-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Repositorio da Universidade da Corufia

International Journal of Parallel Programming
The final publication is available at Springer
via http://dx.doi.org/10.1007/s10766-015-0362-9

Locality-Aware Automatic Parallelization for GPGPU with
OpenHMPP Directives

José M. Andion - Manuel Arenaz -
Francois Bodin - Gabriel Rodriguez -
Juan Tourino

Received: 15 August 2014 / Accepted: 10 March 2015

Abstract The use of GPUs for general purpose computation has increased dramati-
cally in the past years due to the rising demands of computing power and their tremen-
dous computing capacity at low cost. Hence, new programming models have been
developed to integrate these accelerators with high-level programming languages,
giving place to heterogeneous computing systems. Unfortunately, this heterogeneity
is also exposed to the programmer complicating its exploitation. This paper presents
a new technique to automatically rewrite sequential programs into a parallel coun-
terpart targeting GPU-based heterogeneous systems. The original source code is ana-
lyzed through domain-independent computational kernels, which hide the complexity
of the implementation details by presenting a non-statement-based, high-level, hier-
archical representation of the application. Next, a locality-aware technique based on
standard compiler transformations is applied to the original code through OpenHMPP
directives. Two representative case studies from scientific applications have been
selected: the three-dimensional discrete convolution and the simple-precision gen-
eral matrix multiplication. The effectiveness of our technique is corroborated by a
performance evaluation on NVIDIA GPUs.

Keywords heterogeneous systems - GPGPU - locality - automatic parallelization -
OpenHMPP - domain-independent kernel
1 Introduction

The use of GPUs for general purpose computation (GPGPU) has increased dramat-
ically in the past years mainly due to two reasons. On the one hand, the hard-

J.M. Andién - M. Arenaz - G. Rodriguez - J. Tourifio
Dep. de Electronica e Sistemas, Universidade da Coruna, Campus de Elvifia, 15071 A Coruiia, Spain
E-mail: {jandion,manuel.arenaz,grodriguez,juan} @udc.es

F. Bodin
Institut de Recherche en Informatique et Systemes Aléatoires, Campus de Beaulieu, 35042 Rennes, France
E-mail: bodin@irisa.fr

https://core.ac.uk/display/199450245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10766-015-0362-9

2 José M. Andién et al.

ware industry has not been able to satisfy the rising demands of computing power
while preserving the sequential programming model. Computer users expect their
applications to run faster with each new generation of microprocessors, but this is
not the case in the multicore era. A sequential program will only run on one of the
cores, which will not become faster. Thus, the software community has been forced
to develop and use parallel programming tools. On the other hand, GPUs offer a
tremendous computing capacity at low cost due to the economic pressure of the video
game industry. The transition from fixed-function to programmable shaders has made
these computational resources useful for general purpose programming [19]. First
approaches (OpenGL [31]], Cg [23]]) forced programs to look like graphics applica-
tions that drew triangles and polygons, limiting the accessibility of GPUs. Therefore,
new programming models have been developed to integrate GPUs with high-level
programming languages, giving place to heterogeneous computing systems.

The main drawback of these systems is that heterogeneity is exposed to the de-
veloper. Programming is hard, and parallel architectures make it harder because they
require additional tasks to parallelize and tune for optimum performance. With most
tools for GPU programming, developers have to deal with many low-level char-
acteristics and limitations. Writing a GPU application by hand consumes a huge
quantity of time, even to experienced programmers, and it is an error-prone activ-
ity. Exploiting locality in GPUs is key to achieving good performance, and it is
more challenging than in CPUs. Moreover, the effect of a code transformation on
the execution time is often unpredictable even for GPU experts. Nowadays, several
directive-based approaches have appeared to program GPU-based heterogeneous sys-
tems (OpenMP 4.0 [28], OpenACC [32], OpenHMPP [27]], PGI Accelerator [36],
OpenMPC [20], hiCUDA [13]]). Directives combine portability and good perfor-
mance at the same time [21]. Thus, we believe that a directive-based approach is a
suitable choice for the automatic parallelization of sequential applications on GPUs.

The main contribution of this paper is three-fold:

1. A new technique to automatically rewrite sequential programs into a parallel
counterpart targeting GPU-based heterogeneous systems. This locality-aware tech-
nique exploits the GPU hardware architecture through OpenHMPP directives.

2. The successful application of this technique to two representative case studies
extracted from compute-intensive scientific applications: the three-dimensional
discrete convolution (CONV3D), and the simple-precision general matrix multi-
plication (SGEMM).

3. The performance evaluation of our technique corroborating its effectiveness.
The remainder of the paper is organized as follows. Section [2] briefly introduces

GPGPU, describes the CUDA programming model [26]] and highlights the GPU hard-
ware features that impact on performance. Section[3|reviews the OpenHMPP standard
and the additional functionality supported by CAPS Compilers [22] that is relevant
for this work. Section [4] gives a summary on the background of compilation tech-
niques used in this paper, namely the KIR [1] and the chains of recurrences [37].
Section [5] introduces the new locality-aware optimization technique for GPUs. Sec-
tion [6] details the operation of our approach with the CONV3D and SGEMM case
studies. Section [/| presents the performance evaluation. Section [8] discusses related
work and, finally, Sect.[9]concludes the paper and presents future work.

Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives 3

2 GPGPU with the CUDA Programming Model

GPUs were designed to show images on displays. Certain stages of the graphics
pipeline perform floating-point operations on independent data, such as transforming
the positions of triangle vertices or generating pixel colors. Therefore, GPUs execute
thousands of concurrent threads in an SIMD fashion requiring high-bandwidth mem-
ory access. This design goal is achieved because GPUs devote more transistors than
CPUs to data processing instead of data caching and control flow.

In this paper we have used NVIDIA GPUs. This company developed CUDA [26]],
which enables the use of C as GPU programming language. The programmer defines
C functions, called CUDA kernels, that specify the operation of a single GPU thread.
Three ideas are behind CUDA. First, lightweight parallel threads are organized into
a hierarchy: a grid of blocks, a block of threads. Blocks may execute in parallel
allowing easy scalability. Second, CUDA defines a shared memory between the
threads of a block to enable fast data interchange. And third, the execution of the
threads of a block can be synchronized with a barrier. In addition, CUDA exposes a
complex memory hierarchy that has to be explicitly managed by the programmer.

The hardware implementation of CUDA consists of an array of Streaming Mul-
tiprocessors (SMs), where each SM executes the threads of a block in groups of 32
called warps. The threads of a warp execute one common instruction at a time. The
compute capability of an NVIDIA GPU defines its core architecture (Tesla, Fermi,
Kepler), supported features (e.g., double-precision floating-point operations), tech-
nical specifications (e.g., the maximum dimensions of the hierarchy of threads) and
architectural specifications (e.g., the number of warp schedulers).

In summary, CUDA exposes the GPU hardware architecture through program-
ming features that the GPGPU developer must handle to generate efficient code:

1. Threadification, i.e., the policy that guides the creation of GPU threads and what
code they will execute. Each thread has a unique identifier that is commonly used
to access data stored in the GPU memories, in a similar way to loop indices.

2. Thread grouping, so that threads are dispatched in warps to SMs.

The CUDA C Best Practices Guide [25] also prioritizes some strategies to improve
the performance of the GPU code:

3. Minimization of CPU-GPU data transfers.

4. Coalesced accesses to global memory, i.e., several memory accesses from differ-
ent threads are handled by a unique transaction to the global memory.

5. Maximum usage of registers and shared memory to avoid redundant accesses to
global memory (the biggest but slowest one).

6. Avoidance of thread divergence, i.e., threads within the same warp following dif-
ferent execution paths.

7. Sufficient occupancy, i.e., sufficient number of active threads per SM.

8. The number of threads per block must be a multiple of 32.

The most relevant programming features in points (I)—(8) have been considered
in the design of our locality-aware technique to tune the performance of the automat-
ically generated GPU parallel code. The next section describes the support provided
by OpenHMPP for those programming features.

