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Abbreviations 

AW   Atlantic Waters 

CA  Carbonate alkalinity 

CDOM  Colored Dissolved Organic Mater 

CRM  Certified Reference Material 

CTD  Conductivity, Temperature and Depth 

DIC  Dissolved Inorganic Carbon 

DOC  Dissolved Organic Carbon 

GO-SHIP Global Ocean Ship-Based Hydrographic Investigations Program 

IEO  Instituto Español de Oceanografía 

LIW  Levantine Intermediate Waters 

m-CP  Meta Cresol Purple 

MedSea Mediterranean Sea 

PA  Practical alkalinity 

R/V  Research Vessel 

TA  Total alkalinity 

THC  Thermohaline Circulation  

WOCE  World Ocean Circulation Experiment 

St  Station 
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Short definitions of oceanographic terms and 

translation 

Basin  Wide natural or artificial hollow area co vered with water. (Cuenca) 

Bathymetry    Topography of ocean’s floors. (Batimetría) 

Cruise  Oceanographic campaign, research journey on board a ship. (Campaña  

  oceanográfica) 

Freshwater Non-saline water. (Agua dulce) 

Vessel  Ship. (Buque) 

Niskin  A special type of sampling bottle that can be sunk into the ocean to get  

  seawater from a given depth. 

Rosette Sampling device that carries Niskin bottles (Roseta)     
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Abstract 

The Mediterranean Sea is a very interesting area from a political, social, economic and 

scientific point of view, because of its location and the activities developed around it, its 

size and its physicochemical properties. Nevertheless, it wasn’t until 2011, with the 

creation of the MED-SHIP program, that world-wide ocean studies took it into 

consideration. One of the scopes of this program was to monitor the evolution of its 

biogeochemical properties, therefore, similar oceanographic cruises should be 

conducted along the years. 

In March of 2018 one of these cruises, the MSM72, took place. This end-of-degree 

thesis introduces the chemistry of the carbonate system in seawater and the 

importance of its study in the Mediterranean Sea. In addition, this work summarizes the 

data obtained by the chemical oceanography group in charge of the measurements for 

the CO2 system’s variables (pH, Total Alkalinity, Dissolved Inorganic Carbon and 

carbonate ion) during the MSM72 cruise as well as the analysis procedures, from the 

sampling to the resulting information. 
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Resumen 

El Mar Mediterráneo es una zona muy interesante desde un punto de vista político, 

social, económico y científico debido a su ubicación y las actividades desarrolladas en 

torno a él, su tamaño y sus propiedades fisicoquímicas. Sin embargo, no fue hasta 

2011, con la creación del programa MED-SHIP que los grandes estudios 

internacionales del océano lo incluyeron. Uno de los objetivos de este programa es 

monitorizar la evolución de las propiedades biogeoquímicas de este mar, de manera 

que varias campañas oceanográficas similares deberían llevarse a cabo a lo largo de 

los años. 

En marzo de 2018, tuvo lugar una de estas campañas, la MSM72. Este TFG introduce 

la química del sistema del carbonato en agua de mar y la importancia de su estudio en 

el Mar Mediterráneo. Además, este trabajo resume los datos obtenidos por el grupo de 

química encargado de medir las variables del sistema del CO2 (pH, Alcalinidad Total, 

Carbono Inorgánico Disuelto e ion carbonato) durante la campaña MSM72, así como 

explica el procedimiento de los análisis desde el muestreo hasta la obtención de 

información. 
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Resumo 

O Mar Mediterráneo é unha zona moi interesante dende un punto de vista político, 

social, económico e científico debido á súa ubicación e as actividades desenvoltas no 

seu redor, o seu tamaño e as súas propiedades fisicoquímicas. Non obstante, non foi 

ata o 2011, coa creación do programa MED-SHIP que os grandes estudios 

internacionais do océano o tiveron en conta. Un dos obxectivos deste programa é 

monitorizar a evolución das propiedades bioxeoquímicas deste mar, de manera que 

varias campañas oceanográficas similares deberían levarse a cabo ao longo dos anos. 

En marzo de 2018, tivo lugar unha destas campañas, a MSM72. Neste TFG 

introdúcese a química do sistema do carbonato en auga de mar e a importancia do 

seu estudo no Mar Mediterráneo. Ademais, este traballo resume os datos obtenidos 

polo grupo de química encargado de medir as variables do sistema do CO2 (pH, 

Alcalinidad Total, Carbono Inorgánico Disuelto e ión carbonato) durante a campaña 

MSM72, así como explicar o procedemento dos análisis dende o muestreo ata a 

obtención de información. 
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Timeline 
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Introduction 

1.1. CO2 chemistry in the ocean 

The carbonate system 
Carbon dioxide, CO2, is one of the most abundant gas in the Earth’s atmosphere and a 

very important greenhouse gas. Gaseous CO2 in the atmosphere is dissolved in the 

ocean stablishing an equilibrium related to Henry’s law. According to this law, the 

solubility of a gas is proportional to its partial pressure above the liquid   ( 2). 

𝐶𝑂2(𝑔) ⇋ 𝐶𝑂2(𝑎𝑞)  ( 1 ) 

Thermodynamic equilibrium between atmospheric and dissolved CO2 in the water 

surface. The equilibrium constant, K0 of the process is temperature and salinity 

dependent.  

𝑆𝑖 = 𝑘 · 𝑃𝑖  ( 2 ) 

Henry’s law, where Si is the solubility of gas i, k is the Henry’s constant for ‘’i’’ in an 

specific solvent, and Pi the partial pressure of i above the liquid. 

The dissolved CO2(aq) produces carbonic acid (H2CO3), which cannot be chemically 

separated from the former species, therefore it is usually denoted as either CO2 or 

H2CO3*.
1  In what follows, we will adopt the first option. 

[𝐶𝑂2] = [𝐶𝑂2(𝑎𝑞)] + [𝐻2𝐶𝑂3]  ( 3 ) 

This CO2 is rapidly converted into two more stable and abundant forms: bicarbonate 

(HCO3
-) and carbonate (CO3

2-), following the equilibria shown in Figure 1. 

 

𝐶𝑂2(𝑔)
𝐾0
↔ 𝐶𝑂2                 ;    K0 =

[CO2
∗]

𝑓CO2

  ( 4 ) 

𝐶𝑂2+ H2O 
𝐾1
↔   H+ + HCO3

-
             ;     𝐾1 =

[𝐻+] [𝐻𝐶𝑂3
−]

[𝐶𝑂2]
   ( 5 ) 

HCO3
-

 
𝐾2
↔  H+ + CO3

2-
           ;    𝐾2 =

[𝐻+] [𝐶𝑂3
2−]

[𝐻𝐶𝑂3
−]

  ( 6 ) 
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Traditionally, the carbonate system in the ocean has been characterized by four 

measured variables, which combine the chemical species of the CO2 system (Figure 1 

and equations 4, 5 and 6): pH, total alkalinity (TA), total dissolved inorganic carbon 

(DIC) and fugacity of CO2 in the gas phase (fCO2)
i. Recently, the ion carbonate 

concentration [𝐶𝑂3
2−] started to be measured too. 

pH 
pH is defined as the negative logarithm of the total hydrogen ion activity. In the context 

of sea water, there are several scales to express pH, depending on which definition of 

the concentration of hydrogen ions is used.2 

The adopted scale in the present work is the so-called “total seawater scale”, which 

includes the concentration of free hydrogen ions [H+]F and also the total concentration 

of sulfate ions, [HSO4
-] + [SO4

2-]. They have to be taken into account because they 

interfere in the determination of free hydrogen ions.2 

                                                
i Because it is not possible to measure fCO2 at the IEO and therefore it was not studied 

during this TFG, I will not explain it in detail. 

CO2 (g) 

CO2 (aq)+ H2O  ⇌  H2CO3 

H2CO3   ⇌  HCO3- + H+  

HCO3-   ⇌  CO32- + H+ 

 

 

Atmosphere 

Ocean 

K1 

K2 

K0 

Figure 1. Carbonate system in the ocean. CO2 (g) in the atmosphere is in exchange with 
CO2 (aq) in the ocean. K0 is Henry’s constant, K1 is the constant for the first deprotonation 
reaction and K2 for the second one. At 25ºC, with a salinity of 35 and 1 atm pressure, pK1= 5.86, 
pK2= 8.92 (values from Zeebe, 2002)

1
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[𝐻+] = [𝐻+]𝐹 (1 +
[𝐻𝑆𝑂4

−]+[𝑆𝑂4
2−]

𝐾𝑠
)   ( 7 ) 

Where Ks is the acid dissociation constant for HSO4
-. 3 

𝐻𝑆𝑂4
− ⇌ 𝑆𝑂4

2− + 𝐻+         ;      𝐾𝑠 =
[𝑆𝑂4

2−]·[𝐻+]

[𝐻𝑆𝑂4
−]

  ( 8 ) 

  

Note that this scale is based on the adoption of the standard state for seawater in 

which the activity coefficient, 𝛾𝑖, is one, and therefore activities, 𝑎𝑖, may be expressed 

as concentrations [i], in moles/L.2  

𝑎𝑖 = 𝛾𝑖 · [𝑖]       ;     𝛾 ⟶ 1  ;    𝑎𝑖 = [𝑖]  ( 9 ) 

Other scales are the Seawater Scale (SWS), which adds fluoride ions to the total 

hydrogen ion definition; the NBS scale (National Bureau Scale), based on some low 

ionic strength standards and the free hydrogen ion concentration scale, which does not 

take into account the participation of any species other than hydrogen ions.  

Total alkalinity 
Total alkalinity (TA) was first defined as carbonate alkalinity, referred to the charge 

concentration of carbonic acid anions present in water. Borate and water alkalinity were 

added to the definition yielding the practical alkalinity, which can be used for most 

calculations of seawater parameters. Finally, the definition of TA (total alkalinity) was 

introduced, taking into account a balance of proton donors and acceptors. 

The final definition given by Dickson3 was: “amount of hydrogen ions required to 

neutralize the protons acceptors in 1 kg of seawater”3. It was suggested to consider as 

proton acceptors the bases formed from weak acids (with pK > 4.5 and zero ionic 

strength at 25ºC).  

