
December 16, 2016 International Journal of Remote Sensing GVLiDAR

To appear in the International Journal of Remote Sensing
Vol. 00, No. 00, Month 20XX, 1–22

GVLiDAR: An Interactive Web-based Visualization Framework to

Support Geospatial Measures on LiDAR Data

David Deibea∗, Margarita Amora, Ramón Doalloa, David Mirandab and Miguel Corderob

aFacultade de Informática da Coruña, Universidade da Coruña (UDC), A Coruña,

Spain; bEscola Politécnica Superior de Lugo, Universidade de Santiago de Compostela

(USC), A Coruña, Spain

(Received 00 Month 20XX; accepted 00 Month 20XX)

In recent years LiDAR (Light Detection And Ranging) technology has experienced a
noticeable increase in its relevance and usage in a number of scientific fields. Therefore,
software capable of handling LiDAR data becomes a key point in those fields. In this
paper, we present GVLiDAR (GPU-based Viewer LiDAR), a novel web framework
for visualization and geospatial measurement of LiDAR data point sets. The design of
the framework is focused on achieving three key objectives: performance in terms of
real-time interaction, functionality and online availability for the LiDAR datasets. All
LiDAR files are pre-processed and stored in a lossless data structure which minimizes
transfer requirements and offers an on-demand LiDAR data web framework.

Keywords: LiDAR; WebGL; GPU; Geospatial measures; On-demand data

1. Introduction

In the past few decades the usage of remote-sensing techniques has experienced
a notable increase, driven by the need to obtain a wide range of Earth surface
information while achieving satisfactory cost-efficiency ratios, high data precision
and short data acquisition times. This information is used by scientists and gov-
ernment institutions to detect environmental changes, to classify urban and rural
landscapes or to conduct efficient public policy planning, along with an extensive
list of further applications (Tarolli 2014). Among all remote-sensing techniques,
airborne and terrestrial LiDAR (Light Detection and Ranging) technologies stand
out as some of the most important and useful available nowadays.

LiDAR technology provides very useful high-resolution data in the form of point
clouds that can be applied in a wide variety of fields, such as agriculture, archae-
ology, biology, geology or forestry. Earth-science applications of LiDAR include
coastal-change studies (Sallenger Jr. et al. 1999), monitoring of landslides (Ventura
et al. 2011), measurement of volcanic deformation (Hasegawa, Sato, and Iwahashi
2007), identification of faults (Arrowsmith and Zielke 2009), land-cover classifica-
tion (Buján et al. 2013), forest inventory and biomass estimation (Boudreau et al.
2008; González-Ferreiro et al. 2013) or structures on the geometry of fault scarps
(Brunori et al. 2013), among others. Furthermore, the combination of LiDAR data
with other types of remotely-sensed imagery makes it possible to obtain accurate

∗Corresponding author. Email: david.deibe@udc.es

1



December 16, 2016 International Journal of Remote Sensing GVLiDAR

mappings of land covers which are very useful in Earth surface monitoring (Zhang
2010; Yan, Shaker, and El-Ashmawy 2015).

Other popular terrain 3D models, such as 2D grid, 3D grid or Triangulated Ir-
regular Network (TIN), which in some cases are derived from LiDAR data, have
also been widely used for qualitative and quantitative analysis. 2D grid is a set of
sampled points representing measures of altitude or elevation and stored at reg-
ular intervals. TIN samples heights irregularly to represent more-detailed areas
using more samples. Hybrid models that combine 2 D grid-based models and TIN
meshes may add details to specific regions, without increasing the overall grid res-
olution (Yang, Shi, and Li 2005). Hybrid representation that does not alter the
original data and allows the adaptive tessellation of the grid cells in the neigh-
bourhood of the TIN structure was presented in (Bóo, Amor, and Döllner 2007;
Paredes et al. 2011). On the other hand, 3D grid represents the terrain as occupied
voxel that allows the modelling of various volumetric features; nevertheless, this
representation is very slow at rendering large and detailed terrains. In (Koca and
Güdükbay 2014), a novel representation, that combines 2D and 3D approaches in
order to allow creating terrains with caves, overhangs, cliffs and arches is presented.
They provide high horizontal resolution, which may improve the accuracy for rec-
ognizing certain topographic features, but fall short in recognizing some structures,
such as drainage ditches or levees, which may be misinterpreted during topographic
analysis if high-resolution data are not used (Tarolli and Tarboton 2006). While
LiDAR models are capable of clearly show buildings, trees or sea ice surface rough-
ness (Landy, Komarov, and Barber 2015), in most of the other digital models those
kinds of structures may be barely recognizable or in existent.

All data gathered by LiDAR sensors would be useless without software capa-
ble of making use of it. Visualization frameworks bring the possibility of easily
exploring and interpreting LiDAR datasets. Nevertheless, the rapid increase in
the quantity and density of the LiDAR data obtained demands more efficient and
powerful frameworks capable of handling millions of points. With the competition
between enterprises for obtaining higher resolutions and acquisition speeds many
visualization frameworks not properly updated may become obsolete and unable
to handle the point clouds gathered by the newer sensors. Furthermore, it is a key
point to give final users the freedom to work on any operating platform without
any restriction. Examples of this kind of software can be found in (Kuder and Zalik
2011) and (Lewis, Elhinney, and McCarthy 2012), where a web-based visualization
framework for LiDAR data can be found.

In this article we present GVLiDAR, a novel LiDAR framework based on WebGL
technology (Parisi 2012; The Khronos Group Inc. 2015b). GVLiDAR is a scalable
client-server system for the visualization and interactive manipulation of LiDAR
data, with the capability of performing geospatial measurements directly over the
3D point clouds and obtaining data on-demand. The design of the framework
is focused on achieving three key objectives: performance in terms of real-time
interaction, functionality and online availability for the LiDAR datasets. GVLiDAR
can be used on any platform or operating system. The only requirement is a browser
with WebGL support. WebGL is based on OpenGL ES 2.0 (OpenGL for Embedded
Systems)(Munshi, Ginsburg, and Shreiner 2008) that was developed for handheld
devices such as smartphones and tablets.