4 José M. Andién et al.

3 OpenHMPP Directives and CAPS Compilers

CAPS Entreprise offers a complete suite of software tools to develop high perfor-
mance parallel applications targeting heterogeneous systems based on manycore ac-
celerators. The most relevant ones are CAPS Compilers [22], which generate
CUDA [26] and OpenCL [30] code from a sequential application annotated with
compiler directives. Directive-based approaches (as the well-known OpenMP [28]])
try to reduce the programming effort and provide more readable codes. In this way,
these approaches ease the interaction between application-domain experts and pro-
grammers. The sequential and the parallel versions coexist in the same file offering an
incremental way to migrate applications. The developed codes are independent from
the hardware platform and new hardware accelerators supported by the translator are
automatically exploited. In addition, reasonable performance is achieved compared
to hand-written GPU codes [21]. Thus, we consider that compiler directives offer a
convenient instrument for the automatic parallelization of sequential applications on
GPU-based heterogeneous systems.

Among the numerous proposals of compiler directives to exploit these systems,
three standardization efforts have emerged throughout the last years: OpenHMPP [27]],
OpenACC [32] and, finally, OpenMP 4.0 [28]]. All of them follow a similar ap-
proach regarding the interaction between the host and the accelerator: they present a
Remote Procedure Call (RPC) paradigm that offloads a region of code from the CPU
to be executed on the GPU. The address spaces of the host and the accelerator are
considered to be disjoint, but data transfers are automatically inserted when needed.
However, the programmer is allowed to explicitly manage these transfers in order to
improve the performance (for instance, overlapping them with computations through
asynchronous calls or specifying only portions of arrays to be copied).

Nevertheless, there exist some differences between the functionality offered by
the standards. GPUs commonly have software-managed caches (e.g., the shared mem-
ory in the CUDA programming model) whose exploitation is key to achieving good
performance. Only OpenACC and OpenHMPP provide a mechanism to explicitly
handle this memory, while OpenMP relies on the implementer. Another significant
difference exists when specifying parallelism. OpenHMPP exposes a set of threads
where each thread executes a loop iteration. OpenACC presents three levels of paral-
lelism: the programmer can launch a set of gangs executing in parallel, where each
gang may support multiple workers, each with vector or SIMD operations. OpenMP
presents a set of threads that are organized in feams and can run loop iterations or
explicit tasks. This standard can exploit SIMD operations too.

In this work, we have selected OpenHMPP (formerly known as HMPP [8]]) and
the extension HMPPCG (HMPP Codelet Generator) because these sets of directives
provide unique functionality to transform loop nests, which allow the fine tuning of
the generated GPU code, and both their compiler and their runtime are much more
mature. However, these loop transformations can be performed without directives and
we will be able to use OpenACC when a complete implementation is developed. Re-
garding the recently approved OpenMP 4.0, the explicit management of the complete
memory hierarchy by the programmer has not been considered, but our work can help
to exploit locality in the implementations of the standard.

Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives 5

OpenHMPP supports the programming features mentioned in points (I)-(8) of
Sect.2]in the following way:

1. The gridify directive performs threadification on loops and thread grouping
as follows. For simple loops, it generates consecutive GPU threads for consecu-
tive loop iterations, one thread per iteration. For loop nests, it implements a 2D
threadification process with the two outermost loops in the nest; consecutive GPU
threads are created for consecutive iterations of the second loop.

2. The advancedload and delegatedstore directives, with the asynchronous
clause, allow the overlapping between CPU-GPU data transfers and computa-
tions. In addition, it is possible to specify only portions of arrays to be transferred.

3. The permute, unroll, fuse, tile...directives perform standard compiler trans-
formations on loops. These directives are used to fine tune the performance of the
generated GPU code.

4. The gridify directive also enables the allocation of program variables on the
different GPU memories (for instance, the shared clause for the shared memory).
Our technique will use these OpenHMPP mechanisms to automatically generate

GPU code. Next, the compilation foundations of our approach are summarized.

4 Background of Compilation Techniques

Despite great advances in compiler technology during the last decades, current com-
pilers usually fail to parallelize even simple sequential programs. For the success-
ful automatic parallelization of applications, two complex problems have to be ad-
dressed: first, the detection of parallelism to determine what parts in the original
source code can be executed concurrently; and second, the generation of efficient
parallel code taking into account the underlying hardware architecture.

This section covers parallelism detection and is organized as follows. Section [&.1]
briefly describes the KIR [1], a novel compiler Intermediate Representation (IR).
After that, Sect. introduces the chains of recurrences, an algebraic formalism for
the characterization of memory access patterns.

4.1 The KIR: an IR for the Detection of Parallelism

Compilers typically address the automatic detection of parallelism by running classi-
cal dependence analyses on standard statement-based IRs (e.g., Abstract Syntax Trees
—ASTs—, Data Dependence Graph —DDG—, Control Flow Graph —CFG—, Dom-
inator Tree —DT—). Such IRs are well suited for code generation, but not for the
detection of parallelism. Previous work presented the KIR [1], a new compiler IR
that eases the automatic detection of parallelism in sequential codes. Our IR hides the
complexity of the implementation details presenting a non-statement-based,
high-level, hierarchical representation of the application.

The KIR is based on the concept of domain-independent computational kernel
(from now on, diKernel). This new IR consists of a set of diKernels and dependence
relationships between them representing DDG edges that cross diKernel boundaries.

6 José M. Andién et al.

In order to capture the order in which diKernels are executed, flow dependences be-
tween diKernels are identified using the CFG, the DDG, the DT and the production
and use of values throughout the program. Finally, the KIR also comprises a hierarchy
of execution scopes (based on the hierarchy of loops) that reflects the computational
stages of the sequential program and groups diKernels into these stages.

Multiple definitions of the term computational kernel have been proposed in the
literature in the context of automatic program analysis. The diKernels do not rep-
resent domain-specific problem solvers. Instead, they characterize the computations
carried out in a program from the point of view of the automatic detection of paral-
lelism. A detailed description of the collection of diKernels can be consulted in [5].
The diKernels that appear in this paper are:

— scalar assignment v = e, which stores the value of the expression e in the memory
address specified by the scalar variable v. The value e is not dependent on v, that
is, neither e nor any function call within it contain occurrences of v.

— scalar reduction v = v @ e(i) where the variable v is a scalar, @ is an associative
and commutative operator, i is an affine expression of the enclosing loop indices,
and e(7) is an expression that may depend on i but it must not depend on v.

- regular reduction A[i] = A[i] @ e(i) where A[i] represents an entry of the array
A, i is an affine expression of the enclosing loop indices, & is an associative and
commutative operator, and e(i) is an expression that may depend on i but it must
not depend on A.

For illustrative purposes, consider the source code of the 3D convolution operator
shown in Fig.[Ta] The corresponding KIR is shown in Fig.[Tb] The loops are perfectly
nested, thus they are represented by a unique execution scope ES_for; ; ;. One diKer-
nel is created for each temporary variable, which stores the calculations in each 3D
axis: K<tempxg>, K<tempypg> and K <tempzzy>. Note that the subindices refer to
the line number in the source code (e.g., the term tempxp refers to the statement in
lines of Fig.[Ta). Their contribution to the final result K <outpufyg> is symbol-
ized by diKernel-level flow dependences (=). Scalars tempx, tempy and tempz are
assigned new values in each for; ; ; iteration, thus K<tempxg>, K <tempyg> and
K <tempzzy> are scalar assignments. In contrast, the value stored in outputi][][k]
depends on the previous one and thus K <outpuizg> is a regular reduction. The diKer-
nels that represent loop indices are not shown because they are already represented
in the notation of the execution scope and the types of the remaining diKernels.