The expression for total alkalinity would then be: 

𝑇𝐴 = [𝐻𝐶𝑂3
−] + 2[𝐶𝑂3

2−] + [𝐵(𝑂𝐻)4
−] − [𝐻+]𝐹 + [𝑂𝐻−] + [𝐻𝑃𝑂4

2−] + 2[𝑃𝑂4
3−] +

          [𝑆𝑖𝑂(𝑂𝐻)3
−] + [𝐻𝑆−] + 2[𝑆2−] + [𝑁𝐻3] − [𝐻𝐹] − [𝐻3𝑃𝑂4]   ( 10 ) 

Small contributors (<1 mol/kg) such as hydroxide, phosphate or silicate are ignored.4  
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Dissolved Inorganic Carbon 
The total dissolved inorganic carbon, DIC, TCO2 or CT, is the sum of all species 

involved in the thermodynamic equilibria of the carbonate system (Figure 1) 

𝐷𝐼𝐶 = [𝐶𝑂3
2−] + [𝐻𝐶𝑂3

−] + [𝐶𝑂2]  ( 11 ) 

Note that the term [𝑪𝑶𝟐] includes [𝑪𝑶𝟐(𝒂𝒒)] and [𝑯𝟐𝑪𝑶𝟑]. 4 

DIC is independent from temperature, salinity and pressure, but the equilibrium 

constants do depend on these variables, therefore the stoichiometry will differ among 

samples.  In sea water, [𝐻𝐶𝑂3
−] is usually a lot greater than the other two 

concentrations.1 

Carbonate Ion 
Historically, the four measurable variables of the carbonate system were pH, TA, DIC 

and fCO2, but in the XXI century, the carbonate ion concentration ([CO3
2−]) is 

considering the fifth measurable variable, as recent studies have demonstrated.5–7  

Carbon cycle in the ocean  
The distribution of carbon between the ocean and the atmosphere is mainly due to two 

mechanisms: the physical or solubility pump and the biological pump.8 

The physical or solubility pump is governed only by thermodynamic and kinetic 

processes. Usually, solubility of gasses increases with decreasing temperature and is 

directly proportional to salinity and pressure or depth. Once it is dissolved in surface 

water, it is later carried to intermediate and deep waters by the thermohaline circulation 

(THC), which is result of density gradients between different water masses.9 

The biological pump is controlled by living organism processes such as production of 

biological matter and its remineralization. First, primary producers through 

photosynthesis, transform dissolved CO2, light and nutrients into organic matter. The 

fixed CO2 becomes part of the food chain, and then most of it falls to the bottom in the 

form of pellets from excretion and fragments of dead organisms to decompose and is 

finally re-mineralized to start the cycle again or to remain as sediments. 

Most marine organisms live in the upper layers of the ocean, where CO2 exchange 

takes place, therefore it seems convenient to study possible changes in the chemistry 

of surface water, in case it has an impact on the marine ecosystem. 10 

Three main direct consequences of CO2 accumulation in the oceans are: 
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a) Increasing in CO2 concentration itself, which may affect directly photosynthetic 

organisms that need it for fixation. 

b) A pH decrease due to the release of a proton during bicarbonate formation from 

ionization of carbonic acid. 

Most released protons are neutralized by carbonate ion, CO3
2-, so the ocean has a 

buffering capacity. However, this neutralization may be eventually limited by the 

availability of the carbonate ion. 

The overall reaction can be written as: 

𝐶𝑂2 + 𝐶𝑂3
2− + 𝐻2𝑂 ⇋ 2𝐻𝐶𝑂3

−
  ( 14 ) 

The buffering ability of seawater is due to carbonate ion neutralizing protons and CO2 

forming bicarbonate. The borate ion B(OH)4
- provides a similar but less important 

effect. 

c) Decreasing in the concentration of CO3
2-, which may affect precipitation of calcium 

carbonate by calcifying organisms since the saturation state, Ω is also decreased.10 

Ω =
[𝐶𝑎2+][𝐶𝑂3

2−]

𝐾𝑠𝑝
  ( 15 ) 

(15) Relation between the concentration of the ions and the solubility constant (Ksp). 

( 12 ) 

( 13 ) 
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1.2. The Mediterranean Sea 

The Mediterranean Sea (MedSea) is a semi-enclosed sea, open to the Atlantic Ocean 

through the Strait of Gibraltar and surrounded by twenty-one populated countries.  

It is composed by two main basins of approximately the same size, the Eastern and the 

Western, separated by the Strait of Sicily. Each basin is divided in several sub-basins9, 

as it it shown in Figure 2.  

   

Strait of 
Gibraltar 

Strait        
of Sicily 

ALG 

ALB 

NWM

TY

IONIAN

 
LEVANTINE

 

AD

AG

Strait of 
Otranto 

Figure 2. Map of the MedSea with topography and bathymetry. The Western and Eastern basins are 
separated by the Strait of Sicily. The Western basin is divided in four sub-basins (in dark blue): Alboran 
(ALB), Algerian (ALG), North-West Mediterranean (NWM) and Thyrrenian (TY). The Eastern basin, is 
divided aswell in the corresponding sub-basins: Ionian, Adriatic (AD), Aegean (AG) and Levantine. The strait 
of Gibraltar separates the Mediterraenan Sea from the Atlantic Ocean and the Strait of Otranto separates the 
Ionian and Adriatic sub-basins.  
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A water mass is defined in oceanography as a large volume of water that may be 

identified as having a common origin in a certain area. It has a characteristic interval of 

temperature, salinity and oxygen content values, corresponding to its formation 

conditions. 

They are usually formed by the interaction between water and atmosphere, cooling 

down and/or an increasing in the salinity of the surface. Once they are formed, water 

masses sink and settle at a certain depth, depending on their density relative to the 

surrounding water masses.11 

Water masses are called after the place where they are formed and the depth they 

settle at. Depth intervals are shown in table 1.12 

Layer Depth (m) 

Upper waters 0-500 

Intermediate waters 500-1500 

Deep and abyssal waters 1500-bottom 
 

Table 1. Traditional classification of water layers. The deep and bottom waters occupy an important portion 
of the ocean and they are most of their lifetime isolated from the surface, so the exposure to changes is 
minimal, and therefore their properties are more stable in time. On the contrary, upper waters are affected 
by constant variations, alterating their salinity and temperature.Taken from Emery, 2003. 

 

The Strait of Gibraltar communicates the MedSea with the Atlantic Ocean, allowing the 

entrance of a relatively freshwater flux called Atlantic Water (AW), into the Western 

basin. These water masses increase in density because evaporation in both basins 

exceeds precipitation yielding high salinity, temperature and density water.9  When the 

AW reaches the Levantine basin, it is denser and more saline, and it conforms the 

Levantine Intermediate Water (LIW), which flows back to the Atlantic. There is deep 

water formation in both basins, the Western Mediterranean Deep Water (WMDW) is 

formed in Lions gulf and the Eastern Mediterranean Deep Water (EMDW) in the 

Adriatic Sea.13 

In the beginning of the 90’s, the Aegean became the principal deep water formation 

source, during the so-called Eastern Mediterranean Transient (EMT). A deeper and 

more saline water mass was formed in the Cretan Sea, the Cretan Deep Water 

(CDW).13 
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Nowadays, deep water is mainly formed in the Adriatic, as it was before the EMT, but 

the water is warmer and saltier, more similar to that constituted during the EMT.13In 

Figure 3, the main water masses formation and its distribution at the MedSea are 

represented in a pre-EMT (a) and during EMT (b) condictions.13  

Figure 3. Schematic graph of the bathymetry and main water masses in the MedSea befroe EMT 
(a) and during EMT (b). The light blue arrow represents the fresher surface Atlantic Water (AW) 
entering through the Strait of Gibraltar to the Western basin, and all the way to the Eastern 
basin. It then becomes denser, and flows back to the Atlantic as Levantine Intermediate Water 
(LIW), represented by a darker blue arrow. Denser water outflows from the Adriatic Sea, 
conforming the East-Mediterranean Deep Water (EMDW), and from the Western-Mediterranean 
Deep Water (WMDW), both repesented by even darker blue arrows. 
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1.3. Why CO2 in the Mediterranean Sea 

The MedSea is considered by some authors14 as an ocean in miniature in which many 

internal processes take place as they do in the world wide ocean.14 They consider it as 

a ‘’basin laboratory’’ because these processes may be more easily detected, studied 

and monitored. This fact makes its study interesting not only to know the MedSea 

better itself, but also all oceans behavior. 

Another interesting characteristic of the MedSea is its ability to capture large amounts 

of anthropogenic carbon dioxide (Cant), which is the CO2 generated from human 

activities. Such capacity is given by the high alkalinity and temperature of the surface 

waters, which can be rapidly transported to deeper sections15, allowing the 

sequestration of more CO2 in the surface. 

The reservoirs of Cant in the MedSea are one of the highest of the global ocean as it 

can be observed in Figure 416, meaning that an important amount of the world’s 

anthropogenic emissions of CO2 are stored in the MedSea despite its relatively small 

volume.15 

Also, as it was pointed out in section 1.2, the MedSea is surrounded by many 

countries, and therefore, regional climate, fisheries and tourism are important areas 

interested in the better knowledge of this sea. 

1.4. Med-SHIP program 

Despite all the mentioned facts that make the MedSea an interesting target for 

scientists, up until 2011 it was only sampled by national expeditions in regional areas. 

