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Abstract

This methodology permits to simulate the performance of different Poly(D,L-lactide-co-gly-

colide) copolymer formulations (PDLGA) in the human body, to identify the more influencing

variables on hydrolytic degradation and, thus, to estimate biopolymer degradation level. The

PDLGA characteristic degradation trends, caused by hydrolysis processes, have been stud-

ied to define their future biomedical applications as dental scaffolds. For this purpose, the

mass loss, pH, glass transition temperature (Tg) and absorbed water mass of the different

biopolymers have been obtained from samples into a phosphate-buffered saline solution

(PBS) with initial pH of 7.4, at 37˚C (human body conditions). The mass loss has been

defined as the variable that characterize the biopolymer degradation level. Its dependence

relationship with respect to time, pH and biopolymer formulation has been modelled using

statistical learning tools. Namely, generalized additive models (GAM) and nonlinear mixed-

effects regression with logistic and asymptotic functions have been applied. GAM model

provides information about the relevant variables and the parametric functions that relate

mass loss, pH and time. Mixed effects are introduced to model and estimate the degradation

properties, and to compare the PDLGA biopolymer populations. The degradation path for

each polymer formulation has been estimated and compared with respect to the others for

helping to use the proper polymer for each specific medical application, performing selection

criteria. It was found that the mass loss differences in PDLGA copolymers are strongly

related with the way the pH decay versus time, due to carboxylic acid groups formation. This

may occur in those environments in which the degradation products remain relatively con-

fined with the non degraded mass. This is the case emulated with the present experimental

procedure. The results show that PDLGA polymers degradation degree, in terms of half life

and degradation rate, is increasing when acid termination is included, when DL-lactide

molar ratio is reduced, decreasing the midpoint viscosity, or when glycolide is not included.
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1 Introduction

Biomaterials can be defined as those products safely implanted (permanently or temporary) in

the body to simulate the tissue functions, to restore the existing effect and induce tissue regen-

eration [1]. Poly(D,L-lactic-co-glycolic acid), PDLGA, is an important synthetic [2] and biode-

gradable [3] biomaterial for many biomedical purposes. It is a copolymer based on DL-lactic

and glicolyc acids used for different pharmaceutical and biomedical applications such as surgi-

cal implants, fixures, sutures, controlled drug delivery, and scaffolds in tissue engineering

domain [4]. L-lactide and DL-lactide have been currently used for copolymerization with gly-

colic acid monomers, resulting the so called PLGA copolymers. PLGA biodegradable polymers

have been commercially developed, obtaining materials with different mechanical properties

[5]. They have been approved by the Food and Drug Administration for human use [6–9],

being applied in locally implanted medical devices, scaffolds [8, 10], and as biodegradable car-

rier for the delivery [11, 12] of different therapeutic agents such as proteins, DNA, peptides,

among others [12, 13]. In fact, the PLGA is the most extensively studied and used polymer for

delivery applications [14], taking into account its biodegradability and biocompatibility prop-

erties [15]. As mentioned by Cristallini et al. [16], PLGA provides polymeric biomaterials

where properties such as biocompatibility and biodegradation can be modulated by varying

PLA and PGA fraction contents, among other advantages.

In this study, PDLGA polymers are tested and their in vitro behaviour is statistically mod-

elled in order to evaluate their performance in tissue engineering applications. In situ tissue

engineering is a increasingly important concept which involves engineering, cell and material

science methodologies to act (replace or improve) over the body tissues. Among other applica-

tions, it accounts for the use of different materials and methods for covering bone defects, par-

ticularly critical. For example, in order to maintain alveolar processes after tooth extraction,

where conventionally dentures or osseointegrated dental implants could be placed. In fact,

after the loss of dental and periodontal tissue (due to different reasons) bio-scaffolding helps to

promote new bone tissue growth, being used before placing a titanium implant [17]. In the

present case, the PDLGA polymers which at the beginning were designed for developing drug

delivery devices, now are studied to perform bioscaffolds. According to Wang [18], these scaf-

fold materials specially applied in bone tissue engineering should meet the following 6 princi-

ples to perform optimally their functions: 1) the scaffold must be non-toxic and

biocompatible, 2) biodegradable 3) highly porous and three-dimensional, 4) have the required

mechanical properties to temporally provide structural support, 5) be processable to be modi-

fied in several sizes, 6) mimic the extra-celular matrix, and 7) osteoinductive and

osteoconductive.

Reliability is one the branches of statistics with more applications in material engineering.

In this work, estimating the degradation level of a material depending on time and other criti-

cal variables is intended. This has been tackled by the application of statistical reliability analy-

sis techniques such as degradation models estimation. In fact, one of the applications of

statistical degradation models in material engineering is the estimation of the material lifetime

and reliability [19]. In this context, while lifetime is the duration after which a material cannot

fulfill its design requirements [20], reliability is technically defined as the probability that a

material performs its function under work conditions, during an interval of time [19]. In some

reliability studies, as in the present case, it is possible to measure physical degradation (mass

loss, water absorption, pH) depending on time. This type of data are named degradation data.

Degradation is strongly connected with aging, that is the time dependent process defined by

the decay of material critical to quality (CQT) design properties as mass, modulus and other

mechanical characteristics [20]. This aging can be produced by the action of pressure, water,
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mechanical stress, heat, among other causes [21, 22]. It is important to note that the proper

statistical degradation modelling and accurate lifetime estimates of the biopolymers used as

bioscaffolds are crucial for an adequate material selection, according to the application

requirements. These types of studies can be helpful for continuously performing and designing

better scaffolds, customized depending on the application [23]. In fact, there are some applied

mathematics, including kinetics, computer aided, and statistical works devoted to the scaffold

degradation and lifetime modelling [24–28], where degradation models for CTQ variables are

performed from very different approaches. Chen el al. [24] developed a numerical model tak-

ing into account the stochastic hydrolysis and mass transport to simulate the polymeric degra-

dation and erosion process. Hoque et al. [25] also modelled the mass loss using an exponential

expression, assuming the water diffusion and hydrolysis as the main causes for the degradation

processes. Focusing on lactic and glycolic based polymers, pH-dependant kinetics models have

been applied to explain the hydrolytic degradation of lactic acid [29] and D,L-lactic acid oligo-

mers [30]. Kinetic models based on logistic function have been also applied to estimate the

PDLA polymers lifetime due to thermal aging [21]. Moreover, Idaszek et al. [31] have

described the hydrolytic degradation of PLGA, and they have identified the more influencing

variables using statistical exploratory analysis and linear regression. The mechanical and visco-

elastic properties are also CTQ variables to measure the extend of biopolymer degradation.

Accordingly, the work of Zhang [23] presents a review of mechanical and physical properties

of biodegradable polymers, whereas Breche [32] proposes a physically motivated model to

estimate the mechanical behaviour of PLA-b-PEG-b-PLA copolymers during hydrolytic

degradation.

