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Abstract

The scalability of High Performance Computing (HPC) applications depends
heavily on the efficient support of network communications in virtualized en-
vironments. However, Infrastructure as a Service (IaaS) providers are more
focused on deploying systems with higher computational power intercon-
nected via high-speed networks rather than improving the scalability of the
communication middleware. This paper analyzes the main performance bot-
tlenecks in HPC applications scalability on Amazon EC2 Cluster Compute
platform: (1) evaluating the communication performance on shared memory
and a virtualized 10 Gigabit Ethernet network; (2) assessing the scalability
of representative HPC codes, the NAS Parallel Benchmarks, using an im-
portant number of cores, up to 512; (3) analyzing the new cluster instances
(CC2), both in terms of single instance performance, scalability and cost-
efficiency of its use; (4) suggesting techniques for reducing the impact of the
virtualization overhead in the scalability of communication-intensive HPC
codes, such as the direct access of the Virtual Machine to the network and
reducing the number of processes per instance; and (5) proposing the com-
bination of message-passing with multithreading as the most scalable and
cost-effective option for running HPC applications on Amazon EC2 Cluster
Compute platform.
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1. Introduction

Cloud computing [1, 2] is an Internet-based computing model which has
gained significant popularity in the past several years as it provides on-
demand network access to a shared pool of configurable and often virtualized
computing resources typically billed on a pay-as-you-use basis.

Virtualization is a mechanism to abstract the hardware and system re-
sources from a given operating system, and it is one of the most important
technologies that make the cloud computing paradigm possible. Infrastructure-
as-a-Service (IaaS) is a type of cloud service which easily enables users to set
up a virtual cluster providing cost-effective solutions. Many research efforts
have been done in the last years to reduce the overhead imposed by vir-
tualized environments, and due to this, cloud computing is becoming an
attractive option for High Performance Computing (HPC).

Amazon Web Services (AWS) is an IaaS provider whose Elastic Com-
pute Cloud (EC2) [3] is nowadays among the most used and largest public
clouds platforms. Some early studies [4, 5, 6] have evaluated public clouds
for HPC since 2008 and the main conclusion was that clouds at that time
were not designed for running tightly coupled HPC applications. The main
reasons were the poor network performance caused by the virtualization I/O
overhead, the use of commodity interconnection technologies (e.g., Gigabit
Ethernet) and processor sharing, that limit severely the scalability of HPC
applications in public clouds. To overcome these constraints Amazon re-
leased the Cluster Compute Quadruple Extra Large instance (cc1.4xlarge,
abbreviated as CC1) in July 2010, a resource that provides powerful CPU
resources (two quad-core processors) and dedicated physical node allocation,
together with a full-bisection high-speed network (10 Gigabit Ethernet). The
availability of a high-speed network is key for the scalability of HPC applica-
tions. However, virtualized network resources lack efficient communication
support, which prevents HPC codes to take advantage of these high perfor-
mance networks. More recently, in November 2011, Amazon released a new
type of instance suitable for HPC, the Cluster Compute Eight Extra Large
instance (cc2.8xlarge, abbreviated as CC2), with improved CPU power as
it has two octa-core processors. Both resources (CC1 and CC2 instances)
are intended to be well suited for HPC applications and other demanding
network-bound applications [7].
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This paper evaluates CC1 and CC2 instances for High Performance Cloud
Computing on Amazon EC2 cloud infrastructure, the largest public cloud in
production, using up to 512 cores, hence 64 CC1 instances and 32 CC2 in-
stances were used. In this evaluation, the scalability of representative parallel
HPC codes using the NAS Parallel Benchmarks (NPB) suite [8] is analyzed.
Moreover, as the NPB original suite only contains pure MPI kernels, the
NPB Multi-Zone (NPB-MZ) suite [9], which contains hybrid MPI+OpenMP
codes, have also been assessed since the use of threads can alleviate the net-
work bottleneck in the cloud.

The structure of this paper is as follows: Section 2 presents the related
work. Section 3 describes the I/O support in virtualized environments, and
particularly explains the network support in Amazon EC2 CC platform. Sec-
tion 4 introduces the experimental configuration, both hardware and soft-
ware, and the methodology of the evaluation conducted in this work. Section
5 analyzes the performance results of the selected message-passing middle-
ware on Amazon EC2 CC instances. These results have been obtained from
a micro-benchmarking of point-to-point primitives, as well as an application
benchmarking using representative HPC codes in order to analyze the scal-
ability of HPC applications. Section 6 summarizes our concluding remarks.

2. Related Work

There are several feasibility studies of the use of public clouds for HPC,
all concluding that the network communication overhead is the main perfor-
mance bottleneck, limiting severely applications scalability. Many are also
the works that tackle the reduction of this network overhead.

