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Abstract 
Gait analysis is commonly addressed through inverse dynamics. However, forward 
dynamics can be advantageous when descending to muscular level, as it allows that 
activation and contraction equations are integrated with motion thus providing better 
dynamic consistency, or when studying assisted gait, as it enables the estimation of the 
interaction forces between subject and devices. Control-based methods seem to be the 
most natural choice to carry out the forward-dynamics analysis of an acquired gait, but 
several options exist in their application. The paper explores such options for healthy and 
assisted gait, and concludes that the computed torque control of all the subject's degrees 
of freedom is the most reliable alternative. Moreover, the study of its more problematic 
underactuated variant accompanied by contact models showed to be connected to 
neighbor challenging topics as gait prediction or walking simulation of humanoids. 
 
1 Introduction 
 
The use of multibody models of humans has become more and more popular in the last 
decades. Basically, the objective can be to analyze the real motion performed by a subject 
[1] or to predict the motion that a subject would develop under certain conditions [2]. 
Both objectives are of great relevance for medical, sport and ergonomical applications, 
among others. Being less difficult, the analytic objective was addressed first, while its 
predictive counterpart has received attention in the present century. On the other hand, 
gait is possibly the human motion that has attracted the most interest among researchers, 
as it represents a key capability in healthy subjects, while its alteration or elimination due 
to illness or accident causes a relevant reduction in the quality of life of the affected 
person. This paper addresses the topic of carrying out gait analysis by means of multibody 
human models. 
 
Usually, to perform gait analysis, a more or less accurate multibody model of the subject 
is built. This model is then animated using the real motion, optically captured during an 
experiment. Afterwards, as the motion of the model is known, an inverse-dynamics 
analysis is applied to solve for the external reactions and the net joint torques that 
generated the motion. This approach works perfectly for the single-support phase of gait, 
since the only external reactions are the three components of force and the three 
components of moment due to the foot-ground contact, i.e. six reactions in all. However, 
during the double-support phase, the external reactions increase to twelve, as the two feet 
are in contact with the ground, thus leading to an indeterminacy. To overcome this 
problem, the foot-ground contact reactions are typically measured during the experiment 
by means of force plates, and introduced in the equations of motion, so that only the net 



joint torques are kept as unknowns. Unfortunately, due to the various sources of error in 
both the experimental and computational processes, some discrepancies are usually found 
between the total external reactions yielded by the inverse dynamic analysis and those 
experimentally measured, which leads to some inconsistency in the results. To mitigate 
that, many solutions have been proposed in the literature which basically modify the 
acquired motion or the model parameters so that the mentioned discrepancies are 
minimized [3]. This inverse-dynamics based method of gait analysis at skeletal level is 
usually accompanied, at musculo-skeletal level, by static optimization methods to 
estimate muscle forces [4]. 
 
An alternative way of addressing gait analysis is by means of forward-dynamics analysis. 
This may sound strange, since motion is known and, hence, the obvious approach to solve 
for the external reactions and net joint torques would be inverse dynamics. However, the 
problem can be arranged in such a way that the equations of motion are integrated with 
respect to time. This option can be advantageous in some cases. For example, when 
descending to the muscular level, the forward-dynamics based solution enables muscle 
activation and contraction dynamics to be considered, and so the obtained muscular 
responses are much more dynamically consistent than within the inverse-dynamics 
scheme [5]. Also, when the subject employs assistive devices to walk, as orthoses or 
exoskeletons, a forward-dynamics approach makes it possible to separately consider the 
dynamics of the subject and of the assistive devices, thus enabling the estimation of 
subject-device interaction forces [6]. However, some disadvantages arise too when the 
forward-dynamics approach is applied: since it implies the time integration of the model 
equations of motion, the inherent challenges of gait dynamics (intermittent contact, 
stability, etc.) must be faced. In fact, the problem has much in common with the 
simulation of walking humanoids [7], and may even be perceived as an intermediate step 
towards human gait prediction [8], with a lower level of difficulty as the resulting motion 
is known beforehand. 
 
Some works can be found in the literature that use a forward-dynamics approach for gait 
analysis. For example, in [5] the computed muscle control (CMC) method for gait 
analysis at neuro-musculo-skeletal level is presented: at the skeletal stage, the method 
applies the computed torque control (CTC) method to the muscle-actuated degrees of 
freedom of the model, while the six degrees of freedom of the base body are governed by 
a kind of proportional-derivative controllers with variable gains acting at the feet. Another 
example is [6], where the interaction forces between the subject's limb and an ankle-foot 
orthosis are sought to be estimated: most subject's degrees of freedom (except the ankle 
angle which is left to its own dynamics) are kinematically guided, as is the orthotic ankle 
motion. Summarizing, in previous contributions several strategies are present, such as 
controllers of different natures aimed at tracking joint trajectories or base body motion, 
kinematic guidance of some degrees of freedom of the model, and allowance of free 
motion for others. 
 
If the motion is known and the model dynamic equations have to be integrated in time as 
required by the forward-dynamics approach, the most obvious procedure seems to be the 
application of control-based methods that seek to track the acquired gait. Imposing the 
acquired value to some model coordinates could not be considered forward dynamics, 
while kinematic guidance through rheonomic constraints could be equivalent to control-
based methods, depending on the method used for constraint enforcement. However, such 
a control scheme could be applied to all the degrees of freedom in the subject's model, or 



just to those corresponding to the joints (the ones that can actually be controlled by the 
subject) while the six degrees of freedom of the base body receive the measured ground 
reactions, either directly or through contact models. Hence, there are several options that 
must be studied, in order to clarify which is the most appropriate method to conduct the 
forward-dynamics analysis of an acquired gait, for the cases when it proves to be 
advantageous with respect to the inverse-dynamics approach. Therefore, the objective of 
this paper is to explore, in a systematic and consistent way, the available control-based 
options to carry out the forward-dynamics approach for both healthy and assisted gait 
analysis at skeletal level, and to give some criteria about their use. 
 
The remaining of the paper is organized as follows. Section 2 describes the experiments 
of healthy gait along with the planar and three-dimensional models that were developed 
for the study. In Sections 3 and 4, respectively, the multibody formulation used and its 
application to the inverse-dynamics analysis of gait are briefly described. Section 5 
addresses the forward-dynamics analysis of healthy gait in the case of full actuation, in 
which all the degrees of freedom of the model are controlled. In Section 6, only the joint 
degrees of freedom are controlled (underactuation), while several options to account for 
the ground reactions are considered. The strategies adopted in Sections 5 and 6 are applied 
to assisted gait in Section 7 and, finally, Section 8 presents the discussion of the results 
obtained in the three preceding sections and gathers the conclusions of the work. 
 
2 Experiments and models 
 
In this paper two models were used, one planar and another one three-dimensional. 
Although the three-dimensional model was used in all the cases along the paper, its planar 
counterpart was useful when addressing for the first time the most challenging approach, 
i.e. the underactuated model with ground reactions from a contact model. Each model 
was fit to a different subject and experiment but, in both cases, healthy gait was 
considered. The 3D model presented here will be further complemented in Section 7 for 
the case of assisted gait. 
 