The present work focuses on the degradation study (in vitro) of PDLGA polymers and

copolymers due to hydrolysis under human body conditions. Thus, it is important to note that

only the degradation due hydrolysis is modelled. As pointed out by Breche [32], to obtain a

comprehensive knowledge about the evolution of scaffold properties during degradation is

necessary. In fact, we have to ensure that the scaffolds adequately replace the functions of tis-

sues. It is also important to note that modelling can be useful to minimize the amount of

experiments needed for characterizing a polymer library [33]. This can be tacked by applying

statistical modelling, taking into account that polymer degradation is depended on multiple

factors whose influence have to be accurately determined [34, 35]. This study is useful for tasks

such as estimating the mass loss of PDLGA biopolymers during application, depending on

time and pH, under human body conditions. The results could help to choose the proper

PDLGA formulation depending on each medical application. In the case of bioscaffolds, the

PDLGA formulation could be chosen in order to balance the bone tissue cell growth and the

biopolymers mass loss. In addition, the PDLGA mass loss dependence of pH is studied. A

strong statistical relationship between these variables can help the practitioners to estimate the

degradation trend knowing the pH value and vice versa (in those case where the material is rel-

atively confined with the degradation products).

For these purposes, statistical learning (field referred to statistics and computer science

interrelation) tools for complex datasets have been applied to model the degradation trends

and reliability of the studied materials [19, 36], previously identifying the most influencing var-

iables on PDLGA degradation.

This proposal is structured as follows: Section 2 describes the materials, sample preparation,

testing and scaffold characterization. In Section 3, we introduce the Generalized Additive

Models (GAM) and parametric nonlinear mixed-effects regression applied to describe the

PDLGA degradation. Section 4 accounts for the results (and the corresponding discussion) of

statistical modelling applied to PDLGA degradation data. Finally, in Section 5 the main con-

clusions of the present study are stated.
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2 Experimental

2.1 Materials

PDLGA, such as other biomaterials used for biomedical purposes, should be nontoxic (glycolic

and lactic acids are easy metabolized by the body) [37], bioresorbable, able to attach the cells,

promote their proliferation and differentiation, and also degrade according to physiological

rates [38, 39]. Thus, it is crucial to estimate the degree and rate of degradation of this type of

materials, in order to apply the proper material depending of the application. That is also the

case of PDLGA formulations, based on different molar ratio proportions of DL-lactide an gly-

colide, studied in this work (Fig 1). Table 1 shown all the different PDLGA formulations, pro-

vided by PURAC-CORBION, with their molecular weight. Each copolymer tag provides

information about composition (including or not glycolide), the DL-lactide molar ratio, the

viscosity midpoint value, and if it is or not acid terminated. For example, PDLG7502A is a

copolymer composed of DL-lactide and glyolide, with a DL-lactide molar ratio of about 75%, a

viscosity midpoint of 0.2 dl/g, and acid terminated (A).

2.2 Sample preparation and testing

The sample preparation scheme has been designed in order to obtain the degradation path due

to hydrolysis of the different PDLG formulations. All the samples have been maintained at

37˚C and the initial pH has been 7.4, values in the range of human body conditions. The sam-

ples tested by each polymer formulation are 28 for the PDLG5002, 27 for PDLG7502A, 33 of

the PDLG7502, 34 of the PDLG5010, 30 of PDLG5004, 36 of PDL02, and 33 of PDL02A. It is

important to note that two degradation paths have been obtained for each PDLGA polymer.

Namely, in the case of PDLG5002, the first degradation path (first replicate) is composed of 14

samples. They are collected and prepared (see description below) at the same time, separately.

Each about 3 days, one sample is extracted from the bath and the mass loss, pH and other criti-

cal variables for understanding the degree of polymer degradation are obtained. Thus, each

sample provides information of one point of the degradation trajectory (at each time a mass

Fig 1. Biopolymers formulation based on PLA and glycolic acid (Courtesy: PURAC-CORBION, 2010).

https://doi.org/10.1371/journal.pone.0204004.g001

Table 1. PDLA polymers tested and modelled in this study. The tag, proportion of DL-lactide and glycolide, and

molecular weight are provided. The symbol � means that is relative to polystyrene standards (indicative values based

on a Mark Houwink type correlation).

TAG POLYMER Mw� [Kg mol−1]

PDLG 5002 50/50 DL-lactide/glycolide copolymer 17

PDLG 5004 50/50 DL-lactide/glycolide copolymer 44

PDLG 5010 50/50 DL-lactideh/glycolide copolymer 153

PDLG 7502 75/25 DL-lactide/glycolide copolymer 17

PDLG 7502A 75/25 DL-lactide/glycolide copolymer 17

PDLG 02A Poly(DL-lactide) 17

PDLG 02 Poly(DL-lactide) 17

https://doi.org/10.1371/journal.pone.0204004.t001
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loss is assigned). After obtaining the first degradation trajectory, another experiment is devel-

oped, the second replicate: other 14 samples of PDLG5002 have been prepared and, following

the same procedure, 14 pairs (time, mass loss) have been obtained. These 14 pairs accounts for

the second degradation path (the second replicate) of the PDLG5002. The Fig 2 shows the two

degradation trajectories for the PDLG5002 and also for the remaining PDLGA formulations.

In the case of the PDLG7502A, 14 samples correspond to the first degradation path,

whereas 13 account for the second degradation trajectory. With respect to the PDLG7502, the

first replicate is composed of 15 samples, whereas the second degradation trajectory has 18. In

the remaining polymers, first and second degradation paths are composed of 15 and 19 (for

PDLG5010), 15 and 15 (for PDLG5004), 20 and 16 (for PDL02), and 18 and 15 (for PDL02A)

samples, respectively. The two degradation paths obtained for each polymer are shown and

identified in the Fig 2. In addition, The Fig 3 provides information about the differences

between PDLGA polymers taking into account their degradation paths (note that the two deg-

radation trajectories corresponding to each polymer are depicted here in the same colour).

The information of each sample of biopolymer is obtained using the following procedure.

Each vial is filled with 0.3 g of biopolymer and 1 ml of phosphate-buffered saline solution

(PBS), with an initial pH of 7.4. Then, they are closed and placed in a bath at 37˚C. After about

3 days, each vial is taken out of the bath, the saline solution is removed and the pH of the solu-

tion is measured. After removing the saline solution, the vial is weighed again, obtaining the

wet sample weight and the percentage of the liquid that has been absorbed by the polymer (%

H2O gain). Subsequently, each vial is dried into an oven at 37-40˚C during 24. Once the sam-

ple has been dried, the vial and the polymer are weighted again together and the final dry

Fig 2. The two degradation paths (two replicates per polymer have been performed in laboratory) corresponding to each polymer are shown.

They are obtained by experimental procedures in lab.

https://doi.org/10.1371/journal.pone.0204004.g002
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sample weight is obtained. The degradation of these polymers is studied until they completely

lost their mass. Moreover, the glass transition temperature of each polymer sample is estimated

by Differential Scanning Calorimetry (DSC). Once all the weights are obtained, samples of

5 mg are removed, and then heated from 0 to 100˚C at 10˚C min−1, under a N2 flow of

50 ml min−1, in a TA Q2000 instrument.

3 Statistical modelling

Once experimental degradation data at 37˚C are obtained, applying statistical techniques is

necessary in order to characterize and model the degradation paths due to hydrolysis of

PDLGA formulations. First of all, using graphical tools of data mining exploratory analysis

such as scatterplot matrices is necessary to extract valuable information concerning with poly-

mer degradation from the multivariate dataset. Statistical descriptive analysis allows to study

the dependence relationships between variables, whether due to real causality or not, and to

identify the critical variables for hydrolytic degradation. Afterward, the dependence modelling

between critical variables can be performed by the estimation of nonparametric models such

as GAM models [40], and parametric nonlinear regression models of fixed and mixed effects.

The aim is to estimate the more influencing variables over polymer mass loss, the functions

which relate them, and their parameters to define the path of degradation of each PDLGA for-

mulation, and help to develop selection criteria depending of the scaffold application.