4.2 Chains of Recurrences in the KIR

Chains of recurrences (from now on, chrecs) are an algebraic formalism to represent
closed-form functions which have been successfully used to expedite function evalu-
ation at a number of points in a regular interval [37]]. Given a constant ¢, a function
g defined over the natural numbers and zero (NU {0}), and the operator +, the chrec
{¢,4+,g} is defined as a function:

i—1
{9, +.8}() =9+ ;)g(j) with i € NU{0}

Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives 7

1|int i, j, k, sizex, sizey, sizez;

2| float coefx,coefy,coefz ,*input,*output;

3

4| for (i = 0; i < sizex; i++) {

5| for (j = 0; j < sizey; j++) { ROOT EXECUTION SCOPE
6 for (k = 0; k < sizez; k++) {

7 float tempx = input[i][j][kl+coefxx ES_for, , (Fig. 1a, lines 4-32)
8 (

9 input [2!.—1] [q][k]+}nput[}+1] [q][k]+ K <tempx, >
10 input [1-2][j] [kI+input [i+2] [j][k]+ scalar assignment
11 input [i-3]1[j] [k]+input [i+3][j][k]+

12 input [1-4]1[j] [k]+input [i+4]1[j][k]

13)

14 float tempy = input[il[jl[kl+coefy*
15 (scalar assignment
16 input [i][j-1] [k]l+input [i]J[j+1] [k]+

17 input [i][j-2] [k]l+input [i][j+2] [k]+

18 input [i]1[j-3] [k]+input [i]1[j+3][k]+

19 input [i]1[j-4] [k]l+input [i][j+4] [k] K <tempz,, >
20) scalar assignment
21 float tempz = input[i]l[j]l[k]l+coefz*
22 (
23 input [i]1[j][k-1]1+input [i1[j][k+1]1+
24 input [11[j][k-2]+input [i1[j][k+2]+ K < output,, >
25 input [1][j][k-3]+input [i1[j][k+3]+ regular reduction
26 input [iJ[j] [k-4)+input [i][j] [k+4]
27)
28 output [i1[j]1[k] =
29 output [i][j][k]+tempx+tempy+tempz; (b) KIR.
30 T
31| 3}
32|}

(a) Source code.

Fig. 1: The 3D discrete convolution operator (CONV3D).

The chrecs, which are provided by the KIR, have demonstrated to be a powerful
representation of the complex loops and the memory accesses that appear in full-scale
real applications [2]. For example, the loop index of for; in Fig.[Ta]takes integer values
in the interval [0,sizex — 1]. The chrec {0,+,1} provides a closed-form function to
compute the value of i at each for; iteration and thus to determine the memory access
pattern i in the first dimension of input|i][j][k] (see line[7]of Fig.[1a).

The algebraic properties of chrecs provide rules for carrying out arithmetic op-
erations with them [37]]. For instance, the addition of a chrec and a constant c¢ is
given by {¢,+,¢} +c = {¢ +¢,+,g}. This rule enables the representation of the
access pattern in the first dimension of input[i — 1][j][k] (see line [9] of Fig. as
{0,4,1} — 1 = {—1,+,1}. Hence, chrecs can be computed to completely describe
the access pattern for n-dimensional arrays. For illustrative purposes, the first two
accesses to input are modeled as:

CHREC_input, = [{0,+,1}][{0,+, 1}][{0,+,1}]

CHREC _inputy = [{—1,+,1}][{0,+,1}][{0,+,1}]
Note that a chrec is computed for each one of the dimensions of the array.
In this paper, we introduce the term instantiated chrecs to refer to the chrecs that
represent the memory accesses performed by each GPU thread after loop threadifica-
tion (see point (I of Sect.[2). Hence, we fix the value of the index of the threadified

8 José M. Andién et al.

loop that the thread executes. For instance, assuming that for; is threadified, the in-
stantiated chrecs for input[i][j][k] (see line[7|of Fig.|la) for the GPU thread 70 are:

CHREC _input!® = [{0,+,0}][{0,+, 1}][{0,+,1}]

From now on, the notation of the chrecs with the form {¢,+,0} (i.e., g = 0) will be
simplified to {¢ }. In the previous example, the chrec {0, 4,0} will be written as {0}
representing that thread T0 always executes input[i][j][k] with i = 0.

5 Locality-Aware Automatic Generation of Efficient GPGPU Code

The generation of parallel code is a complex problem that a parallelizing compiler
has to address. Previous work [1]] presented an OpenMP-based hardware-independent
approach targeting multicore processors that consists of two steps:

1. Filtering out the spurious diKernel-level dependences, which are those that do not
prevent the parallelization of the sequential application. The subgraphs of the KIR
that represent the computations carried out on privatizable scalar variables [11]
are shaded to be omitted in the discovery of parallelism. Regarding the example
of Fig. [T} scalars tempx, tempy and tempz are loop temporaries as they are recom-
puted at the beginning of each for; ; ; iteration. Thus, they are privatizable and the
corresponding parts of the KIR are shaded (see the shaded region in Fig. [Tb).

2. The construction of an efficient parallelization strategy based on the application
features captured by the KIR. The parallel code generation is based on the exis-
tence of parallelizing transformations for each type of diKernel. For instance,
a scalar reduction can be parallelized in three phases with privatization sup-
port [34]. A regular reduction represents conflict-free loop iterations that can be
transformed into forall parallel loops. Other examples are discussed in [4].

This OpenMP-based hardware-independent approach has demonstrated to be
effective for multicore processors [1l]. However, for peak performance on the GPU,
the generated code must exploit its characteristic hardware architecture (in particu-
lar, the complex memory hierarchy). Hereafter, we introduce a new locality-aware
code generation technique that extends the previous approach considering the most
impacting programming features enumerated in points (I)—(8) of Sect. 2} loop thread-
ification (I), thread grouping (2)), coalesced access to global memory (@), and max-
imum usage of registers and shared memory (3). The minimization of CPU-GPU
data transfers (3) will be addressed with a new automatic partitioning algorithm of
the KIR, which will decide what parts of the computations of full-scale applications
must be executed on the CPU or on the GPU. Therefore, we assume that program
data fits into the GPU memory and, in our experiments (see Sect. , we have mea-
sured the execution times excluding CPU-GPU data transfers. This paper does not
address the avoidance of thread divergence (6) as it is a problem related to the al-
gorithm implemented by the given source code. In addition, maintaining sufficient
occupancy (7) or determining the best block size (8] are programming features very
close to the concrete GPU hardware that executes the code and their optimization
needs runtime information, thus they are out of the scope of this paper.

Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives 9

Algorithm 1 Detection of whether an access to GPU global memory can be coalesced

1: FUNCTION 1SCOALESCEDACCESS
Input: access xg[ix.1][ix.2] - - - [ik.n] to an n-dimensional array x stored in row-major order
Input: loop nest L =Ly,L,,...,L; where L is the threadified loop
Output: returns whether the given access x; can be coalesced after threadifying the loop nest L

2: CHRECSxi < [{ @1, + g1 H{Pr2s + 8k 23] - - - [{Phns +> 8kn]

3: W « warp of GPU threads {70,T1,T2...}

4. for each thread Tiin W do

5: CHRECSJI{I A [{q)]\Tl] :+=ngj] H{qjl\ T3 8k 2}] [{¢kn +: 8, n}]
6: end for

7. if3de{l,....n—1},Tj€e W—{T0} : {d)kd,Jr gkd}#{q)kd +gw})then
8: return false

9: end if

10: CHRECS RANGE i, < U™{90, +. ¢t}

11: if CHRECS_RANGE ;. defines a contiguous range then

12: return true

13: else

14: return (V7j € W— {70} : {¢kn +, gkn} {089, +, gk,,})

15: end if

16: end FUNCTION

5.1 Detection of Coalesced Accesses to the GPU Global Memory

According to the CUDA Best Practices Guide [25]], coalescing is maximized (and
thus memory requests are minimized) if the threads of a warp access consecutive
memory locations. Algorithm [I]identifies coalesced accesses by taking into account
loop threadification, thread grouping and chrecs. As mentioned in Sect. [4.2] for an
access x; to an array x in a loop nest L, the KIR provides the chrecs associated to
each array dimension (see line 2] of Alg. [T). Next, chrecs are instantiated to represent
the memory accesses performed by each GPU thread by fixing the value of the index
of L; that the thread executes (lines 4H6). Assuming row-major storage, consecutive
memory positions are given by consecutive accesses to the last dimension of the array
x. Thus, the first n — 1 chrecs must be the same (lines . Finally, if the union of
the chrecs of the last dimension defines a contiguous range, then the accesses are
coalesced (lines . If the chrecs of the last dimension are equal, then the same
memory position is accessed and only one memory transaction is needed (line [T4).
For illustrative purposes, Fig. [2a and [2c| present the two possibilities to traverse
a 2D array x: row-major traversal (denoted S1) and column-major traversal (S2). Ar-
rays are stored in row-major order in C and thus S1 accesses array x row by row,
exploiting locality and minimizing data cache misses on the CPU. Assume that only
the outer loop of a nest is threadified on the GPU (contrary to the OpenHMPP de-
fault policy —see Sect.[3}—). Hence, each GPU thread will access consecutive mem-
ory positions: T0 will access x[0][0], x[0][1], x[0][2]... (see Fig. 2b). Therefore, for
the iteration j = 0, the threads of the first warp (70, T1, T2...) will access to the
non-consecutive memory locations x[0][0], x[1][0], x[2][0]...and these memory re-
quests cannot be coalesced by the GPU memory controller. Algorithm [I]detects this
non-coalesced access pattern as follows. The KIR provides (see line 2] of Alg.[T):

