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Abstract

Estimating parameters of a statistical fisheries assessment model typically involves a comparison of disparate
datasets to a forward simulation model through a likelihood function. In all but trivial cases the estimations
of these models tends to be time-consuming due to issues related to multi-modality and non-linearity. This
paper develops novel parallel implementations of popular search algorithms, applicable to expensive function
calls typically encountered in fisheries stock assessment. It proposes two versions of both Simulated Annealing
and Hooke & Jeeves optimization algorithms with the aim of fully utilizing the processing power of common
multicore systems. The proposals have been tested on a 24-core server using three different input models.
Results indicate that the parallel versions are able to take advantage of available resources without sacrificing
the quality of the solution.
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1. Introduction

Statistical fisheries models typically involve a com-
parison of the output of a non-linear model of fish
population dynamics with available data through a
likelihood function. The choice of an optimization al-
gorithm for these types of model can be far from triv-
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ial. In all but the simplest examples, such as stock
production models [1], where the data required to
contrast with the model is relatively small, the time
required for adequate parameter estimation can be
substantial and estimation issues, such multi-modal
likelihoods, can increase the complexity further [see
2, and references therein].

Commonly the parameter estimation procedure
involves a combination of search algorithms, both
global and local, in an attempt to combine the
strengths of a global search with the speed of a lo-
cal search algorithm. Various combinations of search
algorithms have been investigated to identify an opti-
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mal search procedure for a specific task [e.g. 3, 4], but
these investigations indicate that a particular combi-
nation is problem specific.

Various tools have been developed to aid in the
creation of statistical stock assessment models. One
such tool is Gadget (Globally applicable Area Dis-
aggregated General Ecosystem Toolbox), which is
a modeling environment designed to build models
for marine ecosystems, including both the impact
of the interactions between species and the impact
of fisheries harvesting the species [5, 6]. It is an
open source program written in C++ and it is freely
available from the Gadget development repository at
www.github.com/hafro/gadget.

Gadget works by running an internal model based
on many parameters describing the ecosystem, and
then comparing the output from this model to ob-
served measurements to obtain a goodness-of-fit like-
lihood score. By using one or several search algo-
rithms it is possible to find a set of parameter val-
ues that gives the lowest likelihood score, and thus
better describe the modeled ecosystem. The opti-
mization process is the most computationally inten-
sive part of the process as it commonly involves re-
peated evaluations of the computationally expensive
likelihood function, as the function calls a full ecosys-
tem simulation for comparison to data. In addition
to that, multiple optimization cycles are sometimes
performed to ensure that the model has converged
to an optimum as well as to provide opportunities to
escape from a local minimum, using heuristics such
as those described by [7]. Once the parameters have
been estimated, one can use the model to make pre-
dictions on the future evolution of fish stocks.

Gadget can be used to assess a single fish stock
or to build complex multi-species models. It has
been applied in many ecosystems such as the Ice-
landic continental shelf area for the cod and redfish
stocks [7, 8, 9], the Bay of Biscay in Spain to predict
the evolution of the anchovy stock [10], the North
East Atlantic to model the porbeagle shark stock [11],
or the Barents Sea to model dynamic species interac-
tions [12]. Models developed using the Gadget frame-
work have also been used to provide tactical advice
on sustainable exploitation levels of a particular re-
source. Notably the southern European Hake stock,

Icelandic Golden redfish, Tusk and Ling stocks, and
Barent sea Greenland halibut are formally assessed
by the International Council for the Exploration of
the Sea (ICES) using Gadget [see 13, 14, 15, 16, for
further details].

The aim of this work is to speedup the costly opti-
mization process of Gadget so that more optimization
cycles can be performed and a more reliable model
can be achieved. The methodology followed com-
prises three main stages: First, the code was profiled
in order to identify its bottlenecks; then, sequential
optimizations were applied to reduce these bottle-
necks; finally, the most used optimization algorithms
were parallelized.

Currently, there are three different optimization
algorithms implemented in Gadget: the Simulated
Annealing (SA) algorithm [17], the Hooke & Jeeves
(H&J) algorithm [18], and the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [19]. All of them
can be used alone or combined into a single hybrid
algorithm. Combining the wide-area searching char-
acteristics of SA with the fast local convergence of
H&J is, in general, an effective approach to find an
optimum solution. In this work both algorithms have
been parallelized using OpenMP [20], so that the pro-
posed solution can take advantage of today’s ubiqui-
tous multicore systems.