GVLiDAR development and specially its measurement tools were guided by a
group of agroforestry engineers. GVLiDAR offers a variety of possibilities not pre-
sented in other similar solutions which was a long time demand from some LiDAR
users. Current applications offer a small amount of basic measurement tools and

2



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Table 1. Data contained into one data record of LAS (format 0).

Item Format Size Required

X long 4 bytes *
Y long 4 bytes *
Z long 4 bytes *
Intensity unsigned short 2 bytes
Return Number 3 bits (bits 0 - 2) 3 bits *
Number of Returns 3 bits (bits 3 - 5) 3 bits *
Scan Direction Flag 1 bit (bit 6) 1 bit *
Edge of Flight Line 1 bit (bit 7) 1 bit *
Classification unsigned char 1 bytes *
Scan Angle Rank char 1 bytes *
User Data unsigned char 1 bytes
Point Source ID unsigned short 2 bytes *

they are not focused on the needs of professionals that use LiDAR point clouds.
This lack of specialization, can be observed, for instance, measuring heights of
structures, in many cases, they must be manually calculated by the user from the
angles given by ‘angle tools’ or even they cannot be done in some cases. Area mea-
sures provided by most applications are only projected horizontally making very
hard or impossible to measure facades or slopes. Furthermore, they do not allow
to triangulate points in order to accurately measure complex surfaces or volumes.
GVLiDAR provides measurement tools for all these situations and its visualiza-
tion techniques are focused on rendering as much as points as possible in order to
support high precision measures.

The article is organized as follows. Some concepts about LiDAR Data Technol-
ogy and LiDAR frameworks currently available are briefly explained in Section 2.
Section 3 describes the internal structure of our GVLiDAR framework. In Section
4 we present different performance tests realized on different platforms. Finally,
the main conclusions and future work are presented in Section 5.

2. LiDAR Data Technology

Many LiDAR applications use the LAS file format, a standard in the field of LiDAR
solutions. Its specification was created by the (American Society for Photogram-
metry and Remote Sensing 2011) (ASPRS). The objective of LAS format is to
provide an open format for different LIDAR hardware and software tools.

The original LAS file is intended to contain LIDAR (or other) point cloud data
records. The data are stored in this format from software which combines GPS,
Inertial Measurement Unit (IMU), and laser pulse range data to produce x, y, and
z point data.

Specifically, LAS files contain binary data consisting of an initial header block,
any number of optional variable length records (VLRs), a block with all the point
data records and finally any number of optional extended variable length records
(EVLRs). The header block contains generic information about the file, such as the
number of point data records stored, the byte position where they begin, or the
date when the data were obtained. Both the VLRs and EVLRs are optional blocks
that can be used by the different LiDAR software in order to store information
which they may require.

Table 1 shows properties of a single point stored in a LAS file; specifically, those
which follow the format 0 (LAS specification defines different Point Data Record
formats, each with different properties).

3



December 16, 2016 International Journal of Remote Sensing GVLiDAR

2.1. LiDAR frameworks

In recent years, the use of LiDAR technologies has increased along with the number
of software designed to handle this kind of data, both web and desktop applications,
specifically designed to work with LiDAR or as part of more general software.
Among the frameworks available, we have analysed some of the most commonly
used or known.

(1) LAStools (3D visor) (Rapidlasso 2015): This is probably the most commonly
used desktop application for LiDAR data. It is free, easy to use and includes
several processing tools. Its 3D visor performs many different visualization
options such as intensity, classification, height, number of return, RGB or
scan direction. Users can filter the point cloud by point properties, or create
a full 3D model by triangulating the point set. Nevertheless, the 3D visor
offers a low performance, rendering over 4,700,000 points under 10 frames
per second (FPS). Furthermore, it only works with local files loaded by the
users and it lacks geospatial measuring tools over the 3D point cloud.

(2) FugroViewer (Fugro Geospatial Services 2015): Simple and easy-to-use desk-
top visor, it provides different visualization options, such as intensity, height,
classification, return number or RGB. A complete 3D model can be obtained
through a triangulation of the point cloud. There are two visualization modes:
2D and 3D. The 2D mode applies Level of Detail (LOD) techniques over the
points set; therefore, when the camera is near, all points are rendered, but
from a far point of view only a subset of the points are shown. The 3D mode
achieves high performance, although it only renders the visible points that
are shown in the 2D window, so that, when zooming over the 3D model, no
more points are loaded and detail is lost. The LiDAR data has to be provided
by the users. Finally, a tool for measuring distances is available, but only over
the 2D image.

(3) IDECanarias (Gobierno de Canarias 2015): Web application well known in
Spain which provides LiDAR data from the Canary Islands on-demand. It
has low retrieval times, around 5 seconds for 350,000 points (the maximum
amount of points retrieved), and is easy to use. Nevertheless, in many systems
it does not obtain a fluid interaction due to its Flash programming, achieving
about 36 FPS with 250,000 points. Areas of a few square meters and large
areas of several square kilometres are rendered with almost the same number
of points. While the detail obtained in the former case may be good, in
the second case it may not be enough for recognizing certain land features
or structures. The application has limited visualization options (intensity,
height and mixed) and it lacks geospatial measuring tools over the 3D point
clouds.

(4) LiDAR Online (3D visor) (LiDAR Online 2015): One of the best known web
visors is based on Dielmo 3D technology (Dielmo 3D S.L 2015). It allows
LiDAR data to be obtained on-demand from various locations around the
world. The 3D visor has good visualization options (classification, intensity,
height and RGB) and offers highly satisfactory performance results, up to 60
FPS displaying around 1 million points. Nevertheless, transferring more than
1 million points were not allowed because, like IDECanarias, the number of
points shown barely change along with the size of the selected area: small and
large areas are retrieved with almost the same number of points, so the last
ones are displayed with a lower detail. Furthermore, the times are quite long;
more than a minute to retrieve 1 million points, and sometimes the process

4



December 16, 2016 International Journal of Remote Sensing GVLiDAR

may get blocked. It lacks geospatial measuring tools over the 3D point clouds.
(5) Plas.io (Uday Verma 2015): This web application is based on WebGL. It

focuses on the visualization of local files (in LAS and LAZ formats) achieving
45 FPS, handling around 16 million points. It offers different rendering modes,
such as RGB, intensity or height, but lacks geospatial measuring tools over
the 3D point clouds.