CHRECS x;. = [{0,+,1}][{0,+,1}]

10 José M. Andién et al.

1| // only for_i is threadified 1| // only for_j is threadified
2| for (i = 0; i <= N; i++) { 2| for (j = 0; j <= N; j++) {
3 for (j = 0; j <= N; j++) { 3 for (i = 0; i <= N; i++) {
4 oo x[i 031 ... 4 oo x[id03] ...
5 } 5 }
6]} 6|1}
(a) Source code S1. (c) Source code S2.
‘ 70 T1 72 ‘ 70 T1 12
(i=0) (i=1) (i=2) (j=0) (=1 (j=2
Jj=0 x[0][0] x[1][0] x[2][0] i=0 x[0][0] +[o][1] +[0][2]
J=1 *[0][1] {11 x[2][1) i=1 x[1][0] *[1[1] +(1]2)
j=2 *[o][2] *1][2] x[2][2] i=2 x[2][0] *2][1] *2][2]
g 1dim {0} {1} {2} g 1dim | {0,+,1} {0,+,1} {0,+,1}
% 2"dim | {0,+,1} {0,+,1} {0,+,1} % 2" dim {0} {1} 2
(b) Non-coalesced accesses. (d) Coalesced accesses.

Fig. 2: Examples of access patterns to the GPU global memory.

Next, chrecs are instantiated (lines [4H0):
CHRECS x!’ = [{0}][{0,+,1}], CHRECS x}" = [{1}][{0,+,1}]...

They are different for the first dimension, thus the threads cannot access consecutive
memory positions (lines [7H9).

In contrast, j drives the access to the last dimension of array x in S2 (see Fig. [2d).
This code will run poorly on the CPU in the common situation when the array x is
bigger than the cache memory. However, on the GPU, T0 will access to x[0][0], x[1][0],
x[2][0].. . (see Fig. 2d). Hence, for the iteration i = 0, the threads of the first warp (70,
T1,T2...) will access the consecutive memory locations x[0][0], x[0][1], x[0][2]. .. and
these memory requests can be coalesced. Algorithm [I|detects this coalesced access
pattern as follows. The KIR provides (see line 2] of Alg. [I):

CHRECS x;, = [{0,+,1}][{0,+,1}]
Next, chrecs are instantiated (lines @H6):
CHRECS x[” = [{0,+, 1}][{0}], CHRECS x}" = [{0,+, 1}][{1}]...

They are the same for the first dimension, thus the threads may access consecutive
memory positions (lines [7H9). The union of the last chrecs {0} U {1}...defines a
contiguous range and therefore the performed accesses maximize coalescing and cor-
rectly exploit the GPU global memory locality (lines[TOHTZ2).

Algorithm [T) is invoked for all the array accesses enclosed in the loop nests of
the program. If the index of the threadified loop does not drive the access to the last
dimension of the array, a general strategy to try to exploit coalescing is to permute
the loops of the nest as will be seen in Sect. [6]

Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives 11

5.2 Maximization of the Usage of Registers and Shared Memory

As mentioned in point () of Sect. 2| the GPU global memory is the biggest but
slowest one. Both registers and shared memory are faster, but they have much less
capacity. Therefore, this complex memory hierarchy should be managed with even
more care than the traditional CPU memory hierarchy to obtain good performance.

Algorithm 2] presents a technique to detect reused data within a GPU thread. First,
it collects all the accesses to an n-dimensional array x in a loop nest L (see line 2] of
Alg. 2). Next, the KIR provides the chrecs associated to each access in each array
dimension (line [3). For each thread, the chrecs are instantiated by fixing the value of
the index of L; that the thread executes (line[3). If the intersection of the instantiated
chrecs for the GPU thread is not empty, then some data are accessed several times
and they can be stored in the GPU registers if they are not modified by another thread
(lines [6H9). The shared memory can be used for the same purpose.

However, the GPU shared memory has been specifically designed to share data
between the threads of a block. Algorithm [3] presents a technique that takes into ac-
count all the accesses to an n-dimensional array x in a loop nest L (see line 2] of
Alg.[3). The KIR provides the chrecs associated to each access in each array dimen-
sion (line [3)). For each thread, the chrecs are instantiated by fixing the value of the
index of L, that the thread executes (lines [5H7). If the intersection of the instantiated
chrecs associated to all the accesses is not empty, then some data are accessed several
times and can be stored in the shared memory (lines [SHIT]).

Another general technique to improve performance is loop tiling. It consists of
partitioning the loop iterations into blocks to ensure that data being used stay in the
faster levels of the memory hierarchy. As explained in Sect. 8} OpenHMPP imple-
ments loop threadification and thread grouping with the two outermost loops in a
nest; consecutive GPU threads are created for consecutive iterations of the second
loop. Therefore, the common m x n tiling breaks coalescing because the step of L, is
different from one and thus consecutive threads will not access consecutive memory
locations. Algorithm [4] presents a technique for loop tiling that preserves coalescing
under OpenHMPP and also considers the promotion of the enclosed scalar variables.
Instead of creating a thread for each access x;, a bigger portion of data to compute
(A) is given to each thread. Hence, the algorithm increments the stepof Ly toi =i+ A
(see line[2]of Alg.[). Scalar variables inside L are promoted to arrays of size A, and
their corresponding reads and writes are transformed into loops preserving depen-
dences (lines[3H6). The optimization of the size of A depends on runtime information
about the GPU hardware, thus it has been set by hand in this paper. This technique can
be complemented with loop unrolling and loop interchange. Typically, GPU compil-
ers make better optimizations if the program is coded with several instructions using
scalar variables. In this way, the GPU compiler is able to store them in registers.

6 Case Studies

This section details the operation of the locality-aware automatic parallelization tech-
nique introduced in Sect. [5] We have selected two representative case studies ex-

12 José M. Andién et al.

Algorithm 2 Usage of registers to store reused data within a GPU thread

1: PROCEDURE STOREREUSEDDATAINREGISTERS
Input: n-dimensional array x[s1][s2].. . [s,]
Input: loop nest L =Ly,L,,...,L; where L is the threadified loop
Output: a modified program that exploits reused data to maximize the usage of the GPU registers
collect accesses xg [ix 1][ik 2] - - - [ik,n]) With k € {1,...,m}
CHRECS 2 {91+, 81,1 H[{Or2s +:8x23] -+ - [{ By +5 8k 1]
for each thread 7i do
CHRECSJI{I A [{qj]\Tl] 7+=ngj] H{¢1\T12+~31\T'2}] e [{d)lenJFg]{ln}]
REUSED_DATA x" + M| CHRECS xV"
if (REUSED_DATA x™" # 0) then
store reused data between the accesses made by 7i in registers if data are private
9: end if
10: end for
11: end PROCEDURE

A A ol

Algorithm 3 Usage of the GPU shared memory for data shared between the threads
of a block
1: PROCEDURE STORESHAREDDATAINSHAREDMEMORY
Input: n-dimensional array x[s;][s2]. .. [sn]
Input: loop nest L =L;,L,,...,L; where L; is the threadified loop
Output: a modified program using the GPU shared memory to share data between the threads of a block

2: collect accesses xg[ix.1][ik2] - - - [ik.n) With k € {1,...,m}
3: CHRECSx < [{$x1,+ 8k {2, + 82} - - [({Okns +: 8k }]
4: for each block B do
5: for each thread 7i in B do
6: CHRECS ' [{0]1,+,gT {0/ +,8To .. (0], +,87)]
7: end for
8: SHDATA x « N CHRECSx[" with k € {1,...,m}
9: if (SHDATA x # 0) then
10: store data shared between the threads of block B in the shared memory
11: end if
12: end for

