm formation play 

also a role in attachment to biotic surfaces. An example is the csuE gene, which is not 

implicated in the adherence to human cells even though it is in biofilm formation on 

abiotic surfaces (106, 107). Regarding sRNAs, little is known about the role they play in 

adhesion to eukaryotic cells. One example is FasX from Streptococcus, which inhibits the 

expression of a cell surface pilus, reducing the capacity of the bacteria to attach to host 

cells (293). Hence, we can affirm that 13573 is the first sRNA described in A. baumannii 

as involved in biological processes such as biofilm formation and attachment to biotic 

surfaces. 

To sum up, in the present work were identified different patterns of gene expression of 

both mRNAs and sRNAs in biofilm-associated cells compared to planktonic cells from 

exponential or stationary growth stages. The analysis of these patterns allowed us to 

identify genes and sRNAs that may play a role in the regulation of the sessile lifestyle 

adoption. Therefore, we demonstrated that the A1S_0114 gene, which encodes an ACP 

being part of the A1S_0112-0119 operon, is involved not only in biofilm production and 

maintenance, but also in adherence to human alveolar cells, virulence and the 

biosynthesis of the metabolite Ac-505. On the other hand, this study highlighted the 

potential role of the 13573 sRNA in biofilm formation regulation and adherence to 

eukaryotic cells. This is the first work where biofilm formation and attachment have been 

reported as positively regulated by sRNAs in A. baumannii. 
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1. Biofilm associated cells of A. baumannii ATCC 17978 present a mRNA pattern 

that significantly differs from planktonic cells, showing a collection of 

differentially expressed genes where some of them are exclusively expressed in 

sessile cells. 

 

2. A hypothetical protein, a fimbrial protein encoded, a pilus assembly protein, and a 

transcriptional regulator, encoded by the A1S_0302, the A1S_1507, the 

A1S_3168, and the A1S_2042 genes, respectively, are involved in biofilm 

formation of A. baumannii ATCC 17978. 

 

3. The A1S_0114 gene of A. baumannii ATCC 17978, coding for an acyl-carrier 

protein, plays a role in biofilm formation, in attachment to biotic and abiotic 

surfaces, in virulence, and in the biosynthesis of the metabolite acinetin 505, this 

being a novel factor involved in the pathogenesis of this strain. 

 

4. The A. baumannii ATCC 17978 strain expresses a remarkable number of sRNAs, 

being their expression level dependent on the stage of growth.  

 

5. A total amount of 185 sRNAs are differentially expressed in biofilm associated 

cells of the A. baumannii ATCC 17978 strain compared to both exponential and 

stationary phase cells suggesting that they may play a role in biofilm formation 

regulation. 

 

6. The 13573 sRNA regulates biofilm formation and attachment to eukaryotic cells, 

being these biological processes related to the pathogenesis of A. baumannii 

ATCC 17978. 
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Figure S1 

Gene level counts. Left: boxplot (median, first and third quartiles and standard deviation) 

of the number of reads per gene. Right: density functions of the number of reads per gene. 

 

 

Figure S2 

MD plots and correlation between samples. Upper right: MD plots showing 

(countsA+countsB)/2 against (countsA-countsB), with A and B being the samples shown 

on the diagonal. 
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Figure S3 

Sequence distribution of genes up-regulated in biofilm-associated cells. The data were 

filtered based on p < 0.001 and with respect to biological processes. A) Exponentially 

growing cells, filtered by the number of sequences (cutoff 6). B) Stationary phase cells, 

filtered by the number of sequences (cutoff 1). 

 

 

Table S1 

Gene expression data from the complete transcriptome analysis of Acinetobacter 

baumannii ATCC 17978, showing gene expression levels in exponentially growing vs. 

stationary phase cells. Id: name or code of the region of interest; baseMean: mean of the 

two next columns; baseMeanA: normalized number of counts for sample A; baseMeanB: 
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normalized number of counts for sample B; Fold-change: baseMeanB/baseMeanA, 

log2Fold-change: log2 baseMeanB/baseMeanA, pval: p value, padj: p value adjusted for 

multiple testing, resVarA: variance of A, resVarB: variance of B.A: stationary phase 

cells. B: exponential phase cells. NA, non-applicable because of zero expression. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s004.xlsx 

 

Table S2 

Gene expression data from the complete transcriptome analysis of Acinetobacter 

baumannii ATCC 17978, showing gene expression levels in biofilm-associated cells vs. 

exponentially growing cells. Id: name or code of the region of interest; baseMean: mean 

of the two next columns; baseMeanA: normalized number of counts for sample A; 

baseMeanB: normalized number of counts for sample B; Fold-change: 

baseMeanB/baseMeanA; log2Fold-change: log2 baseMeanB/baseMeanA; pval: p value; 

padj: p value adjusted for multiple testing; resVarA: variance of A; resVarB: variance of 

B.A: exponential phase cells. B: biofilm-associated cells. NA, non-applicable because of 

zero expression. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s005.xlsx 

 

Table S3 

Gene expression data from the complete transcriptome analysis of Acinetobacter 

baumannii ATCC 17978, showing gene expression levels of biofilm-associated vs. 

stationary phase cells. Id: name or code of the region of interest; baseMean: mean of the 

two next columns; baseMeanA: normalized number of counts for sample A; baseMeanB: 

normalized number of counts for sample B; Fold-change: baseMeanB/baseMeanA; 

log2Fold-change: log2 baseMeanB/baseMeanA; pval: p value; padj: p value adjusted for 

multiple testing; resVarA: variance of A; resVarB: variance of B.A: stationary phase 

cells. B: biofilm-associated cells. NA: non-applicable because of zero expression. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s004.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s005.xlsx
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s006.xlsx 

 

Table S4 

The expression levels of genes down-regulated in biofilm-associated vs. stationary phase 

cells. The data were filtered based on p < 0.001. Id: name or code of the region of 

interest; baseMean: mean of the two next columns; baseMeanA: normalized number of 

counts for sample A; baseMeanB: normalized number of counts for sample B; Fold-

change: baseMeanB/baseMeanA; log2Fold-change: log2 baseMeanB/baseMeanA; pval: p 

value; padj: p value adjusted for multiple testing; resVarA: variance of A; resVarB: 

variance of B.A: stationary phase cells. B: biofilm-associated cells. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s007.xlsx 

 