2.1 Three-dimensional model 
 
A three dimensional model was created by the authors to represent a healthy adult male, 
34 years old, mass 85 kg and height 1.82 m, who was selected to carry out the following 
experiment. The subject walked on a walkway featuring two embedded force plates 
(AMTI, AccuGait sampling at 100 Hz), and his motion was captured by 12 optical 
infrared cameras (Natural Point, OptiTrack FLEX:V100 also sampling at 100 Hz) that 
computed the position of 37 optical markers. 
 
The human body was modeled as a 3D multibody system formed by rigid bodies, as 
shown in Fig. 1. It consists of 18 anatomical segments: two hindfeet, two forefeet, two 
shanks, two thighs, pelvis, torso, neck, head, two arms, two forearms and two hands. The 
segments are linked by ideal spherical joints thus defining a model with 57 degrees of 
freedom. The global axes were defined as follows: x-axis in the postero-anterior direction, 
y-axis in the medio-lateral direction, and z-axis in the vertical direction. The 
computational model was defined with 228 mixed (natural and angular) coordinates. The 
subset of natural coordinates comprises the three Cartesian coordinates of 22 points, and 
the three Cartesian components of 36 unit vectors, thus making a total of 174 variables. 
The points correspond to the positions of all the joints (white dots in Fig. 1), along with 



points of the five distal segments –head, hands and forefeet– (black dots in Fig. 1). Each 
one of the 18 bodies was defined by its proximal and distal points, plus two orthogonal 
unit vectors aligned at the postero-anterior and medio-lateral directions, respectively (red 
and green vectors in Fig. 1), when the model is in the standing posture. The remaining 54 
variables were the 18 sets of 3 angles that define the orientation of each body with respect 
to the inertial frame. 
 
The geometric and inertial parameters of the model were obtained, for the lower limbs, 
by applying correlation equations from a reduced set of measurements taken on the 
subject, following the procedures described in [9]. For the upper part of the body, data 
from standard tables [10] was scaled according to the mass and height of the subject. In 
order to adjust the total mass of the subject, a second scaling was applied to the inertial 
parameters of the upper part of the body. 

 

 
 

Figure 1. Three-dimensional model. 
 
The kinematic information of the motion was obtained from the trajectories of the 37 
markers attached to the subject’s body (red dots in Fig. 1a), which were captured at 100 
Hz frequency by means of the 12 infrared cameras. Position data were filtered using an 
algorithm based on Singular Spectrum Analysis (SSA) and the natural coordinates of the 
model were calculated using algebraic relations. Afterwards, a minimization procedure 
ensured the kinematic consistency of the natural coordinates. From that information, the 
histories of a set of 57 independent coordinates –as many as the system degrees of 
freedom– formed by the Cartesian coordinates of the position vector of the lumbar joint 
(J1 in Fig. 1b) and the 18 x 3 angles that define the absolute orientation of each body, 
were kinematically obtained and approximated by B-spline curves. Analytical 
differentiation yielded the corresponding velocity and acceleration histories. More detail 
about the treatment of the captured data can be found in [11]. 
 
2.2 Planar model 
 
The planar model was obtained as the projection on the sagital plane of a simplifed 
version of the three-dimensional model described before, but this time to represent a 



healthy adult male, 27 years old, mass 84 kg and height 1.75 m. The model features 12 
segments and 14 degrees of freedom, as shown in Fig. 2. The global axes were defined as 
follows: x-axis in the postero-anterior direction, y-axis in the vertical direction. The 
computational model was defined with 38 mixed (natural and angular) coordinates. The 
subset of natural coordinates comprises the two Cartesian coordinates of 13 points, which 
means 26 variables. The points correspond to the positions of all the revolute joints (white 
dots in Fig. 2 left), along with points of the five distal segments –head, forearms and feet– 
(black dots in Fig. 2 left). Each one of the 12 bodies was defined by its proximal and distal 
points. The remaining 12 variables are the angle that defines the orientation of the trunk 
with respect to the y-axis of the inertial frame, plus the 11 angles that define the 
orientation of each segment with respect to the previous one in the kinematic chain (Fig. 
2 right). 
 

 
 

Figure 2. Planar model. 
 
This planar model can be found in the Library of Computational Benchmark Problems 
[12] developed by the IFToMM Technical Committee for Multibody Dynamics. The 
benchmark problem, named Gait 2D, provides the geometrical and inertial parameters of 
the model, the histories of the markers used to optically capture the motion of the subject 
described above, and the ground reactions measured by force plates. The temporal 
evolution of the 14 independent coordinates defining the motion, i.e. the two Cartesian 
coordinates of the hip joint and the 12 angular variables shown in Fig. 2 right, obtained 
after the same processing as that explained for the 3D model, are supplied too. 
 
3 Multibody formulation 
 
In this work, the formulation in minimum number of coordinates proposed in [13] and 
called matrix-R formulation was used. In this formulation, two sets of coordinates are 
considered: a set of dependent coordinates, q, and a set of independent coordinates, z. In 
the 3D model, vector q is formed by the 228 model coordinates, while vector z, of size 
57, is composed by the three Cartesian coordinates of the lumbar joint plus the 18 sets of 
three angles defining the orientation of the bodies. In the 2D model, vector q is formed 
by the 38 model coordinates, while vector z, of size 14, is composed by the two Cartesian 



coordinates of the hip joint plus the 12 angles shown in Fig. 2 right. The equations of 
motion are stated as, 
 
 T TR MRz R Q MRzTRz R Q MRT Rz  (1) 
 
where M  is the mass matrix referred to q, R is the matrix relating the dependent and 
independent velocities, q Rzq Rzz , and Q  is the vector of generalized forces referred to q. 
Therefore, the equations of motion (1) can be written in a compact form as, 
 
 Mz QMz Q  (2) 
 
with TM R MR  and TQ R Q MRzRzz  the mass matrix and vector of generalized 
forces referred to z, respectively. The number of equations in (2) is 57 in the 3D case and 
14 in the 2D case, as many as the number of degrees of freedom of the model. 
 
For the forward-dynamics analysis, the equations of motion (2) were numerically 
integrated in time by means of the single step, fixed time step, trapezoidal rule. 
 
4 Inverse dynamic analysis 
 
First of all, an inverse-dynamics analysis (IDA) of the experimentally measured motion 
was performed (both for the 2D and 3D cases). As explained before, the histories of 
positions, velocities and accelerations of the independent coordinates, , , ,z z z, ,z z, ,  and of the 
dependent coordinates, , , ,q q q,q q, ,  were already known from the processing of the motion 
capture data. Then, writing the equations of motion (2) as, 
 
 m rMz Q QmMz Qmm  (3) 
 
where mQ  is the vector of generalized motor forces and rQ  is the vector grouping all the 
remaining generalized forces, the unknown vector mQ  can be obtained as, 
 
  m rQ Mz QrMz Q  (4) 
 
which provides the net joint torques and the ground reactions that produced the acquired 
motion. 
 
The obtained ground reactions and net joint torques correspond to considering the pelvis 
(or trunk in the 2D case) as the base body. They can easily be transformed to their 
counterparts when the supporting foot is considered as the base body, thus yielding the 
proper values of external reactions and net joint torques. However, when the two feet are 
contacting the ground, the external reactions must be distributed between them. In this 
work, this was done in the same proportion shown by the reactions measured by means 
of the force plates, following the approach presented in [11]. Therefore, the computed 
ground reactions are fully consistent with the motion, and no residual wrenches are 
present. 
 