13: end PROCEDURE

Algorithm 4 Increase the computational load of a GPU thread

1: PROCEDURE INCREASELOAD
Input: access xg[ix.1][ix.2] - - - [ik.n] to an n-dimensional array x stored in row-major order
Input: loop nest L =Ly,L,,...,L; where both L, L, are threadified
Input: amount of data A to be processed by a GPU thread
Output: a modified program after applying loop tiling under the OpenHMPP programming model
2 increment the step of the outer loop L; to A
3 for each scalar variable s in L do
4 promote s to an array s[A]
5: transform reads and writes to s into loops of A iterations
6
7:

end for
end PROCEDURE

Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives 13

~ [N] el ~ (]) X+ <]
= F§F Flg s FFEES
S 3 5% %8 0§ 3 5 38
2 2 I J|sg £ 5 & s g8 8
S 8§ 8§ S |H% % % »H % % %
GPU Features < < < < “ “ >y A PA A A
Coalescing - v vV v vV Y
Registers - v V|- - v v -
Shared Memory | - v | - - v -

Table 1: GPU features exploited with each variant of CONV3D and SGEMM.

tracted from compute-intensive scientific applications. First, Sect. [6.1] presents the
study of the three-dimensional discrete convolution (CONV3D). With this case study
we cover stencil codes, which are commonly found in computer simulations, image
processing and finite element methods. Next, Sect. [6.2]addresses the simple-precision
general matrix multiplication (SGEMM), which is one of the most important linear
algebra routines commonly used in engineering, physics or economics.

6.1 Case Study: CONV3D

The three-dimensional discrete convolution operator can be generally written as:

ourput[i)[j][k] =}, coef[i][j][K] - inputli — n1][j — na] [k —n3]
ny,na,n3

with input being the input 3D-function data, coef the filter, and output the convoluted
data. Consider the implementation shown in Fig.[Ta|(from now on, denoted as variant
conv3d-cpu). Three nested loops for;, for; and for; traverse output (see lines AH6).
For each element output[i][j][k], four elements in each sense of the three directions of
the coordinate axis are taken to perform the convolution with the scalar values coefx,
coefy and coefz, respectively. Thus, the temporary variable tempx (lines stores
the weighted sum of nine values of input along the x-axis, coefx being the weight.
Similarly, temporaries tempy and tempz are along the y-axis and z-axis. Finally, these
contributions are accumulated in ousput[i][j][k] (lines 28H29).

The corresponding KIR, depicted in Fig. [Ib] was described in Sect.[d.1] Only the
regular reduction K <outpuiyg> determines if CONV3D is parallelizable (note that
the remaining parts of the KIR are shaded because they represent privatizable tem-
poraries). As the regular reduction diKernel represents conflict-free loop iterations, it
can be converted into a forall parallel loop. On the CPU, it can be parallelized using
the OpenMP parallel for directive.

Table [T] summarizes the GPU features addressed by our locality-aware automatic
parallelization technique to generate the same optimal variant as the one written by
an expert in GPU programming. The first optimized variant is conv3d-hmpp1, which
exploits coalescing through loop interchange as follows. A basic OpenHMPP variant
could be generated by simply isolating the source code between lines @H32]of Fig.

14 José M. Andién et al.

However, Alg.|l|detects that this is not the correct approach due to the non-coalesced
accesses. The chrecs associated to the first access to input (see line[7]of Fig[Ta)) are:

CHREC_input| = [{Oa =+, 1}][{07 +, 1}] [{Oa =+, 1}]

As explained in Sect. [3] the default OpenHMPP loop threadification policy creates
GPU threads for the two outermost loops (for; and for;). Hence, the instantiated
chrecs would be:

CHREC _input!” = [{0}][{0}][{0, 4, 1}], CHREC _input!" = [{0}][{1}][{0, +,1}]...

These accesses cannot be coalesced by the memory controller (see lines of
Alg. . However, if the loop nest is permuted to for s fory, for;, the chrecs will be:

CHREC input{’ = [{0,+, 1}][{0}][{0}], CHREC _inpur{" = [{0,+, 1}][{O}][{1}]...

Thus,
CHREC _RANGE _input; 3 = {0} U{1} ...
defines a contiguous range satisfying the condition in line [IT]of Alg.[T}

The second optimized variant is conv3d-hmpp2. Note that each GPU thread along
the threadified for; ; executes the entire innermost for;. Hence, each thread will repeat
reads to the array input in the x-axis in consecutive iterations of for; (see lines [/H13|
of Fig.[Ta). Old values can be stored in local registers reducing the needs of memory
bandwidth. Algorithm [2] detects this situation as follows. For illustrative purposes,
the chrecs for the first three accesses to array input are (see line [3|of Alg. [2):

CHREC _input; = [{0,+,1}][{0,+, 1}][{0,+, 1}]

CHREC inputy = [{—1,+,1}][{0,+, 1}][{0,+, 1}]
CHREC inputy = [{1,+,1}][{0,+,1}][{0, +,1}]
For T0, the instantiated chrecs are (line E]):

CHREC_inpur]” = [{0,+, 1}][{0}][{0}]

CHREC _input?® = {—1,+,1}][{0}][{0}]
CHREC,input3To = [{1,+,1}][{0}][{0}]
Thus,
3

ﬂ CHRECS,input,ZO =[{1,+,1}][{0}][{0}] # 0@

k=1
and, as input is only read, copies of already accessed values can be kept in registers
for subsequent uses (lines [6HI).

The variant conv3d-hmpp3 exploits, in addition, the shared memory. Contigu-
ous threads repeat accesses to some positions in the y,z-plane of the array input.
Hence, those values can be stored in the shared memory and be interchanged among
the threads of a block. Table [2] focuses on the chrecs corresponding to the first two
threads, 70 and 71, and the accesses performed in lines 2TH27|of Fig.[Tal Algorithm3|
computes the intersections of all the instantiated chrecs (see lines [SH8|of Alg.[3). As
can be observed, the intersection is not empty and some values are stored in the GPU
shared memory (lines . Therefore, the number of accesses to the GPU global
memory is reduced significantly.

Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives

70 \ TI
Vldim 2Mdim 3dim | 1dim 2"dim 3"dim
CHRECS._inputio | {0,+,1} {0} {0} | {0,413 {0} {1}
CHRECS.inputy | {0,+,1} {0} {1} | {0,+,1} {0} {0}
CHRECS.inputy; | {0,+,1} {0} {1y] {0, +,1} {0} 2}
CHRECS_inputy, | {0,+,1} {0} {=2} | {0,+,1} {0} {-1}
CHRECS_inputys | {0,+,1} {0} {2y | {0o+1} {0} {3}
CHRECS.inputys | {0,+,1} {0} {=3} | {0,+,1} {0} {-2}
CHRECS_inputys | {0,+,1} {0} {33 | {0,+1} {0} {4}
CHRECS._inputys | {0,+,1} {0} {-4} | {0,+,1} {0} {=3}
CHRECS_inputy; | {0,+,1} {0} {4y | {0,+1} {0} {5}

Table 2: Chrecs for the accesses in lines of Fig.|la(CONV3D).

ROOT EXECUTION SCOPE
I|int i, j, 1, m, n, k; ESJorM(Fig.Sa, lines 5-13)
2| float A[m]l[k], B[k]l[nl, CIml[nl;
3| float alpha, beta, prod; K < prod, >
4 scalar assignment
5|for (i = 0; i < m; i++) {
6 for (j = 0; j < mn; j++) { ES_for, (Fig. |3, lines 8-10)
7 prod = 0;
8 for (1 = 0; 1 < kj; 1++) {- K <prod, >
9 prod += A[i][1] = B[11[j]; scalar reduction
10 }
11 C[il[j]l = alpha * prod + beta * C[il[jl;
12
131} K<C, >

regular reduction

(a) Source code. (b) KIR.

Fig. 3: The simple-precision general matrix multiplication (SGEMM).

6.2 Case Study: SGEMM

The simple-precision general matrix multiplication from the BLAS library [7] per-
forms the matrix operation:

C=a-AxB+B-C

where A, B, C are m x k, k X n and m X n matrices, respectively, and o, 3 are the
scale factors for A x B and C. Figure [3a] shows an implementation with two nested
loops for; and for; that traverse the matrix C row by row (see lines ﬁ]—@ Each matrix
position C[i][] is computed with the dot product between the i row of matrix A and
the j™ column of B. The dot product is temporarily stored in the scalar variable prod
(lines [7TH10).

