
i
i

“BIOINF-2015-1951_R1_v2” — 2016/1/5 — 11:48 — page 1 — #1 i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: DD MM YYYY
Application Note

Sequence analysis

ParDRe: Faster Parallel Duplicated Reads Removal
Tool for Sequencing Studies
Jorge González-Domínguez1,∗, Bertil Schmidt2

1Grupo de Arquitectura de Computadores, Universidade da Coruña, Campus de Elviña, 15071 A Coruña, Spain
2Parallel and Distributed Architectures Group, Johannes Gutenberg University Mainz, Staudingerweg 9, 55128 Mainz, Germany

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Summary: Current next generation sequencing technologies often generate duplicated or near-duplicated
reads that (depending on the application scenario) do not provide any interesting biological information
but can increase memory requirements and computational time of downstream analysis. In this work
we present ParDRe, a de novo parallel tool to remove duplicated and near-duplicated reads through the
clustering of Single-End or Paired-End sequences from fasta or fastq files. It uses a novel bitwise approach
to compare the suffixes of DNA strings and employs hybrid MPI/multithreading to reduce runtime on
multicore systems. We show that ParDRe is up to 27.29 times faster than Fulcrum (a representative state-
of-the-art tool) on a platform with two 8-core Sandy-Bridge processors.
Availability and Implementation: Source code in C++ and MPI running on Linux systems as well as a
reference manual are available at https://sourceforge.net/projects/pardre/
Contact: jgonzalezd@udc.es

1 Introduction
The progress of Next Generation Sequencing (NGS) technologies has
led to large datasets that are used in a wide range of bioinformatics
applications. Preprocessing of NGS datasets is often required to either
reduce their sizes or improve data quality. One such preprocessing step
is the removal of duplicated and near-duplicated reads (Zhou and Rokas,
2014). There are two approaches to remove these type of reads: mapping-
based and de novo strategies. The first approach initially maps the reads
to a reference genome and discards those reads that are aligned to the
same position (Pireddu et al., 2011). Unfortunately, it requires a complete
genome as reference, which is not always available. The de novo approach
only needs the NGS input data and has gained attention in recent years.
Examples of de novo tools include FastUniq (Xu et al., 2012) (not
able to remove near-duplicated reads), Fulcrum (Burriesci et al., 2012)
(parallelized for multicore and distributed systems with MapReduce) and
G-CNV (Manconi et al., 2015) (parallelized for CUDA-enabled GPUs).

In this paper we describe ParDRe a fast de novo tool to remove
duplicated and near-duplicated reads with support for both Single-End
and Paired-End datasets. ParDRe uses a novel bitwise approach to compare
DNA strings and exploits the computational power of current multicore
CPUs by employing both multithreading and Message Passing Interface
(MPI). Mutithreading support is part of all compilers that follow the C++11
standard while there exist many MPI open public compilers.

2 Implementation
ParDRe is based on the prefix-clustering approach (Burriesci et al., 2012;
Manconi et al., 2015), where the first l bases of a read are considered
the prefix. The procedure starts by clustering all reads according to their
prefix. Reads with the same prefix are stored in the same cluster and each
MPI process is in charge of different clusters. All processes read the input
file in parallel with efficient MPI I/O routines. For each read the processes
apply a hash function to the prefix that returns a value h. If h mod P

(P denotes the number of processes) is equal to the process ID, it stores
the read in the corresponding cluster. Otherwise, it discards the read and
continues with the next one.

Once a process has finished the clustering, it compares the suffixes of
the reads that belong to the same cluster. Three optimization techniques
have been applied to this step. First, instead of comparing all possible
pairs of reads within the cluster, we compare the first read to all other
reads. We save the calculated number of mismatches for each read in an
array dist. Subsequently, we only compare the suffixes of those reads i,
j for which |dist[i] − dist[j]| is less equal than the number of allowed
mismatches, as otherwise we can directly conclude that reads i and j are
not similar. The second optimization stores each base of the suffixes with
a 4-bit encoding in an array of 64-bit integers (16 bases per array entry).
Instead of comparing the suffix bases one by one, we use a novel approach
that applies a bitwise XOR operation. This operation returns a 64-bit mask
with exactly two bits equal to one for each mismatch. Then, we apply the
popcount routine to count the number of bits equal to one. If the result
divided by two is lower or equal than the number of allowed mismatches,

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/199450301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i
i

“BIOINF-2015-1951_R1_v2” — 2016/1/5 — 11:48 — page 2 — #2 i
i

i
i

i
i

2 J. González-Domínguez and B. Schmidt

Table 1. Experimental results for ParDRe and Fulcrum (v 0.43) removing near-duplicated reads of SRR921889 on two multicore platforms. Two runtime values
are presented for ParDRe: using only multithreading and using a hybrid MPI/multithreading approach. Speedups shown are the best ParDRe runtime (hybrid) over
Fulcrum. Runtime for G-CNV (*) is obtained from its corresponding reference (Manconi et al., 2015).

Two 8-core Intel Xeon E5-2660 Sandy-Bridge Four 16-core AMD Opteron 6272 K20 GPU*
Prefix
Length

Num.
Mis.