Currently virtualization of CPU and memory resources presents very low
overhead, close to native (bare-metal) performance on x86 architectures [10].
The key for reducing the virtualization overhead imposed by hypervisors,
also known as Virtual Machine Monitors (VMM), are software techniques
such as ParaVirtualization (PV) [11] or Hardware-assisted Virtualization
(HVM) [12, 13]. However, the efficient virtualization support of I/O de-
vices is still work in progress, especially for network I/O, which turns out to
be a major performance penalty [14].

2.1. I/O Virtualization

Previous works on I/O virtualization can be classified as either software-
or hardware-based approaches. In software-based approaches devices cannot
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be accessed directly by the guest VMs and every I/O operation is virtual-
ized. A representative project is the driver domain model [15], where only an
Isolated Device Domain (IDD) has access to the hardware and runs native
device drivers. The rest of guest VMs pass the I/O requests to the IDD
through special VMM-aware or paravirtual drivers. This technique, imple-
mented by all modern hypervisors, has two main drawbacks: (1) the still
poor performance, despite its continuous improvements [16, 17], and (2) the
need for guest VM modification, unfeasible in some systems.

Hardware-based I/O virtualization achieves higher performance support-
ing the direct device access (also known as “PCI passthrough access” or “di-
rect device assignment”) from a guest VM. Initially the use of self-virtualized
adapters (smart network devices) improved I/O performance by offloading
some virtualization functionality onto the device [18, 19]. However, the re-
quirements of non-standard hardware support and custom drivers hindered
the adoption of this early ad-hoc hardware-approach. A more recent work
by Yassour et al. [20] provides almost native network performance in Lin-
ux/KVM environments, but its implementation of the PCI passthrough tech-
nique does not support live migration and requires that the VM has exclusive
access to a device.

Another hardware-based approach is SR/MR-IOV [21], a standard that
allows a physical device to present itself to the system as multiple virtual
devices, exporting to VMs part of the capabilities of smart network adapters.
Thus, VMs have a direct network path bypassing the hypervisor and the
privileged guest. However, the access from multiple VMs to the physical
device has to be multiplexed by the network interface firmware. Although
this approach achieves reasonably good performance [22], a new hardware
support has to be incorporated to PCI devices. Nevertheless, the direct
device access cannot provide bare-metal performance, according to Gordon
et al. [23], due to the host involvement, as it intercepts all interrupts inducing
multiple unwarranted guest/host context switches. In order to eliminate the
overhead caused by these unwarranted exits Gordon et al. proposed ELI, a
software-only approach for handling interrupts directly and securely within
guest VMs.

2.2. HPC in the Cloud

The interest in the use of public clouds for HPC increases as their avail-
ability, computational power and performance improves, which has motivated
lately multiple works about adopting cloud computing for HPC applications.
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Among them, the feasibility of HPC on Amazon EC2 public cloud infrastruc-
ture is the most common approach. Regarding applications, the execution of
scientific workflows [24, 25, 26, 27] has obtained significant success, whereas
many early studies [4, 5, 6, 28, 29] have assessed that public clouds have not
been designed for running tightly coupled MPI applications, primarily due
to their poor network performance, processor sharing and the use of com-
modity interconnection technologies. In order to overcome this performance
bottleneck, Amazon EC2 introduced their Cluster Compute (CC) instances.

Amazon EC2 CC1 instances, the first version of CC instance type, have
been evaluated in some recent related work. Thus, Carlyle et al. [30] com-
pared, from an economic point of view, the benefits in academia of operating
a community cluster program versus the provision of Amazon EC2 CC1 in-
stances. Regola and Ducom [31] analyzed the suitability of several virtualiza-
tion technologies for HPC, among them 4 CC1 instances. Nevertheless, their
work is more focused on the overall performance of the evaluated hypervisors
instead of the virtualized network performance and the scalability of com-
munications. Ramakrishnan et al. [32] stated that virtualized network is the
main performance bottleneck, after analyzing the communication overhead
of a number of different interconnect technologies, including 10 Gigabit Eth-
ernet. Furthermore, Zhai et al. [33] conducted a comprehensive evaluation of
MPI applications on 16 CC1 instances, revealing a significant performance
increase compared to previous evaluations on standard and High-CPU EC2
instances. Finally, Mauch et al. [34] give an overview on the current state
of HPC IaaS offerings and present an approach to use InfiniBand in a pri-
vate virtualized environment. They present HPL benchmark results for both
CC1 and CC2 instance types, but using only one instance of each type. In
addition, they do not study CC1/CC2 performance and scalability using
representative HPC applications and a high number of cores.