Table S5 

The expression levels of genes up-regulated in biofilm-associated vs. stationary phase 

cells. The data were filtered based on p < 0.001. Id: name or code of the region of 

interest; baseMean: mean of the two next columns; baseMeanA: normalized number of 

counts for sample A; baseMeanB: normalized number of counts for sample B; Fold-

change: baseMeanB/baseMeanA; log2Fold-change: log2 baseMeanB/baseMeanA; pval: p 

value; padj: p value adjusted for multiple testing; resVarA: variance of A; resVarB: 

variance of B.A: stationary phase cells. B: biofilm-associated cells. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s008.xlsx 

 

Table S6 

The expression levels of genes down-regulated in exponentially growing vs. stationary 

phase cells. The data were filtered based on p < 0.001. Id: name or code of the region of 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s006.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s007.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s008.xlsx


Supplementary material Chapter I 

 

187 
 

interest; baseMean: mean of the two next columns; baseMeanA: normalized number of 

counts for sample A; baseMeanB: normalized number of counts for sample B; Fold-

change: baseMeanB/baseMeanA; log2Fold-change: log2 baseMeanB/baseMeanA; pval: p 

value; padj: p value adjusted for multiple testing; resVarA: variance of A; resVarB: 

variance of B.A: stationary phase cells. B: exponential phase cells. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s009.xlsx 

 

Table S7 

The expression levels of genes up-regulated in exponentially growing vs. stationary phase 

cells, filtered based on p < 0.001. Id: name or code of the region of interest; baseMean: 

mean of the two next columns; baseMeanA: normalized number of counts for sample A; 

baseMeanB: normalized number of counts for sample B; Fold-change: 

baseMeanB/baseMeanA; log2Fold-change: log2 baseMeanB/baseMeanA; pval: p value; 

padj: p value adjusted for multiple testing; resVarA: variance of A; resVarB: variance of 

B.A: stationary phase cells. B: exponential phase cells. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s010.xlsx 

 

Table S8 

The expression levels of genes down-regulated in biofilm-associated vs. exponentially 

growing cells. The data were filtered based on p < 0.001. Id: name or code of the region 

of interest; baseMean: mean of the two next columns; baseMeanA: normalized number of 

counts for sample A; baseMeanB: normalized number of counts for sample B; Fold-

change: baseMeanB/baseMeanA; log2Fold-change: log2 baseMeanB/baseMeanA; pval: p 

value; padj: p value adjusted for multiple testing; resVarA: variance of A; resVarB: 

variance of B.A: exponential phase cells. B: biofilm-associated cells. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s011.xlsx 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s009.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s010.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s011.xlsx
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Table S9 

The expression levels of genes up-regulated in biofilm-associated vs. exponentially 

growing cells. The data were filtered based on p < 0.001. Id: name or code of the region 

of interest; baseMean: mean of the two next columns; baseMeanA: normalized number of 

counts for sample A; baseMeanB: normalized number of counts for sample B; Fold-

change: baseMeanB/baseMeanA; log2Fold-change: log2 baseMeanB/baseMeanA; pval: p 

value, padj: p value adjusted for multiple testing; resVarA: variance of A; resVarB: 

variance of B.A: exponential phase cells. B: biofilm-associated cells. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s012.xlsx 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758355/bin/pone.0072968.s012.xlsx


 

189 
 

 

 

 

 

 

 

 

 

 

 

SUPPLEMENTARY MATERIAL 

CHAPTER II



 

190 
 



Supplementary material Chapter II 

 

191 
 

Figure S1 

Confirmation of the polycistronic nature of the A. baumannii ATCC 17978 A1S_0112-

A1S_0119 operon. Total DNA (lanes 2–7), cDNA (lanes 8–13) and total RNA (lanes 14–

19) samples were used as templates in PCR reactions using primers annealing to the 

A1S_0112-A1S 0113 (lanes 2, 8, and 14), A1S_0113-A1S_0115 (lanes 3, 9, and 15), 

A1S_0115-A1S_0116 (lanes 4, 10, and 16), A1S_0116-A1S_0117 (lanes 5, 11, and 17), 

A1S_0117-A1S_0118 (lanes 6, 12, and 18), and A1S_0118- A1S_0119 (lanes 7, 13, and 

19) intergenic regions. Lanes 1 and 20 show the molecular weight standard Gene Ruler 1-

Kb plus (Thermofisher Scientific). Molecular weight of each amplicon is indicated at the 

bottom of the figure. 
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Figure S2 

Growth of the 17978 parental and the Δ0114 isogenic deletion derivative strains. The 

OD600 values of each strain grown in LB or SB at 37°C for 24 h with shaking were 

determined hourly. Error bars represent the standard error (SE) of the mean. 

 

 

 

Figure S3 

Ac-505 MS/MS spectra. (A) MS data collected on the FT-ICR with ECD fragmentation 

in positive ion mode. (B) MS/MS collected on a MaXis QTOF in positive ion mode (LC-

MS) and (C) negative ion mode (direct injection). 
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Figure S4 

MS/MS—based fragmentation predictions (A,B) are two of the 40 total MS
n
 spectra from 

MS(3) to MS(6) recorded on the OSU Bruker amaZon in positive ion mode using direct 

injection of a HPLC purified Ac-505. MS(2) for 488.3 and MS(4) for 235.2 m/z fragment 

ions are shown in (A,B), respectively. Neutral losses are shown in black. Panel (C) is a 

schematic diagram of MS/MS fragmentation of Ac-505 in positive ion mode and (D) is 

for negative ion mode. 
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Figure S5 

Predicted product ions of Ac-505 based on accurate mass and typical bond cleavage 

patterns under electrospray conditions in positive ion mode. 
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Figure S6 

Predicted product ions of Ac-505 based on accurate mass and typical bond cleavage 

patterns under electrospray conditions in negative ion mode. 
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Table S1 

Oligonucleotides used in the present study. 