3.1 Generalized additive models (GAM)

GAM modelling is an extension of the Generalized Linear Models [40] that are extensively

used in many science an technology domains [41–44]. The response variable can be Gaussian,
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Fig 3. Experimental data of mass loss vs time corresponding to the 7 different polymers. Note that the two degradation trajectories corresponding to each polymer are

shown in the same colour.

https://doi.org/10.1371/journal.pone.0204004.g003
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Gamma, Poison, or Binomial distributed and it is expressed as a function of one or more

explanatory variables (quantitative and qualitative). The goal is to estimate the explained vari-

able assuming that the effects of continuous covariates are unknown but “soft”. This model

provides a flexible estimation of the response variable using smothers such as the penalized

regression splines, among other alternatives. Covariates, factors and interactions can be

included (as smooth effects and/or as linear function) in this model. In this regard, the expres-

sion 1 depicts a GAM model where η is the mean of Y response variable, g a link function (it

depends on the Y probability distribution, identity matrix for Gaussian case), X1 and X2 are

independent variables (covariates or factors) whose effects on Y are linear, whereas T1 and T2

are scalar explanatory variables whose effect over the response are nonparametric and sub-

jected to smoothing process, being f1(T1) the smooth effect of T1 over response Y, and f12(T1,

T2) the smooth effect of T1 and T2 interaction.

gðZÞ ¼ b0 þ b1X1 þ b2X2 þ f1ðT1Þ þ f2ðT2Þ þ f12ðT1;T2Þ ð1Þ

In a more formal manner, the quantitative response variable Y is the polymer mass loss due

to hydrolysis can be estimated by a sum of linear functions of variables contained in X matrix

and k smooth functions of the covariates Tj, according to the expression:

EðyÞ ¼ m ¼ g � 1ðbX þ
Xk

j¼1

fjðTjÞÞ;

with Xi the columns of X, i = 1, . . .,m.

In the present case, the covariates Tj, with j = 1, 2, are the time and pH, respectively, and X

accounts for the polymer formulation variable. Thus, β parameters are the linear effect param-

eters (corresponding to each class of polymer), and fj(Tj) are the smooth functions of time and

pH, expressed as a function of b-splines basis. Estimates of β, b̂, and fj, f̂ j, are obtained from

the experimental sample using the Backfitting algorithm [40].

GAM modelling can be defined without assuming a parametric dependence relationship

between response and explanatory variables. Therefore, this technique can be useful to deter-

mine the underlying parametric models that define these relationships by observing the esti-

mated smooth effects of explanatory variables over the response, f(Ti).

3.2 Parametric regression techniques

The use of parametric modelling is needed in this study due to we search for obtaining the

function defined by a set of parameters with physical–chemical meaning that describes the

path of degradation corresponding to PDLGA polymers and characterizes them [45, 46]. This

can not be done from a nonparametric point of view.

The expression 2 shows a simple regression model structure:

yi ¼ mðtiÞ þ εi; i ¼ 1; 2; . . . ; n; with EðεiÞ ¼ 0; ð2Þ

wherebym is the regression function that provide the values of the response variable Y as a

function of the independent variable T, and εi are zero mean independent and identical dis-

tributed residuals, satisfying 0� t1 < t2 < � � �< tn< 1 with n the number of observations. Ifm
is parametric, we defineM = {mθ(•)/θ 2Θ}, whereby θ is the parameter vector that defines the

model, whereas Θ is a subset of Rk.
In the present work, the relationships between critical degradation variables are non linear.

In fact, it is shown that they can be described by asymptotic and logistic nonlinear functions.
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The logistic function can be expressed as

y ¼ �1 þ
�2 � �1

1þ exp
x � �3

�4

� � ;
ð3Þ

whereby ϕ1 accounts for the estimated initial value of Y (response variable), ϕ2 is the estimated

final value of Y, ϕ3 the value of x (independent variable) at the inflexion point of the sigmoid

curve, and ϕ4 is the scale parameter, regarding the change rate of the function (when x = ϕ3 +

ϕ4, the response is broadly three-quarters of the distance from ϕ1 to ϕ2). On the other hand,

the asymptotic function follows the expression

y ¼ �1 þ ð�2 � �1Þ expð� expð�3ÞxÞ; ð4Þ

where ϕ1 is the horizontal asymptote pointing out the initial value of Y estimates, ϕ2 the value

for Y corresponding to x = 0 (pH in the present case), and ϕ3 is the natural logarithm of the

rate constant (and the half-life t0.5 = log2/exp(ϕ3)). Fig 4 shows the shape and graphical mean-

ing of the parameters corresponding to asymptotic and logistic functions.

3.2.1 Nonlinear mixed-effects regression models. It is important to stress that, in addi-

tion to nonlinear relationships, the effects over the response (mass loss) corresponding to, on

the one hand, the type of polymer factor and, on the other hand, the replication (two tests are

performed) factor, have to be also taking into account in the modelling task. In fact, this is a

nonlinear mixed-effect regression problem of repeated measurements, assuming that 2 differ-

ent tests are developed for each type of commercial PDLGA polymer.

The application of mixed-effects regression models is recommended when describing the

relationship of a response variable with respect a number of covariates is required in the frame-

work of grouped data (data depended on one or more classification factors) [19, 45, 47–49]. In

this way, fixed effects model parameters accounts for the information of the whole population,

whereas parameters random effects are associated with individual experimental units sampled

from the entire population. Taking into account these premises, mixed-effect regression mod-

els are defined by parameters with both fixed and random effects, unlike standard linear an

φ

φ

φ

φ

φ

Fig 4. Shape and parameters of logistic (a) and asymptotic (b) functions.

https://doi.org/10.1371/journal.pone.0204004.g004
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nonlinear regression where only fixed effects are assumed. As pointed out by Pinheiro and

Bates [47], nonlinear mixed-effects models are those mixed-effects models in which at least

one of the fixed and random effects is nonlinear in the model function. In this case study, con-

sidering that degradation data depend on PDLGA formulation and replicate factors (grouped

data), the application of nonlinear regression models with mixed effects is useful and necessary

to estimate the nonlinear parametric relationship (sigmoid or asymptotic) between mass loss

and time (alternatively, mass loss depending on pH, and pH versus time). In addition, the vari-

ability of response variable corresponding to PDLGA polymer formulation and replicate fac-

tors can be estimated separately from the residual error. In a mixed-effects model, the random

effects accounts for the deviations of individuals from the mean value of the parameters (fixed

effects) that represent the population, in this case, PDLGA formulation and replicate. Summa-

rizing, nonlinear mixed-effects models are preferentially used when (1) dealing with grouped

data, where (2) individuals are samples of a studied population, (3) providing factor variability

estimates, (4) through more parsimonious (less number of parameters) expressions than the

corresponding to fixed effects counterparts. They are just defined to deal with grouped data,

sharing the main goals of nonlinear regression when compared with linear or polynomial

regression: parsimony, physical interpretability of model parameters and validity of predic-

tions beyond the experimental data range [47].