Large international programs have been disregarding it, such as the World Ocean 

Circulation Experiment (WOCE) and its repetition, both coordinated by the Global 

Ocean Ship-Based Hydrographic Investigation Program (GO-SHIP).17 

Figure 4. Representation of the oceanwide distribution of Cant from Lee et al., 2011. Scale in mol·m
-2

. As it 
can be observed, the higher concentrations are found in the North Arlantic Ocean and in the MedSea. 
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The creation of the Med-SHIP program fills this gap to collect hydrographic 

observations in the MedSea with two main objectives: ‘’(1) to observe and quantify 

long-term changes in marine physical and biogeochemical properties in the 

Mediterranean Sea, where the shorter turnover time scale suggest they can be 

extrapolated to the global ocean, and (2) to observe changes in thermohaline 

circulation and to determine how often and how much deep water is formed, and 

whether the currents are changing in position and intensity.’’17 

In 2011 three oceanographic cruises were conducted coordinately, with slightly 

different scopes, but allowing for a general view of the properties and distribution of the 

studied parameters along the major sub-basins. These cruises(ii) were the German R/V 

Meteor (cruise M84/3, Istanbul to Vigo, 5-28 April 2011), the German R/V Poseidon 

(cruise POS414, Genoa to messina, 31 May to 13 June 2011) and the Italian R/V 

Urania (cruise EF11, Bari to La Spezia, 22 April to 2 May 2011).14  

MSM72 
To obtain actualized information on the MedSea, and to monitor its evolution 

comparing it with that provided by past cruises, the cruise MSM72 was organized 

inside the MED-Ship effort. The German R/V Maria S. Merian, departed from Crete on 

the 1st of March 2018 and arrived in Cádiz on the 4th of April 2018, intending to follow 

the route indicated in Figure 5. 

Unluckily, due to political issues, the stations planned for the Levantine basin could not 

be sampled and the station plan had to be changed continuously in order to adjust to 

the schedule and situation, however the lack of stations in the Levantine basin was 

compensated with more stations in the rest of the cruise. 

                                                
(ii)

 R/V stands for Research Vessel. In italics the vessel’s name. In parenthesis the name of the 
cruise (using an acronym of the vessel and the number of cruise), the origin and destiny and the 
dates when it took place. 
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There were seven international research groups onboard, dedicated to physical 

oceanography, chemical oceanography and marine ecology, working in an 

interdisciplinary-coordinated way. From Germany, the University of Hamburg and 

GEOMAR; from Italy, the Istituto Nazionale di Oceanografia e di Geofisica 

Sperimentale (OGS), the CNR Istituto di Biofisica Unità Operativa di Pisa (CNR-P) and 

the Istituto di Scienze Marine (ISMAR); from Greece, the Helenic Centre for Marine 

Research (HCMR); from Lebanon, the National Council for Scientific Research in 

Lebanon (CNRS-L); and from Spain, the Instituto Español de Oceanografía (IEO) - 

Centro Oceanográfico de A Coruña. 

The group in charge of the carbonate system sampling and measuring was formed by 

Dr. Noelia M. Fajar and Dr. Elisa F. Guallart (IEO), Dr. Abed El Rahman Hassoun from 

the CNRS-L and myself. 

 

  

Figure 5. Map of stations planned for the MSM72 at the beginning of the cruise. As the legend reads, red 
dots correspond to physical stations, where only CTD measurements were carried. The black dots 
correspond to chemistry stations, that is, all variables were sampled except for isotopes and POC/PON, 
which are sampled only in Isotope stations, represented by blue dots. Map made by T. Tanhua. 

Figure 6. German 
research vessel Maria S. 
Merian in which the 
cruise MSM72 took 
place. 
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OBJECTIVES OF TFG  

 

Participation in the MSM72 oceanographic cruise in March-April 2018, as part of the 

IEO group responsible of CO2 measurements in the water column; pH, alkalinity, total 

inorganic carbon and carbonate ion. It will be a campaing on board of the German ship 

“RV Maria S. Merian”, departing from Crete, and finishing in Cadiz. Apart from onboard 

analysis, student will treat the pH raw data to finally remit the final campaing report. 

The TFG will consist on presenting and describing these data, to study biogeochemical 

properties of the different water masses in the Mediterranean sea, from the Ionian 

basin to the gulf of Cadiz.  

 

Participación en la campaña oceanográfica MSM72 en Marzo-Abril de 2018, como 

parte del grupo del IEO responsable de las medidas de CO2 en la columna de agua; 

pH alcalnidad, carbono inorganico total e ión carbonato. La campaña será a bordo del 

buque alemán ‘’RV Maria S. Merian’’, saliendo de Creta y atracando en Cádiz. Además 

de los análisis a bordo, se tratarán los datos brutos de pH para remitir el informe final 

de la campaña. El TFG consistirá en la presentación y descripción de estos datos, así 

como el estudio de las diferentes masas de agua en el mar Mediterráneo, desde el 

mar Jónico hasta el golfo de Cádiz. 

 

Participación na campaña oceanográfica MSM72 en Marzo-Abril do 2018, como parte 

do grupo do IEO responsible das medidas de CO2 na columna de agua; pH, 

alcalinidad, carbono inorgánico total e ión carbonato. A campaña será a bordo do ‘’RV 

Maria S. Merian’’, saíndo de Creta e chegando a Cádiz. Ademais dos análisis a bordo, 

a estudiante tratou os datos brutos de pH co fin de remitir o informe final da campaña. 

Este TFG consiste na presentación e descripción destes datos, así como o estudio das 

diferentes masas de auga no mar Mediterráneo, dende  mar Jónico ata o golfo de 

Cádiz. 
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METHODOLOGICAL FUNDAMENTALS 

3.1. Determination of [H+] concentration  

Fundaments of spectrophotometric determination of pH 
The pH values were determined by the spectrophotometric method described by 

Clayton and Byrne18. This method consists on adding m-cresol purple (m-CP) as 

indicator dye to the water sample and measuring the absorbance. This m-CP indicator 

is a sulphonephtalein indicator, which are the most appropriate for surface-to-deep pH 

profiles in the ocean. 

The indicator loses protons in two consecutive dissociation reactions. The pKH2In of the 

first deprotonation is around 2. For the second one, pKHIn is close to 8. Seawater 

samples have a pH close to this second pKHIn, and therefore derivation of the pH 

equation will be focused on this dissociation reaction. 

𝐻𝐼𝑛−(𝑎𝑞) ⇌  𝐻+(𝑎𝑞) + 𝐼𝑛2−(𝑎𝑞)  ( 16 ) 

𝐼𝑛2− stands for the fully deprotonated form of the indicator (purple) and 𝐻𝐼𝑛− for the 

single protonated form (yellow)19. As it was mentioned in section 1.1, seawater 

standard state is defined to have an activity coefficient equal to one, and therefore 

activities may be substituted by concentrations. The equilibrium constant is defined as 

𝐾𝐻𝐼𝑛 =
[𝐼𝑛2−][𝐻+]

[𝐻𝐼𝑛−]
  ( 17 ) 

Taking logarithms, 

log 𝐾𝐻𝐼𝑛 =  log (
[𝐼𝑛2−][𝐻+]

[𝐻𝐼𝑛−]
) =  log (

[𝐼𝑛2−]

[𝐻𝐼𝑛−]
) + log [𝐻+]   ( 18 ) 

Rearranging and changing the sign 

− log 𝐾𝐻𝐼𝑛 = − log
[𝐼2−]

[𝐻𝐼𝑛−]
−log[𝐻+]   ( 19 ) 

the Henderson-Hasselbach equation for a buffer solution may be obtained, to calculate 

the pH values 

𝑝𝐻 = 𝑝𝐾𝐻𝐼𝑛− + log
[𝐼2−]

[𝐻𝐼𝑛−]
   ( 20 ) 

A relation between [𝐼2−] and [𝐻𝐼𝑛−] may be estimated by spectrophotometric 

measurements applying the Lambert-Beer law. 
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𝐴𝜆

𝑙
= 𝜀𝜆

 𝐻𝐼𝑛−
· [𝐻𝐼𝑛−] + 𝜀𝜆

𝐼𝑛2−
· [𝐼𝑛2−] + 𝐵𝜆 + 𝑒   ( 21 ) 

Where 𝜀𝜆
 𝑖 are the corresponding molar extinction coefficients at a wavelength , B is 

the background absorbance of the sample and e the error related to instrumental noise. 

𝑙 is the pathlength of the cell. 

B may be subtracted doing a baseline for each sample at the wavelengths of interest 

before measuring and the term e may be neglected assuming no instrumental error.  

If absorbance measurements are carried out at two different wavelengths, the ratio 

between the concentrations of both species may be obtained. 

In order to achieve higher precision, the selection of these two wavelengths is 

important. The maximum of absorbance of each species is the optimal choice, because 

in that section of the spectrum, small variations of the wavelength will result in minimal 

variations of the recorded absorbance. The following graph (Figure 7)1 shows the 

spectra for acid and basic forms of the indicator used, m-cresol purple.  

 

The Lambert-Beer law could be expressed as follows 

𝐴𝜆1

𝑙
= 𝜀𝜆1

𝐻𝐼𝑛−
· [𝐻𝐼𝑛−] + 𝜀𝜆1

𝐼𝑛2−
· [𝐼𝑛2−]         ;          

𝐴𝜆2

𝑙
= 𝜀𝜆2

𝐻𝐼𝑛−
· [𝐻𝐼𝑛−] + 𝜀𝜆2

𝐼𝑛2−
· [𝐼𝑛2−]   

( 22 )( 23 ) 

Dividing both expressions    ( 22) and    ( 22 )( 23 ) by [𝐻𝐼𝑛−] 

Figure 7. Absorbance spectra for both species HIn
-
 and In

2-
 of m-cresol purple. Maxima are observed at 

434 nm for the single protonated –more acid- form  (HIn
-
) and at 578 nm for the fully deprotonated-more 

basic- one (In
2-

).
1
The point where both graph cross over each other is the isobestic point, at 486 nm. 
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𝐴𝜆2

𝑙·[𝐻𝐼𝑛−]
= 𝜀𝜆2

𝐻𝐼𝑛−
+ 𝜀𝜆2

𝐼𝑛2−
·

[𝐼𝑛2−]

[𝐻𝐼𝑛−]
       →      

[𝐼𝑛2−]

[𝐻𝐼𝑛−]
=   (

𝐴𝜆2

𝑙·[𝐻𝐼𝑛−]
− 𝜀𝜆2

𝐻𝐼𝑛−
) ·

1

𝜀𝜆2
𝐼𝑛2−   ( 24 ) 

𝐴𝜆1

𝑙·[𝐻𝐼𝑛−]
= 𝜀𝜆1

𝐻𝐼𝑛−
+ 𝜀𝜆1

𝐼𝑛2−
·

[𝐼𝑛2−]

[𝐻𝐼𝑛−]
          →       [𝐻𝐼𝑛−] =   

𝐴𝜆1

𝑙·(𝜀𝜆1
𝐼𝑛2−

·
[𝐼𝑛2−]

[𝐻𝐼𝑛−]
+𝜀𝜆1

𝐻𝐼𝑛−
)
  ( 25 ) 

Substituting expression   ( 25) into   ( 24 ). 