The rest of this paper is organized as follows. Sec-
tion 2 covers related work. Section 3 describes the
sequential optimizations applied. Sections 4 and 5
describe the basics of the SA and the H&J search
algorithms and discuss the parallelization strategies
proposed for each one of them. Section 6 presents
the experimental evaluation of all the proposals on a
multicore system. Finally, conclusions are discussed
in Section 7.

2. Related Work

There exist in the literature a large number of solu-
tions for the parallel implementation of the SA algo-
rithm on distributed memory systems [21, 22, 23, 24,
25] In [24] five different parallel versions are imple-
mented and compared. The main difference among
them is the number of communications required and
the quality of the solution. The solution is better
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when the communication among the processes in-
creases. However, in distributed memory systems
the communication overhead plays a important role
in the global performance of the parallel algorithm.
Thus, solutions where communication takes place af-
ter every move are not considered a good alternative
on these architectures. In shared-memory systems,
however, this kind of solution is viable in terms of
computational efficiency, as in this case the commu-
nications are performed through the use of shared
variables.

Parallelization proposals for shared-memory sys-
tems are much more scarce. In [26] A. Bevilacqua
implements an adaptive parallel algorithm for a non-
dedicated shared memory machine using the POSIX
Pthreads [27] library. The program execution flow
switches dynamically at run-time between the se-
quential and the parallel algorithm depending on the
acceptance ratio and the workload conditions of the
machine.

Paramin [28, 6] is a parallel version of Gadget orig-
inally written with PVM [29], and later migrated to
MPI [30]. As the parallel version proposed in this
paper, Paramin is based on the distribution of the
function evaluations among the different processes.
However, unlike our approach, in each parallel step it
updates all the parameters whose moves lead to a bet-
ter likelihood value. Moves that are beneficial one by
one could become counterproductive when they are
applied together. Thus, this parallel version leads
to a worse likelihood score in some cases, an impor-
tant problem that does not happen in our version.
Additionally, Paramin is meant to be executed in a
distributed infrastructure, such as a cluster of com-
puters, and it needs an installed version of the MPI
library. On the other hand, our approach focuses
on taking advantage of common desktop multicore
systems and it only needs to add the appropriate
OpenMP compile-time flag to the selected compiler,
reducing the computing expertise needed to profit
from it.

3. Optimization of the Sequential Program

The profiling of the original application revealed
that it could be optimized mainly in three aspects.

First, some light class member functions that were in-
voked very often in the application from other classes
could not be inlined by the compiler because they
were not expressed in the header files that describe
their associated classes, but in the associated imple-
mentation files. Moving their definition to the header
file allowed their effective inlining, largely reducing
their weight in the runtime.

Second, we found several opportunities to avoid
recalculations of values, i.e., computations that are
performed several times on the same inputs, thus
yielding the same result. While some of these oppor-
tunities could be exploited just by performing loop-
invariant code motion, other more complex situations
required a more elaborated approach such as dynam-
ically building tables to cache the results of these cal-
culations and later resorting to these tables to get the
associated results.

The third most important optimization applied
consisted in modifying the data structure used to rep-
resent bidimensional matrices in the heaviest func-
tions. The original code used a layout based on an
array of pointers, each pointer allowing the access
to a row of the matrix that had been separately al-
located. These matrices were changed to be stored
using a single consecutive buffer, thus improving the
locality, avoiding indirections and helping the com-
piler to reason better on the code.

4. Parallelization of the Simulated Annealing
Algorithm

The SA algorithm used in Gadget is a global
optimization method that tries to find the global
optimum of a function of N parameters. At the
beginning of each iteration, this search algorithm
decides which parameter np it is going to be modified
to explore the search space. Then, the algorithm
generates a trial point with a value of this parameter
that is within the step length given by element np
of vector −−→VM (of length N) of the user selected
starting point by applying a random move. The
function is evaluated at this trial point and its result
is compared to its value at the initial point. When
minimizing a function, any downhill step is accepted
and the process repeats from this new point. An
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1 Algorithm SimulatedAnnealing(−→p ,
−−→
VM,ns, T, nt,MaxIterations)