Accordingly, mixed-effect regression models based on logistic and asymptotic functions are

proposed in this work. Assuming any nonlinear function f depending on ϕ vector parameters

and v covariates, the nonlinear mixed-effects models for two nested factors (two levels of nest-

ing) can be parametrized as follows [47]:

yijk ¼ f ð�ijk; vijkÞ þ εijk;

i ¼ 1; . . . ;M; j ¼ 1; . . . ;Mi; k ¼ 1; . . . ; nij;
ð5Þ

whereby yijk are the values of the response variable,M denotes the number of first-level differ-

ent groups (in this case, PDLGA formulation factor),Mi is the number of second-level groups

(replicate factor) within the ith group of first-level, nij is the number of observations within

each jth second-level group corresponding to the ith group of the first-level, and εijk is the

within-group error term (normally and independently distributed as εijk � N ð0; sÞ, indepen-

dent of the random effects). Moreover, f accounts for a differentiable nonlinear (at least in

some ϕij) real-valued function defined, for a specific group, trough a parameter vector ϕijk and

a covariate vector vijk. The parameter vector can be also defined by

yijk ¼ Aijkbþ Bi;jkbi þ Bijkbij þ εijk;

bi � N ð0;C1Þ; bij � N ð0;C2Þ
ð6Þ

whereby β depicts a fixed effects p-dimensional vector, being Aijk the corresponding design

matrix (depend on data and model), bi are the q1-dimensional vectors of first-level random

effects, normally and independently distributed with C1 variance-covariance matrix, bij are

the q2-dimensional vector of second-level random effects, also normally and independently dis-

tributed with C2 variance-covariance matrix, and Bi,jk and Bijk are the random effects design

matrices that depend on grouping first and second level. The model parameters are estimated

by maximum likelihood, based on the marginal density of the responses, as pointed out in [47].

It is important to note that data analysis tasks have been performed using statistical software

R. In this regard, the functions of mgcv package have been used to estimate GAM models,

whereas the nlme library [50] has been used to estimate nonlinear mixed-effects regression

models.
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4 Results and discussion

This section accounts for the main results (and their companion discussion) of exploratory

and modelling statistical techniques application to degradation data described in section 2.

The critical variables that best describe the hydrolytic degradation process of the studied

PDLGA polymers are identified. Their dependence relationships are defined through statistical

modelling and, using the models estimates, the different PDLGA formulations are compared

to help to develop selection criteria in dental scaffolding and other medical applications.

4.1 Exploratory analysis and nonparametric modelling (GAM)

The first step of every statistical analysis is to properly describe the data sample. Taking into

account that almost all the obtained random variables that characterize the PDLGA samples

are quantitative, one of the best options to obtain exploratory information about their distribu-

tion (range and frequency of values) and the pairwise relationships is to develop a scatterplot

matrix. In addition, this type of graphical technique allows to include the effect of factors such

as PDLGA formulation. Accordingly, Fig 5 shows the scatterplot matrix (with histograms

for each variable) obtained from the studied variables that could account for PDLGA degrada-

tion information: mass loss (g), absorbed water mass (g), pH, glass transition temperature

(Tg, measured in ˚C), time, and PDLGA formulation included as a factor or qualitative vari-

able. Considering the mass loss the characteristic that more intuitively describe the degree of

degradation, the pairwise relationships between polymer mass loss and the remaining variables
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Fig 5. Descriptive analysis of the dependency structure between biopolymers.

https://doi.org/10.1371/journal.pone.0204004.g005
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are mainly observed. When mass loss variable is compared with polymer pH, a strong nonlin-

ear asymptotic type trend is obtained (Fig 5). When pH increases, the mass loss also decreases

in a nonlinear manner. It is highlighted that the mass loss seems to vary in the same way with

respect to pH independently of the PDLGA formulation. A sigmoid nonlinear relationship

between mass loss and time is also observed. Unlike the mass loss-pH relation (only one

trend), a different well defined sigmoid trend is observed for each PDLGA polymer (panel in

the first row and fifth column of the scatterplot matrix). Thus, it seems that the polymer mass

loss strongly depends on time and PDLGA formulation. All the trends seem to be monotoni-

cally increasing. A greater amount of polymer is lost at longer times of degradation, observing

a nonlinear trend between an initial (at zero mass loss) and final (at 0.3 g) asymptote. This fact

support the use of further modelling tools based on sigmoid functions such as logistic. In addi-

tion, a different decreasing sigmoid relationship between mass loss and Tg (obtained by DSC)

is observed for each PDLGA polymer. Higher Tg corresponds with lower amount of mass loss.

It seems to be an initial asymptote concerning high levels of mass loss and low Tg and a final

asymptote regarding with no mass loss and high Tg. Between the two asymptotes there is a

nonlinear relationship, with increasing rate of change until an inflexion point from which the

slope continuously decreases. This fact supports that glass transition temperature is strongly

related with the PDLGA mass loss and, thus, the level of hydrolytic degradation.

The previous analysis has been done just using the sample data and discussions are only

valid in the case of the studied sample of PDLGA polymers. Obtaining models that properly

define these relationships, not only at sample level but for the entire population (population of

different PDLGA formulations), is intended. In addition, we search for ensuring if nonlinear

trends detected in exploratory analysis are appropriate to define the relationship between criti-

cal variables at a population level. Nonparametric models are useful to obtain information

about the dependence structure. Moreover, considering there are more than two critical vari-

ables, using regression models that allow us to deal with multivariate data structure is neces-

sary. This is the case of GAM models (Section 2). Therefore, GAM models based on b-splines

basis smoothing are estimated from sample data in order to obtain population estimates. The

response variable, critical feature for polymer degradation, is the polymer mass loss, whereas

pH (quantitative), time (quantitative), Tg (quantitative) and PDLGA formulation (qualitative)

are the independent variables.

Considering the information obtained from Fig 5, three GAM models are proposed: the

first one, GAM1, to estimate the mass loss as a function of time and PDLGA formulation, E
(Mass loss) = β0 + β1PDL02A + β2PDLG5002 + β3PDLG5004 + β4PDLG5010 + β5PDLG7502 +

β6PDLG7502A + f1(Time); the second, GAM2, to model the mass loss depending only of pH,

E(Mass loss) = β0 + f1(pH); and the third, GAM3, to express the mass loss with respect to Tg
and polymer formulation, E(Mass loss) = β0 + β1PDL02A + β2PDLG5002 + β3PDLG5004 +

β4PDLG5010 + β5PDLG7502 + β6PDLG7502A + f1(Tg). In order to develop the models, the

dichotomous variables PDL02A, PDLG5002, PDLG5004, PDLG5010, PDLG7502, and

PDLG7502A are defined. Their values are 1 when the corresponding polymer is studied and 0

in the remaining cases. In addition, only smooth effects over the response have been consid-

ered for all the quantitative variables, while the response is assumed Gaussian distributed.

The X predictors have been chosen taking into account their dependence structure. There

is not recommended to include covariates that are depended, i.e. that could explain the same

information about the Y response variable. In fact, the estimation of a GAM model with Mass

Loss as response variable and pH, Time and Tg as predictors is not recommended in the pres-

ent case due to the strong dependence relationship between these three last covariates. Conse-

quently, if they are included together in the model, their corresponding effects on the response

variable would not be reliably estimated. Indeed, the estimates of the effect of each predictor
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would be confused with the other effects. In the case of GAM2, the PDLGA formulation has

been not included due to the linear effects of each polymer formulation are not significant dif-

ferent from zero (p-values>0.05). It seems that Mass Loss depending on pH is the same for all

the PDLGA formulations. This result will be commented below, when more evidences be

obtained using regression modelling.