(6) Lidarview (Alexander Krivutsenko 2015): Another web application based on
WebGL that offers good performance with around 50 FPS handling 10 million
points. It implements some visualization options such as intensity, classifica-
tion, height and RGB. It is easy to use but only works with local files loaded
by the users (LAS or XY Z file formats). The visor is limited to 10 million
point clouds and lacks geospatial measuring tools over the 3D point cloud.

(7) Potree (Markus Schtz 2015): This web application, also based on WebGL,
is an interactive out-of-core rendering solution for massive datasets (over 1
billion points) using a multi-resolution octree. It has the most similar fea-
tures to our proposal; however, it is conceived as a general-purpose point
rendering engine and does not focus solely on LiDAR data. Potree allows
direct measurement on the 3D images. Nevertheless, its measurement tools
are basic and not focused on LiDAR data, it does not allow to get informa-
tion such as the distance of a point to a plane, the area of complex surfaces
or the square meters of facades (required by professionals in the fields of
engineering and architecture) to be obtained. Furthermore, it provides no ge-
ographic information on the images, such as the reference system used or the
geographic coordinates of each point. Therefore, we can consider Potree as a
tool mainly focused on the fast visualization of large areas of land or highly
detailed objects, prioritizing realistic rendering against the functionality of
the measurement tools.

In summary, some of these frameworks have a moderate performance in terms of
FPS; some of them can only handle small number of LiDAR points, while others
can handle a large number of points but with relatively low performance. Potree
achieves real-time interaction, handling billions of points, but is mainly focused
on fast visualization providing basic measurement tools. Some frameworks, such
as IDECanarias, LiDAR Online or FugroViewer, apply LOD (Moller, Haines, and
Hoffman 2008) algorithms in order to manage large areas and reduce the total
number of points. These LOD algorithms transform the original point cloud into a
simplified version so they improve their performance, but this simplification may
cause some inaccuracy during measurements or identifying land features. Further-
more, a little number of frameworks offers on-demand LiDAR data capabilities. Ta-
ble 2 presents a comparison among these frameworks and our GVLiDAR proposal.
The second column of the table indicates web applications that offer on-demand
LiDAR data capabilities. In the other columns are indicated the following frame-
work properties: the maximum amount of points allowed; provision of geospatial
measuring tools over 3D point cloud; interactive rendering capabilities (considering
the ability to display at least 10 million point cloud). Unlike the other solutions, the
maximum amount of points GVLiDAR is capable of handling is only determined
by the video memory (VRAM) available in the client GPU. Most current GPUs
are able to store dozens or hundreds of million points which is a clear advantage
over the reset of solutions being only Potree capable of handling larger datasets.
We should point out here that the amount of points GVLiDAR is capable of han-
dling in real time may be smaller than the point limit associated to the VRAM, so
this, the performance delivered by the client GPU would be also decisive in order

5



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Table 2. Comparative of LiDAR frameworks regarding web applications, the max-

imum number of points allowed, measuring tool available and performance in terms
of real-time interaction

LiDAR Web application Max. points Measuring Real-time
framework data demand (millions) Tool Interaction

IDECanarias
√

∼0.35

LiDAR Online
√

∼1

Lidarview ∼10
√

LAStools No limit

FugroViewer No limit
√

Plas.io 16
√

Potree No limit
√ √

GVLiDAR
√

Size of VRAM
√ √

to stablish the point limit of GVLiDAR. These issues will be further discussed in
Section 4.

3. GVLiDAR

GVLiDAR is a web framework specially designed to accomplish detailed analysis
and complex measurements over LiDAR 3D point clouds. It allows users to retrieve
data on demand from queries based on spatial restrictions which makes possible to
visualize and process a chosen region without transferring unneeded points, and re-
gardless of the number and distribution of the source files acquired during different
flights, allowing, for instance, the visualization of a road stored over multiple files.
Here we should stress that experts consulted (in the field of agronomy engineer-
ing) required the performing geospatial measurements directly over the 3D point
cloud and the visualization of all LIDAR data from a point of view. In technical
disciples, not only a realistic representation of the data is necessary, but also the
capacity to perform fast and accurate measures over the objects and terrains under
study. Therefore, our proposal is not out-of-core, with a view to include out-of-core
techniques in the following versions as an option. Figure 1 shows the general sys-
tem environment. This framework can be considered as client-server architecture,
having two clearly separated parts. The first part is a conventional web server,
like Apache HTTP Server, which stores the whole system and the LiDAR files.
The second part includes any client-side WebGL compatible web browser. This
allows multiple users to access the system through their browsers, rendering the
final image in their own platform.

The framework uses three different programming languages and the WebGL
graphics API. HTML and JavaScript, both executed by the CPU, are responsi-
ble for tasks such as handling I/O events, generating the user interface, requesting
and loading LiDAR data from our servers and performing the geospatial measure-
ments. Although WebGL is also JavaScript code, it is a very distinctive part of the
framework. It is the intermediary between the CPU and GPU, allowing communi-
cation and information delivery to the GPU. Finally, OpenGL Shading Language
(GLSL) (The Khronos Group Inc. 2015a; Munshi, Ginsburg, and Shreiner 2008) is
used to program the GPU shaders, Vertex Shader and Fragment Shader. Shaders
are programs that provide a significant flexibility in order to implement rendering

6



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Figure 1. General structure of GVLiDAR.

and computational algorithms on GPUs. In GVLiDAR shaders are used for tasks
such as point color generation, point erasing or mouse picking, which enables all
the geospatial measurements implementation.

From the perspective of the users, the framework consists of two separate web
pages. The Selection page (see Figure 2) shows a map through GoogleMaps API
3.0. Over this map users are able to obtain their geographic location or select a
region to work with. Once users have made a selection, the Visualization page
(see Figure 3) pops up showing a rendering of the point cloud available for the
selected region. In this page, different LiDAR properties such as height, intensity,
classification or return number, can be chosen in order to change the way the scene
is rendered. There are also different camera options marker tools and render options
such as point size, line width or projection mode.