[𝐼𝑛2−]

[𝐻𝐼𝑛−]
=   [

𝐴𝜆2

𝐴𝜆1
(𝜀𝜆1

𝐼𝑛2−
·

[𝐼𝑛2−]

[𝐻𝐼𝑛−]
+ 𝜀𝜆1

𝐻𝐼𝑛−
) − 𝜀𝜆2

𝐻𝐼𝑛−
] ·

1

𝜀𝜆2
𝐼𝑛2−   (26) 

Rearranging again: 

[𝐼𝑛2−]

[𝐻𝐼𝑛−]
=

𝐴𝜆2
𝐴𝜆1

−
𝜀𝜆2

𝐻𝐼𝑛−

𝜀𝜆1
𝐻𝐼𝑛−

𝜀𝜆2
𝐼𝑛2−

𝜀𝜆1
𝐻𝐼𝑛−−

𝐴𝜆2
𝐴𝜆1

·
𝜀𝜆1

𝐼𝑛2−

𝜀𝜆1
𝐻𝐼𝑛−

    ( 27 ) 

And the substitution of the following absorbance and extinction coefficient ratios 

𝑅 =
𝐴𝜆2

𝐴𝜆1
      𝑒1 =

𝜀𝜆2
𝐻𝐼𝑛−

𝜀𝜆1
𝐻𝐼𝑛−       𝑒2 =

𝜀𝜆2
𝐼𝑛2−

𝜀𝜆1
𝐻𝐼𝑛−    𝑒3 =

𝜀𝜆1
𝐼𝑛2−

𝜀𝜆1
𝐻𝐼𝑛−  ( 28 ) 

leads to the expression2 

𝑝𝐻𝑇 = 𝑝𝐾𝐻𝐼𝑛− + log (
𝑅−𝑒1

𝑒2−𝑅· 𝑒3
)   ( 29 ) 

The dimensionless extinction coefficient ratios have been measured3 for species HIn- 

and I2- at wavelengths = 434 nm and 2 = 578 nm, obtaining the values in ¡Error! No 

se encuentra el origen de la referencia..20 

Constant Empirical value 

e1 6.91·10-3 

e2 2.2220 

e3 0.1331 
 

Table 2. Extintion coefficient ratios for m-cresol Purple for wavelegths 434 and 758 nm.  

 

The equilibrium constant 𝐾𝐻𝐼𝑛− depends on salinity and temperature, and 𝑝𝐾𝐻𝐼𝑛−  has 

been determined for m-cresol purple as: 3 

𝑝𝐾𝐻𝐼𝑛− =
1245.69

𝑇 (𝐾)
+ 3.8275 + 0.00211(35 − 𝑆)  ( 30 ) 
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Where 293 K ≤ T ≤ 303 K and 30 ≤ S ≤ 37 

Finally, the expression to calculate pH values using the total hydrogen concentration 

scale2 

𝑝𝐻𝑇 =
1245.69

𝑇 (𝐾)
+ 3.8275 + 0.00211(35 − 𝑆) + log (

𝑅−6.91·10−3

2.2220−𝑅· 0.1331
)   ( 31 ) 

Where T is the temperature in Kelvin, S is the salinity and R the ratio between 

absorbance at the selected wavelengths. 

The precision of this method was assessed as 0.0004 and the assigned accuracy was 

0.001 pH units.18   

ΔR Correction 
The addition of indicator perturbs slightly the real pH of the sample, since the dye has 

some acid-base properties itself.  

This perturbation depends on the acidity difference between seawater and indicator. It 

is minimized by the adjustment of the dye solution pH, therefore, the empirical 

evaluation of the correction should be performed for each batch of indicator solution. In 

order to do so, a second addition of dye may be made to a series of seawater samples 

with different pH. The absorbance ratio R is determined for both additions (R1 and R2) 

and the variation between the ratios obtained for first and the second addition 

(R = R2 – R1) per mL of added dye is represented against the ratio obtained for the 

first addition. Applying the least-squares method, a linear regression is obtained3 

𝑅

𝑉
= 𝐴 + 𝐵𝑅1   ( 32 ) 

The corrected R that will be used in equation (31) to obtain the final pH value will be 

calculated as 

𝑅 = 𝑅1 + (𝐴 + 𝐵𝑅1)𝑉   ( 33 )  
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3.2. TA determination in seawater 

Total alkalinity (TA) was measured by a potentiometric method. The titration was 

carried out with hydrochloric acid 0.1 N. Classical methods use computerized systems 

which determine the end point of the titration curve in around 30 minutes.3 Pérez et al. 

proposed an improved method which only takes 3-4 minutes per sample, using a 4.4 

buffer solution to calibrate the electrode. 

For calculations, the alkalinity definition neglects smaller concentration terms in 

equation    ( 10) to: 

𝐴𝑇 = [𝐻𝐶𝑂3
−] + 2[𝐶𝑂3

2−] + [𝐵(𝑂𝐻)4
−] − [𝐻+]𝐹 + [𝑂𝐻−]   ( 34 ) 

At the equivalence point, the alkalinity of a sample equals the concentration of titrant 

(HCl) times the volume used to reach the end point, divided by the volume of the 

sample. 

𝐴𝑇 =
[𝐻𝐶𝑙]·𝑉𝐻𝐶𝑙

𝑉𝑠𝑎𝑚𝑝𝑙𝑒
   ( 35 ) 

 

The final expression for the determination of total alkalinity is obtained after substitution 

of several terms calculated by several authors21 into equation    ( 35), 

but it won’t be reflected in this work because it is all computerized and the deduction is 

beyond the scope of this thesis. 

TA precision was defined as the reproducibility from certified reference material (CRM) 

analyses (<1 µmol/kg) and the accuracy is within 2 µmol/ kg.22 
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3.3. DIC determination in seawater 

DIC is determined following a coulombimetric titration. A known amount of sea water 

sample, 20 mL in this case, is dispensed into a stripping chamber. There, it is acidified 

with H3PO4 to have all the present carbon (carbonate, bicarbonate and carbon dioxide) 

as CO2 (see equations ( 12) and ( 13)) . A carrier inert gas transfers the generated CO2 

gas into a titration cell where it is trapped by ethanolamine.3 

𝐶𝑂2 + 𝐻𝑂(𝐶𝐻2)2𝑁𝐻2  → 𝐻𝑂(𝐶𝐻2)2𝑁𝐻𝐶𝑂𝑂− + 𝐻+   ( 36  ) 

 

The hydroxyethylcarbamic acid that is formed is coulometrically titrated with hydroxide 

ions generated by the electrolysis of water taking place at the cathode, 

𝐻2𝑂 + 𝑒−  →
1

2
𝐻2(𝑔) + 𝑂𝐻−   ( 37 ) 

while at the anode, silver dissolves as silver cation 

𝐴𝑔(𝑠) → 𝐴𝑔+ + 𝑒−   ( 38 ) 

Figure 8. Scheme of a titration cell for the SOMMA, the antecedent of the used devide, the VINDTA. The 
cell is anyway equal for both systems. 
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The coulometer measures the amount of electrical charge between anode and 

cathode, and generates electrical pulses or counts. To obtain the concentration of 

inorganic carbon, the data about the end point of the titration given by the VINDTA 

system in counts per minute, is transformed to moles per kg following these 

calculations: 

First, the amount of inorganic carbon in the sample is calculated23: 

𝜇𝑚𝑜𝑙 𝐶𝑒𝑥𝑝 = (𝐶𝑜𝑢𝑛𝑡𝑠 − 𝐵𝑙𝑎𝑛𝑘 · 𝑅𝑇) ·
1 𝜇𝑚𝑜𝑙 𝐶

4.82445·103 𝑐𝑜𝑢𝑛𝑡𝑠
  ( 39 ) 

This experimentally obtained amount of carbon is transformed into concentration 

dividing it over the mass of the sample, ms. 

𝐷𝐼𝐶𝑒𝑥𝑝 (𝜇𝑚𝑜𝑙/𝑘𝑔) =  
𝜇𝑚𝑜𝑙 𝐶𝑒𝑥𝑝 

𝑚𝑠
  ( 40 ) 

A correction term caled the CALFACTOR is added to the calculations because there is 

a deviation23 from the known as real value due to loss of carbon during extraction or 

titration. The CALFACTOR may be calculated as the ratio of the given theoretical CRM 

concentration and the experimentally obtained one.  

𝐶𝐴𝐿𝐹𝐴𝐶𝑇𝑂𝑅 =  
𝐷𝐼𝐶𝑡ℎ

𝐷𝐼𝐶𝑒𝑥𝑝
   ( 41 ) 

The precision of DIC method is 1 µmol/kg and the accuracy is 2 µmol/kg.23 
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3.4. Determination of CO3
2-  

Carbonate ion, is directly determined by a spectrophotometrical analysis, in a way very 

similar to the already explained pH method (section 3.1, page 25) but using a lead 

complexing agent, Pb(ClO4)2 or PbCl2, to form a lead carbonate complex which 

absorbs in the UV region. 