 

Primer name Sequence (5’-3’) Purpose 

0114UpFPstI CCCCTGCAGGGGTTGGTACGTGAGC

AACTC 

Construction of 

Δ0114 

0114UpREcoRI GGGGAATTCCCCGCGCTCCAGTAAG

CTTT 

Construction of 

knockout strain 

Δ0114 

0114DownFEcoRI CCCGAATTCGGGGAGCCAACACTAT

TATGGGA 

Construction of 

Δ0114 

0114DownRBamHI GGGGGATCCCCCTCTCATAATCTTT

CGCCAAG 

Construction of 

Δ0114 

0114extF CAAGGAGTTTGAAACGAT Confirmation of 

Δ0114 

0114extR CTCGCAGCAATAGACCAA Confirmation of 

Δ0114 

0114EcoRVF CCCGATATCGGGACCGGTTAAAAAG

GAGATTAC 

Complementation 

of 17978 Δ114  

0114BamHIR GGGGGATCCCCCCTGGTTCTAGTCG

TGCAA 

Complementation 

of 17978 Δ114 

pWH1266Fw TAGGCTTGGTTATGCCGGTA Confirmation the 

complementation 

of the 

17978Δ0114 

pWH1266Rv AAGGAGCTGACTGGGTTGAA Confirmation the 

complementation 

of the 

17978Δ0114 

KanaRPstIFw 

 

CCCCTGCAGGGGCCGGAATTGCCAG

CTGGGGCG 

Cloning the 

kanamycin 

resistance gene 

into pWH1266 

plasmid 

KanaRPstIRv GGGCTGCAGCCCTCAGAAGAACTCG

TCAAGAAG 

Cloning the 

kanamycin 

resistance gene 

into pWH1266 

plasmid 

0112F TTACTGCACCAAGGCCGAAT Check expression 

of the operon 

0113R AATTTCCATGCGACCTCCGA Check expression 

of the operon 

0113F GCTCGTATTGCTGTGTTGGG Check expression 
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of the operon 

0115R CTTACGCGCAGTAGCGGATA Check expression 

of the operon 

0115F CCTCTCGATGCAGACCCATC Check expression 

of the operon 

0116R CGTACCTTCCGGATGTGGTT Check expression 

of the operon 

0116F CCGATATCCGTCCTTACGGC Check expression 

of the operon 

0117R GGGTTTACAGTGTGGTCCGT Check expression 

of the operon 

0117F GAGCTATGCTGCGTTATGCG Check expression 

of the operon 

0118R TTGTCTGGGCGTCCGATAAT Check expression 

of the operon 

0118F CTGGCGCAGGTCATAATCCA Check expression 

of the operon 

0119R AATAAGGTCCGCGGAGTGAC Check expression 

of the operon 

csuA/B F GCAGCTGTTACTGGTCAG qRT-PCR 

csuA/B R GTCTGTGCGTTCACCACC qRT-PCR 

A1S_2091 F GTCCACCATCAAATGACAAAGTCC qRT-PCR 

A1S_2091 R CTGTGTCCTGAATACCTCAGC qRT-PCR 

A1S_1510 F GATGTTGCTGGTCGTACACC qRT-PCR 

A1S_1510 R GACATTGGTAGCTGCACCAG qRT-PCR 

A1S_0690 F AAACAACCGCAACTCGTGG qRT-PCR 

A1S_0690 R CAGCGGCGTCTTTAATACC qRT-PCR 

ompA F CGACGCTTTATCTCTTCG qRT-PCR 

ompA R GGAGCAGCAGGCTTGAAG qRT-PCR 

recA F TACAGAAAGCTGGTGCATGG qRT-PCR 

recA R TGCACCATTTGTGCCTGTAG qRT-PCR 
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Table S2 

HRMS data of Ac-505. Measured m/z-values are reported for MS fragment ions measured 

on ESI MaXis QTOF (LC-MS2) and 15T FT-ICR ECD (direct infusion) instruments in 

positive ion mode, respectively. The molecular formulas of the product ions are based on 

accurate mass and isotopic pattern matching of the ions as well as typical bond cleavage 

patterns for electrospray ionization. 

 

 

 

Table S3 

HRMS data of Ac-505 and MS2 fragments measured on a ESI MaXis QTOF (direct 

infusion) in negative ion mode. 

 

Formula Calc. (m/z) Measured (m/z) D ppm err. Measured (m/z) D ppm err. 

    MaXis QTOF   15T FT-ICR 

 C46H87N6O14S2
+
 1011.57162 1011.5718 0.2   

 C23H43N3O7SNa
+
    528.27139 528.2718 0.8 528.27144 0.1 

C23H44N3O7S
+
    506.28945 506.2921 5.2 506.28945 0.0 

C23H42N3O6S
+
    488.27888 488.2813 5.0 488.27876 -0.2 

C23H39N2O6S
+
 471.25233   

 

471.25221 -0.3 

C21H37N2O4S
+
 413.24686 413.2487 4.5 413.24676 -0.2 

C20H37N2O3S
+
 385.25194 385.2541 5.6 385.25187 -0.2 

C20H34NO3S
+
 368.22539   

 

368.22534 -0.1 

C18H34NO3S
+
 344.22539   

 

344.22536 -0.1 

C18H32NO3
+
 310.23767 310.2390 4.3 310.23762 -0.2 

C9H13N2O6S
+
 277.04888 277.0502 4.8 277.04884 -0.1 

C16H27O
+
 235.20564 235.2064 3.2 235.20566 0.1 

C5H9N2O3S
+
 177.03284 177.0333 2.6 177.03286 0.1 
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Text S1 

Additional details about 454 read data processing. 

Processing of sRNA 454 sequencing reads 

sRNA fractions, obtained from liquid A. baumannii ATCC 17978 cultures in the 

exponential and stationary phases of growth, plus biofilms were pyrosequenced at the 

Roche 454 Sequencing Center (Connecticut, USA) using GS FLX Titanium chemistry. 

The total number of reads was 689,097, 502,152 and 627,209 for the exponential, 

stationary and biofilm samples, respectively. FASTA formatted sequences and quality 

values extracted from SFF files were used as input for cross-match (Phred-Phrap-Consed 

package) to mask the sequence of the adapters used with the SREK kit (Table S1). 

Masked segments were then removed with Trimseq (Emboss package). No procedure to 

eliminate identical reads was performed, given that the pyrosequencing libraries consisted 

of short cDNA sequences representing, in principle, full-length sRNAs and the presence 

of identical reads was expected. 

Pre-processed reads were aligned with cross-match against the A. baumannii ATCC 

17978 chromosome and plasmid nucleotide sequences (Genbank: NC_009085, 

NC_009083 and NC_009084). Alignments were filtered with an ad-hoc Perl script 

(crossMatchParser) to recover, for each read, those alignments with the highest score and 

fulfilling the minimal requirements of 90% identity and 15-base pair length. Between 

32 % and 43 % of pre-processed reads could be aligned for each sample (Table S2). The 

total number of filtered alignments was around twice the number of aligned reads, 

indicating that a significant number of reads could align to more than one location with 

the same score. 