5 Forward dynamics: fully actuated system 
 
In this work, the first approach to carry out a forward-dynamics analysis (FDA) of the 
acquired gait motion consisted of using trajectory tracking controllers associated to all 
the system degrees of freedom. This implies assuming that there exist actuators not only 
at joint level, which is indeed the case, but also for the six degrees of freedom of the base 
body (in the 3D case), which does not obviously correspond to reality. In fact, these 
external inputs come from the ground reactions, which are not modeled when using the 
present approach. They will appear in the next Section. 
 
The 3D model described before was used for this Section. The equations of motion (2) 
are written again as, 
 
 u rMz Q QuMz Quu  (5) 
 
where uQ  is the vector of the inputs provided by the controllers and rQ  is the vector of 
the remaining generalized forces. Three methods were considered within this first 
approach. 
 
5.1 Computed feedforward 
 
In the first method, the actuators associated to the system degrees of freedom introduce 
as inputs the external reactions and net joint torques previously calculated through inverse 
dynamics, so that, 
 
 u mQ Q  (6) 
 
Ideally, the solution should be coincident with the original acquired motion but, as pointed 
out in the literature [10], it is not, due to the unstable character of human gait and to the 
integration errors. Initially, a time step of 10 ms was adopted for the FDA, but the 
simulation was completely unstable. Then, the time-step size was reduced to 1 ms. Since 
the IDA had been performed at 100 Hz, additional points had to be generated, which was 
straightforward as B-splines had been adjusted to the adquired motion, as explained in 
Section 2. Using the time step of 1 ms, the FDA was able to reproduce the motion until 
the 90% of the gait cycle and then drifted away. 
 
5.2 PD control with computed feedforward 
 
The second method consisted of using the same inputs as in the previous case, but 
including now a proportional-derivative (PD) control of the external reactions and the net 
joint torques so as to follow the acquired motion and avoid instabilities. The inputs 
provided by the controllers are in this case, 
 
 u m D ref P ref+Q Q K z z K z zref P rref P rref Kref P rref  (7) 
 
where refz  is the vector containing the reference signals of the controllers, which are the 
measured values of the independent coordinates, and z is the vector containing the actual 
values of the independent coordinates. The gains of the controllers are gathered in the 



diagonal matrices PK  and DK , whose values, Pik  and Dik , associated to each 
independent coordinate, were adjusted by trial and error. The gain values for the different 
degrees of freedom of the system are shown in Table 1 as functions of two basic 
parameters, Pk  and Dk , and the masses of the corresponding body segments, 

, 1,..., # of bodiesjm j . 
 

Table 1. Selected gains for the PD controllers. 
 

P D350   ,   1k k  P /i jk m  D /i jk m  

Translation of 
the lumbar joint 

x Pk  Dk  

y 6 Pk  Dk  

z 8 Pk  8 Dk  

Rotation of body j 0.009 Pk  0.003 Dk  
 
As it happened for the first method, if a time step of 10 ms was used, the simulation was 
completely unstable. However, using again a time step of 1 ms, the FDA was able to 
reproduce the entire motion, although the results are very sensitive to the values selected 
for the gains of the controllers. Discrepancies between measured and calculated values 
for this method are in the order of 710  m for the translational coordinates (x, y, z of the 
lumbar joint), 510  rad for the angular coordinates, 210  N for the force components of 
the ground reaction, and 410  Nm for the moment components of the ground reaction and 
for the net joint torques. 
 
5.3 Computed Torque Control 
 
The third method consisted of using only, as input of the FDA, the actuation provided by 
the so-called computed torque control (CTC) [14]. The reference signals of the controllers 
are the same as those already explained for the previous method. Then, the inputs 
provided by the controllers are, 
 
 u ref D ref P ref rQ M z C z z C z z Qref D ref P reref D ref P reref D ref P reD refref D ref P reD refref D ref P  (8) 
 
where PC  and DC  are diagonal matrices containing the gains, Pic  and Dic , associated 
to each independent coordinate. As explained in [14], the error dynamics of this control 
method is represented by a system of second order differential equations, having PC  and 

DC  as coefficients of the proportional and first derivative terms, respectively. Therefore, 
imposing the relation, 
 
 D P2i ic c  (9) 
 
between the gains associated to a certain coordinate, critical damping is achieved, so that 
only one gain value should be tuned by coordinate. In this case, the Pic  values were 
adjusted. 
 



Unlike the previous method, this one proves to be very robust with respect to the selected 
gains, so that the same value can be given to all the elements of PC , as each controller is 
affected by the corresponding inertia, as shown in (8). Gain values for PC  ranging 
between 110  and 510  were tried, leading to satisfactory results in all cases. 
 
This time, the method was able to complete the simulation even with a time step of 10 
ms, which represents an additional confirmation of its robustness. Although with such a 
time step the position errors were small, the errors in force/moment were notable. 
However, if the time step was set to 1 ms the results were excellent. For example, for a 
value of the Pic  elements of 310 , errors were in the order of 610  m for the translational 
coordinates (x, y, z of the lumbar joint), 410  rad for the angular coordinates, 1 N for the 
force components of the ground reaction, and 110  Nm for the moment components of 
the ground reaction and for the net joint torques. These errors are greater than those 
yielded by the previous method, but they can be reduced by increasing the gain values. 
However, some noise appears in the solution as the gains are increased. 
 
6 Forward dynamics: underactuated system 
 
As pointed out at the beginning of the previous Section, the human body does not possess 
actuators governing the degrees of freedom of the base body. Therefore, a new step is 
given towards reality in this Section, by assuming that there can be actuation in the joints, 
but not in the base body. From a mechanical point of view, this means that now the system 
is considered as underactuated. Controllers governing the actuators are to track a number 
of outputs, which can be trajectories, forces or a combination of both. In what follows, a 
CTC-like approach for underactuated systems is described [15-17], which provides the 
inputs of the controllers as functions of the mentioned outputs. To begin with, the 
equations of motion of the system (5) are reproduced here for clarity, 
 
 u rMz Q QuMz Quu  (10) 
 
where uQ  is the vector of the inputs provided by the controllers and rQ  is the vector of 
the remaining generalized forces. Since now the controllers are less than the number of 
degrees of freedom of the system, equation (10) is rewritten as, 
 
 rMz Bu QMz Bu  (11) 
 
where u is the vector of actuations, which is projected into the space of independent 
coordinates through projection matrix B. 
 