One of the main differences between GVLiDAR and other LiDAR frameworks is
the incorporation of geospatial measurements that can be performed directly over
the point clouds. GVLiDAR makes it possible to measure distances between points,
measure the height of structures, generate projected areas, triangulate points sets,
create building facades or remove points. For example, Figure 6 shows the LiDAR
data from Riazor Stadium (A Coruña, Spain) where a height measurement is being
taken, from the top of a tower, located at one side of the stadium, to the grass
field. Figure 7 shows another example of measurement, in this case a projected area
(two-dimensional area measurement of a three-dimensional object by projecting its
shape on to an arbitrary plane) is created covering different parts of the surface of
the river Oitaven (Pontevedra, Spain).

The measurement tools available on other frameworks are very basic and not
focused on the needs of professionals that use LiDAR point clouds, as it is the
case of the agroforestry experts we are working with. Common and simple actions
such as get geospatial information about the points on the image or even measure
distances cannot be directly done in most of the applications commented in the
previous section. A very similar problem happens measuring heights of structures,
in some cases they must be manually calculated by the user from the angles given

7



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Figure 2. Selection page of GVLiDAR over Santiago de Compostela (Spain) International Airport. In

this page we use the GoogleMaps API in order to help users to locate their areas of interest. The green
rectangle represents the area of the map that contains point data while the blue rectangle represents the

specific data selection done by the user.

Figure 3. Visualization page of GVLiDAR rendering LiDAR data from Santiago de Compostela (Spain)
International Airport. The point cloud shown matches with the selection done by the user in Selection

page.

by angle tools or even they cannot be done in some situations. Most of the measures
provided by the applications demand to pick up rendered points in the image, so
that, a height measure like the example of Figure 4 is not possible. The green
dot is generated in GVLiDAR from the pink and the blue point, so that, the
green vertical line measures the distance from the top of the mountain down to its
bottom. This type of user dots (like the green one) cannot be created in most of the
current frameworks. Furthermore, areas they allow to measure are only projected
horizontally while in GVLiDAR the areas can be projected on any plane allowing
to measure facades or slopes. Also, some of them do not allow to triangulate points

8



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Figure 4. Point cloud render of a mountain from the PNOA dataset. The figure shows a vertical height
measure (white triangle) of a mountain from its top to a plane placed at the height of a near river. The

upper vertex of the triangle is placed on the top of the mountain, the lower right vertex determines the

horizontal plane of the measure and is placed at the river height. Both vertex are user defined. Finally, the
union of the upper vertex and the lower left vertex defines the vertical height.

in order to accurately measure complex surfaces and its volumes are just cubes
or they are capable of doing a triangulation but they do not provide any type
of measurement. To sum up, the measures available on other frameworks are far
from being appropriate for many professionals in fields such as agronomy, urban
planning or civil engineering.

Another feature presented in GVLiDAR is the possibility of overlapping the point
cloud over a Digital Terrain Model (DTM). This, for instance, allows researchers
who develop algorithms which generate DTMs from point clouds to compare their
algorithm results (the DTMs) with their original data (the point clouds). Further-
more, it allows to judge the quality of any DTM overlapping it with a high dense
and precise point cloud. These type of visual analysis demands to render as much
points as possible in order to obtain good results. Inaccurate point clouds derived
from hard under sampling or point interpolations may not have enough quality for
these type of analysis or other accurate measures. Figure 5 shows a DTM over-
lapping a LiDAR point cloud obtained from different sources, this test allows to
compare the quality of the first one.

3.1. Implementation strategies

In this section, we shall now go on to study a number of details in the design
and implementation of GVLiDAR in order to obtain flexibility and low storage
requirements.

In practice, some parts of the information stored in LAS files are often not useful

9



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Figure 5. DTM overlapping a LiDAR point cloud in order to compare the quality of the first one.

Figure 6. Point cloud render of the Riazor stadium (A Coruña, Spain). The figure shows the vertical

height measure (white triangle) of a tower next to the stadium. Upper vertex is placed on the top of the
tower, lower right vertex determines the horizontal plane of the measure. Both vertex are user defined.

Finally, the union of the upper vertex and the lower left vertex defines the vertical height.

from the point of view of visualization or the geospatial measurements which un-
necessarily increases the size of these files, demanding longer download times and
storing capacity. Owing to this, and because nowadays point clouds may easily con-
tain many millions of points, it is essential to apply a compression of the original
LiDAR files in order to reduce the amount of data to be transferred and stored. For
example, the complete LiDAR data of Galicia (a region inside Spain) gathered by
the National Program of Aerial Ortophography (Plan Nacional de Ortofotograf́ıa
Aérea, PNOA (Instituto Geográfico Nacional 2015)) has about 900 GB of infor-
mation; nonetheless, after removing all the ”useless” data, its size is reduced to
450 GB, a reduction of 50%. The superfluous information in these files includes:

10



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Figure 7. Point cloud render of the Oitaven river and surroundings (Pontevedra, Spain). The bright green

area represents a projected area measurement covering the entire river surface.

the entire header block, all VLRs, all EVLRs and point properties such as Scan
Direction Flag, Edge of Flight Line, Scan Angle Rank, User Data and Point Source
ID. Furthermore, some LAS files may contain fields with all their values set to null
or zero, so they become also useless data. PNOA files has a RGB property in each
point record but it is always set to zero, which represents 12 bytes of worthless
information per point, so that, this property is also deleted.

In addition to the problems described above, the large sizes of the original LiDAR
files make hard to implement an efficient free terrain selection directed by the
user. It is often desirable to select a small area to work with but it may involve
downloading a large file with many more points than necessary. Moreover, the
selection of a tiny zone in the intersection of 4 large files entails downloading all
4 files and then discarding most of the data obtained. To solve this problem all
LiDAR files were subdivided into smaller files of no more than 5 MB, significantly
reducing the amount of data requested. The limit of 5 MB allows the optimal
utilization of web cache of the most commonly used browsers. A web cache system
stores web documents, so that, subsequent requests may be satisfied from the cache.
Note that files used by GVLiDAR are variable in size. During the pre-processing
stage the files created are ensured to have a size less than 5 MB but they do not
have a fixed size, their size may vary from a few KBs to almost 5 MBs depending
on the amount of points stored. Note here that the pre-processing is not done
each time a user retrieves data from the server. All the datasets are pre-processed
offline once and the results are stored in our server, after that all files are served
like regular files with no extra computational requirements. Any file-server such as
Apache HTTP Server or Express (NodeJS) are capable of attend a large number
of users retrieving files.