Quantification of the expression level for known sRNA genes 

To estimate the expression level for known sRNA genes described for A. baumannii 

ATCC 17978, which included 74 genes coding for 5S rRNAs and tRNA, filtered 

alignments were processed with the ad-hoc script mapAlignHits, which in “expression 

mode” calculated the average coverage for sets of target sequence segments defined by 

gene coordinates. Relative abundance (RA) values were also calculated for known protein 
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coding genes and for 16S and 23S rRNA genes (Table S3). Reads aligning to multiple 

locations with identical score contributed to the coverage of each region with an amount 

that was inversely proportional to the number of locations. The resulting average 

coverage values were normalized to obtain relative abundance (RA) values, by dividing 

them by the total number of mapped reads for each sample, and multiplying them by the 

number of mapped reads for the exponential phase sample, which was defined as the 

reference condition. tRNA and 5S rRNA genes had RA values of 1,092 to 1,338, in 

average, for the three samples, which were more than 1,000-fold and about 20-fold higher 

than RA values calculated for protein coding genes and 16S and 23S rRNA genes, 

respectively (Table S4 and Figure S1), suggesting that sRNA fractions isolated as 

described in Methods were significantly depleted of mRNA and rRNA. A1S_2909, 

coding for Leu tRNA, was the known sRNA gene expressed at the highest level, with a 

RA value of 18,693 in the stationary phase sample. In contrast, A1S_2764, coding for 

Arg tRNA, was the known sRNA gene expressed at the lowest level, with a RA value of 

7.6 in the exponential phase sample.  

Identification of new sRNA gene candidates  

To identify new sRNA gene candidates, filtered alignments were combined into a single 

file and processed with script mapAlignHits, which, in “detection mode” identified 

continuous read-covered regions, with a minimal average coverage of 1, in target 

sequences (chromosome and plasmids). A total of 26,956 read-covered regions 

(exprRegs) were detected. To identify read-covered regions overlapping with known 

genes, the ad-hoc script FindOlappingFeatures was used to compare their coordinates 

with the coordinates of 3,451 known protein, tRNA and rRNA coding genes. The 

minimal overlap required to consider two features as overlapping was set to 0.001 % of 

the length of any of the features. A total of 21,392 exprRegs were found to overlap with 

already described genes. The remaining 5,564 exprRegs (Dataset S1) were considered as 

new potential sRNA genes. However, since the coordinate set used to define known 

protein coding genes referred exclusively to coding regions, some of the 5,564 exprRegs 

could correspond to 5' or 3' UTRs of genes that had not been covered by a single, 

continuous alignment, spanning the whole length of the transcribed region. New sRNA 

gene candidates were identified both in chromosome and plasmids (5,505 and 59 genes, 

respectively). Their average length was 63.39 base pairs (Figure S2). 



Supplementary material Chapter III 

 

205 
 

Figure S1 

Distribution of normalized expression scores for known sRNA genes. Blue: biofilm 

samples. Orange: exponential phase samples. Yellow: stationary phase samples. 

 

 

Figure S2 

Distribution of normalized expression scores for the 5564 expressed regions not 

overlapping with known genes. Blue: biofilm samples. Orange: exponential phase 

samples. Yellow: stationary phase samples. 
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Figure S3 

Distribution of normalized expression scores for the 255 expressed regions not 

overlapping with known genes and having a normalized expression score equal or higher 

than 7.6 in some of the growing conditions. Blue: biofilm samples. Orange: exponential 

phase samples. Yellow: stationary phase samples. 

 

 

Figure S4 

qRT-PCR assays. Expression levels of 8 sRNA regions in planktonic and sessile cells 

determined by qRT-PCR using Taqman probes. Y axis represents the relative expression 

of the genes taking the housekeeping gene gyrB as value 1. 
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Figure S5 

Biofilm formation at different times. Staining at 12, 24 and 48 h of biofilm formation of 

A. baumannii ATCC 17978 (17978), A. baumannii ATCC 17978 Δ13573 (Δ13573), A. 

baumannii ATCC Δ13573 harbouring pETRA with sRNA 13575 (Δ13573 

complemented), A. baumannii ATCC 17978 harbouring pETRA with sRNA 13575 

(13573), and A. baumannii ATCC 17978 harbouring pETRA (17978 with empty 

pETRA). 
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Figure S6 

Growth curves. Growth curves of wild type A. baumannii (17978), A. baumannii ATCC 

17978 lacking the sRNA 13573 (Δ13573), A. baumannii Δ13573 over-expressing sRNA 

13575 (Δ13573 complemented), A. baumannii ATCC 17978 harbouring pETRA over-

expressing sRNA 13575 (13573) and A. baumannii ATCC 17978 harbouring the empty 

pETRA vector (17978 with empty pETRA). 

 

 

Table S1 

Oligonucleotides and probes used in the present study. 

Oligonucleotide 

name 

Oligonucleotide sequence Use of the oligonucleotides 

 

13573 F ccctctagagggattattatgactgcttaaatc Over-expression of sRNA 

13573 in pETRA 

13573 R gggccatggcccaataggttagtaaggtaataa Over-expression of sRNA 

13573 in pETRA 

KM F cccctgcaggggccggaattgccagctggggcg Cloning kanamycin resistance 

cassette in pETRA 

KM R gggctgcagccctcagaagaactcgtcaagaag Cloning kanamycin resistance 

cassette in pETRA 

SREK 1 ctgccccgggttcctcattctctgcggtcctgctgta Construction of cDNA 
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cggccaaggcg libraries 

SREK (Ambion) 

SREK 2 ccactacgcctccgctttcctctctatgggcagtcg

gtgat 

Construction of cDNA 

libraries 

SREK (Ambion) 

13573BUpFNot

I 

cccgcggccgcgggttggtcaaaggtgtgaaaat

gt 

Construction of the knockout 

mutant of sRNA 13573 

13573 UpR3 

BamHI 

gggggatcccccactaaagtatctatttgggtgtac

g 

Construction of the knockout 

mutant of sRNA 13573 

13573 DownF3 

BamHI 

cccggatccgggaggatcggttattgaatcag Construction of the knockout 

mutant of sRNA 13573 

13573DownRS

phI 

ggggcatgcccccaagtcacaagcaccttcttt Construction of the knockout 

mutant of sRNA 13573 

13573extF2 tataaggtgtaagcacgctg Checking of the knock-out 

mutant of sRNA 13573 

13573extR2 tcacgagacaagagatgaac Checking of the knockout 

mutant of sRNA 13573 

 

 

Table S2 

Number of initial reads, mapped reads and alignment hits for each sample. 