The required outputs, y, are considered to be either functions of the coordinates (e.g. joint 
trajectories), 1y , or functions of the coordinates and their first derivatives (e.g. ground 
reactions produced by a contact model), 2y , 
 

 1

2 ,
y z

y
y z z

 (12) 

 



Differentiating (12) with respect to time (twice for 1y  and once for 2y ), and substituting 
then zz  from (11) yields, 
 

 
1 11 1 1

2 22 2 2

1
r

ˆ
,

zz z z

zz z z

y z HzH H H
y z z

y z z HzH H H

Az Dz Az DM Bu Q

111 1111111 11 11 1111 11111111 111111 z z1111

222 , 2

1

1z Dz Az DM 11

 (13) 

 
so that the vector of actuations u can be worked out from Eq. (13) as, 
 

 
11 1

rˆu DM B y Az DM Q1z DM Q1  (14) 
 
Now, calling 1P DM B , and considering that feedback is introduced for the outputs, it 
results, 
 

 
ref ref ref
1 D 1 1 P 1 11 1

rref ref
2 P 2 2

y C y y C y y
u P Az DM Q

y K y y

ref ref
1 D 1 1 P
ref refrefref refrefrefrefref
1 D 1 1 PD 1 1 P1 D 1 1 P1 1 P11 D 1 1 PD 1 1D 1 1 PD 1 1 PD 1 1D 1 1 PD 1 1 PD 1 1D 1 1 P1 D 1 1 P 11

frefref
2 P2 P

frefref
2 PP

 (15) 

 
where super-index ref indicates the desired values of the outputs, different from the 
current ones (without super-index), and DC , PC  and PK  are diagonal matrices 
containing the gains associated to each output. 
 
If the number of outputs is equal to that of actuators, matrix P is square and the required 
inputs can be determined from (15). If the number of outputs is greater than that of 
actuators, the required outputs can be satisfied in a minimum squares sense only, the 
system of equations to be solved being, 
 

 
ref ref ref

1 1 D 1 1 P 1 1T T 1
rref ref

2 P 2 2

y C y y C y y
u P WP P W Az DM Q

y K y y

ref ref
1 D 1 1 P
ref refref refrefrefrefref
1 D 1 1 PD 1 1 P1 D 1 1 P1 1 P11 D 1 1 PD 1 1D 1 1 PD 1 1 PD 1 1D 1 1 PD 1 1 PD 1 1D 1 1 P1 D 1 1 P 11

frefref
2 P2 P

frefref
2 PP

 (16) 

 
with W the weight diagonal matrix which assigns more weight to more relevant outputs. 
 
6.1 External reactions from inverse dynamic analysis 
 
Since actuation can be provided at joints only, the external reactions should be supplied 
by a foot-ground contact model that evaluates them during the simulation as functions of 
feet position and velocity. However, this approach is highly challenging, since the 
discrepancies between the reactions yielded by the contact model and the true ones can 
be substantial, thus compromising control stability. Therefore, to start addressing the 
problem in a more feasible way, the external reactions obtained from IDA (Section 4) 
were introduced to the feet. The 3D model was considered in this case. The inputs were 
the actuations at the 51 angular degrees of freedom associated to the joints, and the 
outputs were the corresponding angular coordinates, i.e. inputs and outputs affect to the 
same model coordinates. The gain values in matrix PC  of (15) were all set to 310 , while 



the values in matrix DC  were obtained by imposing relation (9), yielding a value of 63.24. 
Given that the outputs were coordinates, only the upper part of (15) was required. 
 
With a time step of 10 ms, the simulation failed. However, using a time step of 1 ms, the 
simulation worked well. RMS errors were of 6.09e-4 m for the translational coordinates 
(x, y, z of the lumbar joint), 8.87e-4 rad for the angular coordinates, and 1.5e-3 Nm for 
the net joint torques (errors in the external reactions do not apply to this case as they were 
imposed). 
 
6.2 External reactions from inverse dynamic analysis with perturbation 
 
In order to go one step further and take into account that discrepancies are to be introduced 
when a contact model is used, a perturbation was added to the external reactions obtained 
from IDA. The perturbation consisted of a constant force of 1 N applied on the lumbar 
joint of the 3D model in the positive longitudinal direction (x-coordinate), which 
approximately represents 1% of the total longitudinal force.  
 
Initially, the inputs and outputs adopted were the same as in the previous sub-section, as 
were the values of the gains. The simulation could be run with a time step of 1 ms, leading 
to RMS errors below 1e-3 rad in the outputs. Since the motion of the base body was not 
considered as output, the perturbation had the effect of accelerating the longitudinal pelvis 
motion with respect to the acquired motion. In Fig. 3 left, it can be seen that the error in 
this magnitude grows with time, as this coordinate was not a control output, and the 
perturbed model overtakes its unperturbed counterpart. However, the error in, for 
example, the flexion angle between pelvis and trunk was kept very low, as a consequence 
of being a control output. 
 

      
 

Figure 3. Postures of the model at the end of the simulation without control of the 
longitudinal coordinate of the lumbar joint (left) and in the case of substituting, in the 
list of control outputs, the flexion angle between pelvis and trunk by the longitudinal 
coordinate of the lumbar joint (right). In both pictures, the two superimposed images 

correspond to the same time point. 
 



Secondly, the x-coordinate of the lumbar joint was included in the list of control outputs 
but, in order to keep as many outputs as inputs, the flexion angle between pelvis and trunk 
was removed from the list. Again, the simulation could be completed for a time step of 1 
ms, yielding RMS errors below 1e-3 m or rad in the outputs at configuration level. This 
means that the longitudinal motion of the lumbar joint was correctly reproduced, since it 
had been included as a control output. However, the flexion angle between pelvis and 
trunk experimented a drift, as a result of not having been considered as a control output. 
These behaviors are represented in Fig. 3 right. 
 
6.3 External reactions from contact model 
 
In this sub-section, a contact model was considered at the interface between foot and 
ground to generate the external reactions. Two options are typically available for the 
contact model: a force model or a constraint model. If a force model is chosen, the system 
is certainly underactuated, and control methods for such types of systems must be used, 
as the one described at the beginning of this Section, facing the problem of the unstable 
nature of gait. If a constraint model is selected seeking to have a fully-actuated system at 
all times, constraints must be alternatively imposed to the feet (thus perturbing the 
continuous motion they experience during gait, even at the stance phase), and the impact 
at landing must be dealt with in some way. Therefore, a force model was applied in this 
work because it seems to be more consistent with reality. 
 
Moreover, there is a problem that must be faced when using foot-ground force contact 
models in the FDA of acquired gait motions: the selection of the contact model parameters 
and, more importantly, of the feet boundaries. A not sufficiently good location of feet 
boundaries can yield huge contact forces that make the simulation fail. Therefore, an 
optimization method to select the mentioned characteristics of the contact model, similar 
to the one proposed in [18], is required to be applied as a pre-processing stage, prior to 
the FDA, to ensure reasonable contact forces during the simulation. 
 
Given the challenging character of the objective pursued in this sub-section, it was firstly 
addressed for the 2D model, for which several choices of outputs and their corresponding 
weights were evaluated. Then, the 3D case was addressed. 
 