The small size of the files along with a data distribution in the form of a grid
tile hierarchy allows GVLiDAR to perform efficient data queries based on spatial
restrictions. Figure 8 shows a very simple example of the process. The yellow circles
are user-defined points which delimit the region of interest (ROI). This is done in
the Selection Page described on Section 3 of the paper. The green square represents
the area covered by a LAS file. The red squares are the files created during our pre-

11



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Figure 8. Simple schema representing a grid tiles hierarchy (Numbers along with green and red squares)

with a data query over it (blue square and yellow circles).

process stage from the LAS file. The area covered is the same for all pre-processed
files ensuring the file sizes are all below 5 MB in order to not disable browser
cache. Each file is identified by its grid position. So this, knowing the underlining
grid tiles hierarchy GVLiDAR is able to quickly obtain the list of files that must
be retrieved from server based on the user-defined ROI. Following the example of
the Figure 8, GVLiDAR first takes the two geographical points defined by user
(inside the yellow circles in the figure) and calculates the files needed for obtaining
the data marked on the blue rectangle (the ROI). Finally GVLiDAR retrieves
from server the previously obtained file list. Note that the fourth column is not
retrieved, saving time and memory. The points outside the ROI are fast discarded
in client side during the load process. As commented in Section 4.3, these discarded
points act as pre-cached data that will be immediately accessed when demanding
an adjacent ROI. The extra storage and retrieval time used by the discarded points
is a reasonable cost due to de small size of the files and the pre-cache factor.

In our approach, additional information, such as GPSTime or RGB, could be
easily included in auxiliary files if they were required in the future. These files would
be stored apart from the current data and only retrieved from server if required.
This provides flexibility and scalability allowing to include new properties as needed
and even including custom properties not included in LAS format. Currently, the
LiDAR properties stored in our structure are the most commonly used and valuable
according with the group of experts in the field of agroforestry engineering we work
with. This way, if new information would be included, the auxiliary files would not
be sent to the majority of the clients that just want to visualize the point clouds
using basic properties, they would be retrieved from server just when a specific
client requires it.

3.2. High performance visualization strategies

In this section, we shall now go on to describe strategies in order to achieve high
performance visualization.

12



December 16, 2016 International Journal of Remote Sensing GVLiDAR

(a) (b)

Figure 9. The two most common ways of storing vertex attributes: 9(a) Structure of arrays (SOA). 9(b)
Array of structures (AOS).

The two most common ways of storing vertex, or point attributes, are the array
of structures (AOS) and the structure of arrays (SOA). Figures 9 shows the main
differences between the two types. The AOS (Figure 9(b)) is implemented by using
a single buffer configuration, storing all point attributes together. On the other
hand, the SOA (Figure 9(a)) is implemented by using a multiple buffer configura-
tion; each buffer stores one type of attribute. In original LAS files, all properties
are stored per point, using an AOS, while for the design of GVLiDAR the SOA was
chosen to program the GPU shaders in order to obtain a better performance. The
fact that original LAS files and inputs of the Vertex Shaders use different kinds
of structures demands a structure transformation from AOS to SOA. Performing
this transformation in the client would be inefficient; hence, it is done in the server
during a pre-processing stage.

As discussed above, that LAS file format sequentially stores all properties relative
to a specific point. From the point of view of visualization, only its coordinates (x,
y, z), classification values, return and intensity are used. To manipulate binary files
in JavaScript it is necessary to use the slice function and data type transformations
from binary to byte, short, integer or float. Function slice allows data in a binary
file to be retrieved from a starting byte to a final byte. Since LAS files have a
specific and defined structure (see Section 2) it is easy to ascertain accurately
the address where the required information can be found. Thus, this distribution
implies the need to perform, for each point, four calls to the function Slice. In the
first call, point coordinates are extracted, in the second call, intensity, and finally
the return and classification. As reference, certain LAS files from PNOA in which
each file contains close to 3,000,000 points, around 12 million calls to Slice and 12
million data transformations are needed. These operations heavily penalize data
load times. The optimization strategy is based on the representation of point clouds
using an array of structures.

In the GVLiDAR proposal, the representation is computed in a compact and
efficient way as a pre-processing stage in the server. This information is sent to the
GPU client, where the point attributes corresponding to a specific region are ren-
dered. This strategy makes it possible to reduce the number of slice functions to 4,
one for each type of information (coordinates, classification, return and intensity).
Table 3 shows the size of the new structure with N points.

The group of agroforestry experts we work with was not interested in the numeric
values of the return properties, instead, they demanded information in the form of
return tags, that is, a classification of each point based on its return information

13



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Table 3. Data distribution

into the pre-processed LAS
files used by GVLiDAR.

Item Size (Bytes)

X,Y, Z 3× 4×N
Intensity 4×N
Ret. + Class. N

mixing the return number of the point and the number of returns of its pulse. So
this, we have created 5 tags or categories that can be stored in 3 bits instead of
the previously 5 bits used in the ASPRS specification (see Section 2):

(1) First return (return number 1 out of N pulses, being N > 1). This tag
corresponds to objects like forest canopy.

(2) Middle return (return number n out of N pulses, being N > 2, n 6= 1
and n 6= N). This tag represents points placed between the canopy and
the ground, like branches or leaves.

(3) Last return (return number N out of N pulses, being N > 1). A last return
represents points placed in the ground.

(4) No return (return number 0 out of 0 pulses). This tag denotes an artificial
point. These are points added to the point cloud after being collected by the
laser scanner. Normally used to outline rivers or lakes.

(5) Unique return (return number 1 out of 1 pulse). This tag correspond to points
obtained from a solid surface such us buildings, roads or stones.

These 5 categories allow GVLiDAR to filter the point cloud in many useful ways
combining the different categories.