The review of the related works on evaluating Amazon EC2 for HPC has
revealed the lack of suitable assessments of the performance of the new CC2
instances. This paper addresses this lack evaluating thoroughly the perfor-
mance of CC2 instances, as well as comparing these instances against the
previous CC1 instances. Moreover, previous works were limited to the eval-
uation of MPI codes using up to 16 CC1 instances (128 cores). Additional
contributions of this paper are the performance evaluation using a signifi-
cantly higher number of cores (up to 512) both in terms of single instance
performance, scalability and cost-efficiency of its use as well as taking into
account hybrid programming models such as MPI+OpenMP.
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3. Virtualization Support on Amazon EC2

Xen [10] is a high performance hypervisor or VMM quite popular among
cloud providers, and it is used by all current Amazon EC2 instances. Xen
architecture (Figure 1) has the hypervisor as the lowest and most privileged
layer and above it comes one or more guest operating systems, which the
hypervisor schedules across the physical CPUs. The first guest OS, called do-
main 0 (dom0), boots automatically when the hypervisor boots and receives
special management privileges and exclusive direct access to all physical hard-
ware. This dom0 OS is used to manage any further guest OS, called domain
U (domU), and the virtualization technologies supported for creating these
domU guests are full virtualization assisted with hardware support (HVM)
and ParaVirtualization (PV). I/O virtualization is usually implemented in
one of three ways (Figure 2): device emulation, using paravirtualized I/O
drivers and giving a VM a direct device access (“PCI passthrough access” or
“direct device assignment”).

(dom0)

Xen HVM Guest

(domU 1)

Modified OS Unmodified OS

(domU 2)

Guest OS Xen PV Guest

User Software

UnmodifiedUnmodified

User Software

(Domain0) (Guest Domain) (Guest Domain)
VM0 VM1 VM2

Software

and Control

Device Manager

Xen Hypervisor

Hardware (CPU, Memory, Disk, Network)

Figure 1: Xen architecture overview

In Xen VMM, device emulation is available for domU HVM guests by
default, where dom0 emulates a real I/O device for which the guest already
has a driver. The dom0 has to trap all device accesses from domU and con-
verts them to operations on a real and possibly different device (Figure 2(a)),
requiring many context switches between domains and therefore offering low
performance. In the PV approach (Figure 2(b)), available for PV guests as
well as HVM guests, domU guests use special VMM-aware drivers where the
I/O code is optimized for VM execution. This code is manually pre-processed
or re-coded to remove privileged instructions that are substituted by VM ap-
plication programming interfaces, or “hypercalls”, in their place. Therefore,
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Figure 2: Network virtualization support in Xen

performance is improved but it is still far from native, besides the fact that
it requires changes in the device drivers used by domU guests.

With direct device access (Figure 2(c)), also available for both types of
guests, the domU guest “sees” a real device and interacts with it directly,
without software intermediaries, improving the performance since no dom0
involvement is required. Moreover, domU guests can use any device for
which they have a driver, as no modifications are necessary in the native de-
vice drivers used by them. For PV guests, Xen does not require any special
hardware support, but domU kernel must support the PCI frontend driver
(pcifront) in order to work. Hiding the devices from the dom0 is also required,
which can be done using the pciback driver. However, an I/O memory man-
agement unit (IOMMU) in hardware is required for HVM guests as well as a
pciback driver on dom0 kernel. Examples of IOMMUs are Intel’s VT-d [35]
or AMD’s IOMMU [36]. This technique, the only one which can provide near
bare-metal performance, also has limitations: it is not fully compatible with
live migration and it requires dedication of a device to a domU guest (the
latter can be solved with PCI standard SR/MR-IOV [21] devices).

3.1. Amazon EC2 Cluster Compute Platform

The Amazon EC2 Cluster Compute Quadruple Extra Large instances
(abbreviated as CC1) and Cluster Compute Eight Extra Large instances
(CC2) are resources with 23 and 60.5 Gbytes of memory and 33.5 and 88
EC2 Compute Units (ECUs) for CC1 and CC2, respectively. According to
Amazon one ECU provides the equivalent CPU capacity of a 1.0-1.2 GHz
2007 Opteron or 2007 Xeon processor.
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Quadruple Extra Large Eight Extra Large

CPU
2 × Intel Xeon X5570
Nehalem @2.93 GHz

2 × Intel Xeon E5-2670
Sandy Bridge @2.60GHz

ECUs 33.5 88

#Cores 8 (16 with HT) 16 (32 with HT)