Sample Number of Reads Number of Mapped Reads  Number of Hits 

Exp 689,097 298,048 (43%) 691,710 

Sta 502,152 176,003 (35%) 429,806 

Bio 627,209 204,637 (32%) 505,760 

Biofilm: Bio. Exponential phase of growth: Exp. Stationary phase of growth: Sta. 
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Table S3  

A. baumannii known sRNA and non-sRNA genes used as reference. 

Gene set Subset Number of genes 

rRNA 5S Known sRNA  5 

tRNA Known sRNA 69 

rRNA 16S and 23 S Known, non sRNA 10 

Protein coding Known, non sRNA 3,367 

 

 

Table S4  

Average, standard deviation, maximal and minimal values for the normalized expression 

scores calculated for protein coding genes, 16S and 23S rRNA genes and known sRNA 

genes, in each of the growing conditions.  

 Protein Coding 16S, 23S tRNA, 5S 

 BioN ExpN StaN BioN ExpN StaN BioN ExpN StaN 

Ave 0.62 1.05 1.15 57.27 35.41 61.07 1,260.37 1,092.71 1,338.55 

Std 1.03 1.27 1.32 1.72 3.09 16.6 2,719.95 1,797.35 2,689.99 

Max 20.34 26.49 27.48 59.15 38.44 77.3 18,375.78 9,944.99 18,693.1 

Min 0 0 0 55.65 32.08 45.3 15.9 7.6 14.93 

Biofilm: BioN. Exponential phase of growth: ExpN. Stationary phase of growth: StaN. 

Average: Ave. Standard deviation: Std. Maximal values: Max. Minimal values: Min. 

 

 

Table S5  

Average, standard deviation, maximal and minimal values for the normalized expression 

scores calculated for 5564 expressed regions not overlapping with known genes. 

 



Supplementary material Chapter III 

 

211 
 

 

 Bio Exp Sta 

Ave 1.83 2.01 2.06 

Std 20.62 12.96 27.64 

Max 826.28 484.14 1,728.21 

Min 0 0 0 

Biofilm samples: Bio. Exponential phase of growth samples: Exp. Stationary phase of 

growth samples: Sta. Average: Ave. Standard deviation: Std.  

 

Table S6 

Sets of expression regions not overlapping with known genes and having a normalized 

expression score equal or higher than 7.6 in some of the three growing conditions. 

 Bio Exp Sta 

Number of expression 

regions 

108 140 121 

Average normalized 

score 

57.88 35.64 54.53 

Standard deviation 137.16 74.12 180.27 

Maximal normalized 

score 

826.28 484.14 1,728.21 

Minimal normalized 

score 

7.74 7.6 7.7 

 

 

Dataset S1 

Expressed regions. List of 5,564 expressed regions, their length and locations in the 

genome (NC_009085.1) or plasmids (NC_009083.1 and NC_009084.1) of A. baumannii 

ATCC 17978. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538643/bin/pone.0182084.s008.docx 

https://www.ncbi.nlm.nih.gov/nuccore/NC_009085.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_009083.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_009084.1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538643/bin/pone.0182084.s008.docx
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Dataset S2 

Coding regions. List of normalized expression of 255 coding regions (expression score 

should be equal or above 7.6 in some growing condition: Bio, Exp or Sta), their length 

and locations in the genome (NC_009085.1) or plasmid (NC_009084.1) of A. baumannii 

ATCC 17978. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538643/bin/pone.0182084.s009.docx 

https://www.ncbi.nlm.nih.gov/nuccore/NC_009085.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_009084.1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538643/bin/pone.0182084.s009.docx
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Un análisis transcripcional revela nuevos factores relacionados con la capacidad de 

formar biopelículas de Acinetobacter baumannii. 

Las enfermedades infecciosas se consideran un importante problema de salud pública 

tanto en países desarrollados como en países en vías de desarrollo. La adaptación de las 

bacterias a condiciones de estrés, debido en parte al mal uso de los antibióticos, ha 

propiciado la aparición de cepas multi-resistentes. Esto es especialmente peligroso en el 

ambiente hospitalario, donde los pacientes inmunocomprometidos son muy vulnerables. 

Los patógenos que en la actualidad causan un mayor número de infecciones hospitalarias 

y que son capaces de “escapar” a la acción de los antimicrobianos se engloban dentro del 

término ESKAPE. En este grupo está incluido Acinetobacter baumannii, un cocobacilo 

Gram-negativo que se aísla frecuentemente a partir de  equipos médicos y pacientes 

hospitalizados. La habilidad de esta bacteria de desarrollar factores de virulencia y 

resistencia constituye la clave de su éxito  como patógeno humano. 

A. baumannii causa diversos tipos de infecciones, siendo predominantes las de tracto 

respiratorio. Los pacientes con ventilación mecánica o que han sufrido cirugías son 

especialmente sensibles a este tipo de infecciones. Las tasas de mortalidad asociadas a 

infecciones producidas por A. baumannii son significativamente superiores cuando las 

cepas son resistentes a los carbapenemes. 

La plasticidad genética de A. baumannii le permite adquirir genes de resistencia de otras 

especies y desarrollar mutaciones para adaptarse a condiciones de estrés. La rápida 

emergencia de cepas de A. baumannii resistentes a todos los β-lactámicos, incluyendo los 

carbapenemes, explica el potencial de este microorganismo para responder a la presión 

selectiva del ambiente. Se han detectado infecciones por cepas de esta especie resistentes 

a todos los antibióticos utilizados en clínica, lo que dificulta enormemente su tratamiento. 

Además, el éxito de A. baumannii se puede atribuir a otros factores como su capacidad 

para formar biopelículas y resistir a la desecación en superficies abióticas. La biopelícula 

es una compleja estructura formada por una comunidad de células sésiles embebidas en 

una matriz producida por ellas mismas. Las bacterias que forman parte de las biopelículas 

presentan una serie de características diferentes a las células bacterianas que se 

encuentran en un modo de vida planctónico. Así, las bacterias asociadas a las biopelículas 
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poseen mayor resistencia a los antibióticos, a los desinfectantes y a componentes del 

sistema inmune de los hospedadores. 

La alta capacidad de A. baumannii de adherirse a superficies abióticas y bióticas origina 

el primer paso para la colonización y suele ir acompañado del desarrollo de biopelículas. 

Esta habilidad para adherirse puede variar entre diferentes cepas y está influida por 

diversos factores, tales como la disponibilidad de nutrientes, los componentes de la 

superficie bacteriana u otros factores ambientales.  