In this case the chosen wavelengths are 250 and 234 nm. Following a deduction 

analogous to that for pH, the final equation to calculate carbonate ion concentration in 

seawater is: 6 

−log [𝐶𝑂3
2−]𝑇 = log (

𝐶𝑂3𝛽1

𝑒2
) + log (

𝑅−𝑒1

1−𝑅·
𝑒3
𝑒2

)   ( 42 ) 

Where the coefficients R, e1, e2 and e3 are 

𝑅 =
𝐴𝜆250

𝐴𝜆234
        𝑒1 =

𝜀𝜆250
𝑃𝑏𝐶𝑂3

𝜀
𝜆234
𝑃𝑏𝐶𝑂3

        𝑒2 =
𝜀𝜆250

𝑃𝑏

𝜀
𝜆234
𝑃𝑏𝐶𝑂3

     𝑒3 =
𝜀𝜆234

𝑃𝑏

𝜀𝜆250
𝑃𝑏   ( 43 ) 

The salinity-dependent stability constant for the formation of the lead carbonate 

complex, PbCO3
0 is given as: 

𝐶𝑂3𝛽1 =
[𝑃𝑏𝐶𝑂3

0]

[𝑃𝑏2+]𝑇[𝐶𝑂3
2−]𝑇

  ( 44 ) 

The relative errors are ±5.8 μmol·kg-1 when [CO3
2-] = 250 μmol/kg.24 
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WORK MADE AT SEA 

4.1. Organization 

In this oceanographic cruise, as there were several groups working in the areas of 

chemical oceanography, physical oceanography and medium biology, the demand for 

seawater in some stations and depths was important.  

The water was taken using a rosette (Figure 9. Rosette on the deck. Each Niskin bottle 

can contain 10 L. It is thrown to the sea by  memebers of the physics group in 

coordination with the crew. In the bottom part, the yellow CTD may be observed.Figure 

9), a metal cylindrical structure holding twenty-four 10 L Niskin sampling bottles, which 

have to be open when the rosette is launched into the water to avoid implosion. The 

rosette also carried a CTD device (Conductivity, Temperature and Depth), which 

provides values for salinity, temperature and pressure as the rosette goes down. That 

way, scientists can choose which depth may be more interesting to sample, and so the 

rosette is stopped on its way up at the decided depths to close as many bottles as 

seawater demand requires.  

At a given station, each Niskin bottle (numerated from 1 to 24) corresponded to one 

depth, so the collection of samples for several parameters was simpler and organized. 

As samples are drawn, a headspace is created in the Niskin sampling bottle, leading to 

Figure 9. Rosette on the deck. Each Niskin bottle can contain 10 L. It is thrown to the sea 
by  memebers of the physics group in coordination with the crew. In the bottom part, the 
yellow CTD may be observed. 
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the consequent gas exchange between water and air. Some parameters such as pH or 

DIC are affected by this exchange and should be drawn first. 

The immediate conclusion was to stablish a well-organized sampling hierarchy: tracers, 

O2, DIC, pH, DOC and OM, CO3
2-, TA and finally nutrients.  

A table with all parameters and depths was hung in the sampling area so that the right 

order was followed. 

The four parameters sampled by the CO2 system team (DIC, pH, TA and CO3
2-) were 

drawn attaching an approximately 20 cm silicon sampling tube to the Niskin bottle. 

Further detail on each technique will be presented along this section. 

The number of samples collected at each station for each parameter is reflected in 

Table 14. 
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4.2. pH measurements 

Sampling 
Samples were collected in cylindrical optical glass Hellma cells of 28 mL volume and 

10 cm of path-length. Water was overflowed until no air bubbles were observed, and 

cells were sealed using two PTFE caps.  

 

Analysis procedure and equipment 
Cells with samples were stored in an incubator at 25ºC warmed by a thermostatic bath 

for around one hour before the analysis. Absorbance was determined using a 

Shimazdu UV-2600 double beam spectrophotometer, and the corresponding software, 

UV Probe. The temperature of all measurements was controlled with a JULABO F12 

ED (12L) thermostatic bath. Figure 11 is a picture of the equipment as it was set in the 

on-board laboratory. 

Figure 11. Spectrophotometer on the rigt, the wooden box is the incubator and above it, the cells for pH 
measurements as they were set up in the Trokenlabor at the R/V Maria S. Merian. Photo taken by N. Fajar. 

Figure 10. Cylindrical cuvettes for pH determinations. Made of quartz they can also be used for 
carbonate ion determinations. On the right, the range of colours of m-CP from the single protonated 
form to the fully deprotonated species. 



 
36 

The indicator used was m-cresol purple (Sigma Aldrich), prepared in seawater (2mM) 

and kept in the dark, with no air contact 

The absorbance of the cell and the sample were recorded from 400 to 750 nm in order 

to set a baseline. This range of wavelengths includes both maxima for acid and basic 

forms of the dye (434 and 578 nm respectively), a non-absorbing wavelength as 

a control of the method and procedure (730 nm), and the isosbestic point 

(487.6 nm). 

Then, 50 L of the dye m-cresol purple were added to the samples and the absorbance 

was measured three times at the four chosen wavelengths. 

 

 Quality control  

First quality control 

After each analysis, the obtained data were recorded in one excel file where the 

absorbance ratio, R for each of the three measurements were calculated as 𝑅 =
λ2−λ3

λ1−λ3
, 

along with average and corresponding standard deviation per sample. 

Before calculating pH values, raw data as processed and cleaned. A code was 

assigned to each sample applying the formula 

𝐶𝑜𝑑𝑒 = 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 · 1000 + 𝐶𝑎𝑠𝑡 · 100 + 𝑁𝑖𝑠𝑘𝑖𝑛  ( 45 ) 

Formula used to assign a unique code to each sample. If a sample was taken from 

Niskin 15, from the second cast at station 44, its corresponding code would be 44217. 

To make the cleaning easier to understand, a code of numbers was stablished 

assigning a flag number to certain possible types of error, as given in Table 3. 

Flag Number Meaning 

Flag 2 OK 

Flag 3 Outlier in graphic representation. Probably wrong 

Flag 4 Known to be bad from lab notebook/wrong blank 

Flag 6 Replicate 

Flag 9 Not sampled 

 

Table 3. Flag numbers associated to different types of errors used in the processing of pH data. 
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First, absorbance values at 730 nm were checked since it is a non-absorbing 

wavelength used as a control for human error, they are represented in Figure 12. The 

R corresponding to absorbance values greater than 0.009 were eliminated, and if the 

three replicates were greater, that sample was marked as a flag 4. 

 

Then, STD (R), standard deviation of the R, values were looked at. Standard deviations 

greater than 0.05 were marked and the corresponding R values eliminated. The STD 

(R) was evaluated when (a) only the first R value was eliminated and if STD (R) was 

still greater than 0.05, (b) only the third was eliminated. If neither (a) nor (b) caused a 

big enough decrease in the STD (R), only the third value was kept. Note that every 

time an R value was eliminated, the average of absorbance and corresponding STD at 

the isosbestic wavelength (478.6 nm) was recalculated. 

Finally, absorbance at the isosbestic wavelength was reviewed. The average 

absorbance for an addition of 50 L is 0.25. Greater values indicate that either too 

much dye was added, or that a second addition was performed in order to make the 

ΔR correction (explained with detail in section 3.1, page 25). Lower values imply a too 

low addition of dye. 

Duplicates were also examined so that the code is assigned to the right measurement. 

All this cleaning process was followed with the lab notebook and the sampling sheet, 

so any irregularity in the sampling or during the analysis was taken into account. 

Figure 12. Absorbance values recorded at 730 nm of all analyzed samples. In red the 
eliminated dots, higher than 0.009. 
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Accuracy 

In order to measure the accuracy of pH measurements, samples of TRIS buffer 

certified seawater distributed by A.G. Dickson from the Scripps Institution of 

Oceanography were analyzed during the cruise MSM72. The measurements were 

performed at three different temperatures, so that both Eastern and Western basins pH 

values would be covered. The average of the obtained pH values is shown in Table 4 

with standard deviations and number of measured samples. 

Tª (°C) pH STD n 

25 8.0981 0.0009 4 

27 8.0365 0.0014 5 

29.7 7.9579 0.0024 5 

 

Table 4. Mean temperature and pH measured with respective standar deviation (STD) and number of 
samples analyzed (n). 

 

Precision 

A typical reproducibility analysis was performed on each basin. For that, the pH of four 

or five samples taken from the same Niskin bottle were analyzed. Obtained results are 

given in Table 5. 

Basin St Salinity Depth (m) pH STD n 

Western 
52 38.727 3402.37 7.9590 0.0003 6 

56 38.605 103.56 7.9737 0.0005 5 

Eastern 
100 38.491 2764.03 7.8975 0.0004 4 

102 38.045 104.75 7.9357 0.0009 4 

 

Table 5. Characteristics of seawater samples used for the precision analysis. Average 

calculated pH, along with standard deviations (STD) and number of samples collected 

from each Niskin (n).  
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4.3. TA measurements 

Sampling 
TA samples were taken in 600 mL 

borosilicate bottles. First, the sample 

bottle and cap were rinsed, then bottles 

were filled smoothly, placing the end of 

the drawing tube at the bottom. Water 

was allowed to overflow by one time the 

volume of the flask and immediately 

sealed. 

Analysis procedure and equipment 
Samples were stored and allowed to 

temper in the laboratory for no longer than two days. An exact volume of the sample 

was taken using a Knudsen pipette25 (Figure 14) of 186 mL and poured into a 220 mL 

Erlenmeyer flask. Titration is carried out using an automatic potentiometric titrator 

Titrando 904 Metrohm, with a Metrohm Aquatrode Plus combination glass electrode 

and a Pt-1000 probe to check the temperature. The system is coupled with a 10 mL 

Figure 13. Box for transporting TA sample bottles from 
laboratory to sampling area and viceversa. 

Figure 14. Equipment for TA determinations. On the computer’s right in order, Titrando 904, stirrer 801 
(Metrohm) and knundsen pipette attached to an air pump. On the right, schematic Knudsen pipette, 
which allows quick and accurate transfer of a constant volume of liquid (sea water),. A double sided 
vent (C) allows for either the stablishment of a flow between the body of the pipette and one of the 
branches (A or B) or the isolation of the body from both branches.  
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burette or exchangeable unit. 