When first GAM model is performed, GAM1, the smooth effect of time and the partial

linear effect of PDLGA formulation explain the 80.2% of mass loss overall variability (adjusted

R2 = 0.802 and explained deviance of 81.2%). Fig 6a and 6b shows the smooth effect of time

and the partial effect of PDLGA formulation, respectively. The smooth effects are labeled as

s(covariate name, smoothing degrees of freedom). At this point, it is important to note that the

smooths in a GAM model are centred in order to ensure model identifiability, i.e. each s is esti-

mated taking into account the constraint that ∑i s(xi) = 0, where xi are the covariate values. The

Fig 6. Smooth effects of time (panel a), and PDLGA formulation (panel b) over mass loss response corresponding to GAM1 model. Smooth function of pH when

estimating mass loss (panel c) with the GAM2 model. Smooth effect of Tg over the mass loss response (panel d) of GAM3 model.

https://doi.org/10.1371/journal.pone.0204004.g006
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effect of time over the response is a growth sigmoid type curve (longer times correspond to

higher mass loss), and it is significant different from zero. All the parameters corresponding

to PDLGA formulation are also significant different from zero (p-values for all the βi with

i = 0, . . ., 6 are lower than 0.05). Fig 6b shows the effects of each PDLGA polymer with 2 × stan-

dard error tolerance, fixing at zero the parameter corresponding to PDL02 polymer, as a refer-

ence. It is observed that the existence of acid termination in polymers induces significant

higher mass loss (e.g. PDL02 and PDL02A). Moreover, for an increasing midpoint viscosity

the mass loss decreases, it seems that the polymer formulation is more stable against hydrolytic

degradation (see the effects of PDLG5002, PDLG5004, and PDLG5010 in Fig 6b). It is also

observed that, regarding PDLGA polymers with the same viscosity midpoint (and without

acid termination), the formulations with higher DL-lactide molar ratio tend to loss a less

amount of mass in the same interval of time, i.e. they are more stable against the hydrolytic

degradation (see the effects of PDLG5002 and PDLG7502 in Fig 6b). In this case, all the factors

are constant excepting DL-lactide molar ratio, thus, the latter could be an influencing variable

over polymer degradation stability (measured by the polymer mass loss). Could be also inter-

esting to study the effect of molecular weight on mass loss, but there are only three different

values (153 Kg mol−1 for PDLG5010, 44 for PDLG5004 and 17 for the remaining, see Table 1)

resulting on a non significant effect over the response. In fact, if Fig 6b is observed, no clear

relationship between molecular weight and mass loss is shown. In order to test properly

the effect of molecular weight, should be necessary to extend the analysis to other polymer

formulations in the framework of further studies. Regarding the GAM2 model, the 93.9%

(adjusted R2 = 0.939 and explained deviance of 94.1%) of mass loss variability is explained

by only the smooth effect of pH, which means that polymer mass loss is very strongly depended

of the polymer pH. Consequently, the mass loss of polymer could be estimated using only the

pH as independent variable. In addition, Fig 6c shows that the pH smooth effect could be an

asymptotic function as pointed out in the descriptive analysis. With respect to GAM3 model,

the 76.8% (adjusted R2 = 0.768 and explained deviance of 78.2%) of mass loss variability is

explained by the smooth effect of Tg and the partial regression effect of PDLGA formulation. If

only Tg smooth effect is introduced in the model, the R2 = 70%. Thus, the relationship between

mass loss and Tg is significant but weaker than the corresponding to mass loss-pH and mass

loss-time. Moreover, it is important to stress that the Tg smooth effect could be assumed

decreasing sigmoid, as suggested after descriptive analysis. As in the case of pH, the value o Tg
has relevant information about the degradation degree of a PDLGA polymer.

Summarizing, GAM modelling supports the results of exploratory analysis at population

level, i.e. the relationship between mass loss and time could be sigmoid, the effect of pH

over the mass loss is asymptotic, the effect of the PDLGA formulation is significant different

from zero and different depending on the formulation. It also important to note that the

relationship between mass loss and pH is very strong allowing us to obtain reliable degradation

degree predictions using GAM models. Alike, GAM models as a function of time and

PDLGA formulation also could determine the polymer mass loss. Taking into account these

results, to develop parametric models with physical-chemical meaning that could help to com-

pare different formulations in addition to predict their degree of degradation is possible and

useful.

4.2 Modelling of PDLGA degradation by nonlinear mixed-effects

regression

The use of parametric regression models is proposed to estimate the PDLGA degree of degra-

dation. The advantage of using parametric regression is to provide parametric expressions that
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link the degradation critical variables, depending on parameters with physical-chemical mean-

ing. Among other goals, this type of regression is able to provide more exact and accurate esti-

mates beyond the range of experimental data than many nonparametric models [47]. Among

all the modelling options, considering the results of the previous section and the fact that the

sample data are grouped, nonlinear mixed-effect models are proposed. Indeed, just a sample

of 7 out of all the possible PDLGA formulations are studied and, testing just two replicates for

each one. Therefore, it is recommended to use mixed-effects regression models, indeed it is

better to estimate the model for the population that also allows to estimate variability due to

PDLGA polymer and test (replicate) factors separately from the residual variance (mixed

effects) than estimating a model for each trend (only fixed effects). Moreover, mixed-effects

models are more parsimonious than fixed effect counterpart. Accordingly, the mean values of

the parameters corresponding to the entire population of PDLGA formulations (including

replicates) can be estimated through parameter fixed effects. In addition, as different trends

with respect to the different levels of PDLGA and replication factors are expected, the popula-

tion variance corresponding to these factors can be estimated by nonlinear mixed-effects mod-

els (trough parameters random effects).

The results obtained in the Section 4.1 support the modelling of mass loss versus time and

PDLGA type and, in addition, the mass loss as a function of pH using nonlinear mixed-effects

models. Considering an intuitive start-point, the first step is to estimate the best model for

polymer mass loss as a function of time and PDLGA formulation. This is a more common case

of degradation data where the critical to quality variable (mass loss) depend on time. As

observed in section 4.1, the logistic function (Eq 3) is an adequate option to model the relation-

ship between mass loss and time. Thus, firstly, nonlinear fixed effects models based on logistic

functions are fitted and the 95% confidence intervals for the logistic parameters are estimated

(from the 2 × 7 curves) and shown in Fig 7 for each PDLGA polymer. As pointed out in Fig 7,

the differences between polymers are more significant if ϕ3 and ϕ4 parameters are observed, in

the other cases the intervals are more overlapped. The differences in nonlinear trends due to

PDLGA type are concerning with the inflexion point of logistic curve (half life time) and the

degradation rate parameter. Therefore, in order to obtain a more parsimonious model, ran-

dom effects due to PDLGA type are added only to ϕ3 and ϕ4 parameters obtaining a nonlinear

mixed-effects model. Nested in the PDLGA factor, random effects due to test or replicate are

also introduced in ϕ3 and ϕ4 parameters in order to estimate the variability due to replication

separately of residual variance. In addition, the ϕ1 and ϕ2 parameters are fixed to 0 and 0.3 g,

respectively, taking into account the initial mass loss of each experiment is 0 (absence of degra-

dation) and the final asymptote has to coincide with the mass of each specimen, 0.3 g (con-

cerning the total degradation of PDLGA samples). In fact, 0 and 0.3 values are within the

parameter intervals for ϕ1 and ϕ2, respectively. As a result, only ϕ3 and ϕ4 parameters have to

be estimated.