Se han identificado varios genes que participan en la adhesión y la capacidad de formar 

biopelículas en A. baumannii. Los pili tipo I, unas estructuras proteicas muy frecuentes en 

la superficie celular de numerosos patógenos, suelen estar involucrados en ambos 

procesos en bacterias Gram-negativas. En A. baumannii se han identificado varios 

operones que codifican pili tipo I, cuya inactivación causa un descenso en la producción 

de biopelículas y en la adherencia. 

Otras muchas proteínas asociadas a la membrana bacteriana están involucradas en estos 

procesos. Así, la proteína autotransportadora Ata, un sistema de secreción tipo V, también 

es necesaria para el desarrollo de biopelículas, la adhesión bacteriana y la supervivencia 

de A. baumannii durante la infección. La adhesina Bap (biofilm-associated protein) es un 

factor importante para la formación de una biopelícula madura y para la adherencia a 

células epiteliales humanas. También la porina de la membrana externa OmpA está 

implicada en la adherencia a plástico y a células eucariotas, además de inducir la 

apoptosis en células epiteliales. 

Los mecanismos de comunicación entre bacterias,  o quorum sensing, también están 

relacionados con la capacidad de adherencia y la formación de biopelículas. Las bacterias 

Gram-negativas utilizan acil-homoserina-lactonas como moléculas señalizadoras. En A. 

baumannii la presencia de estas moléculas provoca un aumento en la densidad de la 

biopelícula y la degradación de las acil-homoserín-lactonas interrumpe su formación. 

La cantidad de biopelícula formada por A. baumannii también se ve alterada por señales 

ambientales diversas como la temperatura, la luz, la concentración de hierro disponible o 

la superficie sobre la que se forma. 
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Los procesos biológicos bacterianos están regulados a distintos niveles. Existen pequeñas 

moléculas  de RNA (sRNAs) que actúan como reguladores modulando la transcripción, la 

traducción y la estabilidad del RNA mensajero (mRNA). Los sRNAs ejercen su acción 

mediante diferentes mecanismos; provocando cambios en la conformación del RNA, 

uniéndose a proteínas o a otros RNAs por emparejamiento de bases o interaccionando con 

el DNA. Los sRNAs mejor caracterizados son los que regulan la expresión génica 

mediante emparejamiento de bases con el mRNA. 

La formación de biopelículas es uno de los procesos biológicos más complejos que llevan 

a cabo las bacterias, por lo que su activación debe responder de manera precisa a cambios 

ambientales. Aparte de la regulación transcripcional que controla la producción de 

biopelículas, existe una regulación post-transcripcional mediada por sRNAs que permite a 

la bacteria adaptarse rápidamente a las variaciones del entorno. Se han identificado 

numerosos sRNAs capaces de integrar distintas señales y actuar como reguladores que 

controlan la formación de biopelículas, especialmente en Escherichia coli. Además, 

muchos de estos sRNAs participan también en la coordinación de diversos procesos como 

el metabolismo celular, la virulencia o la resistencia a antibióticos. 

En la actualidad la información sobre la regulación mediada por sRNAs en A. baumannii 

es escasa. Se han identificado una serie de sRNAs, mediante métodos bioinformáticos y 

de secuenciación masiva, pero no se conocen los procesos biológicos en los que podrían 

estar implicados. 

En el presente trabajo se realizó un análisis transcripcional empleando técnicas de 

secuenciación masiva usando como material de partida la totalidad de las moléculas de 

mRNA y de sRNA extraídas a partir de células de la cepa A. baumannii ATCC 17978 

tanto asociadas a biopelículas como planctónicas (en fases de crecimiento exponencial y 

estacionaria). Esto ha permitido la identificación de varios nuevos factores implicados en 

el proceso de formación de biopelículas. 

Los resultados obtenidos mostraron que, aunque muchos genes se expresaban de manera 

constitutiva tanto en biopelículas como en células planctónicas, muchos otros presentaban 

una expresión diferencial en células sésiles con respecto a las bacterias plantónicas. Un 

total de 1621 genes aparecieron sobre-expresados en las células asociadas a biopelícula 

con respecto a las células planctónicas. Además, 55 genes se detectaron exclusivamente 



Summary 

 

218 
 

en células sésiles, estando totalmente inhibidos en células planctónicas. Una vez 

clasificados los genes sobre-expresados en las biopelículas en función de los procesos 

biológicos en los que participaban, se observó que el grupo mayoritario era el implicado 

en regulación transcripcional. Otros grupos de genes sobre-expresados resultaron estar 

relacionados con el metabolismo de aminoácidos, el metabolismo de ácidos grasos, el 

transporte de iones, la biosíntesis de carbohidratos o la respuesta al estrés. 

Muchos de estos genes codifican proteínas cuya función ya se había relacionado 

previamente con procesos de formación y mantenimiento de las biopelículas, mientras 

que otros se detectaron en este trabajo por primera vez. Entre estos genes relacionados 

con la formación de biopelículas en A. baumannii, aparecieron varios genes del operón 

csuA/BABCDE y el gen bfmR, que forma parte de un sistema regulador de dos 

componentes y controla la expresión de los genes de dicho operón. Asimismo, se observó 

la sobre-expresión de genes relacionados con la formación de pili; como el gen 

A1S_1507, que codifica una proteína de una fimbria, y el gen A1S_3168, que codifica la 

proteína de formación de pilus PilW. 

Un importante número de genes relacionados con el transporte y la captación de hierro se 

encontraron sobre-expresados en las células asociadas a biopelículas en comparación con 

las células planctónicas. Así, se encontraron, entre otros, un receptor de una 

enterobactina, una proteína de unión a hierro, un receptor de una acinetobactina, una 

proteína de síntesis de un sideróforo o una proteína de síntesis de acinetobactina. Además, 

algunos de estos genes, como los relacionados con la acinetobactina (A1S_2380 y 

A1S_2388), estaban exclusivamente expresados en biopelículas y no se detectaron en las 

muestras de células plantónicas. 

Otro factor muy implicado en la formación de biopelículas es la proteína Bap que, en A. 

baumannii ATCC 17978, se encuentra codificada por dos loci homólogos, los genes 

A1S_2724 y A1S_2696. Ambos genes se encontraron sobre-expresados en células sésiles 

en comparación con células planctónicas, por lo que se sugiere que las proteínas 

codificadas por estos genes podrían estar implicadas en la formación de biopelículas en la 

cepa ATCC 17978. 