The coordinates stored in the original LAS files are not the actual coordinates
of each point; each coordinate has to be adjusted according to a scale and offset.
During the pre-processing stage the coordinate values in the files are analysed, if
they can be stored as 32 bits float numbers without losing precision they are stored
this way. This prevents to do extra operations in the client side each time the point
clouds are loaded. If the use of floating point numbers implies losing precision offsets
and scales are used. Each dataset owns a metadata file (JSON format) containing
all information required to retrieve, load and render the dataset properly. These
metadata files store information such as the name of the dataset, its coordinate
system and the offset and scale (if used) of the point clouds. So this, the structure
generated in our proposal stores the actual values when possible, avoiding many
operations that should be performed during the load stage.

4. Results and Application

In this section, the results of the evaluation of GVLiDAR are presented and anal-
ysed. Our test platform is an Intel Core i7 4790, 32 GB of RAM DDR3 with a
Nvidia GeForce GTX Titan. The screen resolution was 2048×1152 under different
browsers.

LiDAR data used come from two repositories: PNOA and CA13. The datasets
were obtained by airborne sensors. The dataset for the PNOA test is available in the
Spanish GIS database (IDEE) (Instituto Geográfico Nacional 2015). Specifically,
we have used the region of Galicia that contains over 27.6 billion of points (see Fig-
ure 10). The airborne LiDAR survey of the study area was performed and processed
in 2009 and 2010 by PNOA (Plan Nacional de Ortofotograf́ıa Aérea) with a LiDAR

14



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Figure 10. Selection page of GVLiDAR. We employ GoogleMaps API in order to show users the datasets

available and their extension. The green square delimits the area with point data, in this case, the PNOA
(Galicia, Spain) dataset used in this paper.

Figure 11. OpenTopography website, specifically its data selection tool. The red zone indicates CA13

dataset that is located in San Luis Obispo County, California.

data acquisition of 0.5 point/m2. CA13 (OpenTopography 2015) (see Figure 11) is
located in San Luis Obispo County, California, and extends approximately 75 miles
north to Monterey County. Overall LiDAR and orthophotography acquisition of
the DCCP San Simeon survey area occurred between January 29 and February 25,
2013, and encompasses approximately 198,000 acres (801 square kilometers). For
optimal capture of the intertidal zone, WSI acquired LiDAR data of the coastline
during seasonal low tides between, February 7 and February 10, 2013. The point
density of the image is 22.06 points/m2 and dataset has 17.7 billion points.

The next subsections focus on the analysis of GVLiDAR in three different key
points: the analysis of the functionality, the performance in terms of FPS and data
retrieval time.

15



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Figure 12. Distance measurement of one of the roads contained in the CA13 LiDAR dataset, from A to

B, using GoogleMaps only.

4.1. Functionality

In this section, experiments were performed on the system described above and
the browser Windows Chrome 42.0.2311.135 (64 bits). As previously mentioned,
few LiDAR web frameworks present a measurement tool. So the functionality of
GVLiDAR is analysed in comparison with Potree proposal using CA13 dataset.
The measurement parameters of the analysis depend on the subject that tool is
applied to. We have recreated a framework that must take accurate measurements
about the length of roads. For instance, this is necessary for institutions in order
to calculate the cost of road maintenance. In general, the measurements require
working with a point of view close to the roads in order to obtain a high LOD
of them. Figure 12 shows the zone of road that we want to measure, starting on
position A and finishing on position B.

Potree visualizes up to 1 million points using a multi-resolution technique in
order to keep good frame rates and a low memory consumption. This limit can
be raised up to 4 million; nevertheless, the default configuration of the framework
was used due to 1 million points are enough to show LiDAR data with high detail
in order to measure the road. Potree uses about 1.3 GB of RAM in the beginning
of the procedure of measurement on position A; however, it needs up to 4GB of
RAM when the user reaches position B. All points rendered during the procedure
of measurement are kept in memory browser which could reach the limitations of
software or hardware due to the requirements of memory used. Chrome has a limit
of 4GB of RAM per tab; therefore, Potree causes the closing of its tab during the
test losing all the measures. This memory limitation can be found in all 32 bits
web browsers and the 64 bits versions of Chrome for Windows. Here we should
also stress that Potree allows the measurement of distances of a given section but,
it does not give the total distance of a pathway.

On the other hand, GVLiDAR provides the capability of transferring only chosen
sections of data. This enables to visualize and process the data without transferring
unneeded points. Figure 13 shows the section of the road that the user loads in

16



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Figure 13. GVLiDAR point cloud render of the road from CA13 with the same distance measurement

realized previously in GoogleMaps.

GVLiDAR to measure the road from position A to position B in CA13 dataset.
About 500 MB of RAM and 800 of VRAM are the storage requirements in this case.
GVLiDAR has a considerable margin regarding the 4GB Chrome browser limit in
order to measure the length of the road while Potree may experience stability
problems due to the memory management.

In summary, with high levels of resolution and an intense use of the application,
Potree could fault due to the high requirements of storage. However, GVLiDAR
exploits the capability of on-demand data that allows minimizing the storage re-
quirements and generates the measurements on-the-fly without the need of further
pre-processing.

4.2. Performance

Performance in terms of FPS is another important aspect to be analysed. In
this section, experiments were performed on the system described above and the
browser Firefox 41 (64 bits). The point clouds used in our test are shown in Figure
14, indicated with white squares (see Figure 14(a)). Figure 14(b) shows a zoom of
the largest point cloud inside one of the zones.

Figure 15 shows the results of the performance tests for each dataset where N
stands for the number of points rendered in the Visualization page. V P1 and V P2
are two different points of view in which the camera is located in the 1/4 and
3/4, respectively, of the full 2D convex hull. This graph shows the good results in
terms of frame rate obtained by GVLiDAR for five test regions. Thus, for example,
when 20,179,576 points are rendered, up to 60 FPS are achieved, while maintaining
rendering quality. For larger regions (up to 51 million points) GVLiDAR achieves
real-time interaction (above 20 FPS) for both VP1 and VP2. Even rendering 103
million points it is capable of reaching 42 FPS for VP2. Observe that GVLiDAR is
able to render up to 281 million points, which is not achieved in other applications
with the exception of Potree.