The Fig 8 shows the fittings of nonlinear mixed-effects model to estimate mass loss as a

function of time, taking into account random effects of PDLGA type and test (replicate) fac-

tors. Each panel corresponds to the fitting of the trend corresponding to one replicate of each

polymer, shown in dark green. The fitting corresponding to each PDLGA polymer formula-

tion is also shown in pink (it is the same for each PDLGA type), whereas the fitting corre-

sponding to the fixed parameters is shown in blue and accounts for the model adjusted for the

entire population of PDLGA formulations (mean degradation path). Table 2 shows the 95%

confidence intervals for fixed effects of ϕ3 and ϕ4 parameters. We can infer that the half life

time of PDLGA polymers is between 31.52 and 47.42 days, while the degradation rate (scale)

parameter is between 4.088 and 5.378. Observing Fig 8, the model shows good fittings to real

data, preventing to adjust the experimental error, e.g. those corresponding to negative mass
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loss due to the accuracy degree of the laboratory experimental methodology shown in the Sec-

tion 2. This is a relevant advantage with respect to nonparametric GAM models.

Considering there is not almost differences between the fittings corresponding to the two

different tests within each type of PDLGA polymer, and in order to simplify the model, only

the PDLGA factor can be assumed. In fact, all the main differences between fitting trends are

due to the polymer formulation. The corresponding estimated parametric model (for each i
polymer) with random effects only due to PDLGA polymer is shown through the expressions

Fig 7. Confidence intervals (at 95% confidence level) for the parameters of the nonlinear model of mass loss versus time an PDLGA

formulation, with only fixed effects. Parameters intervals are obtained from the 2 × 7 fittings.

https://doi.org/10.1371/journal.pone.0204004.g007
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Fig 8. Each panel shows the PDLGA mass loss versus time for each test/replicate corresponding to each PDLGA polymer. The nonlinear mixed-

effects fitting for each test is shown and compared with respect to fittings corresponding to each polymer, and the fitting corresponding to the

population (and obtained using the fixed effects of model parameters).

https://doi.org/10.1371/journal.pone.0204004.g008

Table 2. Confidence intervals at 95% for fixed effects of the model parameters.

Lower limit Estimate Upper limit

ϕ3 31.52 39.47 47.42

ϕ4 4.088 4.733 5.378

https://doi.org/10.1371/journal.pone.0204004.t002
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7 and 8. The random effects, b3i and b4i, for this study case can be also observed in Fig 9.

Mass Lossij ¼
0:3 � 0

1þ exp
Timeij � �3i

�4i

� �þ �ij

�i ¼

�3i

�4i

2

4

3

5 ¼

b3

b4

2

4

3

5þ

b3i

b4i

2

4

3

5 ¼ bþ bi; bi � Nð0;CÞ; �ij � Nð0; s2Þ

ð7Þ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Fig 9. Random effects, b3i and b4i of ϕ3 and ϕ4 parameters corresponding to the nonlinear mixed-effect model of mass loss vs. time and PDLGA

formulation.

https://doi.org/10.1371/journal.pone.0204004.g009
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Figs 8 and 9 are very useful tools to characterize the hydrolytic degradation of PDLGA bio-

polymers and comparing them. Fig 8 permits to divide the sample in two groups, those charac-

terized by a degradation path shifted to the left with respect the mean degradation path (in

blue) and those defined by a degradation path shifted to the right. Namely, there is a group

composed of PDLG7502A, PDLG5002, and PDLG5004 that degrades before than the PDLGA

formulations mean, whereas the PDL02, PDL02A, and PDLG7502 are more stable than the

mean (the remaining PDLG5010 degradation path coincide just with the mean degradation

path). The more stable against hydrolytic degradation seems to be the PDL02, while the less

stable is the PDLG7502A. To quantify these differences, the estimated random effects of ϕ3

and ϕ4 can be observed (Fig 9). If b3i is studied, the polymer with a higher half life is clearly the

PDL02 (19 days over the population mean ϕ3), whereas the polymer with a less half life is effec-

tively the PDLG7502A (18 days below the population mean ϕ3). Moreover, the same conclu-

sions obtained with GAM modelling (Section 2) can be observed. Namely, PDLGA

formulations with a higher viscosity midpoint have higher half life: the corresponding to

PDLG5010 is 4.6 days higher than the corresponding to PDLG5004, and the PDLG5004 half

life is 4.5 days higher than the corresponding to PDLG5002 polymer. On the other hand, the

presence of acid terminations decrease the stability against hydrolytic degradation: PDL02 half

life is 15 days higher than the corresponding to PDL02A, and the PDLG7502 half life is 22 days

higher than the corresponding to PDLG7502A. Moreover, the increment of DL-lactide molar

ratio increases the polymer half life: PDLG7502 half life is 12 days higher than the correspond-

ing to PDLG5002. Regarding the random effects of ϕ4 parameter, b4i, firstly, it is important to

note that higher values of ϕ4 are related to lower degradation rate, and, thus, more degradation

stability. Therefore, similar conclusions than in the case of b3i analysis can be observed. In fact,

the addition of acid terminations decreases the b4i and accordingly increases the rate of degra-

dation (observe the b4i for PDL02 and PDL02A, and PDLG7502 and PDLG7502A). The same

trend is obtained when decreasing the DL-lactide molar ratio (see b4i for PDLG7502 and

PDLG5002). The highest rate of degradation (lowest b4i) are obtained for PDLG5002 and

PDLG5004. The increment of midpoint viscosity to 10 dl/g significantly decreases the rate of

degradation. Concluding, nonlinear mixed-effects modelling provide very usefull information

to characterize the degradation paths of the PDLGA biopolymers. The provided information

can help to develop selection criteria of these materials with respect the application as dental

scaffolds.

The results of the application of GAM models and mixed effects nonlinear regression mod-

els have shown that the degradation paths are different depending on the polymer formulation.

In fact, for instance, the Fig 8 shows and compares the fits obtained from (1) all the samples

(the mean degradation trend of PDLGA polymers, tagged as “fixed”), from (2) each PDLGA

formulation (tagged as “polymer”), and from (3) each replicate (out of two) corresponding to

each PDLGA formulation (tagged as “test”). In addition, for the sake of clarity, fixed effects

nonlinear regression models based on logistic function have been fitted to the mass loss vs

time relationship. The fitting of nonlinear regression models have been performed by applying

(1) evolutionary algorithms in order to obtain an initial solution for the parameters, and subse-

quently (2) the Levenberg-Marquardt Nonlinear Least-Squares Algorithm to obtain the final
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parameter estimates, as shown in Janeiro-Arocas et al. [45]. These models have been applied

separately to each degradation path (out of two) corresponding to each polymer, obtaining the

results shown in the Fig 10. It is important to note that all the parameters are significantly dif-

ferent from zero. Moreover, the goodness of fit is very high in all the cases (R2 > 0.86, and in

the main part of PDLGA polymers RR2 > 0.95). Those cases where the goodness of fit is lower

are mostly related to the fact that the proposed models do not fit the experimental error (labo-

ratory error) corresponding to negative mass loss, as expected. Fig 10 shows there are mostly

Fig 10. The fittings of fixed effects nonlinear regression models based on logistic function are shown. Each panel corresponds with the fitting of

each degradation path. The expression of the model (with parameter estimates), goodness of fit measurements (R2) and both prediction and estimation

intervals are also shown.

https://doi.org/10.1371/journal.pone.0204004.g010
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slightly differences between the fitting parameters corresponding to the two different tests or

replications of each PDLGA polymer. However, there are higher differences between the

parameters fitted to different polymers. The results are in accordance with the results corre-

sponding to GAM and mixed effect models. The interpretation of the parameter estimates is

also in accordance with the discussion corresponding to the mixed effect nonlinear models.