La homoserín-lactona sintasa, codificada por el gen A1S_0109, responsable de la síntesis 

de la acil-homoserín-lactona, y que ha sido descrita como necesaria para la formación de 
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biopelículas, presentó unos niveles de expresión mayor en biopelículas. Asimismo, el 

grupo de genes contiguo a esta sintasa (A1S_0112-A1S_0118) resultaron estar también 

sobre-expresados en células sésiles, destacando entre ellos el gen A1S_0114, que codifica 

una proteína transportadora de grupos acilo, y que presentó los niveles de expresión más 

altos detectados en células asociadas a biopelículas (de orden de 120 veces más). 

Se seleccionaron 5 genes entre los genes sobre-expresados en biopelículas. Estos fueron 

los genes A1S_1507, A1S_3168, A1S_2042, A1S_0302 y A1S_0114 que codifican una 

proteína de fimbria, una proteína de un pilus, un regulador transcripcional, una proteína 

hipotética y un transportador de grupos acilo, respectivamente. Mediante RT-qPCR se 

confirmaron los resultados obtenidos a partir del análisis transcripcional masivo y se 

elaboraron cepas mutantes por disrupción de los genes de interés con el plásmido pCR-

Blunt-II-TOPO. El análisis de la formación de biopelículas de las cepas mutantes reveló 

un descenso en el caso de las cepas mutantes con respecto a la cepa salvaje A. baumannii 

ATCC 17978, confirmándose el papel de estos genes en el proceso de formación de 

biopelículas. 

Se elaboró un mutante estable libre de marcadores de resistencia a antibióticos 

eliminando permanentemente el gen A1S_0114. El mutante estable, que carece del gen 

A1S_0114, mostró una capacidad para formar biopelículas unas tres veces menor a la de 

la cepa salvaje. Además, este mutante estable permitió analizar la relación del gen 

A1S_0114 con los genes próximos A1S_0109, A1S_0112 y A1S_0113, que codifican 

una homoserín-lactona sintasa, una acil-CoA sintasa y una acyl-CoA deshidrogenasa, 

respectivamente. Mediante qRT-PCR se demostró que en ausencia del gen A1S_0114, la 

expresión de los otros genes descendía en células en fase estacionaria de crecimiento. 

Estos resultados sugieren que el gen A1S_0114 podría estar involucrado en la formación 

de biopelículas a través de mecanismos de quorum sensing, aunque se postula que su 

actividad como donador de grupos acilo podría estar también relacionada con el 

metabolismo de ácidos grasos. 

Con el fin de caracterizar el gen A1S_0114 y conocer su papel en la patogénesis y de 

establecer su relación con los genes adyacentes se realizaron una serie de análisis 

genotípicos y fenotípicos. 
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Tanto los datos del análisis transcriptómico masivo como un análisis in silico del grupo 

de genes A1S_0112-0119 sugerían que estos genes podrían estar actuando como un 

operón policistrónico, ya que presentaban niveles de sobre-expresión semejantes en 

células asociadas a biopelículas, estando localizados  próximos  en la misma orientación. 

Se confirmó la naturaleza policistrónica del operón mediante técnicas de RT-PCR 

utilizando oligonucleótidos que conectaban todos los genes. 

Se llevaron a cabo ensayos de adherencia a células epiteliales alveolares humanas A549 

para evaluar los efectos biológicos causados por la eliminación del gen A1S_0114. Estos 

experimentos mostraron que la cantidad de bacterias de la cepa mutante recuperadas era 

un 60% inferior a los recuentos de células alveolares infectadas con la cepa salvaje ATCC 

17978. Cuando el mutante estable se complementaba con el plásmido pWH1266-Km 

portador de una copia del gen A1S_0114, la capacidad de adherencia de la cepa mutante 

se restauraba parcialmente. 

Los resultados obtenidos en los experimentos de adherencia a células alveolares humanas 

se confirmaron mediante microscopía electrónica de barrido. El análisis de células A549 

polarizadas infectadas corroboraron el papel del gen A1S_0114 en la adherencia a 

superficies bióticas. Las células A549 infectadas con la cepa salvaje A. baumannii ATCC 

17978 presentaban importantes daños tanto a nivel celular como en la  capa de surfactante 

que las recubre. Además, se detectó un gran número de bacterias adheridas a la superficie 

de las células alveolares. Por su parte, la infección causada por la cepa mutante provocó 

importantes daños celulares y en la capa de surfactante, pero apenas se detectaron 

bacterias adheridas a la superficie de las células polarizadas. 

También se utilizó la microscopía electrónica de barrido para respaldar los resultados de 

formación de biopelículas. Tal y como se esperaba, las micrografías mostraron una mayor 

capacidad de las células de la cepa salvaje ATCC 17978 para adherirse a la superficie 

abiótica y configurar estructuras multicelulares y tridimensionales, que se asocian con la 

formación de biopelículas maduras. Por el contrario, sólo se detectaron pequeñas 

agrupaciones no tridimensionales de bacterias en el caso de la cepa mutante. 

Debido a que la eliminación del gen A1S_0114 afecta a la capacidad de A. baumannii 

para adherirse y formar biopelículas, se realizó un análisis de los niveles de expresión de 

genes relacionados con estas funciones. Se seleccionaron el gen que codifica la proteína 
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de membrana OmpA y los genes asociados a sistemas de pili csuA/B, A1S_0690, 

A1S_1510 y A1S_2091. La RT-qPCR comparativa entre la cepa salvaje ATCC 17978 y 

el mutante estable demostró que la expresión de los genes de pili se reducía de forma 

estadísticamente significativa en la cepa carente del gen A1S_0114, excepto en el caso de 

csuA/B, cuya expresión aumentaba en la cepa mutante. Sin embargo, este último dato 

podría no ser muy relevante, ya que el gen csuA/B parece estar truncado en la cepa ATCC 

17978. La eliminación del gen A1S_0114 también causó una pequeña reducción de la 

expresión del gen ompA. 

El papel que juega el gen A1S_0114 en virulencia se evaluó mediante diferentes modelos 

animales: un ensayo de fertilidad en Caenorhabditis elegans, un experimento de 

supervivencia en la oruga Galleria mellonella y un modelo de neumonía en ratón. El 

estudio de fertilidad en C. elegans demostró que el número de huevos viables era casi dos 

veces superior en gusanos infectados con la cepa mutante en comparación con la cepa 

salvaje ATCC 17978. Un 50% de las larvas de G. mellonella infectadas con la cepa 

salvaje murieron a los 5 días de ser infectadas, mientras que el porcentaje de muerte entre 

las larvas infectadas con el mutante estable fue significativamente menor. El modelo de 

neumonía mostró que la carga bacteriana en los pulmones de ratones infectados con la 

cepa mutante era significativamente inferior a la de los animales infectados con la cepa 

salvaje ATCC 17978. Los resultados de estos experimentos evidencian que el gen 

A1S_0114 contribuye a la virulencia de A. baumannii. 