6.3.1 2D human model 
 
The planar model described in sub-section 2.2 is used in this sub-section. It is reminded 
here that the configuration vector z of 14 independent coordinates that was selected for 
this model is formed by the two Cartesian coordinates of the hip and the angle between 
vertical axis and trunk (three degrees of freedom of the base body), along with the 11 
relative angles illustrated in Fig. 2 right, 
 
 T

4 4 0 1 2 3 4 5 6 7 8 9 10 11x yz  (17) 
 
Regarding the foot-ground force contact model, the nonlinear volumetric contact model 
proposed in [13] was used, for which the normal and tangential contact forces are defined 
as, 
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t ct n ct f ct s   ;   arctan

hf k V a Vv
f v f v v v

 (18) 

 
where V is the interpenetration volume, hk  is the hyper-volumetric pseudo-stiffness, h is 
an exponent which depends on the volumetric stiffness and geometrical properties, ha  is 
the foundation stiffness multiplied by the damping, cnv  and ctv  are the normal and 
tangential velocities at the centroid of the deformed volume, respectively,  is the friction 
coefficient, f  is the asymptotic friction coefficient, and sv  is a shape factor. Reasonable 
values of parameters h, f , and sv  where taken from [19], whereas values for hk  and ha  
were obtained by trial and error, bearing in mind that interpenetration areas are considered 
in the 2D case instead of volumes. The values of all the parameters are listed in Table 2. 
 

Table 2. Parameters of the foot-ground contact model. 
 

hk  h ha  f  sv  
510  0.79 62 10  0.34 0.034 

 
The optimization pre-process to set the feet boundaries is as follows. For each foot, a local 
reference system ,x y  was defined as shown in Fig. 4, with the origin at the ankle and 

the -axisx  horizontal in the support position. Then, 10 equally-spaced points spanning 
the whole foot were taken along the -axisx . The -coordinatesy  of these points, 

,    1,2,...,10iy i , which served to define the foot boundary through cubic splines, were 
the design variables of the optimization problem. The cost function to be minimized was 
the discrepancy between the histories of the ground reactions provided by the foot-ground 
contact model and those obtained from the IDA, when imposing to the foot the same 
recorded motion. Normal and tangential forces, as well as the reaction moment, were 
considered in the cost function, scaling the reaction moment by a factor of 100 in order 
to balance the weight of the three components. The ga genetic algorithm from Matlab 
[20] was used, for which no initial guess is required, and the resulting feet boundaries are 
depicted in Fig. 5. 
 

 
 

Figure 4. Foot boundary definition in the 2D case. 
 



 
 

Figure 5. Feet boundaries obtained from the optimization pre-process. 
 
Once the model was completely defined, the formulations for underactuated systems 
described at the beginning of this Section were applied. 
 
Several alternatives in the choice of the outputs were investigated, looking for the one 
that yielded the best agreement between the result of the forward-dynamics simulation 
and the acquired motion. Here, the most representative options are described. The gain 
values in matrix PC  of (15) and (16) were all set to 310 , while those in matrix DC  were 
obtained by imposing relation (9), thus resulting in a value of 63.25; the values in matrix 

PK  were all set to 310 . In all cases, the simulations were run with a constant time step of 
1 ms. Remember that the human model considered had 14 degrees of freedom and 11 
inputs (joint actuators). 
 
The first strategy tested (case 1) was to define as many outputs that inputs, i.e. 11, 
choosing as outputs some 11 coordinates from the configuration vector z defined in (17). 
The selected outputs were the joint relative angles, while the three coordinates of the base 
body (trunk) were left free. The upper part of (15) was used to calculate the required 
inputs along the simulation. 
 
The second strategy tested (case 2) was to define more outputs than inputs, choosing as 
outputs the 14 coordinates of the configuration vector z defined in (17). The upper part 
of (16) was used to calculate the required inputs along the simulation. In this case, the 
weights for the outputs had to be decided, and used to build the weight matrix W. An 
equal weight value of 1 was chosen for all the outputs (other distributions were tested, 
but no significant differences were observed). 
 
The third strategy tested (case 3) was again to define more outputs than inputs, but 
choosing this time as outputs the 14 coordinates of the configuration vector z defined in 
(17) plus the three ground reaction components (normal and tangential forces, and 
reaction moment) at each foot, i.e. 6 ground reaction components, leading to a total 
number of 20 outputs [17]. The whole equation (16) was used to calculate the required 
inputs along the simulation. In this case, the weights required to build matrix W had to 
be decided too: the kinematic outputs were assigned a weight value 1, the ground normal 
reaction forces were assigned a weight value 310 , and both the ground tangential 
reaction forces and the reaction moments were assigned a weight value of 210 , so that 
the 20 outputs had a similar order of magnitude (as in case 2, other distributions were 
tested without relevant changes observed). 
 
The RMS errors between the acquired motion (reference) and the result of the forward 
dynamic simulation (cases 1, 2 or 3) are presented in Table 3. 
 



Table 3. RMSE of the forward-dynamics simulation with respect to the acquired 
motion. 

 
RMSE Case 1 Case 2 Case 3 

Translational coordinates (m) 1e-2 9.7e-3 7.79e-2 
Angular coordinates (rad) 3.2e-3 2.7e-3 0.6 

Reaction forces (N) 163.99 164.66 139.36 
Reaction moments (Nm) 32.83 32.97 38.55 
Net joint torques (Nm) 27.09 27.14 288.82 

 
More detailed results are presented in the following. Figure 6 shows the histories of the 
three coordinates of the base body (trunk) and the right hip angle, for the three cases 
studied, and compares them with the result of the IDA, taken as reference. 

 

  
 

Figure 6. Coordinates of the base body (trunk) and right hip angle, obtained with 
different control strategies (case 1, red dotted; case 2, green dotted; case 3, blue dotted) 

vs reference (IDA, black solid). Plots of cases 1 and 2 are almost coincident. 
 
Figure 7 gathers the histories of the normal ground reaction force at the left foot for the 
three cases studied, and compares them with the result of the IDA, taken as reference. 
Note that the simulation started with the toe-off of the left foot. 
 

 
 

Figure 7. Normal ground reaction force obtained with different control strategies vs 
reference (IDA). Plots of cases 1 and 2 are almost coincident. 



 
In the last two figures, it can be seen that cases 1 and 2 provide good motion correlation, 
although some peaks can be observed in the ground reactions. Conversely, case 3 yields 
an excellent correlation of the ground reactions, at the prize of being far from following 
the motion and making the model fall. Therefore, it was found that the best motion results 
were obtained when the ground reactions were not considered as outputs. 
 
To provide a clearer illustration of the obtained gaits, Fig. 8 compares the resulting model 
motion for case 2 with the acquired motion. 
 

 

 
Figure 8. Model motion in case 2 vs reference (IDA). 

 
Although, looking at Fig. 8, it could be thought that discrepancy between the acquired 
and simulated motion could have been caused by the existence of some sliding between 
foot and ground due to the adopted contact force model, implementation of a stick-slip 
model led to similar results. 
 
6.3.2 3D human model  
 
The three-dimensional human model described in sub-section 2.1 was used in this sub-
section. It is reminded here that the configuration vector z of 57 independent coordinates 
that was selected for this model was formed by the three Cartesian coordinates of the 
lumbar joint plus the 18 sets of three angles defining the orientation of the bodies (Fig. 
1). 
 
The foot-ground force contact model was the same described for de 2D case, with the 
difference that in this case the feet boundaries were 3D spline surfaces. 
 