The KIR shown in Fig. [3b] captures the semantics of Fig. [3a] as follows. Loops
for; and for; are perfectly nested, thus a unique execution scope ES_for; ; is cre-
ated. K <prodg> represents the initialization of the temporary variable prod at line[7]

16 José M. Andién et al.

| not instantiated | T0 | Tl

| 1dim 2"dim | 19dim 2"dim | 1"dim 2"dim

CHRECSA | {0,+,1} {0,+,1} {0} {0,+,1} {0} {0,+,1}
CHRECS B | {0,+,1} {0,+,1} | {0,+,1} {0} {0,+,1} {1}
CHRECSC | {0,+,1} {0,+,1} {0} {0} {0} {1}

Table 3: Chrecs for the accesses to arrays A, B and C in SGEMM.

The computation of the dot product is contained in for;. Hence, the scalar reduction
K< prodgy> is attached to ES_for;. Finally, K<(> is a regular reduction that up-
dates the previous value stored in C[i][j]. As prod is a privatizable scalar variable,
the parts of the KIR referring to its computations are shaded to be omitted in the
discovery of parallelism. Thus, only K <> needs to be considered to decide if the
source code is parallelizable. As mentioned in Sect. a regular reduction diKernel
represents conflict-free loop iterations and it is therefore parallelizable.

From the point of view of the locality, the challenge of SGEMM is to handle
the tradeoff between opposite array traversals efficiently: row-major for C and A, and
column-major for B. On the CPU, the general solution is to apply loop tiling: matrices
are computed in small tiles to keep data in the cache memory. This approach can
be also applied on the GPU using the shared memory as cache and being aware of
coalescing.

The first variant of SGEMM is the sequential code shown in Fig. [3a| (sgemm-cpu).
In addition, we have selected the cblas_sgemm function of the non-clustered, threaded
part of the Intel MKL library [15] to build the sgemm-mkl variant.

The first OpenHMPP variant is sgemm-hmppl. It is trivially built by offloading
to the GPU the same code as sgemm-cpu. Table [3| shows the chrecs for this variant,
which are analyzed by Alg.[T]as follows. Regarding A, all the threads of a warp have
the same chrecs and thus access the same memory position (see line [I4] of Alg. [I).
Regarding B, coalescing is maximized because the chrecs of the first dimension are
the same while the chrecs of the second one define a contiguous range (lines [TOHI2).
Finally, the same situation holds for C and thus accesses are coalesced.

The second OpenHMPP variant is sgemm-hmpp2. Algorithm [] transforms the
source code of Fig. 3 as follows. The scalar variable prod is promoted to an array
prod|[A], and thus a new loop for, is created to enclose all its definitions and uses (see
lines of Alg.). The step of the outer for; is incremented by A, and uses of the
loop index i inside for, are replaced by i+ 1.

The third OpenHMPP variant is sgemm-hmpp3. For the reasons mentioned in
the last paragraph of Sect. our technique first performs loop fission in the new
for, giving place to for,; (prod initialization), for,, (dot product between the row
of A and the column of B), and for,; (computation with the old value of C). Next,
fullunroll directives are inserted in for,; and for,;. In order to fully unroll for,,, it
is first interchanged with for;. This way, the GPU compiler is able to store prod|[A]
in registers.

The fourth OpenHMPP variant is sgemm-hmpp4. Algorithm2]presented a method
to store reused data in registers. In this case, as the number of registers is finite and

Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives 17

the previous transformation in sgemm-hmpp3 increased register pressure, we have
used the shared memory to store slices of B.

Finally, the last variant is sgemm-cublas, the implementation provided by the
NVIDIA CUBLAS library [24]. CUBLAS has been designed assuming a column-ma-
jor order, thus a transformation is needed before and after calling the library.

7 Performance Evaluation

Two NVIDIA-based heterogeneous systems were used to carry out our experiments.
The first one is nova, the CAPS Compute Lab, based on Tesla S1070 (compute capa-
bility 1.3 —Tesla architecture—). The GPU contains 30 multiprocessors with 8 cores
each, for a total of 240 CUDA cores at 1.30 GHz. The total amount of global memory
is 4 GB at 800 MHz. Each block (of up to 512 threads) can access 16 KB of shared
memory and 16384 registers. The accelerator is connected to a host system consisting
of 2 Intel Xeon X5560 quad-core processors at 2.80 GHz and 12 GB of memory.

The second system is pluton, the cluster of the Computer Architecture Group at
the University of A Coruiia, based on Tesla S2050 (compute capability 2.0 —Fermi
architecture—). The GPU contains 14 multiprocessors with 32 cores each, for a total
of 448 CUDA cores at 1.15 GHz. The total amount of global memory is 3 GB at
1546 MHz with ECC disabled. Each block (of up to 1024 threads) can access 48 KB
of shared memory, 16 KB of L1 cache and 32768 registers. The amount of L2 cache
is 768 KB. The accelerator is connected to a host system consisting of 2 Intel Xeon
X5650 six-core processors at 2.66 GHz and 12 GB of memory.

7.1 Performance Evaluation of CONV3D

We have run the 216 experiments corresponding to all matrix sizes for sizex, sizey
and sizez values in 128, 256, 384, 512, 640 and 768. In each experiment, we have
measured GFLOPS for all CONV3D variants. As can be viewed in Table [d] our ex-
periments revealed that the obtained GFLOPS did not show a significant variation
with the dimensions of the tested matrices. This is due to the fact that the limiting
factor in the performance of this test case is the memory access bandwidth. For all
tested sizes, even the smallest ones, more than a 50 % GPU occupancy is achieved
(which is a good value for this sort of codes [33]).

Figure[d] depicts the performance evaluation of the CPU and the GPU-accelerated
variants on our experimental platforms. The offloading of the computations on the
GPU, with a loop interchange (conv3d-hmppl), gets a speedup of 5.43x on nova
and 15.27x on pluton. Note the big step in performance improvement between
conv3d-hmpp2 and conv3d-hmpp3 due to the use of the shared memory: 3.35x on
nova and 1.62x on pluton. The improvement is less impressive on pluton because
of the cache memories present in the Fermi cards that partially cover the functionality
exploited by our locality-aware automatic technique.

18 José M. Andién et al.

7.2 Performance Evaluation of SGEMM

We have run the 6859 experiments corresponding to all matrix sizes for m, n, and k
values in 128, 256, 384, 512, 640, 768, 896, 1024, 1152, 1280, 1408, 1536, 1664,
1792, 1920, 2048, 4096, 6144 and 8192. In each experiment, we have measured
GFLOPS for all SGEMM variants.

Table 5] and Fig. [5] present the performance evaluation of the CPU and the
GPU-accelerated variants. On average, sgemm-mkl is better than sgemm-hmppl:
5.26x on nova and 1.96x on pluton. However, for most of the combinations of
m,n,k < 2048, sgemm-hmppl is better than sgemm-mkl (up to 31.50x for m = 256,
n =128 and k = 512 on pluton). Hence, in contrast to CONV3D, the performance
of SGEMM varies significantly for different matrix sizes (as can be observed in the
minimum, average and maximum columns of Table [5) and the simple use of the
GPU does not always improve the best CPU variant. For the majority of the tested
sizes, sgemm-hmpp?2 slightly improves sgemm-hmppl on nova, but not on pluton.
This is due to the fact that accesses to prod[A] in sgemm-hmpp2 read and write
from the GPU memory and not from the registers. The performance improvement of
sgemm-hmpp3 with respect to sgemm-hmpp1 is bigger (1.79x on nova and 2.03x on
pluton) because the transformation allows the GPU compiler to store prod[A] in
registers. However, the biggest improvement factor is the usage of the shared mem-
ory, as can be observed in the sgemm-hmpp4 results.