Frameworks such as IDECanarias or Lidar-Online achieve similar performances
for a small number of points rendered (350,000 or 1,000,000). Other frameworks

17



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Figure 14. Test zones: (Top) Each white square indicates a selected test zone; (Bottom) Point cloud in

the Visualization page for the largest zone, N = 281,152,780

such as FugroViewer and Potree achieve good results applying LOD techniques
that remove points from the scene.

These performance tests have led us to stablish two different theoretical point
limits in GVLiDAR considering the current GPU market. The maximum amount
of points that can be stored in the 12 GB of VRAM available on the Titan X was
281 million, meanwhile, 103 million points is the performance limit of the GPU,
that is, the maximum amount of points that is able to handle with relative good
performance (between 10 and 42 FPS).

4.3. Data retrieval and data load times

In this section, retrieval times and load times were measured to confirm the prac-
tical usability of our framework. Specifically, we have considered the load times as
the time spent during the client-side processing of the points (discard points, set

18



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Figure 15. GVLiDAR Performance in terms of FPS, where N represents the number of points rendered

in the Visualization page.

indexes, prepare data to send it to GPU buffers, among other tasks). The retrieval
times are considered as the time required for moving the data from the server to
the client machine. Therefore, the sum of both times (retrieval + load), which we
will call wait time, represents the elapsed time between a users makes a data query
and the point cloud is rendered on the screen. This experiment was performed on
an Apache 2.215 server under CentOS that consists of an Intel Xeon ES-2603v3
with 64 GB of RAM, and a HP 4TB 6G SATA hard drive. The network transfer
speed is 90 Mbps and the browser is Firefox 41 (64 bits).

Figure 16 shows how the load, the retrieval and the wait time vary with the
number of points requested. The graph reflects the worst possible scenario where
all data selected by the user must be entirely retrieved from server. It is quite clear
from the graph that times increase almost linearly along with N due to the size of
each point is always 17 bytes.

As commented during Section 3.1, browsers can store all retrieved data in the
client local disk (under a given file size) in order to increase performance in subse-
quent retrievals. The data structure used by GVLiDAR allows this data caching.
Therefore, considering the best possible scenario, where all selected data is already
cached in the client disk, the retrieval time would be zero making the wait time
equal to the load time. Furthermore, previously discarded points are cached; in
consequence, the request of neighbouring areas can be accessed with lower load
time.

Although the time spent retrieving non-cached data may become high when
starting to retrieve more than 25 million points this results were obtained without
using any kind of compression algorithms. Currently, we are working on a custom
compressed version of our data structure that fits the needs of GVLiDAR and
greatly reduces the retrieval times and the server disk requirements. First tests
show that this new compression in conjunction with the GZIP algorithms applied
by most servers (Apache, Express ) would allow us to reduce the size of the LAS
files by between 80% and 90% obtaining equal or even best results than using
LASZip.

19



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Figure 16. Retrieval times from remote server.

5. Conclusions

GVLiDAR is a web framework with a client-server architecture that allows to
obtain LiDAR data on-demand. This enables to visualize and process the data
without transferring unneeded points. Furthermore, while other web frameworks
achieve good performance handling very limited point sets, GVLiDAR achieves
real time interaction, being able to render much more data point sets. About 103
million points can be handled, and up to 281 million points could be rendered
with an acceptable interaction. On the other hand, GVLiDAR enables geospatial
measurements directly over the 3D point cloud such as area, length or volume.
GVLiDAR outperforms other well-known and commonly used web or desktop Li-
DAR frameworks.

As future work, our primary focus is to achieve capabilities to work with larger
zones using out-of-core techniques but maintaining a web framework aimed to
retrieve data on demand. The objective of GVLiDAR is, in the near future, to
offer as many public datasets as possible and allow users to easily upload their
private point clouds, aiming to keep the advantages of web applications, instant-
access and lack of setup or installation processes.

Acknowledgements

The LiDAR datasets used in this article belong to:

• LiDAR-PNOA data repository (Instituto Geográfico Nacional 2016). Pro-
vided by c©Instituto Geográfico Nacional de España.
• PG&E Diablo Canyon Power Plant (DCPP): San Simeon, CA Central Coast

dataset (OpenTopography 2015). This material is based on LiDAR Point
Cloud Data Distribution and Processing services provided by the OpenTo-
pography Facility with support from the National Science Foundation under
NSF Award Numbers 1226353 & 1225810.

20



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Funding

This research has been supported by Galician Government (Xunta de Galicia) un-
der the Consolidation Program of Competitive Reference Groups, co-founded by
FEDER funds of the EU (Ref. GRC2013 / 055); under the Consolidation Pro-
gram of Competitive Research Units, co-founded by FEDER funds of the EU (Ref.
R2014/049); and by the Ministry of Economy and Competitiveness of Spain and
FEDER funds of the EU (Project TIN2013-42148-P and TIN2016-75845-P).

References

Alexander Krivutsenko. 2015. “Lidarview.” Accessed: 10/2/2015. http://lidarview.com/.
American Society for Photogrammetry and Remote Sensing. 2011. “LAS specifica-

tion.” Accessed: 10/2/2015. http://www.asprs.org/Committee-General/LASer-LAS-
File-Format-Exchange-Activities.html.

Arrowsmith, J. R., and O. Zielke. 2009. “Tectonic geomorphology of the San Andreas
Fault zone from high resolution topography: an example from the Cholame segment.”
Geomorphology 113 (1–2): 70–81.

Bóo, M., M. Amor, and J. Döllner. 2007. “Unified hybrid terrain representation based on
local convexifications.” GeoInformatica 11 (3): 331–357.

Boudreau, J., R.F. Nelson, H.A. Margolis, A. Beaudoin, L. Guindon, and D.S. Kimes.
2008. “Regional aboveground forest biomass using airborne and spaceborne LiDAR in
Québec.” Remote Sensing of Environment 112: 3876–3890.

Brunori, C. A., R. Civico, F. R. Cinti, and G.Ventura. 2013. “Characterization of active
fault scarps from LiDAR data: a case study from Central Apennines (Italy).” Interna-
tional Journal of Geographical Information Science 27 (7): 1405–1416.