The optimization pre-process to set the feet boundaries was also analogous to that of the 
2D case. Splines were generated from a grid of 7x3 points, whose local -coordinatesz  
were optimized. However, in the 3D case it was very difficult to obtain feet boundaries 
which led to a stable behavior of the model in forward dynamics: small differences in the 
feet boundaries caused drifts in moments or foot placement that made the model fall. 
Therefore, some tiny hand-made adjustments to the optimization results were necessary 
to finally achieve a stable behavior in the forward-dynamics simulation. Figure 9 shows 
the shapes of the 3D spline boundaries obtained, and the points of the grid. 



 

 
Figure 9. Feet boundaries with 3D splines obtained from optimization for the right foot 

(right) and left foot (left). 
 

In this case, the strategy adopted was the one which provided the best motion tracking in 
the planar case, i.e. to define more outputs than inputs choosing as outputs the 57 
coordinates of the configuration vector z. The upper part of (16) was used to calculate the 
required inputs along the simulation, assigning to the gains in matrix PC  a value of 310
, and obtaining the gains in matrix DC  by application of (9), yielding a value of 63.25. 
All the weights needed to build matrix W were set to 1. The time step used to run the 
simulation was 1 ms. 



 
 

Figure 10: Comparison of contact reactions (forces and moments) obtained from 
forward-dynamics simulation (red dotted) and from IDA (black solid) for the right foot 

(right) and left foot (left). 
 
As can be seen in Fig. 10, big discrepancies were found between the ground reactions 
generated when the model is run in forward dynamics and those obtained from the IDA. 
Despite this, the controllers managed to follow the acquired motion without falling during 
an entire gait cycle, with RMS errors of 0.0476 m for the translational coordinates (x, y, 
z of the lumbar joint), 0.0117 rad for the angular coordinates, 110.84 N for the force 
components of the resultant external reaction, 14.08 Nm for the moment components of 
the resultant external reaction and 14.66 Nm for the internal net joint torques. It must be 
noted that discrepancies grow with time, being greater for the left foot, which is second 
in touching down. 
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Figure 11. Postures of the model at the beginning (left), half (center) and end (right) of 
the forward-dynamics simulation compared with those of the acquired motion. In the 

three pictures, the two superimposed images correspond to the same time point. The feet 
boundaries considered are also illustrated. 

 
Figure 11 shows the comparison between the motion obtained by forward-dynamics 
simulation and the acquired motion. 
 
7 Application to assisted gait 
 
The previously described approaches were also applied to the forward-dynamics analysis 
of the gait of a spinal cord injured subject assisted by orthoses and crutches. The subject 
was an adult female 41 years old, mass 65 kg and height 1.52 m with injury at T11. In the 
experiment, she was wearing a pair of passive knee-ankle-foot orthoses while walking 
over two embedded force plates (AMTI, AccuGait sampling at 100 Hz) with the help of 
two instrumented crutches. Her motion was captured by 12 optical infrared cameras 
(Natural Point, OptiTrack FLEX:V100 also sampling at 100 Hz) that computed the 
position of 43 optical markers, as illustrated in Fig. 12 (left). 
 



    
 

Figure 12. Gait of spinal cord injured subject assisted by passive orthoses and crutches: 
acquired motion and computational model. 

 
The orthoses were a pair of standard leg braces that allow knee locking during gait so as 
to avoid knee flexion under the subject's weight in the support phase, and feature 
polymeric parts at ankle-foot level that provide ankle stiffness to prevent foot drop in the 
swing phase. One of them is shown in Fig. 13. 
 

 
 

Figure 13. Passive left orthosis. 
 
Instrumented crutches were used in order to measure the ground reactions. For this 
purpose, extensometry was the selected technique by means of strain gauge-based load 
cells. Assuming that only a force reaction exists at the tip center, four Wheatstone bridges 
were required at each crutch to measure the three components of the force at the tip and 
the cuff reaction on the subject's forearm. Additionally, three reflective markers were 
placed on each crutch to provide its position for the optical motion capture. The location 
of load cells and markers is illustrated in Fig. 14. More details about the instrumentation 
of the crutches can be found in [11]. 
 



 
 

Figure 14. Instrumented crutch. 
 
The computational model used was the same three-dimensional model described in sub-
section 2.1 to which some additions were made in order to include orthoses and crutches. 
 
The crutches were introduced in the model as rigid bodies in natural coordinates. They 
were modeled using two points, one located at the intersection between the crutch bar and 
the handle (shared with the hand and, hence, already in the model), and another one 
located at the center of mass of the crutch, and two orthogonal unit vectors, one pointing 
forward and another one orthogonal to the first unit vector and to the crutch axis, thus 
adding a total of 18 variables to the model (two points and four unit vectors). The 
inclusion of the crutches did not add any degree of freedom to the system, since they were 
considered as clamped to the hands. 
 
Regarding the orthoses, two options were considered, depending on whether the orthoses 
were fused with the models of the subject's legs or modeled as independent bodies. 
 
7.1 Orthosis model embedded in lower limb model 
 
In the first option, the orthoses were taken into account in the model by altering the inertia 
properties of the thighs, calves and feet accordingly, and by including torsional spring-
damper elements at knee and ankle levels to represent the locking and anti-foot-drop 
mechanisms, respectively. 
 
Therefore, the resulting 3D human model including orthoses (as embedded links) and 
crutches possessed 57 degrees of freedom and was defined by a total of 246 mixed 
(natural and angular) dependent coordinates. As in the previous cases where the 3D 
human model was used, the configuration vector z of 57 independent coordinates was 
formed by the three Cartesian coordinates of the lumbar joint plus the 18 sets of three 
angles defining the orientation of the bodies (Fig. 1). 
 
7.1.1 Fully actuated system 
 
The first approach to carry out the FDA of the acquired gait motion consisted of using 
trajectory tracking controllers associated to all the system degrees of freedom and, more 
specifically, the CTC algorithm explained in sub-section 5.3. 
 
Eq. (8) was used to calculate the required inputs along the simulation, assigning to the 
gains in matrix PC  a value of 310  and obtaining the gains in matrix DC  by application 
of (9), yielding a value of 63.25. The simulation was run with a constant time step of 1 
ms. 



 
The obtained results showed the same accuracy levels as those obtained for the healthy 
subject in sub-section 5.3. 
 
Figure 15 gathers the torques at knee and ankle levels exerted by the controller and the 
passive elements, and compares their addition with the total torques obtained from IDA. 
Note that an excellent match is achieved. 
 

 
 
Figure 15. Torques in the right leg: knee level (left), ankle level (right). Torque exerted 

by orthosis (green), torque exerted by controller (blue), total torque (addition of the 
former two, red), torque obtained from IDA (reference, black). The black and red plots 

are coincident. 
 
7.1.2 Underactuated system 
 
The alternative approach to carry out the FDA of the acquired gait motion is to use 
controllers acting at the joints only, and not in the base body, thus considering the system 
as underactuated, as explained in Section 6. This approach implies defining contact 
models for the system bodies interacting with the environment, i.e. the subject's feet and 
the crutches. 
 
Given that this assisted gait is more stable than the healthy one, due to the stabilizing 
effect of the crutches, a simpler foot-ground contact model could be applied. A set of four 
spheres (one attached to the forefoot and three to the hindfoot) featuring the Hunt-
Crossley normal contact force model and the bristle tangential force model proposed in 
[21] was used. The parameters of the contact model (for each sphere: local coordinates of 
the center, radius and contact parameters), were found by optimization using the ga 
genetic algorithm from Matlab according to the approach proposed in [18]. 
 