input : - initial vector of N parameters −→p = pi, 1 ≤ i ≤ N
- step lengths vector with one element per parameter −−→VM = VMi, 1 ≤ i ≤ N
- frequency of −−→VM updates ns
- temperature T
- frequency of temperature T reductions nt
- maximum number of evaluations MaxIterations

output: optimized vector of N parameters −→p = pi, 1 ≤ i ≤ N

2 iterations = 0
3 parami = i, 1 ≤ i ≤ N //permutation of parameters
4 bestLikelihood = evaluate(−→p )
5 while not terminationTest(bestLikelihood,−→p ) do
6 for a = 1 to nt do
7 reorder(−−−−→param)
8 for j = 1 to ns do
9 for i = 1 to N do

10 iterations = iterations+ 1
11 np = parami //parameter to modify
12

−−−−→tmp_p = −→p
13 tmp_pnp = adjustParam(pnp,

−−→
VM)

14 likelihood = evaluate(−−−−→tmp_p)
15 accept(T, bestLikelihood, likelihood,−→p ,−−−−→tmp_p)
16 if iterations = MaxIterations then
17 return −→p
18 end
19 end
20 end
21 adjustVM(−−→VM)
22 end
23 reduceTemperature(T)
24 end
25 return −→p

Figure 1: Simulated Annealing algorithm

uphill step may be also accepted to escape from local
minimum. This decision is made by the Metropolis
criteria. It uses a variable called Temperature (T)
and the size of the uphill move in a probabilistic
manner to decide the acceptance. The bigger T
and the size of the uphill move are, the more likely
that move will be accepted. If the trial is accepted,
the algorithm moves on from that point. If it is
rejected, another point is chosen instead for a trial
evaluation. Each ns evaluations of the N parameters
the elements of −−→VM are adjusted so that half of
all function evaluations in each direction will be
accepted. Thus, the modification of each element of−−→
VM depends on the number of moves accepted along

that direction. Also, each nt adjustments to −−→VM
the temperature is reduced. Thus, a temperature
reduction occurs every ns× nt cycles of moves along
every direction (each ns× nt×N evaluations of the
function). When T declines, uphill moves are less
likely to be accepted and the percentage of rejections
rises. Given the scheme for the selection for −−→VM ,−−→
VM falls. Thus, as T declines, −−→VM falls and the
algorithm focuses upon the most promising area
for optimization. The process stops when no more
improvement can be expected or when the maxi-
mum number of function evaluations is reached. A
pseudocode of the SA algorithm is shown in Figure 1.
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This algorithm was parallelized using OpenMP.
The followed parallelization pattern consisted in sub-
dividing the search process in a number of steps that
are applied in sequence, parallelism being exploited
within each step. Since the expensive part of a search
algorithm is the evaluation of the fitness function, the
parallelism is exploited by distributing the function
evaluations across the available threads. The results
of the evaluations are stored in shared variables so
that all the values can be analyzed by the search algo-
rithm in order to decide whether to finish the search
process, and if this is not the case, how to perform
the next search step.

This work aims to reduce the execution time with-
out diminishing the quality of the solution. For this
purpose, two parallel algorithms were developed: the
reproducible and the speculative algorithm. The first
one follows exactly the same sequence as the original
serial algorithm, and thus it finishes in the same point
and with the same likelihood score. The speculative
version, however, is allowed to change the parameter
modification sequence in order to increase the par-
allelism, and thus it can finish in a different point
and with a different likelihood value. In this latter
case, some specification variables of the sequential al-
gorithm were adapted to prevent the algorithm from
converging to a worse likelihood value.

In the parallel versions not all the functions eval-
uations provide useful information to the search pro-
cess. Thus, the number of effective evaluations is
taken into account as ending criterion instead of the
number of total evaluations.

The same parallelization strategies have been ap-
plied to the H&J algorithm, described in Section 5.

4.1. Reproducible version

In this version each thread performs the eval-
uation of the function with the modification of a
different parameter in parallel. For example, with
four threads, in the first step, the thread 1 could
perform the evaluation changing the first parameter,
the thread 2 the second parameter, the thread 3
the third parameter, and the thread 4 the fourth
parameter.