The best variant on nova for the majority of cases is sgemm-cublas. However, it
is only 10 % better than sgemm-hmpp4 on average. In fact, sgemm-hmpp4 is the best
for k < 1024, and sgemm-mkl is the best for m,n = 128 with 512 < k < 1792. Regard-
ing average performance on pluton, sgemm-cublas is clearly the best, being 36 %
faster than sgemm-hmpp4. Variant sgemm-cublas is only bested by sgemm-hmpp4
for m,n € {128,256}, and by sgemm-mkl for m,n = 128 with k > 1152. Neverthe-
less, we have demonstrated that a variant automatically generated by applying basic
loop transformations to the original sequential code is competitive with the highly
optimized NVIDIA’s CUBLAS implementation.

8 Related Work

In this paper, we have introduced a new technique to tune the performance of au-
tomatically generated GPU parallel code exploiting locality through standard loop
transformations. This technique has been successfully applied to two representative
case studies, namely CONV3D and SGEMM. There exist in the literature previous
works about the optimization of the execution on the GPU of these case studies (for
instance, [10] and [38]] for CONV3D, [18]] for SGEMM) that are based on templates
or domain-specific languages. In contrast, our approach is devoted to be general.

Similar efforts to automatically generate code for GPUs from a sequential pro-
gram are being developed. Parallware for OpenACC [3]], in alpha state, also employs
technology based on diKernels. However, unlike our approach, it does not support
locality exploitation.

Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives

GFLOPS) nova ' pluton
min avg max min avg max
conv3d-cpu 1.42 2.54 2.72 - - -

conv3d-hmppl | 13.42 1378 14.03 | 31.40 38.74 46.95
conv3d-hmpp2 | 18.76 19.80 20.28 | 51.08 67.47 78.79
conv3d-hmpp3 | 41.50 6632 70.60 | 97.02 109.48 118.75

Table 4: Minimum, average and maximum GFLOPS of CONV3D variants.

120

T
[Jconv3d-cpu —
100 H I conv3d-hmpp1
I conv3d-hmpp2
80 H 1 conv3d-hmpp3

60~

GFLOPS

a0

20

0

CPU (nova) GPU Tesla S1070 (nova) GPU Tesla S2050 (pluton)

Fig. 4: Average GFLOPS of CONV3D variants.

nova pluton
GFLOPS min avg max min avg max
sgemm-cpu 0.13 0.51 1.40 - - -
sgemm-mkl 1.43 11499 183.70

sgemm-hmpp1 8.10 21.85 27.41 15.41 58.77 79.22
sgemm-hmpp2 3.33 21.80 27.69 3.72 51.57 78.83
sgemm-hmpp3 6.93 39.19 64.81 12.04 119.56 134.74
sgemm-hmpp4 | 7.12 29545 35446 | 9.20 357.38 420.63
sgemm-cublas | 71.30 32591 370.12 | 38.78 486.41 650.16

Table 5: Minimum, average and maximum GFLOPS of SGEMM variants.

500

[—Jsgemm-cpu
400 H [——1sgemm-mk i
I socmm-hmpp1
I socmm-hmpp2
300 [[sgemm-hmpp3 b
I sgemm-hmpp4
200 H [—]sgemm-cublas E

100 ’_‘ b
L

CPU (nova) GPU Tesla S1070 (nova) GPU Tesla S2050 (pluton)

GFLOPS

o

Fig. 5: Average GFLOPS of SGEMM variants.

20 José M. Andién et al.

There also exist other active approaches based on the polyhedral model.
C-to-CUDA [6], based on PLUTO [9]], looks for a region as large as possible and
transforms memory accesses to be coalesced (using the shared memory if it is not
possible). The shared memory is also employed to store the arrays that are reused in
the same thread, but the reuse of data between the threads of a block is not considered.

PPCG [33] also searches for the largest possible region of code and the paral-
lelization strategy evolved from PLUTO. It applies an elaborated policy for the use
of the memory hierarchy grouping array references to copy parts of the global mem-
ory. Reused data are placed in registers. If there is any reuse or the original accesses
were not coalesced, then it places the data in the shared memory.

Par4All [[14] uses abstract interpretation for array regions, which also involves
polyhedra. It treats each loop nest independently, generating a CUDA kernel for each
one. Par4All does not consider the exploitation of reuse in the registers or the shared
memory: all accesses are performed directly on the global memory. However, it per-
forms powerful inter-procedural analysis on the input code.

Jablin et al. [[16i[17] propose a framework that automatically generates pipeline
parallelizations and provides software-only shared memory. The memory allocation
system ensures that addresses of equivalent allocation units on the CPU and GPU are
equal, relieving the runtime library of the burden of translation and communication
optimization. The compiler inserts appropriate calls into the original program. The
pipeline parallelization technique exploits the fact that GPUs have abundant parallel
computing resources but communication between them can be very expensive. If the
loaded values were constant, each of the threads could execute the load redundantly,
reducing communication overhead at the expense of computational efficiency.

In summary, most approaches partially exploit the GPU memory hierarchy and
generate low-level, difficult to understand, CUDA code. In contrast, our proposal
based on OpenHMPP directives provides understandable and portable code easing
the interaction between programmers and application-domain experts. Additionally,
with the inclusion of auto-tuning techniques [12]], OpenHMPP has demonstrated to
be able to obtain even better performance than hand-coded CUDA/OpenCL codes.

9 Conclusions and Future Work

This paper has introduced a new KIR-based locality-aware automatic paralleliza-
tion technique that targets GPU-based heterogeneous systems. Our proposal is de-
voted to exploit locality in the complex GPU memory hierarchy in order to generate
efficient code. It takes into account the most impacting GPU programming features:
loop threadification, thread grouping, coalesced access to global memory, and maxi-
mum usage of registers and shared memory. We have successfully applied this tech-
nique to two representative case studies extracted from compute-intensive scientific
applications (namely, CONV3D, the three-dimensional convolution, and SGEMM,
the simple-precision general matrix multiplication). We have modeled the accesses to
n-dimensional arrays with chains of recurrences. This algebraic formalism allowed
us to analyze the interactions between the memory accesses performed by the GPU
threads in a loop nest. The usage of OpenHMPP directives enabled a great under-

Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives 21

standability and portability of the generated GPU code. The performance evaluation
on NVIDIA GPUs (with two different core architectures) has corroborated the effec-
tiveness of our approach.

As future work, we will design and implement a new automatic partitioning al-
gorithm of the KIR to handle the interactions between computations in full-scale
applications. Auto-tuning approaches will be incorporated to select the variant with
best performance on a given hardware architecture. We will also test our proposals
with a larger benchmark suite and on other manycore accelerators.

Acknowledgements This research was supported by the Ministry of Economy and Competitiveness of
Spain and FEDER Funds of the European Union (Projects TIN2010-16735 and TIN2013-42148-P), by
the Galician Government under the Consolidation Program of Competitive Reference Groups (Reference
GRC2013-055), and by the FPU Program of the Ministry of Education of Spain (Reference AP2008-
01012). We want to acknowledge the staff of CAPS Entreprise for their support to do this work, as well as
Roberto R. Expésito for his help to configure the cluster pluton to carry out our experiments. Finally we
want to thank the anonymous reviewers for their suggestions, which helped improve the paper.

References

1. Andién, J.M., Arenaz, M., Rodriguez, G., Tourifio, J.: A Novel Compiler Support for Automatic
Parallelization on Multicore Systems. Parallel Comput. 39(9), 442-460 (2013)

2. Andrade, D., Arenaz, M., Fraguela, B.B., Tourifio, J., Doallo, R.: Automated and Accurate Cache
Behavior Analysis for Codes with Irregular Access Patterns. Concurr. Comput.: Pract. Exper. 19(18),
2407-2423 (2007)

3. Appentra Solutions: Parallware for OpenACC. http://www.appentra.com/products/parallware/, (Ac-
cessed 31 January 2015)

4. Arenaz, M., Tourifio, J., Doallo, R.: Compiler Support for Parallel Code Generation Through Ker-
nel Recognition. In: Proc. of the 18th International Parallel and Distributed Processing Symposium
(IPDPS), Santa Fe, NM, USA, p. 79b. IEEE (2004)

5. Arenaz, M., Tourifio, J., Doallo, R.: XARK: An Extensible Framework for Automatic Recognition of
Computational Kernels. ACM Trans. Program. Lang. Syst. 30(6), 32:1-32:56 (2008)