The titrant was hydrochloric acid 0.1 N, usually prepared by diluting a 0.5 mol/L of 

commercial HCl, supplied by Riedel-deHaën® (Fixanal 38285) with distilled water into 

a graduated 5 L flask at controlled temperature conditions. However, on this cruise, the 

available reagent onboard was Titrisol® Hydrochloric acid 1 N, to be diluted in 1 L. The 

limited availability of material lead to the preparation of 5 L of HCl (0.2 N), which was 

then diluted to 0.1 N using two graduated flasks of 500 mL and 1 L. As the titrants 

needs to be of a known exact concentration, around 500 mL of each of the two batches 

prepared during the cruise were stored to be titrated at the IEO laboratory in A Coruña.  

[Na2CO3] 
(mol/L) 

v HCl 
(mL) 

[HCl] (mol/L) 
t(95%, n=5) 

Confidence interval 
t(95%, n=5) 

1.111 100 0.0996  0.0003 0.099 mol/L-0.100 mol/L 

 

Table 6. Data from titration of HCl with sodium carbonate.  

 

The corresponding titrations were performed by the automatic titrator used for alkalinity measurements, 
but using Na2CO3 as titrant this time. The final HCl concentrations for each batch are observed in  

Table 6. 

The sequence for each analysis session or batch included the analysis of some 

standards and duplicates to check it was repeating properly. 

Step Procedure 

Buffer & calibration 30 min with new phthalate buffer and calibration of electrode 

Prepare Titrant is released to eliminate air bubbles in the tubes 

777 Seawater from the tap is titrated to start the system* 

888 Substandard is analyzed to control drift along station and cruise* 

999 CRM is analyzed to check the accuracy of the system* 

St 1 First station is analyzed  

888 Substandard is analyzed to control drift along station and cruise * 

St 2 Next stations are analyzed, a substandard is analyzed in between stations 

888 Substandard is analyzed to control drift along station and cruise * 

Close Electrode is left submerged in left over buffer 
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Table 7. Order of an alkalinity session of analysis. Replicates are conducted in steps in italics and marked 

with * in the procedure. If difference between replicates was greater than 1 mol/kg, a third measurement 
was performed. If it was smaller, analysis continued to the next step. 

Quality control 

Accuracy 

To control the accuracy of TA measurements, a CRM was analyzed at the beginning of 

each analysis. The obtained TA values for each batch of CRM are reflected in ¡Error! 

No se encuentra el origen de la referencia., where the gray squares are the measured 

TA values and the circles represent the mean value with the corresponding error bar 

per analysis session. The horizontal dashed lines are the mean standard deviation for 

the twelve batches of analysis. 

 

Figure 15. Alkalinity measurements of CRM analyzed during the cruise represented versus the session 
number. Batch #158 (sessions 1-12) and batch #170 (sessions 13-14). Plots by N. Fajar. 
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An extra calibration was conducted during the cruise MSM72 which consisted on the 

analysis of substandard seawater before and after each series of samples. The 

substandard was collected at the beginning of the cruise from the depth with the 

salinity minimum, at 700 m depth, in a 30 L container at least one day before its use. It 

was stored in the dark.  

 

The objective of this substandard was to monitor the drift of TA determinations 

throughout the cruise. The values for this drift control are shown in ¡Error! No se 

Figure 16. Representation of the mean TA for the substandard seawater versus the session number. 
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encuentra el origen de la referencia. for the two different substandard used along 

MSM72. 

In Table 8 a summary of both CRM and substandard quality control for TA analysis is 

given. 

Session Day 2018 Station ΔpH Fitted TA  Mean SUB TA Av. Dif 

1 4 March 1 2 4 8 0.01215 2 226.62±0.67 2 622.98±0.30 0.79 (47) 

2 5 March 9 11 13 0.01315 2 226.62±0.47 2 622.73±0.42 0.68 (47) 

3 7 March 17 20 0.0247 2 226.62±0.14 2 622.93±0.34 0.38 (28) 

4 9 March 22 23 26 0.00495 2 226.60±0.11 2 620.11±0.91 0.56 (54) 

5 13 March 
30 32 34  38 

40 42 43 
0.0091 2 226.61±0.11 2 620.12±0.63 0.49 (82) 

6 16 March 44 47 51 53 0.032 2 226.60±0.41 2 621.18±0.36 0.61 (85) 

7 17 March 
55 57 59 61 

63 
0.0348 2 226.61±0.07 2 618.56 0.55 (76) 

8 21 March 
66 68 70 72 

73 75 
0.0423 2 226.60±1.03 2 621.08±0.58 0.70 (77) 

9 24 March 
77 79 81 83  

85 87 89 
0.0421 2 226.60±0.16 2 589.16±0.47 0.57 (80) 

10 26 March 91 93 95 97 0.0225 2 226.60±0.43 2 588.49±0.35 0.68 (72) 

11 27 March 
100 101 102 

105 
0.0125 2 226.58±0.40 2 588.87±0.19 0.69 (43) 

12 29 March 
109 111 113 

115 
0.0108 2 226.62±0.48 2 588.48±0.34 0.60 (67) 

13 31March 
119 121 125 

128 
0.0115 2 198.82±0.30 2 588.98±0.27 0.55 (62) 

14 1 April 
130 132 134 

136 
0.0208 2 198.82±0.05 2 591.19±0.39 0.62 (38) 

 

Table 8. Evaluation of the drift in the TA measurements by analysis of a CRM and substandards. All TA 

values in mol/kg 

 

In Table 8, ΔpH is the pH correction applied to relate the TA determinations on the 

CRM to the corresponding nominal value for CRM batches #158 and #170 with a 

certified TA of 2227.85 ± 0.54 μmol/kg and 2198.77 ± 0.87 μmol/kg, respectively. The 

mean value of the TA measurements on the CRM samples is shown 

(Fitted TA ± standard deviation). The mean value of the TA measurements on the 

substandard samples is also shown (Mean SUB TA ± standard deviation). Av. Dif. and 

number of duplicates is the average of the difference in the duplicate’s analyses. 
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Precision 

The analysis of each sample was duplicated, one immediately after the other. The 

mean standard deviation for TA duplicates was 0.6 mol/kg. 

In the same way precision was evaluated for pH measurements, five samples drawn 

from the same Niskin bottle and TA average was determined. Table 5 shows obtained 

reproducibility values. 

Basin St Salinity Depth (m) 
TA 

(µmol/kg) 
STD n 

Western 
52 38.727 3402.42 2610.93 0.65 5 

56 38.605 103.72 2580.99 0.66 5 

Eastern 
100 38.491 2764.34 2585.88 0.27 6 

102 37.857 104.36 2540.51 0.45 5 

 

Table 9. Characteristics of seawater samples used for the reproducibility analysis. Average of calculated 
pH, along with standard deviations (STD) and number of samples collected from each Niskin (n). 
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4.4. DIC measurements 

Sampling 
DIC samples were collected in 500 mL borosilicate bottles, which were first rinsed and 

filled smoothly from the bottom. Water was overflow by at least half the volume of the 

bottle. They were stored at room temperature in the dark until analysis, maximum three 

days after sampled. 

Analysis procedure and equipment 
Analyses were performed with a VINDTA 3D version#075 device coupled to a 

UIC 5011 coulometer. The former device is designed and manufactured by the 

company Marianda. Samples were kept at laboratory temperature and stored at dark. 

 
The sequence of steps followed for each session of analysis is shown in Table 10. 

 

Step Procedure 

Junk Seawater from the tap is titrated to start the system 

Blank The blank is calculated so the resto of the values can be obtained 

SW1 Seawater from the tap is titrated to start the system* 

SUB1 Substandard is analyzed to control drift along station and cruise* 

CRM1 CRM is analyzed to check the accuracy* 

Samples The first, each six and the last sample of a DIC session are analyzed twice  

CRM1 CRM is analyzed to check the system is working properly* 

SUB1 final Substandard is analyzed to control drift along station and cruise* 

 

Table 10. Sequence of activities followed every session of DIC analysis. Replicates are conducted in steps 
in italics and marked with * in the procedure. Those replicates show the precision of the VINDTA system. If 

the difference between replicates is greater than 1 mol/kg, a third measurement was performed. If it was 
smaller, analysis continued to the next step. 

Figure 17. VINDTA system at the Trokenlabor in the  R/V Maria S. Merian. 
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Quality control 

Accuracy 

In order to control the accuracy, a CRM was analyzed before and after every set of 

samples. The batch of the CRM, provided by Dr. Andrew Dickson was #158 and #170. 

As for the TA, an additional control of accuracy was conducted by the analysis of 

substandard seawater at the beginning and at the end of each set of samples. The 

substandard corresponded to seawater from the minimum of salinity, at 700 m depth in 

St 2, collected at the beginning of the cruise and stored at dark. 

The values of the substandard control are represented in Figure 18 and summarized in 

Table 11. 
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Figure 18. DIC values for the substandard seawater represented against code time. 
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Batch Date Stations Calfactor Fitted DIC Mean SUB DIC Av.DIC Dif 

1 03/03/2018 1 2 1.003589 2 043.54±0.17 2 325.23±0.01 0.26 (5) 

2 04/03/2018 2 4 1.004877 2 043.54±0.40 2 328.44±1.06 0.33 (5) 

3 05/03/2018 8 9 1.004951 2 043.54±0.74 2 329.37±0.44 0.43 (2) 

4 08/03/2018 13 17 1.005444 2 043.54±0.54 2 329.92 0.73 (4) 

5 09/03/2018 17 1.005178 2 043.54±0.28 2 331.01±1.01 0.51 (1) 

6 10/03/2018 17 23 1.003013 2 043.54±0.04 2 330.01±0.17 0.66 (5) 

7 11/03/2018 23 30 1.003842 2 043.50±0.06 2 334.29±0.20 0.58 (3) 

8 12/03/2018 30 34 1.005017 2 043.54±0.08 2 333.34±0.68 0.66 (1) 

9 13/03/2018 34 1.004795 2 043.54±0.48 2 335.77±0.80 0.10 (2) 

10 14/03/2018 38 40 1.003850 2 043.54±0.64 2 330.38±0.57 - 

11 15/03/2018 40 47 1.002913 2 043.54±0.40 2 329.25±0.24 0.12 (1) 

12 16/03/2018 40 51 52 1.001402 2 043.54±0.07 2 329.29±1.00 0.48 (5) 

13 17/03/2018 51 55 1.002278 2 043.54±0.18 2 331.11±0.58 0.62 (3) 