Debido a la implicación del gen A1S_0114 en virulencia y a la predicción de que los 

genes del operón A1S_0112-0119 podrían actuar como una péptido sintasa no ribosomal, 

se realizó una búsqueda de compuestos que podrían estar producidos por este operón 

mediante cromatografía líquida/espectrometría de masas. Dicho análisis mostró la 

presencia de un compuesto de peso molecular de 505,28 Da presente en las muestras de la 

cepa salvaje ATCC 17978, no detectado en el caso de la cepa mutante. La fórmula 

molecular de dicho compuesto, que hemos denominado Acinetina 505, es C23H43N3O7S y 

resultó ser semejante a un lipopéptido de tres aminoácidos. 

Los datos demuestran que el gen A1S_0114 afecta a la formación de biopelículas, a la 

adherencia y a la virulencia de A. baumannii. Sin embargo, todavía no hemos conseguido 

desentrañar el mecanismo mediante el cual se regulan estos procesos y el papel de la 
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Acinetina 505 en dicha regulación. . Ahondar en estos aspectos podría aportar 

importantes datos sobre la patobiología de A. baumannii y facilitar el desarrollo de 

herramientas alternativas para el tratamiento de infecciones causadas por este patógeno. 

A continuación, se utilizaron técnicas de secuenciación masiva para caracterizar el 

transcriptoma global  a nivel de sRNAs en células sésiles y planctónicas de  A. baumannii 

ATCC 17978. Se compararon los transcriptomas de sRNA de células planctónicas 

obtenidos en fases de crecimiento exponencial y estacionario y de células asociadas a 

biopelículas para identificar diferencias en los perfiles de expresión de sRNAs. 

Se identificaron un total de 5.564 presuntos sRNAs, fragmentos de RNA no coincidentes 

con ningún gen previamente descrito ni con RNA transferentes ni ribosómicos. Un total 

de 255 de estos sRNAs se describieron como expresados diferencialmente en alguna de 

las tres condiciones de crecimiento. Todos ellos estaban localizados en el cromosoma 

bacteriano excepto uno, localizado en el plásmido pAB2. En células asociadas a 

biopelículas, 28 sRNAs estaban sobre-expresados mientras que 32 tenían una expresión 

menor que en células planctónicas. Uno de ellos, el sRNA 13573, mostró unos valores de 

sobre-expresión de unas 120 veces más en biopelículas con respecto a células 

planctónicas. Además, 9 sRNAs fueron detectados únicamente en células de biopelículas 

mientras que 21 se expresaron exclusivamente en células planctónicas. Los resultados de 

secuenciación masiva de 6 de los sRNAs únicamente expresados en biopelículas y del 

sRNA 13573 se corroboraron mediante RT-qPCR. 

El alto nivel de expresión del sRNA 13573 en células sésiles sugería su posible papel en 

la regulación de las biopelículas. Se elaboró una cepa mutante estable que carecía del 

sRNA 13573, así como una cepa que sobre-expresaba el sRNA 13573 desde un plásmido, 

con el fin de dilucidar el papel de este sRNA en la patogénesis de A. baumannii. Los 

experimentos de formación de biopelículas mostraron que la falta del sRNA 13573 

provocó una pequeña pero no significativa reducción de la producción de biopelícula. Sin 

embargo, la cepa que sobre-expresaba el sRNA 13573 duplicó la formación de 

biopelícula con respecto a la cepa salvaje ATCC 17978. Las imágenes de microscopía 

electrónica de barrido mostraron que las células que sobre-expresaban el sRNA 13573 

eran capaces de desarrollar biopelículas con estructuras tridimensionales, a diferencia de 
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la cepa salvaje que presentaba estructuras más simples. Las células de la cepa mutante 

mostraron un patrón más desorganizado que las de la cepa ATCC 17978. 

Los ensayos de adhesión a células eucariotas epiteliales A549 indicaron que la sobre-

expresión del sRNA 13573 provocaba un aumento de la adherencia de unas 30 veces 

superior a la cepa salvaje. La capacidad de adherirse disminuyó en la cepa que carecía del 

sRNA 13573, pero este efecto se restableció en la cepa mutante complementada, 

portadora de una copia del sRNA 13573 en el plásmido pETRA, alcanzando valores 

superiores a la cepa salvaje. Un análisis por microscopía electrónica de barrido de células 

alveolares humanas polarizadas infectadas con las distintas cepas reveló que la sobre-

expresión del sRNA 13573 confería a la bacteria una espectacular capacidad de formar 

biopelículas con estructura tridimensional sobre las células epiteliales. Tal y como se 

esperaba, la cepa mutante mostró una menor adherencia a las células eucariotas que la 

cepa ATCC 17978. 

Los datos recogidos en este trabajo indican que el transcriptoma de sRNAs presenta un 

patrón de expresión diferente en células asociadas a biopelículas en comparación con 

células planctónicas. Además, se ha confirmado que el sRNA 13573, altamente expresado 

en células asociadas a biopelículas, está implicado en la formación de biopelículas así 

como en la adherencia a superficies tanto abióticas como bióticas. 

En conclusión, en el presente trabajo se ha demostrado que el  patrón de mRNA de las 

células asociadas a biopelículas de A. baumannii ATCC 17978  es significativamente 

diferente al de las células planctónicas. Se han identificado una serie de genes que 

participan en la regulación de las biopelículas, destacando entre ellos el gen A1S_0114, 

que codifica una proteína transportadora de grupos acilo, y que  juega un importante 

papel en adherencia a superficies bióticas y abióticas, virulencia y biosíntesis del 

metabolito Acinetina 505. Además, se han descrito un importante número de sRNAs en la 

cepa A. baumannii ATCC 17978, encontrándose muchos de ellos expresados de forma 

diferencial en células sésiles con respecto a células en fase exponencial o estacionaria. 

Entre los nuevos sRNAs descritos, se encontró el sRNA 13573, demostrándose su 

implicación en la regulación de la formación de biopelículas y en la adherencia a células 

eucariotas. Este trabajo sirve como base para futuros estudios que traten de desentrañar la 
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compleja red que regula tanto la formación de biopelículas como otros procesos 

biológicos asociados a la patogénesis de A. baumannii. 
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