When the study of these specific 7 PDLGA polymers is intended (more than the degradation

trend of PDLGA population), the present fixed nonlinear regression approach provides a

more intuitive and clear interpretation of PDLGA polymers degradation.

The second important relationship to be modelled is the corresponding to the mass loss

versus polymer pH. Nonlinear mixed-effects model based on asymptotic function, with ran-

dom effects in all the parameters, is initially proposed taking into account the results of explor-

atory analysis and GAM modelling. Fig 11 shows the graphical output corresponding to the

nonlinear mixed-effect model, in which panel the fittings corresponding to each test (in dark

green), the PDLGA polymer (in pink) and the PDLGA population (in blue, obtained from the

fixed effects of model parameters). Intuitively, exact and accurate fittings have been obtained,

preventing to fit the experimental error of negative mass loss. Thus, the asymptotic function is

suitable to model this relationship. It is also very important to stress that the same fit has been

obtained for test sample, PDLGA polymer and population in each panel. This means that mass

loss does not depend on PDLGA polymer formulation and test/replication factor. Therefore,

the application of nonlinear fixed effects regression modelling is recommended. Fig 12

shows the result of asymptotic nonlinear regression model with only fixed effects. The model

parameters and signification analysis (all the parameters are significant different from zero,

p-values<0.05) are shown in Table 3. Taking into account that the ϕ3 is the degradation con-

stant logarithm, the half life is 0.691, i.e. the pH at which the half of mass is loss. The polymer

pH explain the 92% of the mass loss overall variability (R2 = 0.92). Hence, the proposed asymp-

totic model could provide reliable estimations for mass loss only knowing the pH. As pointed

out by Schliecker et al. [30], this fact could be related to the possible formation of free carbox-

ylic acid groups during the PDLGA degradation, increasing its concentration due to an auto-

catalytic process, and leading to an asymptotic (in the present case) decrement of the polymer

pH from 7.4. Thus, the polymer pH could be an index of the amount of carboxylic acid, in

turn related to the degree of degradation of PDLGA polymer. This could be due to water solu-

ble hydrolytic degradation products with low molecular weight may remain entrapped,

increasing the concentration of carboxylic end group (decreasing the pH) [30]. This condi-

tions in which the degradation products remain in contact with the non-degraded mass may

correspond to the experimental study carried out in this work.

On the basis of PDLGA mass loss is a critical variable to evaluate the degree of hydrolytic

degradation [30] and that this can be accurately estimated knowing the pH through the esti-

mation of an asymptotic regression function, hence we should ask about what is the cause of

which the mass loss trend is different depending on the PDLGA formulation. The answer is

that pH decays, as a function on time, in a different manner depending on PDLGA polymer.

In fact, nonlinear mixed-effects regression model based on a decreasing logistic function can

successfully fit all the trends corresponding to each out of two tests corresponding to each

PDLGA polymer (see Fig 13). Random effects on ϕ2 and ϕ3 are assumed and an initial asymp-

tote fixed to the initial pH = 7.4 (Fig 14). The more stable biopolymers are those whose pH

decays later and with a lower rate. Accordingly with Figs 13 and 14, taking into account the

balance between half life (ϕ3) and degradation rate (ϕ4), the more stable polymer against

hydrolytic degradation are PDL02, PDL02A, PDLG510, and PDLG7502, whereas the less sta-

ble are PDLG7502A, PDLG5002, and PDLG504. Although the half life of PDL02A is lower

than the corresponding to PDLG5002, its degradation rate is very low, thus PDL02A takes
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longer to degrade. These results are in accordance with the conclusions corresponding to the

mass loss vs. time and PDLGA formulation modelling. It is also important to highlight that

half life is decreasing when acid termination is included but the degradation rate nearly remain

the same (Fig 14). When increasing the molar fraction of DL-lactide monomer, the degrada-

tion rate decrease and the half life increase. Moreover, increasing midpoint viscosity produces

analogous increasing in half life (no effect is observed in the degradation rate). With respect to

degradation rate (or rate of pH decay), this is lower for PDL polymers with respect to the stud-

ied PDLGA copolymers.

Fig 11. Each panel shows the PDLGA mass loss versus pH for each test/replicate nested in PDLGA polymer factor. The nonlinear mixed-effects

fitting for each test is shown and compared with respect to fittings corresponding to each polymer, and the fitting corresponding to the population (and

obtained using the fixed effects of model parameters).

https://doi.org/10.1371/journal.pone.0204004.g011
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Fig 12. Asymptotic fixed effects regression model fitted mass loss vs. pH data. Fitted trend, real data, 95% estimation and prediction confidence intervals for

conditional mean are included.

https://doi.org/10.1371/journal.pone.0204004.g012

Table 3. Signification analysis of the regression model for the mass loss according to the pH for each PDLGA poly-

mer (R2 = 0.92).

Estimates Standard deviation t values p-values

ϕ1 -0.013 0.003 -3.909 0.0001

ϕ2 2.343 0.253 9.248 0

ϕ3 0.691 0.049 14.06 0

https://doi.org/10.1371/journal.pone.0204004.t003
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The fitted nonlinear mixed-effects model can be writen for each polymer as
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Fig 13. Each panel shows the PDLGA pH versus time for each PDLGA polymer. The nonlinear mixed-effects fitting for each PDLGA polymer is

shown and compared with respect to fittings corresponding to the population (obtained using the fixed effects of model parameters).

https://doi.org/10.1371/journal.pone.0204004.g013
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The GAM and nonlinear regression tools applied in this work have been proven useful to

characterize and compare PDLGA biopolimers with application as dental scaffolds, helping to

develop selection criteria, previously to perform in vivo analysis.

Finally, in order to estimate statistically the effects of of DL-lactide molar ratio, the viscosity,

the addition of acid termination and the corresponding interactions, an ANOVA model with

scalar response is fitted. The aim is to support the conclusions obtained by the application of

the above mentioned GAM and nonlinear regression models. It is important to stress that the

●
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Fig 14. Random effects, b3i and b4i of ϕ3 and ϕ4 parameters corresponding to the nonlinear mixed-effect model of pH vs. time and PDLGA

formulation.

https://doi.org/10.1371/journal.pone.0204004.g014
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response variable is functional (each datum is a curve) as defined in this work. Thus, in order

to be able to apply ANOVA tools for univariate response, the authors have defined as response

variable the mass loss at 34 days from the beginning of the experiment. The relationship

between mass loss and time is nonlinear sigmoid, but could be assumed linear in the central

interval of times where Time = 34 days is included. The Table 4 shows that the effects of acid

termination, DL-lactide molar ratio and viscosity are significantly different from zero. These

results help to support the discussion on the effect of these factors from the application of

GAM and nonlinear regression modelling. Moreover, the there is a significant effect of the

interaction of the acid termination with the molar ratio over the mass loss response.

In addition, considering the effect of time over mass loss is nonlinear sigmoid, a generalized

additive regression model (GAM) with mass loss as response variable, time as quantitative pre-

dictor, and DL-lactide molar ratio, the viscosity, and the addition of acid termination as quali-

tative independent variables is also proposed. In this way, the effect of the latter factors and

their interactions can be studied apart from the nonlinear effect of time over the response, in

the same way the standard ANCOVA analysis is performed when the effect of covariates are

linear. Table 5 shows that the mass loss significantly decreases when the viscosity is increasing

to 10 dl/g, and when the DL-lactide molar ratio is increased (see estimates and p-values col-

umns). Otherwise, the mass loss significantly increases when acid termination is included.