From these evaluations the algorithm moves to the
first point (in sequential order) that is accepted (di-
rectly or applying the Metropolis criteria), dismissing
the others. As a result, all the evaluations up to the
first one with an accepted point are taken into ac-
count to advance in the search process, and for this
reason they will be counted as effective evaluations,
while all the subsequent simulations are discarded.
For the previous example, if the modification to the
first parameter is rejected and the modification to the
second parameter is accepted, the calculations per-
formed by threads 1 and 2 are considered, and the
calculations by threads 3 and 4 are discarded, even
if one of them obtains a better likelihood that the
obtained by thread 2. In this case, 4 evaluations are
performed in parallel but only 2 of them are recorded
as effective evaluations.

Following our example, since the last evaluation
considered modified the second parameter, in the
next step, thread 1 will perform the evaluation mod-
ifying the third parameter, thread 2 the fourth pa-
rameter, thread 3 the fifth parameter, and thread 4
the sixth parameter. In order to obtain the same re-
sult as in the sequential algorithm, the parameters
re-evaluated will take the same value as in the previ-
ous step. This required changing the way of generat-
ing the random values. Namely, while the sequential
version relies on rand, the reproducible version uses
a random function which generates its result from a
seed provided by the user. This allows to re-generate
previously generated random values by providing the
same seed, which is recorded by our implementation
for this purpose. Another change was that while the
random numbers of the sequential version follow a
single sequence, the parallel version uses three dif-
ferent seeds, giving place to three sequences of ran-
dom numbers. One seed (seedP) is used to change
the order in which the parameters are modified, an-
other one (seedM) is used for the acceptance of the
Metropolis criteria, and the last one (seed) is used
for the calculation of the new value of the parameters.

4.2. Speculative version
As in the reproducible version, each thread

performs the evaluation with the modification of a
different parameter in parallel, but now the move
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with the best likelihood is selected. This point
will be accepted if it obtains a better likelihood
than the initial point. Otherwise, the Metropolis
criteria is applied to decide its acceptance. For
example, with 4 threads, in the first step thread
1 could perform the simulation changing the first
parameter, thread 2 the second parameter, thread
3 the third parameter and thread 4 the fourth
parameter. If thread 3 obtains the best likelihood,
the modification of the third parameter will be
the one accepted and the other modifications will
be discarded. In the next parallel step, thread 1
will work with a change in the fifth parameter,
thread 2 in the sixth parameter, thread 3 in the sev-
enth parameter and thread 4 in the eighth parameter.

Note that the speculative version performs and
considers evaluations that are never performed in
the sequential version. This makes it follow search
paths that are different from those of the sequential
and the reproducible versions. For this reason, this
algorithm can finish in a different point and with a
different likelihood value.

In this version, unlike in the reproducible version,
some discarded simulations provide information to
the search process even though they do not modify
the parameters. This forced us to adapt some of the
most important variables used during the search pro-
cess. These variables, which we describe providing
their semantics in the sequential version, are:
−−→nacp: vector that stores for each parameter the num-

ber of times a change in its value has been ac-
cepted. It affects the calculation of the step
lengths vector −−→VM , explained at the beginning
of Section 4. Namely, the higher −−→nacp, the larger
value will have −−→VM and the changes performed
in the parameter will be bigger.

ns: scalar that provides the frequency of updates to−−→
VM .

For this parallel version the above variables were
changed as follows:
−−→nacp: Its value for a given parameter increases when-

ever (a) the change evaluated in that parameter

improves the likelihood, or (b) the change in that
parameter does not improve the likelihood but it
happens to be the best one and it is accepted ap-
plying the Metropolis criteria. Notice that the
second situation implies that none of the changes
improved the likelihood.

ns: In the parallel algorithm not all the parameter
modifications provide useful information to the
search process. Thus, to avoid to change the
step lenght associated to each parameter (−−→VM
vector) too often, in addition to the global scalar
ns, a vector −−→vns has been defined with the aim
of processing the step length individually. It is
increased whenever (a) the change simulated in
the parameter improves the likelihood, or (b) the
parameter change is rejected (also applying the
Metropolis criteria). This way, it is increased in
all the situations except when the change would
be accepted by the Metropolis criteria.

Also, in order to avoid decreasing the tem-
perature too fast, which would lead to a pre-
mature halt of the algorithm, it is necessary
to take into account that the number of dis-
carded evaluations increases with the number of
threads used in the parallel algorithm. For this
reason now each temperature iteration consists
of ns × numThreads/2 parallel steps, that is,
ns×numThreads/2×numThreads evaluations,
where ns is the scalar with the same value as in
the sequential version and numThreads is the
number of threads used to execute the parallel
version.