Fulcrum
Runtime

ParDRe
threads
Runtime

ParDre
hybrid
Runtime

Speedup Fulcrum
Runtime

ParDRe
threads
Runtime

ParDre
hybrid
Runtime

Speedup G-CNV*
Runtime

10 1 3h 11min 35min 7min 27.29 2h 36min 29min 14min 11.14 2h
10 3 4h 10min 46min 10min 25.00 3h 39min 40min 18min 12.16 1h 50min
25 1 55min 8min 4min 13.75 1h 18min 18min 7min 11.14 16min
25 3 59min 7min 4min 14.75 1h 29min 17min 7min 12.71 8min

one of the reads is removed. We keep the read with the highest average
quality score among the mismatches. Finally, ParDRe allows to generate a
second level of parallelization by creating several threads per MPI process,
which analyze different clusters in parallel. The assignment of clusters to
threads is performed through a dynamic distribution; i.e., once a thread
finishes all the comparisons within one cluster, it looks for the next cluster
of the process that has not been computed yet. The main advantage of
the dynamic distribution is that the workload can adapt to the size of the
clusters; i.e., threads analyze more clusters if they are smaller. However,
this distribution requires thread synchronization to a list in shared memory
that saves which clusters have already been analyzed.

After all the clusters have been analyzed, each process writes the
remaining reads into an intermediate output file (one intermediate file
per process). Therefore, this read printing is performed in parallel. Once
all processes have finished, ParDRe gathers the information of all the
intermediate files into the final output (with OS routines to concatenate
files) and deletes the intermediate files. It means that the output provided
to the user is written into a unique file. All the configuration parameters
(input and output files, prefix length l, number of allowed mismatches,
number of threads per process, etc) are specified in the command line.
An explanation of all the arguments, as well as installation and execution
instructions, are included in the reference manual available with ParDRe.

3 Results
Two multicore platforms, with two 8-core Intel Xeon E5-2660 Sandy-
Bridge and four 16-core AMD Opteron 6272 processors, are used to
compare the runtime of ParDRe and Fulcrum. Up to our knowledge,
Fulcrum was the fastest available tool to remove duplicate reads that
allows mismatches and exploits the computational power of CPU multicore
systems. ParDRe is compiled with GCC v4.9.2 and OpenMPI v1.8.8 on the
Intel machine, whereas GCC v4.8.1 and OpenMPI v1.6.5 are used on the
AMD system. Fulcrum runs with Python v2.6.6 on both platforms. Table 1
summarizes the runtime to remove near-duplicated reads of the dataset
SRR921889 (named after its accession number in the NCBI sequence
read archive) with 50 million reads of 100 bases each. We have used four
different configurations. The accuracy of the prefix-clustering approach
for near-duplicate removal has been analyzed in (Burriesci et al., 2012;
Manconi et al., 2015). We have also verified that ParDRe returns similar
results to Fulcrum for those reads that do not contain N bases. Concretely,
they detect the same pairs of duplicated reads but, among them, they might
select a different one to discard. Therefore, our experimental evaluation
focuses on the speed of the tools. Fulcrum is executed using one thread per
core (16 threads on the Intel system and 64 threads on the AMD platform).

Furthermore, two runtime values are measured for our tool in order to
assess the performance improvement obtained by the use of MPI: 1) using
only threads (one MPI process); and 2) using the hybrid approach with the
best combination of processes and threads. We also include in our table the
runtime for G-CNV on an NVIDIA K20 GPU, obtained from (Manconi
et al., 2015). The selected configurations are the same as in the G-CNV
reference in order to provide a fair comparison.

The results show that ParDRe consistently outperforms Fulcrum.
Firstly, our C++ suffix comparison based on bitwise operations is faster
than the Python implementation included in Fulcrum. Additionally,
Fulcrum uses MapReduce for parallelization. Thus, it needs intermediate
files to distribute the clusters among threads. ParDRe uses an efficient on-
demand multithreaded implementation that only requires main memory
and avoids the overhead of I/O operations. Moreover, the experimental
results also show that launching MPI processes instead of only threads
further improves performance. This is due to two reasons. On the one hand,
as explained in Section 2, the efficient parallel MPI I/O routines allow us
to parallelize the reading and clustering of the input dataset, as well as
the writing of the results. On the other hand, the hybrid approach reduces
the thread synchronization overhead to know which clusters have not been
analyzed yet, but it still exploits all the available cores in the machine thanks
to the MPI parallelization. The average speedups over Fulcrum are 20.20
and 11.79 on the Intel and the AMD system, respectively. Furthermore, we
can assert that ParDRe executed on both systems is also faster than G-CNV
running on specialized hardware (an NVIDIA K20 GPU). Regarding the
memory consumption, ParDRe requires less than 7GB in the worst case
(for all tests in Table 1), while Fulcrum and G-CNV require 1.6 and 17.3
GB, respectively.

References
Burriesci, M. S. et al. (2012). Fulcrum: Condensing Redundant Reads

from High-Throughput Sequencing Studies. Bioinf , 28(10), 1324–27.
Manconi, A. et al. (2015). G-CNV: a GPU-Based Tool for Preparing Data

to Detect CNVs with Read-Depth Methods. Frontiers in Bioengineering
and Biotechnology, 3.

Pireddu, L. et al. (2011). SEAL: a Distributed Short Read Mapping and
Duplicate Removal Tool. Bioinf , 27(15), 2159–60.

Xu, H. et al. (2012). FastUniq: a Fast De Novo Duplicates Removal Tool
for Paired Short Reads. PLOS One, 7(12).

Zhou, X. and Rokas, A. (2014). Prevention, Diagnosis and Treatment
of High-Throughput Sequencing Data Pathologies. Molecular Ecology,
23, 1679–1700.