Buján, S., E. González-Ferreiro, L. Barreiro-Fernández, I. Santé, E. Corbelle, and D. Mi-
randa. 2013. “Classification of rural landscapes from low-density lidar data: is it theo-
retically possible?.” International Journal of Remote Sensing 34 (16): 5666–5689.

Dielmo 3D S.L. 2015. “Dielmo.” Accessed: 10/2/2015. http://www.dielmo.com/.
Fugro Geospatial Services. 2015. “FrugoViewer.” Accessed: 10/2/2015.

http://www.fugroviewer.com/.
Gobierno de Canarias. 2015. “Visor IDECanarias.” Accessed: 10/2/2015.

http://visor.grafcan.es/visorweb/.
González-Ferreiro, E.M., D. Miranda, L. Barreiro-Fernández, S. Buján, J. Garćıa-Gutiérrez,

and U. Diéguez-Aranda. 2013. “Modelling stand biomass fractions in Galician Eucalyp-
tus globulus plantations by use of different LiDAR pulse densities.” Forest Systems 22
(3): 510–525. http://revistas.inia.es/index.php/fs/article/view/3878.

Hasegawa, H., H. P. Sato, and J. Iwahashi. 2007. “Continuous caldera changes in Miyake-
jima volcano after 2001.” Bulletin of Geospatial Information Authority of Japan 54:
60–64.

Instituto Geográfico Nacional. 2015. “Plan Nacional de Ortofotograf́ıa Aérea (PNOA).”
Accessed: 10/28/2015. http://pnoa.ign.es/presentacion.

Instituto Geográfico Nacional. 2016. “PNOA, download center.” Accessed: 04/11/2016.
http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=LIDAR.

Koca, C., and U. Güdükbay. 2014. “A hybrid representation for modeling, interactive
editing, and real-time visualization of terrains with volumetric features.” International
Journal of Geographical Information Science 28 (9): 1821–1847.

Kuder, M., and B. Zalik. 2011. “Web-Based LiDAR Visualization with Point-Based Ren-
dering.” In 2011 Seventh International Conference on Signal-Image Technology and
Internet-Based Systems (SITIS), 38–45.

Landy, J. C., A. S. Komarov, and D. G. Barber. 2015. “Numerical and Experimental
Evaluation of Terrestrial LiDAR for Parameterizing Centimeter-Scale Sea Ice Surface
Roughness.” IEEE Transactions on Geoscience and Remote Sensing 53 (9): 4887–4898.

21



December 16, 2016 International Journal of Remote Sensing GVLiDAR

Lewis, P., C. P. Mc Elhinney, and T. McCarthy. 2012. “LiDAR Data Man-
agement Pipeline; from Spatial Database Population to Web-application Visual-
ization.” In Proceedings of the 3rd International Conference on Computing for
Geospatial Research and Applications, Washington, D.C.. COM.Geo ’12. 16:1–16:10.
http://doi.acm.org/10.1145/2345316.2345336.

LiDAR Online. 2015. “LiDAR Online web tools.” Accessed: 10/2/2015. http://www.lidar-
online.com/tools/maps/.

Markus Schtz. 2015. “Potree.” Accessed: 10/2/2015. http://potree.org/.
Moller, T.A., E. Haines, and N. Hoffman. 2008. Real-Time Rendering, Third Edition. A.K.

Peters Ltd.
Munshi, A., D. Ginsburg, and D. Shreiner. 2008. OpenGL ES 2.0 Programming Guide.

Addison-Wesley.
OpenTopography. 2015. “CA13, PG&E Diablo Canyon Power Plant (DCPP): San Simeon,

CA Central Coast.” Accessed: 10/28/2015.
Paredes, E.G., Montserrat Bóo, Margarita Amor, J.D. Bruguera, and J. Döllner. 2011.

“Extended hybrid meshing algorithm for multiresolution terrain models.” International
Journal of Geographical Information Science 26 (5): 771–793.

Parisi, T. 2012. WebGL - Up and Running. O’Reilly Media.
Rapidlasso. 2015. “LAStools.” Accessed: 10/2/2015. http://rapidlasso.com/lastools/.
Sallenger Jr., A. H., W. Krabill, J. Brock, R. Swift, M. Jansen, S. Manizade, B. Richmond,

M. Hampton, and D. Eslinger. 1999. “Airborne laser study quantifies El Niño-induced
coastal change.” Eos, Transactions, American Geophysical Union 80 (8): 89–92.

Tarolli, P. 2014. “High-resolution topography for understanding Earth surface processes:
Opportunities and challenges.” Geomorphology 216: 295–312.

Tarolli, P., and D. G. Tarboton. 2006. “A new method for determination of Most Likely
Initiation Points and the evaluation of Digital Terrain Model scale in terrain sta-
bility mapping.” Hydrology and Earth System Sciences Discussions 3 (2): 395–425.
https://hal.archives-ouvertes.fr/hal-00298671.

The Khronos Group Inc. 2015a. “OpenGL Shading Language.” Accessed: 10/2/2015.
https://www.opengl.org/documentation/glsl/.

The Khronos Group Inc. 2015b. “WebGL.” Accessed: 10-2-2015.
https://www.khronos.org/webgl.

Uday Verma. 2015. “Plas.io.” Accessed: 10/2/2015. http://plas.io/.
Ventura, G., G. Vilardo, C.Terranova, and E. B. Sessa. 2011. “Tracking and evolution

of complex active landslides by multi-temporal airborne LiDAR data: the Montaguto
landslide (Southern Italy).” Remote Sensing of Environment 115 (12): 3237–3248.

Yan, W. Y., A. Shaker, and N. El-Ashmawy. 2015. “Urban land cover classification using
airborne LiDAR data: A review.” Geomorphology 158: 295–310.

Yang, B., W. Shi, and Q. Li. 2005. “An integrated TIN and grid method for constructing
multi-resolution digital terrain models.” International Journal of Geographical Informa-
tion Science 19 (10): 1019–1038.

Zhang, J. 2010. “Multi-source remote sensing data fusion: status and trends.” International
Journal of Image and Data Fusion 1 (1): 5–24.

22