Finally, the counter of the number of effective eval-
uations increases every time a parameter change is
rejected (also applying the Metropolis criteria) and
once for every parallel step.

5. Parallelization of the Hooke & Jeeves Al-
gorithm

Hooke and Jeeves (H&J) [18] is a pattern search
method that consists in a sequence of exploratory
moves from a base point, followed by pattern moves
that provide the next base point to explore.
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1 Algorithm HookeJeeves(−→p ,
−−−→
delta,MaxIterations, rho)

input : - initial vector of N parameters −→p = pi, 1 ≤ i ≤ N
- modification length for each parameter −−−→delta = deltai, 1 ≤ i ≤ N
- maximum number of evaluations MaxIterations
- reduction control variable rho

output: optimized vector of N parameters −→p = pi, 1 ≤ i ≤ N

2 iterations = 0

3
−−−−→tmp_p = −→p

4 bestLikelihood = evaluate(−→p )
5 initialLikelihood = bestLikelihood
6 while not terminationTest(iterations,MaxIterations, bestLikelihood,−→p ) do
7 iterations = iterations+ 1
8 for i = 1 to N do
9 tmp_pi = pi + deltai

10 likelihood = evaluate(−−−−→tmp_p)
11 if likelihood < bestLikelihood then
12 bestLikelihood = likelihood
13 else
14 tmp_pi = pi − deltai
15 likelihood = evaluate(−−−−→tmp_p)
16 if likelihood < bestLikelihood then
17 bestLikelihood = likelihood
18 else
19 tmp_pi = pi
20 end
21 end
22 end
23 adjust(−→p , −−−−→tmp_p, −−−→delta, rho, initialLikelihood, bestLikelihood) //includes exploratory moves
24 −→p = −−−−→tmp_p

25 end
26 return −→p

Figure 2: Hooke & Jeeves algorithm

The exploratory stage performs local searches in
each direction by changing a single parameter of the
base point in each move. For each parameter, the
algorithm considers first an increment delta in the
positive direction. If the function value in this point
is better than the old one, then the algorithm selects
this new point like the new base point. Otherwise, an
increase delta is done in the negative direction, and
if the result is better than the original one, then the
algorithm selects this new point as the base point.
Otherwise the algorithm keeps the initial value and
proceeds to evaluate changes in the next parameter.
Once all the parameters have been explored, the
algorithm continues with the pattern moves stage.

In the pattern stage, each one of the parameters
is increased by an amount equal to the difference be-
tween the present parameter value and the previous
one (its value before the exploratory stage). The aim
is to move the base point towards the direction that
improved the result during the previous stage. Then,
the function is evaluated in this new point. If the
function value is better, this point becomes the new
base point for the next exploratory moves. Other-
wise, the pattern moves are ignored.

The search proceeds in series of these two stages
until a minimum is found or the maximum number
of evaluations is reached. If after a exploratory stage
the base point does not change, delta is reduced. The
amount of the reduction is determined by a user-
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supplied parameter called rho. Taking big steps gets
to the minimum more quickly, at the risk of stepping
right over an excellent point. Figure 2 summarizes
this search algorithm.

The parallel implementations of this algorithm
use nested parallelism to parallelize the exploratory
stage. At the top level, each thread is in charge of
evaluating the changes on a specific parameter. Then,
each thread is split in two threads, so that one of
them evaluates the movement in the positive direc-
tion and the other one the movement in the negative
direction. For this reason, the required number of
threads to execute these versions is a multiple of 2.
For example, if we have 4 threads, in the first paral-
lel evaluation one thread will evaluate parameter 1 +
delta, another one the parameter 1 - delta, another
one the parameter 2 + delta and finally another one
the parameter 2 - delta.

5.1. Reproducible version

The reproducible version follows exactly the same
sequence as the original sequential algorithm. This
version chooses the first move (in sequential order)
that improves the likelihood as base point for the
next search step. All the subsequent evaluations are
disregarded and they will not be taken into account
to increase the counter of the number of effective eval-
uations.