Regarding the crutch-ground contact, it was modeled as a sphere at the tip of the crutch 
to which the normal contact force presented in [22] and the bristle tangential contact force 
proposed in [21] were applied. The contact model parameters were found by optimization 
using the ga genetic algorithm from Matlab as described in [18]. 
 



In this case, the strategy adopted was the same applied in the 3D gait of a healthy subject 
in sub-section 6.3.2, i.e. to define more outputs than inputs, choosing as outputs the 57 
coordinates of the configuration vector z. Therefore, the upper part of (16) was used to 
calculate the required inputs along the simulation, assigning to the gains in matrix PC  a 
value of 310  and obtaining the gains in matrix DC  by application of (9), yielding a value 
of 63.25. The weights for the outputs needed to build weight matrix W were all set to 1. 
The time step used to run the simulation was 1 ms. 

 

 
Figure 16. Comparison of ground reactions (forces and moments) obtained from 

forward-dynamics simulation (red dotted) and from IDA (black solid) for the right foot 
(right) and left foot (left). 

 
Unlike what happened with the healthy subject, the more stable nature of the gait of the 
injured subject provided by the additional contacts at the crutches, made it possible that 
the foot-ground and crutch-ground contact models obtained through optimization were 
directly usable in forward dynamics, yielding a good trajectory tracking without the 
necessity of any hand-made tuning. As can be seen in Fig. 16, notable discrepancies were 
found between the ground reactions generated when the model was run in forward 
dynamics and those obtained from the IDA. Despite this, the controllers managed to 
follow the acquired motion without falling, as illustrated in Fig. 17, with RMS errors of 
0.017 m for the translational coordinates (x, y, z of the lumbar joint), 4.1. 310  rad for the 
angular coordinates, 46.03 N for the force components of the external reaction, 11.08 Nm 

% of gait cycle % of gait cycle 



for the moment components of the external reaction and 16.57 Nm for the net joint 
torques. 
 

      
 
Figure 17. Postures of the model at the beginning (left), half (center) and end (right) of 

the forward dynamic simulation compared with those of the acquired motion. In the 
three pictures, the two superimposed images correspond to the same time point. 

 
Figure 18 shows the torques at knee and ankle levels exerted by the controller and the 
passive elements, and compares their addition with the total torques obtained from IDA. 
Unlike what happened in sub-section 7.1.1, where full actuation was applied, this time 
the total torques present significant discrepancies with their respective references. 

 

 
 

Figure 18. Torques in the right leg: knee level (left), ankle level (right). Torque exerted 
by orthosis (green), torque exerted by controller (blue), total torque (addition of the 

former two, red), torque obtained from IDA (reference, black). 
 

  



7.2 Orthosis model as independent body 
 
In the second option, the orthoses were considered as independent bodies (see Fig. 19). 
The lower link of each orthosis was connected to the subject's ankle by a revolute joint in 
the direction of the ankle axis, obtained upon processing of the acquired motion, while 
the upper link was connected to the lower link by another revolute joint at knee level, so 
that each orthosis added two degrees of freedom. Inertial properties were assigned to the 
corresponding bodies. Moreover, torsional spring-damper elements were included in the 
revolute joints at knee and ankle levels to represent the locking and anti-foot-drop 
mechanisms, respectively. The limb/orthosis connecting elements were modeled by linear 
spring-dampers linking points of the limb and the orthosis, both at hip and knee levels. 
 
Additional natural coordinates were required this time to include the new four bodies in 
the 3D human model of sub-section 7.1. As illustrated in Fig. 19, for each orthosis one 
new point was defined at knee level (p1) and another one at hip level (p2), while the point 
at ankle level was simply shared with that already defined in the joint of the human model. 
Moreover, three new unit vectors were required for each part: v1 (shared with the foot) 
in the direction of the orthotic ankle axis, v2 and v3 for the lower link; v4 (shared with 
the lower link) in the direction of the orthotic knee axis for the upper link. Unit vector v1 
is calculated from the acquired motion, as it is not known a priori. Also, it must be noted 
that the orthotic ankle and knee axes can be different, and in fact they were in the case 
addressed, so that v1 and v4 might not be the same unit vector. Finally, the relative angles 
between foot and lower link, and between lower and upper links, respectively, were also 
added to the list (they are not drawn in Fig. 19 due to the lack of space). Therefore, a total 
increment of four points, twelve unit vectors and four angles was registered for the two 
devices, so that the resulting 3D human model including orthoses as independent bodies 
and crutches possessed 61 degrees of freedom and was defined by a total of 298 mixed 
(natural and angular) dependent coordinates. The configuration vector z of 61 
independent coordinates was formed by the three Cartesian coordinates of the lumbar 
joint plus the 18 sets of three angles defining the orientation of the bodies (Fig. 1), plus 
the two sets of two relative angles locating each orthotic open chain starting at the 
corresponding subject's ankle. 
 

 
 

Figure 19. Modeling of the orthoses as independent bodies: additional natural 
coordinates (points and unit vectors) required. 



 
7.2.1 Fully actuated system 
 
The first approach to carry out the FDA of the acquired gait motion consisted of using 
trajectory tracking controllers (the CTC algorithm explained in sub-section 5.3) 
associated to all the subject's degrees of freedom. However, it must be noted that no 
control was exerted over the degrees of freedom of the orthoses. 
 
Eq. (8), but limited this time to the subject's degrees of freedom, was used to calculate the 
required inputs along the simulation, assigning to the gains in matrix PC  a value of 310  
and obtaining the gains in matrix DC  by application of (9), yielding a value of 63.25. The 
simulation was run with a constant time step of 1 ms. 
 
The obtained results were similar in accuracy to those obtained for the case when the 
orthoses were modeled as embedded in the subject's legs (sub-section 7.1.1). However, 
this time histories of limb/orthosis misalignments and interaction forces could be 
calculated too. 
 
Figure 20 shows the histories of the torques exerted by the right orthosis at knee and ankle 
levels. It can be seen that the addition of the torques exerted by the orthosis and the 
controller does not exactly match the torque obtained from IDA for the model with 
orthoses embedded in the legs (as it happened in sub-section 7.1.1), since now 
misalignment can exist between leg and orthosis. 
 

 
 
Figure 20. Torques in the right leg: knee level (left), ankle level (right). Torque exerted 

by orthosis (green), torque exerted by controller (blue), total torque (addition of the 
former two, red), torque obtained from IDA (reference, black). 

 
Figure 21 shows the histories of the misalignments and the interaction forces between 
limb and orthosis, both at knee and hip levels. It can be seen that they are notably higher 
on the left side, thus indicating a strong asymmetry of the gait. Furthermore, while 
misaligment is higher at hip than at knee level for the left side, force interaction works 
the other way around. However, a different behavior is found on the right side, where 



misalignment and force interaction are more similar at both levels, and there is some kind 
of proportionality between both magnitudes. 
 

 
 

Figure 21. Limb/orthosis misalignment (left) and interaction force (right): left hip level 
(red solid), right hip level (blue solid), left knee level (red dotted), right knee level (blue 

dotted). 
 