When the nonlinear effect of time covariate is included through this model, the effect of inter-

actions does not make the model more informative, in terms of goodness of fit and significa-

tion analysis. Moreover, as expected, the effect of time is significantly different from zero. All

these results support and complete the above mentioned discussion.

5 Conclusions

In the present work, the application of statistical modelling, based on GAM and nonlinear

mixed effects regression, to obtain information of PDLGA biopolymers degradation has been

Table 4. ANOVA table with F test. Only the factors with significant effects over the response (mass loss) are shown.

Sum of Squares Degrees of freedom F values p-values

Acid Termination 0.052650 1 59.7222 0.0002464

Molar Ratio 0.089664 2 50.8541 0.0001729

Viscosity 0.017082 2 9.6881 0.0132181

Acid Termination:Molar Ratio 0.012246 1 13.8911 0.0097704

Residuals 0.005289 6

https://doi.org/10.1371/journal.pone.0204004.t004

Table 5. GAM estimates and signification study corresponding to the modelling of mass loss vs time (quantitative), acid termination (factor), DL-lactide molar

ratio (factor), and viscosity (factor). The measure of goodnes of fit is R2 = 0.8.

Estimates Std. error t value p-values

Intercept 0.118566 0.010376 11.426 <2e-16

Viscosity = 4 -0.019618 0.014307 -1.371 0.17184

Viscosity = 10 -0.038887 0.014063 -2.765 0.00622

Molar Ratio = 75% -0.038143 0.013229 -2.905 0.00408

Molar Ratio = 100% -0.128157 0.013289 -9.644 <2e-16

Acid termination = YES 0.080034 0.009473 8.448 5.95e-15

EDF Ref. degrees of freedom F p-value

s(Time) 4.266 5.289 136.5 <2e-16

https://doi.org/10.1371/journal.pone.0204004.t005
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proposed. Namely, the critical variables that best describe the hydrolytic degradation process

of the studied PDLGA polymers have been identified, their dependence relationships have

been defined by applying statistical modelling, and the different PDLGA formulations have

been compared by using the models estimates in order to help to develop selection criteria in

dental scaffolding and other medical applications before in vivo analysis.

Firstly, the statistical descriptive analysis and GAM modelling have provided information

about critical variables for PDLGA polymers degradation and their pairwise dependence rela-

tionships. In fact, the relationship between mass loss and time is increasing sigmoid, the effect

of pH over the mass loss is decreasing asymptotic, the effect of Tg over mass loss is decreasing

sigmoid, whereas the effect of the PDLGA formulation is significant different from zero and

different depending on the formulation. It is very important to stress that, reliable in vitro

hydrolytic degradation degree predictions could be obtained using GAM models with pH as

independent variable, considering that the dependence relationship between mass loss and

pH is very strong and the 94% of mass loss variability is explained by the smooth effect of pH

(R2 = 0.939). Alike, the mass loss of PDLGA polymers (degree of degradation feature) can be

also estimated using GAM models as a function of time and PDLGA formulation (R2 = 0.802).

Considering these results, developing parametric models with physical-chemical meaning

has been proven a helpful tool to compare different formulations in addition to predict their

degradation degree. Nonlinear mixed-effects nonlinear regression is proposed to perform

these tasks taking into account the nonlinear dependence relationships between critical vari-

ables and the fact data are grouped according to PDLGA formulation and replicate factors. At

this regard, the critical variable for describing the degradation degree, mass loss, has been

modelled as a nonlinear increasing logistic function depending on time, including fixed and

random effects in the logistic parameters. As a result, the half life time of studied PDLGA poly-

mers is between 31.52 and 47.42 days, while the degradation rate parameter is between 4.088

and 5.378. Random effects corresponding to PDLGA polymer formulation have been included

in the half life (ϕ3) and degradation rate (ϕ4) parameters, allowing us to compare the different

PDLGA biopolymers. Consequently, two groups of PDLGA polymers have been identified: a

set composed of PDLG7502A, PDLG5002, and PDLG5004 that degrade before than the

PDLGA formulations mean, and a second group composed of the PDL02, PDL02A, and

PDLG7502 polymers that are more stable than the mean (PDLG5010 degradation path coin-

cides with the mean degradation path). If random effect (b3i) of half life (ϕ3) is studied, the

polymer with a higher half life against hydrolytic degradation is the PDL02 (19 days more than

the population mean ϕ3), while the biopolymer with a less half life expectancy is the

PDLG7502A (18 days below the population mean ϕ3). The same conclusions are obtained if

the random effect b4i, related to the polymer rate of degradation, is studied. It is important to

note that the differences of in vitro hydrolytic degradation stability of biopolymers can be

quantified through the proposed statistical modelling proposal, allowing to develop selection

criteria. Moreover, nonlinear mixed-effects modelling provides information about the influ-

ence on degradation stability of PDLGA characteristics such as the presence of acid termina-

tions, the midpoint viscosity, the DL-lactide molar ratio and the copolymer structure. Namely,

PDLGA formulations with a higher viscosity midpoint tend to have higher half life and lower

rate of degradation. In addition, the presence of acid terminations decreases the stability

against hydrolytic degradation (in terms of half life and rate of degradation), whereas the

increment of DL-lactide molar ratio increases the polymer half life (and decreases the rate of

degradation). These conclusions are also supported by the results of statistical nonparametric

GAM modelling and ANOVA.

It is important to highlight that mass loss can be accurately determined by a nonlinear

asymptotic function of polymer pH, independently of PDLGA polymer formulation.
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Accordingly, a nonlinear asymptotic model has been estimated to describe the dependence

relationship between mass loss and pH, explaining the 92% of the mass loss overall variability

(R2 = 0.92), also obtaining that the half of the mass is loss at a pH of 0.691. This strong relation-

ship could be related to the formation of free carboxylic acid groups during the PDLGA degra-

dation that increase their concentration due to water soluble hydrolytic degradation products

with low molecular weight may remain entrapped. Therefore, the polymer pH can be assumed

as an index of the amount of carboxylic acid, and thus related to the degradation degree of

PDLGA polymers.

The mass loss trend is different depending on the PDLGA formulation due to the PDLGA

pH decays according to different time depended logistic functions for each biopolymer formu-

lation. Hence, nonlinear mixed-effects regression model based on a decreasing logistic func-

tion has been fitted to describe the dependence relationship between pH and time. The

estimated parameters have been analyzed, obtaining conclusions in accordance with the

obtained for the mass loss vs time relationship study. Moreover, it is also important to note

that, although half life is decreasing when acid termination is included, the degradation rate

does not change. The same effect is obtained when increasing midpoint viscosity. In addition,

the rate of pH decay (related to the degradation rate) is lower for PDL polymers with respect

to the PDLGA counterparts.

The proposed methodologies could be applied to other biopolymers from in vitro test data

in order to identify critical variables for hydrolytic degradation, estimate the degradation path

of each biopolymer, predict its behaviour and to help to develop selection criteria.

Supporting information

S1 Dataset. Dataset obtained from experimental analysis. The polymer mass loss, the mass

of water, the molecular weight, the glass transition temperature and the pH variables have

been monitored depending on time, for all the studied polymer formulations, obtaining two

replicates (test variable) per polymer and time. The viscosity, DL-lactide molar ratio, and pres-

ence of acid term variables corresponding to each polymer formulation are also included in

the dataset.
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