For the previous example using 4 threads, if the
first evaluation that obtains a better likelihood
corresponds to the movement of the first parameter
in the negative direction (parameter 1 - delta),
the two evaluations using the second parameter
are discarded (parameter 2 + delta and parameter
2-delta). The next step will start from parameter 2
and it will evaluate the moves in the positive and
negative direction of both parameters 2 and 3.

5.2. Speculative version

This version chooses the move that gives place to
the best likelihood as base point for the next search
step. Since all the evaluations are taken into account
to choose this value, if n was the last parameter
considered in a parallel step, this version always

starts the evaluations of the next parallel step from
parameter n+ 1.

For this version the counter of the number of
effective evaluations is only increased in two situa-
tions. First, for every parameter in which none of
the movements improved the likelihood, the counter
is increased by two units, to account for the two
movements tested. Second, among all those move-
ments that improve the likelihood, only the best one
in the parallel step is considered. If this movement
is in the positive direction, the counter is increased
by one unit, otherwise it is increased by two units,
because negative movements are always evaluated
after a positive movement has been discarded.

Finally, the outer loop that iterates on the pa-
rameters to perform the exploratory moves has step
numThreads/2, since each parallel step evaluates
the two possible movements for numThreads/2
parameters.

6. Experimental Results

The different parallel implementations were evalu-
ated in an HP ProLiant XL230a Gen9 server running
the Scientific Linux release 6.4. It consists of two
processors Intel Haswell E5-2680 at 2.5 GHZ with 12
cores per processor and 64 GB of memory. All the
codes were compiled with the gnu g++ compiler ver-
sion 4.9.1 and the compilation flag -O3. Three differ-
ent models were used to better evaluate the results:

IEO: This model is used by the IEO to assess the
southern hake stock. It counts with 63 parame-
ters to optimize.

TUSK: It is a single-species model of tusk (brosme
brosme) in Icelandic waters which is used by
ICES as the basis for catch advice. It counts
with 48 parameters to optimize.

HADOCK: It is a single-species, single-area model
used to model the Icelandic haddock. It is the
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SA H&J SA + H&J
IEO 5264 5266 10504
TUSK 4699 4741 9372
HADOCK 1178 1177 2362

Table 1: Execution times, in seconds, of the original code using
a single search algorithm or both

example model provided with Gadget. It is avail-
able for download from the Gadget website. It
counts with 38 parameters to optimize.

The performance of the parallel algorithms
was evaluated in terms of both the compu-
tational efficiency (speedup) and the quality
of the solutions (likelihood score obtained).
All the speedups were calculated with respect
to the execution time of the original sequen-
tial application (Gadget v2.2.00, available at
www.hafro.is/gadget/files/gadget2.2.00.tar.gz).
These execution times are shown in Table 1, and
they correspond to the whole execution of the
application, either using a single search algorithm
or two. In all the experiments the optimization
algorithms stop when the maximum number of
effective evaluations (1000 for both algorithms) is
reached.

Figure 3 shows the speedups for the optimized se-
quential version and the two parallel versions de-
veloped, the reproducible one and the speculative
one, when using only the SA algorithm, for the 3
model examples considered and for different number
of threads. The total number of evaluations per-
formed for the parallel algorithms is also shown in
the figures. The optimization of the sequential code
obtains a significant reduction in the execution time,
achieving a speedup of 3.3 for the IEO model. As re-
gards the parallel versions, the number of performed
evaluations increases with the number of threads, be-
ing this increment larger for the reproducible version,
as a greater number of evaluations has to be discarded
in this case. For this reason, the speedup of the repro-
ducible version does not improve beyond 4 cores. The
speculative version behaves better, although the re-
sults depend significantly on the example model. The
best results are for the IEO model because in this case

(a) IEO

(b) TUSK

(c) HADOCK

Figure 3: Speedups using the SA algorithm, fill bars indicate
relative speedup and the lines the number of function calls as
a function of number of threads and by approach.

the starting point is closer to the optimum point (see
Table 2, discussed at the end of this section), which
increases the rate of rejects and thus, the number of
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effective evaluations. Note that for this example the
number of total evaluations does not increase as fast
as in the other models.

(a) IEO

(b) TUSK

(c) HADOCK

Figure 4: Speedups using the H&J algorithm, fill bars indicate
relative speedup and the lines the number of function calls as
a function of number of threads and by approach.