6. Baskaran, M.M., Ramanujam, J., Sadayappan, P.: Automatic C-to-CUDA Code Generation for Affine
Programs. In: Proc. of the 19th International Conference on Compiler Construction (CC), Paphos,
Cyprus, LNCS, vol. 6011, pp. 244-263. Springer (2010)

7. BLAS: Basic Linear Algebra Subprograms. http://www.netlib.org/blas/|(Accessed 31 January 2015)

8. Bodin, F., Bihan, S.: Heterogeneous Multicore Parallel Programming for Graphics Processing Units.
Scientific Programming 17(4), 325-336 (2009)

9. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A Practical Automatic Polyhedral Par-
allelizer and Locality Optimizer. In: Proc. of the 29th Conference on Programming Language Design
and Implementation (PLDI), Tucson, AZ, USA, pp. 101-113. ACM (2008)

10. Christen, M., Schenk, O., Burkhart, H.: Automatic Code Generation and Tuning for Stencil Kernels
on Modern Shared Memory Architectures. Computer Science - R&D 26(3-4), 205-210 (2011)

11. Eigenmann, R., Hoeflinger, J., Li, Z., Padua, D.A.: Experience in the Automatic Parallelization of Four
Perfect-Benchmark Programs. In: Proc. of the 4th International Workshop on Languages and Com-
pilers for Parallel Computing (LCPC), Santa Clara, CA, USA, LNCS, vol. 589, pp. 65-83. Springer
(1992)

12. Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.: Auto-Tuning a High-Level
Language Targeted to GPU Codes. In: Proc. of Innovative Parallel Computing (InPar), San Jose, CA,
USA, pp. 1-10. IEEE (2012)

13. Han, T.D., Abdelrahman, T.S.: hiCUDA: High-Level GPGPU Programming. IEEE Trans. Parallel
Distrib. Syst. 22(1), 78-90 (2011)

14. HPC Project: Par4All. http://www.pardall.org/ (Accessed 31 January 2015)

15. Intel Corporation: Intel Math Kernel Library. http://software.intel.com/intel-mkl/ (Accessed 31 Jan-
uary 2015)

http://www.appentra.com/products/parallware/
http://www.netlib.org/blas/
http://www.par4all.org/
http://software.intel.com/intel-mkl/

22

José M. Andion et al.

17.

18.

19.

20.

21.

22.

23.
. NVIDIA Corporation: CUBLAS Library. https://developer.nvidia.com/cublas/| (Accessed 31 January

25.
26.
217.
28.
29.
30.
31.
32.
33.

34.

35.

37.

38.

. Jablin, T.B., Jablin, J.A., Prabhu, P, Liu, F., August, D.I.: Dynamically Managed Data for CPU-GPU

Architectures. In: Proc. of the 10th International Symposium on Code Generation and Optimization
(CGO), San Jose, CA, USA, pp. 165-174. ACM (2012)

Jablin, T.B., Prabhu, P., Jablin, J.A., Johnson, N.P., Beard, S.R., August, D.I.: Automatic CPU-GPU
Communication Management and Optimization. In: Proc. of the 32nd Conference on Programming
Language Design and Implementation (PLDI), San Jose, CA, USA, pp. 142-151. ACM (2011)
Kurzak, J., Tomov, S., Dongarra, J.: Autotuning GEMM Kernels for the Fermi GPU. IEEE Trans.
Parallel Distrib. Syst. 23(11), 2045-2057 (2012)

Larsen, E.S., McAllister, D.: Fast Matrix Multiplies using Graphics Hardware. In: Proc. of the 14th
International Conference on High Performance Computing, Networking, Storage and Analysis (SC),
Denver, CO, USA, p. 55. ACM (2001)

Lee, S., Eigenmann, R.: OpenMPC: Extended OpenMP Programming and Tuning for GPUs. In:
Proc. of the 23rd International Conference on High Performance Computing, Networking, Storage
and Analysis (SC), New Orleans, LA, USA, pp. 1-11. IEEE (2010)

Lee, S., Vetter, J.S.: Early Evaluation of Directive-Based GPU Programming Models for Productive
Exascale Computing. In: Proc. of the 25th International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), Salt Lake City, UT, USA, pp. 23:1-23:11. IEEE (2012)
Novatte Pte. Ltd.: CAPS Compilers. http://www.novatte.com/component/content/article/
126-products/hpcclusters/301-caps-compilers-for-cuda-and-opencl/| (Accessed 31 January 2015)
NVIDIA Corporation: Cg Toolkit. http://developer.nvidia.com/Cg/, (Accessed 31 January 2015)

2015)

NVIDIA Corporation: CUDA C Best Practices Guide. http://docs.nvidia.com/cuda/
cuda-c-best-practices- guide/ (Accessed 31 January 2015)

NVIDIA Corporation: CUDA C Programming Guide. http://docs.nvidia.com/cuda/

cuda-c-programming- guide/, (Accessed 31 January 2015)

OpenHMPP Consortium: OpenHMPP Concepts & Directives. http://en.wikipedia.org/wiki/
OpenHMPP, (Accessed 31 January 2015)

OpenMP Architecture Review Board: OpenMP Application Program Interface (Version 4.0). http:
/Iwww.openmp.org/mp-documents/OpenMP4.0.0.pdf (Accessed 31 January 2015)

Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., Phillips, J.: GPU Computing. Proc. of the
IEEE 96(5), 879-899 (2008)

The Khronos Group Inc.: The OpenCL Specification (Version 2.0). http://www.khronos.org/registry/
cl/specs/opencl-2.0.pdf| (Accessed 31 January 2015)

The Khronos Group Inc.: The OpenGL Shading Language (Version 4.50). https://www.opengl.org/
registry/doc/GLSLangSpec.4.50.pdf (Accessed 31 January 2015)

The OpenACC Standards Group: The OpenACC Application Programming Interface (Version 2.0a).
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf (Accessed 31 January 2015)
Verdoolaege, S., Juega, J.C., Cohen, A., Gémez, J.I., Tenllado, C., Catthoor, F.: Polyhedral Parallel
Code Generation for CUDA. ACM Trans. Archit. Code Optim. 9(4), 54:1-54:23 (2013)

Vifias, M., Lobeiras, J., Fraguela, B.B., Arenaz, M., Amor, M., Garcia, J.A., Castro, M.J., Doallo, R.:
A Multi-GPU Shallow-Water Simulation with Transport of Contaminants. Concurr. Comput.: Pract.
Exper. 25(8), 1153-1169 (2013)

Volkov, V.: Better Performance at Lower Occupancy. In: Proc. of the 2010 GPU Technology Confer-
ence (GTC), San Jose, CA, USA. NVIDIA (2010)

. Wolfe, M.: Implementing the PGI Accelerator Model. In: Proc. of the 3rd Workshop on General

Purpose Processing on Graphics Processing Units (GPGPU), Pittsburgh, PA, USA, pp. 43-50. ACM
(2010)

Zima, E.: Simplification and Optimization of Transformations of Chains of Recurrences. In: Proc.
of the 1995 International Symposium on Symbolic and Algebraic Computation (ISSAC), Montreal,
Canada, pp. 42-50. ACM (1995)

Zhang, Y., Mueller, F.: Autogeneration and Autotuning of 3D Stencil Codes on Homogeneous and
Heterogeneous GPU Clusters. IEEE Trans. Parallel Distrib. Syst. 24(3), 417-427 (2013)

http://www.novatte.com/component/content/article/126-products/hpcclusters/301-caps-compilers-for-cuda-and-opencl/
http://www.novatte.com/component/content/article/126-products/hpcclusters/301-caps-compilers-for-cuda-and-opencl/
http://developer.nvidia.com/Cg/
https://developer.nvidia.com/cublas/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://en.wikipedia.org/wiki/OpenHMPP
http://en.wikipedia.org/wiki/OpenHMPP
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.opengl.org/registry/doc/GLSLangSpec.4.50.pdf
https://www.opengl.org/registry/doc/GLSLangSpec.4.50.pdf
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf

	Introduction
	GPGPU with the CUDA Programming Model
	OpenHMPP Directives and CAPS Compilers
	Background of Compilation Techniques
	Locality-Aware Automatic Generation of Efficient GPGPU Code
	Case Studies
	Performance Evaluation
	Related Work
	Conclusions and Future Work