7.2.2 Underactuated system 
 
The second approach to carry out the FDA of the acquired gait motion was to consider 
the system as underactuated, i.e. with controllers acting at the subject's joints only, but 
not on the base body (Section 6). As in sub-section 7.2.1, the orthoses degrees of freedom 
were not controlled. 
 
The contact models for the subject's feet and the crutches were the same used in sub-
section 7.1.2, i.e. when the orthoses were modeled as embedded in the subject's legs. 
 
The control strategy adopted was the same applied in the 3D gait of a healthy subject in 
sub-section 6.3.2, i.e. to define more outputs than inputs, choosing as outputs the 57 
coordinates of the subject's configuration vector z. Therefore, the upper part of (16) was 
used to calculate the required inputs along the simulation, assigning to the gains in matrix 

PC  a value of 310  and obtaining the gains in matrix DC  by application of (9), yielding 
a value of 63.25. The weights for the outputs needed to build weight matrix W were set 
to 1. The time step used to run the simulation was 1 ms. 



 
Figure 22. Comparison of contact reactions (forces and moments) obtained from 

forward dynamic simulation (red dotted) and from IDA (black solid) for the right foot 
(right) and left foot (left). 

 
Again, as it happened for the case when the orthoses were modeled as embedded in the 
subject's legs (sub-section 7.1.2), the foot-ground and crutch-ground contact models 
obtained through optimization were directly usable in forward dynamics, yielding a good 
trajectory tracking without the necessity of any hand-made tuning. Also again, notable 
discrepancies were found between the ground reactions generated when the model was 
run in forward dynamics and those obtained from the IDA, as illustrated in Fig. 22. 
Despite this, the controllers managed to follow the acquired motion without falling, as 
illustrated in Fig. 23, with RMS errors of 0.023 m for the translational coordinates (x, y, 
z of the lumbar joint), 5.2. 310  rad for the angular coordinates, 48.38 N for the force 
components of the external reaction, 11.12 Nm for the moment components of the 
external reaction and 27.24 Nm for the net joint torques. 
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Figure 23. Postures of the model at the beginning (left), half (center) and end (right) of 
the forward-dynamics simulation compared with those of the acquired motion. In the 

three pictures, the two superimposed images correspond to the same time point. 
 

Figure 24 shows the histories of the torques exerted by the right orthosis at knee and ankle 
levels. While results at ankle level are very similar to those obtained in the previous sub-
section (7.2.1), although a little bit noisier, the torque exerted by the controller exhibits 
more extreme values at knee level, which translates to the total torque. Again, as it 
happened in sub-section 7.2.1, the addition of the torques exerted by the orthosis and the 
controller does not match the torque obtained from IDA for the model with orthoses 
embedded in the legs due to the misalignment that may exist between leg and orthosis. 
 

 
 

Figure 24. Torques in the right leg: knee level (left), ankle level (right). Torque exerted 
by orthosis (green), torque exerted by controller (blue), total torque (addition of the 

former two, red), torque obtained from IDA (reference, black). 
 



Figure 25 shows the histories of the misalignments and the interaction forces between 
limb and orthosis, both at knee and hip levels. It can be seen that the plots are very similar 
to those obtained in sub-section 7.2.1. 

 
 

Figure 25. Limb/orthosis misalignment (left) and interaction force (right): left hip level 
(red solid), right hip level (blue solid), left knee level (red dotted), right knee level (blue 

dotted). 
 

8. Discussion and conclusions. 
 
Sections 5-7 have addressed the forward-dynamics analysis of human gait at skeletal level 
by means of control methods: full actuation was applied in Section 5, using three control 
methods; underactuation was considered in Section 6, with several strategies in the 
selection of the outputs to be tracked, and in the way the ground reactions were included; 
both previous approaches were tested in Section 7 for the case of a gait assisted by 
orthoses and crutches, with two options for modeling the orthoses. Most relevant results 
are summarized in Table 4, where values are approximated to streamline comparison. 
 
  



Table 4. Summary of results of Sections 5 (full actuation), 6 (underactuation) and 7 (full 
actuation and underactuation applied to assisted gait). Time step of integration 1 ms. 

 

Sec. Type 
of gait 

Control 
actuation 

RMSE 
trans. 
coord. 

RMSE 
ang. 

coord. 

RMSE 
react. 
forces 

RMSE 
react. 
mom. 

RMSE 
drive 
torq. 

Remarks 

5 normal full 

failed failed failed failed failed computed 
feedforward 

1.e-7 1.e-5 1.e-2 1.e-4 1.e-4 PD with 
comp. f.f. 

1.e-6 1.e-4 1.e0 1.e-1 1.e-1 CTC 

6 normal underact. 
6.e-4 8.e-4 0.e0 0.e0 1.e-3 ext. react. 

from IDA 

4.e-2 1.e-2 1.e2 1.e1 1.e1 ext. react. 
cont. model 

7 
assisted 

 
 

full 
1.e-6 1.e-4 1.e0 1.e-1 1.e-1 orthoses 

embedded 

1.e-6 1.e-4 1.e0 1.e-1 1.e-1 orthoses as 
indep. bod. 

underact. 
1.e-2 4.e-3 4.e1 1.e1 1.e1 orthoses 

embedded 

2.e-2 5.e-3 4.e1 1.e1 2.e1 orthoses as 
indep. bod. 

 
From the obtained results (Section 5), it can be concluded that the CTC is a useful method 
to carry out the forward-dynamics analysis of an acquired gait motion at skeletal level, 
since it provides a good level of accuracy in both motion and external reactions, and 
requires almost no effort in tuning the gains of the controllers. Although, apparently, the 
approach has no advantages over an inverse-dynamics analysis for healthy gait at skeletal 
level, it can be exploited when descending to muscular level, as in that case the 
simultaneous integration of the equations of motion and the equations of muscular 
activation and contraction does provide better dynamic consistency than the inverse-
dynamics approach. 
 
Regarding the control strategy (Section 6), full actuation (i.e. actuation on all the subject's 
degrees of freedom) proved to be clearly superior to underactuation (i.e. actuation on the 
subject's joints only), although the underactuated case with input of the external reactions 
calculated from IDA yielded quite satisfactory results. When the external reactions come 
from a contact model, acceptable accuracy can be achieved at the configuration level only, 
while high errors appear at the force level since fitting the contact model revealed 
certainly problematic; higher resolution of the motion capture equipment could improve 
that (particularly critical for the feet), but it is not clear up to what extent [19]. It is true 
that the underactuated control strategies tested in this work were limited to the tracking 
of coordinates and ground reactions [17], and that perhaps other alternatives could be 
more successful: exploration of recent dynamic walking control methods for the gait of 
humanoids [23,24] might be interesting in this sense. 
 
Perhaps the most meaningful application of the forward-dynamics analysis of an acquired 
gait at skeletal level is the estimation of the interaction behavior between the subject's 
body and assistive devices (Section 7), which can hardly be obtained through an inverse-
dynamics approach. It has been shown that, in the case of lower-limb orthotic devices, 



maximum information about the interactive behavior can be extracted when they are 
modeled as independent bodies, although additional work is required in this direction, as 
identification of the interface parameters and experimental validation of the results. 
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