(a) IEO

(b) TUSK

(c) HADOCK

Figure 5: Speedups using the SA and the H&J algorithms,
fill bars indicate relative speedup and the lines the number
of function calls as a function of number of threads and by
approach.

Similar results are obtained for the H&J algorithm,
as can be seen in Figure 4. Finally, Figure 5 shows
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IEO TUSK HADOCK
Initial 1015.1691 26128.3060 0.96417375

Sequential 1015.1130 6537.8195 0.85868597
2 1015.1120 6539.2886 0.86255539
4 1014.8995 6511.2774 0.85186922
8 1015.0495 6509.1936 0.85107118
16 1015.0250 6507.5369 0.85250038
24 1015.0400 6507.1087 0.85083064

Table 2: Likelihood obtained using SA

the speedups when using the SA and the H&J algo-
rithms in sequence. This hybrid algorithm combines
the power and robustness of the SA algorithm with
the faster convergence of a local method as the H&J
algorithm. It is a common choice as, in general, it is
an effective approach to find an optimum point. Note
that the speedup of the reproducible version only im-
proves up to 4 cores, whereas the speculative version
obtains the best results when using 16 or 24 cores.
The best results are for the IEO model, where the
execution time is reduced from 175 to 23 minutes us-
ing the reproducible version and 4 cores and to only
12 minutes using the speculative version and 24 cores.

As regards the quality of the solution, the repro-
ducible versions obtain exactly the same likelihood
score as the original sequential version. The scores
for the speculative version for SA, H&J and the hy-
brid SA-H&J algorithms are shown in Tables 2, 3 and
4, respectively. The tables also show for comparative
purposes the starting likelihood value associated to
the input (Initial row in the tables) and the value af-
ter applying the sequential optimization algorithms
(Sequential row). Notice that the likelihood value is
better the lower it is, thus the search algorithms re-
duce it. We can see that some models, like IEO, be-
gin with values near the optimum point found, while
others, such as TUSK, can be strongly optimized by
Gadget. As expected, the best likelihood value is
obtained with the hybrid algorithm and this value
is even improved when using the parallel speculative
version.

IEO TUSK HADOCK
Initial 1015.1691 26128.3060 0.96417375

Sequential 1015.0780 6837.3983 0.87042278
2 1015.0780 6837.3983 0.87042278
4 1015.1062 6953.9042 0.85509464
8 1015.1045 6891.2857 0.86385086
16 1015.1081 6898.9408 0.86559744
24 1015.0817 6963.9621 0.86008887

Table 3: Likelihood obtained using H&J

IEO TUSK HADOCK
Initial 1015.1691 26128.3060 0.96417375

Sequential 1015.0478 6511.6363 0.85396624
2 1015.0641 6515.1060 0.85601157
4 1014.8474 6508.4827 0.85074075
8 1014.9955 6507.3761 0.85070340
16 1014.9662 6507.0652 0.85150650
24 1014.9820 6507.0435 0.85058013

Table 4: Likelihood obtained using SA & H&J

7. Conclusions

The aim of this work has been to speedup the Gad-
get program to reach a reliable model in a reasonable
execution time, getting profit from the new multi-
core architectures. First, the sequential code was an-
alyzed and optimized so that the most important bot-
tlenecks were identified and reduced. Then, the SA
and H&J algorithms, used to optimize the model pro-
vided by Gadget, were parallelized using OpenMP.
Two different versions were implemented for each al-
gorithm, the speculative one, which yields the same
result as the sequential version, and the speculative
version, which can exploit more parallelism. It must
be stressed that all the parallel algorithms proposed
are totally general and can thus be applied to other
optimization problems. As expected, the speculative
version provides better results for all the analyzed ex-
amples, achieving a speedup of 14.8 (4.5 with respect
to the optimized sequential version) for the hybrid
SA-H&J algorithm and the IEO model on a 24-core
server. Moreover, the speculative version not only
reduces significantly the execution time, but it also
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obtains a better likelihood score.
OpenMP is nowadays the standard de facto for

shared memory parallel programming and it allows
the efficient use of today’s mainstream multicore pro-
cessors. The OpenMP versions of the Gadget soft-
ware developed in this work will allow researchers
to make a better use of their computer resources.
They are publicly available under GPLv2 license at
www.github.com/hafro/gadget.
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