14 18/03/2018 55 56 1.003981 2 043.54±0.17 2 332.75±0.17 0.73 (2) 

15 18/03/2018 59 63 1.003394 2 043.38±0.22 2 329.52±0.47 0.52 (3) 

16 19/03/2018 68 1.001563 2 043.54±0.26 2 328.85±0.70 0.60 (3) 

17 20/03/2018 72 1.000340 2 043.54±0.27 2 324.56±0.07 0.54 (4) 

18 22/03/2018 77 1.004441 2 043.54±0.06 2 333.47±0.41 0.65 (10) 

19 23/03/2018 83 1.003781 2 043.54±0.54 2 331.31±0.77 0.13 (2) 

20 24/03/2018 83 87 1.002515 2 043.54±0.27 2 329.14±0.52 0.53 (5) 

21 25/03/2018 91 1.003094 2 043.58±0.72 2 331.90±0.88 0.00 (0) 

22 26/03/2018 97 1.001814 2 043.54±0.06 2 330.48±1.17 0.35 (4) 

23 27/03/2018 100 102 105 1.002474 2 043.72±0.83 2 328.74 0.93 (1) 

24 28/03/2018 105 109 1.002890 2 043.27±1.40 2 330.37±1.13 0.55 (7) 

25 29/03/2018 109 113 1.000191 1 982.42 2 327.78±1.14 0.45 (4) 

26 31/03/2018 113 121 1.002549 1 982.42±0.42 2 332.69±0.13 0.59 (3) 

27 01/04/2018 130 1.001171 1 982.42±0.73 2 332.88±1.31 0.23 (2) 

 

Table 11. Evaluation of the drift in the DIC measurements by analysis of a CRM and substandards. All DIC 

values in mol/kg. CALFACTOR is the ratio between the certified DIC and the corresponding DIC 
determinations (batch #158 and #170 with a certified DIC of 2043.54 ± 0.46 μmol/kg and 1982.42 ± 0.68 
μmol/kg, respectively ). The mean value of the DIC measurements on the CRM samples is shown (Fitted 
DIC ± standard deviation)). The mean value of the DIC measurements on the substandard samples is also 
shown (Mean SUB DIC ± standard deviation). The average of the difference (Av. Dif. and number of 
duplicates) in the duplicate’s analyses is also shown. 
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Precision 

Again, five samples from the same Niskin bottle in four stations (two on each basin) 

were analyzed. Table 12 shows the mean DIC, standard deviation and number of 

analyzed samples. 

Basin St Salinity Depth (m) 
DIC 

(µmol/kg) 
STD n 

Western 
52 38.727 3402.37 2309.50 0.63 5 

56 38.605 103.56 2279.53 0.40 4 

Eastern 
100 38.491 2764.03 2324.80 1.08 4 

102 38.045 104.75 2262.21 0.91 5 

 

Table 12. Average value, standard deviation (STD) and number of samples collected for each DIC 
analysis at the chosen stations 

 

In addition, duplicate analysis of samples were performed, one after the other every 

four or five samples.  
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4.5. CO3
2- measurements 

Sampling 
The sampling procedure for carbonate ion is the same as the one previously explained 

in section 0 for pH, but samples are collected in quartz cuvettes instead of optical glass 

ones. It takes place after sampling for alkalinity determinations. 

Analysis procedure and equipment 
The method followed for determining the concentration of carbonate ion is the one 

proposed by Patsavas et al. 6, analogous to the one for pH determination, so the same 

equipment was used (Figure 11), but with different reactants and cells. 

Samples were warmed in a thermostatic bath at 25ºC, and for each measurement, a 

blank was performed. 20 L of the indicator, in this case Pb(ClO4)2, the complexing 

agent were added to the sample with an adjustable pipette (Eppendorf Multipipette 

plus). Lead perchlorate was 0.022 M, prepared from the commercial product from 

Fisher Scientific, 99.99% pure, dissolving with distilled water. 

After the addition of complexing agent, sample was shaken and absorbance was 

measured three times at three wavelengths: 234, 250 and 350 nm; isosbestic point of 

PbCO3, wavelength presenting high absorbance variation and a non-absorbing 

wavelength respectively. 

Quality control 

First quality control 

The processing of CO3
2- data was similar to the explained for pH data. The same 

criteria were considered and same flags were given for errors. 

Precision 

A reproducibility test was also performed for carbonate determinations following the 

same process as for the other three parameters. Five samples were drawn from the 

same Niskin bottle at stations 52, 56, 100 and 105.  

Basin St Depth (m) CO3

2-
 (µmol/kg) STD n 

Western 
52 3402.37 226.6 1.0 5 

56 103.56 240.8 0.9 5 

Eastern 
100 2764.03 204.1 0.9 5 

102 104.75 238.4 0.4 5 

 

Table 13. Average CO3
2-

 concentration value of the n number of samples with the corresponding standard 
deviation (STD) and respective stations and depths. 
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RESULTS AND DISCUSSION 

5.1. pH controversy: measurements with pure vs. unpurified m-cresol 

As a brief reminder, the method followed for determining pH consists on 

spectrophotometric analysis of the seawater samples before and after the addition of 

the indicator dye, m-cresol purple (m-CP). 

In 2007, Yao et al.26 found some impurities in the m-CP that absorb at 434 nm, 

(wavelength corresponding to the basic form maximum of absorbance), therefore in 

higher ranges of pH, the obtained values are lower than their corresponding real 

values.  

This issue has been studied by several authors19,28 and different solutions have been 

proposed, to either purify the m-CP, or to correct the pH obtained from unpurified 

indicator (pHUNPUR) by comparison with pH calculated using pure indicator (pHPUR). 

These do not eliminate the problem completely, since purified indicator is more 

expensive, and some laboratories may not be able to afford neither the purified m-CP 

nor the instruments required to purify it. 

Being aware of the importance of CO2 measurements (1.3, page 14), seems logic and 

necessary the consistency between values obtained in different laboratories around the 

world. 

In 2015, Bockmon and Dickson27 studied the actual quality of discrete seawater CO2 

measurements (AT, DIC and pH) through an inter-laboratory exercise. Two batches A 

and B were used for this comparison, and the conclusion for pH was that for Batch A, 

more than half laboratories had an accuracy of 0.01 pH units, while for Batch B only 

about a third did.27  

Figure 19 was extracted from the article on this inter-laboratory comparison and shows 

the difference between the pH values reported by the different laboratories and the 

certified pH value with purified dye. 
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During MSM72, the pH of 9 stations was measured using both purified and unpurified 

m-CP. The difference between pHUNPUR and pHPUR (both 25ºC, total scale is 

represented against the depth at which the sample was taken in Figure 19¡Error! No 

se encuentra el origen de la referencia.. pHUNPUR values were obtained following the 

recommendations by Clayton and Byrne18 (mentioned above, section 3.1) while pHPUR 

values were calculated following the equations by Liu et al.28 

The main conclusion from those sets of analysis is that it does not seem to be any 

apparent difference between using purified or unpurified m-CP in the MedSea waters, 

because the pH values are under the uncertainties of pH methodologies. 

Figure 19. Differences between the pH values (25ºC, total scale) reported by different 
laboratories participating in an inter-laboratory comparison. Batch A is represented in 
black and batch B in solid gray. (a) corresponds to values obtained through 
spectrophotometric techniques, and (b) through electrometric techniques. (Bockmon 
and Dickson, 2015). 
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Figure 20. Difference between pH (25ºC, total scale) obtained using purified and unpurified m-
CP indicator. 
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5.2. CO2 internal consistency 

Knowing two of the measurable variables of the system (pH, TA, DIC, pCO2 and also 

CO3
2-) it is possible to calculate the remaining variables using the thermodynamic 

equations of the CO2 system in seawater and the corresponding constants, so the 

whole system can be known. As our group measured four out of five parameters, the 

internal consistency of the measurements can be studied. 

The calculated derived CO2 variables are obtained using the CO2SYS package with 

the dissociation constants given by Lueker29 in 2000 and the B/Cl ratio proposed by 

Lee30 in 2010 

DIC 
The residuals of DIC (ΔDIC) were estimated as the measured DIC values minus the 

calculated from TA and pH measured. 

 

 

In Figure 21, the ΔDIC obtained from MSM72 cruise are represented regarding the 

number of station. The majority of the residuals are between ± 5 mol/kg. Then, there 

are many in the ± 10 mol/kg range, and sporadically some residuals are higher than 

10 mol/kg. 

Considering these results, it is possible to say that our MSM72 CO2 system is internally 

consistent in terms of pH, TA and DIC.  
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Figure 21. Residuals of DIC (ΔDIC) obtained as DIC measured minus DIC calculated from TA and pH . 
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CO3
2- 

In the case of CO3
2-, residuals (Δ[CO3

2-]) were calculated as the difference between the 

measured and the calculated [CO3
2-] from pH and TA. In ¡Error! No se encuentra el 

origen de la referencia. Δ[CO3
2-] are represented by stations.  

As it can be observed in ¡Error! No se encuentra el origen de la referencia., the 

smaller residual has a value of 10 mol/kg, being most of them between 20 and 

40 mol/kg. 

The reason for this discrepancy is currently being studied at the IEO of A Coruña. An 

initial hypothesis aims for the degradation of the complexing agent with time, but 

looking at [CO3
2-] results obtained using the same reactant during different studies 

within the coastal area of Ría de A Coruña, the error seems to be kept throughout the 

months.  

Another hypothesis could be that the method is not appropriate for these kind of 

waters, maybe due to the high salinities of Mediterranean Sea. The MSM72 cruise was 

the first time this method was applied to analyze natural waters of such characteristics 

as the Mediterranean’s, very different to those used to optimize the method.  

 

 

Figure 22. Residuals for carbonate ion. Δ[CO3
2-

] is the difference between the measured [CO3
2-

] and the  
[CO3

2-
] calculated from pH and TA 
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5.1. Basin wide vertical distributions in relation to water masses 

Once all the CO2 variables for the MSM72 cruise were measured and the whole CO2 

database passed the first quality control, they can be plotted in order to see their 

distributions along the Mediterranean basins and to extract information from them. In 

this section, the CO2 system variables will be studied in reference to space, in order to 

look for information about the CO2 system basin-wide state, and the Mediterranean 

water masses.  

 

Salinity, temperature and oxygen 
In order to differentiate among the different water masses of the Mediterranean Sea, 

the vertical distributions of salinity and temperature together with the dissolved oxygen 

are shown.  

In Figure 23, the Atlantic Water (AW) can be easily recognized entering the Western 

basin at the top, with the lowest salinities (~37.5 down to 36), and low temperatures 

that increase eastward as the water is closer to the surface and mixing with warmer 

waters.  

The Western-Mediterranean Deep Water (WMDW) is observed as a more 

homogeneous cold-water mass, with temperatures below 14ºC and higher salinities, 

around 38.5. Likewise, the Eastern-Mediterranean Deep Water (EMDW) coming from 

the Adriatic in pre-EMT conditions and from the Aegean during EMT, has even higher 

salinities (~38.6) and slightly higher temperatures (around 14ºC) 

Finally, Levantine Intermediate Water (LIW) is also easy to locate in. Its temperatures 

and salinities are the highest (over 15ºC, up to 17ºC; and from 39 up respectively). Its 

entrance into the Western basin is also noticeable in Figure 23. 

Regarding the dissolved oxygen, the oxygen concentration follows a general trend, 

having a maximum at the surface, decreasing during the first 1000 m and then 

increasing again below that depth due to the biological activity, located in the 

intermediate layers. The minimum oxygen content can be observed in the western 

basin. 
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Figure 23. Vertical distribution of Temperature (ºC), salinity (spU) and oxygen (µmol/kg) longitudinal section 
od the Mediterranean Sea, data from the MSM72 cruise in 2018. Water masses are labeled in white, and the 
water with minimum content in oxygen is circled. At the bottom, latitudinal sections of the three parameters. 
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CO2 variables 
For the CO2 variables, three images will be shown per parameter: (a) the top one will 

be a longitudinal section from Crete to the Strait of Gibraltar, (b) the bottom left will be a 

reference map, with the stations marked as blue squares and the longitudinal section 

West-East marked in red, and (c) the bottom right will be a latitudinal section 

South-North of the transect from the Adriatic to the Ionian basins inside the Eastern 

basin. 

The colour scale key will be located on the right of each plot. In all cases, the top 

depths will be stretched since water properties vary more than at the more 

homogeneous bottom. Sampled depths are marked as black dots. 

TA 

The alkalinity profile is very similar to that obtained for salinity; all mentioned water 

masses can be easily localized. The distribution of alkalinity and salinity coincide, being 

the AW the less alkaline water mass, followed by the WMDW, the EMDW and finally 

the most alkaline LIW (Figure 24).  

The AW comes from the Strait of Gibraltar with the lower values of TA (>2450 µmol/kg) 

entering until the Eastern basin, in which the TA values increase until the 2500 µmol/kg 

(Figure 24a). 

The core of the LIW is observed in Figure 24(a) as the maximum of TA with values of 

2650 µmol/kg, entering westward until the connexion with the Thyrrenian Sea, where it 

signal starts to diluted. In Figure 24(c), the LIW can also be recognized as a highly 

alkaline mass in the first 1000 m. 

The heterogeneity of the upper layers is accused in the representations of this variable, 

which covers a wide range of TA values (from below 2400 to almost 2600 µmol/kg) in 

the first 500 m. On the contrary, the TA of deep water masses is kept constant from 

above 1500 m to the bottom (mean bottom depth 3000 m for the Western and around 

4000 m for the Eastern basin) with values around .2550 µmol/kg and 2625 µmol/kg at 

the Western and Eastern basin, respectively. 
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pH 

A clear difference regarding pH distribution between basins can be observed in Figure 

25(a), belonging to the Western basin the lowest values. Also, values corresponding to 

deeper water show high homogeneity, while those from the surface vary very rapidly. 

In the Western basin, the pH decreases from top to bottom except for the area closest 

to the Strait of Gibraltar, where a minimum of 7.85 pH units is shown, but it goes up to 

7.97 in around 100 m towards the surface. 

The Eastern basin, on the other hand shows a totally different trend. The EMDW has a 

pH of around 7.96, which decreases gradually towards the surface, until around 500 m 

depth, where it reaches a pH of 7.93. Then it starts decreasing again up until 250 m, 

with a pH similar to the bottom one, to then suddenly increase up to a pH of 8.  

In conclusion, there is a highly basic upper layer (7.96-8) and a slightly less basic deep 

water (7.96-7.93). 

Figure 24. (a) Longitudinal TA seccion. (b) reference MedSea map. (c) Latitudinal view of TA from Adriatic to Ionian 
Sea. Cruise  MSM72, 2018. 
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DIC 

In the Figure 26(a), upper waters show considerable difference of DIC with deep 

waters. The AW enters the MedSea with relatively low DIC values 

(~2150-2250 µmol/kg), which start increasing when it reaches the Strait of Sicily. In the 

Eastern basin, the maximum of DIC is detected related to the LIW with DIC content of 

2350 µmol/kg.  

The deep waters (WMDW and EMDW) show relatively high values of DIC that keep 

quasi homogenous at the Western basin (~2325 µmol/kg) and slightly lower DIC values 

around 2300µmol/kg at the Eastern basin. 

 

(a) 

(b) 
(c) 

Figure 25. a) Longitudinal pH seccion. (b) reference MedSea map. (c) Latitudinal view of pH from Adriatic to Ionian Sea. 
Cruise  MSM72, 2018.  
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(a) 

(c) 

Figure 26. a) Longitudinal DIC seccion. (b) reference MedSea map. (c) Latitudinal view of DIC from 
Adriatic to Ionian Sea. Cruise  MSM72, 2018.  
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CONCLUSIONS 

From the direct participation in the MSM72 cruise as part of the IEO group responsible 

of CO2 measurements, and the onboard analysis and posterior quality control of 

database processes, the main conclusion this TFG are: 

- Due to the importance of the CO2 system in seawater and particularly in the 

Mediterranean Sea, it is of crucial importance the whole procedure, from the taking of 

samples, the adequately storage to the analysis itself. One mistake in either step, could 

mean the loss of data points in the quality control procedures.  

- Taking into account the state of the art of pH methodology, it seems complicate to 

select the proper equations. In this TFG, the comparison between unpurified (pHUNPUR) 

and pure (pHPUR) m-cresol purple was made for the first time. The result of that 

comparison does not show any apparent difference between using pHUNPUR and pHPUR, 

at least in the MedSea where both pH methodologies are close to the upper range of 

application.  

- The good quality CO2 database of the MSM72 was demonstrated by the precision 

and accuracy measurements. In addition, an internal consistency study was made in 

terms of DIC to ensure that the CO2 database of MSM72 in internally consistent.  

- The main water masses in the Mediterranean Sea are the Atlantic Water (AW), the 

Levantine Intermediate Water (LIW), and the Western and Easter Mediterranean Deep 

Waters (WMDW and EMDW, respectively). These water masses can be identified by 

their temperature and salinity. In addition, it is possible to relate those water masses 

with the biogeochemical properties (O2, TA, pH and DIC) through the study of their 

distributions.  
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APPENDIX 

TABLE 14: Relation of samples collected at each station for sampled parameters 

ST DEPTH DIC PH TA CO3
2-

 

1 313 5 5 5 
 

2 2368 19 19 19 19 

4 741 14 14 14 
 

8 1150 14 14 14 
 

9 3700 23 46 23 23 

11 3450 
 

21 15 
 

13 3000 20 20 20 
 

15 3000 
 

19 
  

17 3100 21 21 21 
 

20 400 
 

9 9 
 

22 2928 
 

20 20 
 

23 4603 19 22 22 22 

26 3200 
 

22 22 
 

30 4100 19 22 22 22 

32 4200 
 

22 14 
 

34 2500 18 19 19 19 

36 1400 
 

15 
  

38 1000 11 13 13 
 

39 950 
 

10 
  

40 1000 10 15 10 
 

41 950 
 

11 
  

42 800 
 

14 9 
 

43 500 8 11 11 
 

44 3300 
 

24 22 24 

46 3200 
 

21 
  

47 3400 17 48 21 21 

49 2800 
 

22 
  

51 3000 16 22 20 
 

52 3200 5 10 5 5 

53 3800 
 

24 22 
 

55 4000 20 24 22 22 

56 3600 5 10 5 5 

57 2800 
 

44 20 
 

59 2200 14 19 17 
 

61 500 
 

12 10 
 

63 500 4 14 6 6 

66 1100 
 

14 14 
 

68 1800 16 32 16 16 

70 1000 
 

13 13 
 

72 1400 14 14 14 14 

73 100 
 

5 5 
 

75 3500 
 

21 21 
 

77 3200 21 42 21 21 
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79 500 
 

10 10 
 

81 800 
 

11 11 
 

83 2600 19 19 19 19 

85 1800 
 

16 16 
 

87 2200 19 19 19 19 

89 2100 
 

24 22 
 

91 2900 20 40 20 20 

93 2800 
 

20 20 
 

95 2900 
 

20 20 
 

97 2800 21 21 21 21 

99 2800 
 

23 
  

100 2700 5 10 5 5 

101 2600 
 

19 19 
 

102 2500 5 10 5  

103 2500 
 

19 
  

105 2600 18 30 18 23 

107 2600 
 

22 
  

109 2500 19 21 19 19 

111 1500 
 

15 15 
 

113 2600 19 37 19 19 

115 2600 
 

19 19 
 

117 2600 
 

19 
  

119 2600 
 

19 19 
 

121 2500 18 36 16 18 

123 1350 
 

12 
  

125 1340 
 

24 12 
 

128 1300 
 

12 12 
 

130 1300 13 26 13 13 

132 600 
 

9 9 
 

134 350 
 

9 9 
 

136 500 
 

10 10 
 

  
 

  
 

TOTAL  DIC pH TA CO3
2- 

  509 1440 973 415 
  

Table 14. Relation of stations, their maximum depth and number of samples taken for each parameter.  
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