Memory 23 GB DDR3 60.5 GB DDR3

Storage 1690 GB 3370 GB

API name cc1.4xlarge cc2.8xlarge

Price (Linux) $1.30 per hour $2.40 per hour

Interconnect
10 Gigabit Ethernet (Full-bisection bandwidth with
Placement Groups)

Virtualization Xen HVM 64-bit platform (PV drivers for I/O)

Table 1: Description of the Amazon EC2 Cluster Compute Quadruple and Eight Extra
Large Instances

For these instances, the provider details the specific processor architec-
ture: two Intel Xeon X5570 quad-core Nehalem processors for CC1, hence 8
cores per CC1 instance, and two Intel Xeon E5-2670 octa-core Sandy Bridge
processors for CC2, hence 16 cores per CC2 instance. These systems are
interconnected via a high-speed network (10 Gigabit Ethernet), which is the
differential characteristic of these resources. In fact, these EC2 instance types
have been specifically designed for HPC applications and other demanding
latency-bound applications.

Both versions of CC instances, whose main characteristics are presented in
Table 1, use Xen HVM virtualization technology, whereas the rest of Amazon
EC2 instance types are Xen PV guests. Moreover, instead of using an I/O
device emulation for the Network Interface Card (NIC) which is configured
by default in HVM guests, these cluster instances have installed paravirtual
drivers for improving network and disk performance. Therefore, the access
to the NIC in Amazon EC2 instances is paravirtualized, so a direct access is
not available which causes a significant performance penalty as will be shown
later.

4. Experimental Configuration and Evaluation Methodology

The performance evaluation has been conducted on 64 CC1 and 32 CC2
instances of the Amazon EC2 cloud [3]. These resources have been allocated
simultaneously and in the same placement group in order to obtain nearby
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instances, and thus obtaining the benefits from the full-bisection high band-
width network provided by Amazon for these instance types.

Regarding the software, two widely extended HPC messaging middleware,
OpenMPI [37] 1.4.4 and MPICH2 [38] 1.4.1, were selected for the performance
evaluation of native codes (C/C++ and Fortran). In addition, FastMPJ [39]
was also selected as representative Message-Passing in Java (MPJ) middle-
ware [40]. In all cases, the most efficient communication mechanism available
for network transfers and shared memory scenarios was selected.

The evaluation consists of a micro-benchmarking of point-to-point data
transfers, both inter-VM (through 10 Gigabit Ethernet) and intra-VM (shared
memory), at the message-passing library level. The point-to-point micro-
benchmarking results have been obtained with the Intel MPI Benchmarks
suite (IMB) and its MPJ counterpart communicating byte arrays (hence,
with no serialization overhead). Then, the impact of paravirtualized network
on the scalability of representative parallel codes, NAS Parallel Benchmarks
(NPB) kernels [8], has been assessed using the official NPB-MPI version
3.3 and the NPB-MPJ implementation [41]. In order to determine whether
a hybrid parallel programming model could overcome the current Amazon
EC2 network limitations, the NPB Multi-Zone (NPB-MZ) suite [9] version
3.3.1 for hybrid MPI+OpenMP codes has also been analyzed. The met-
rics considered for the evaluation of the NPB kernels are MOPS (Millions
of Operations Per Second), which measures the operations performed in the
benchmark (that differ from the CPU operations issued), and their corre-
sponding speedups. Moreover, NPB Class C workloads have been selected
because their performance is highly influenced by the efficiency of the com-
munication middleware and the support of the underlying network, as well as
they are the largest workloads that can be executed in a single CC1 instance.

Both the GNU 4.4.4 and the Intel 12.1 compilers have been considered
for the NPB kernels, and the reported results in the next graphs have been
obtained from binaries compiled with the best compiler in each case. Regard-
ing the Java Virtual Machine (JVM), the version used was the OpenJDK
Runtime Environment version 1.6.0 20. Finally, the performance results pre-
sented in this paper are the mean of several measurements, generally 10,000
iterations in ping-pong benchmarks and 5 measurements for NPB kernels.

9



5. Assessment of Amazon EC2 Cluster Compute Platform for HPC

This section presents an analysis of the performance of point-to-point
communications and the scalability of HPC codes on the Amazon EC2 Clus-
ter Compute platform designed for HPC, using the selected micro-benchmarks
and representative kernels described in the previous section.

5.1. Inter-VM Point-to-point Micro-benchmarking

Figure 3 shows point-to-point latencies (for short messages) and band-
widths (for long messages) of message-passing transfers using the selected
message-passing middleware, MPICH2, OpenMPI and FastMPJ, on Ama-
zon EC2 CC1 (left graph) and CC2 (right graph) instances in an inter-VM
scenario, where communications are performed through a 10 Gigabit Ether-
net network link. The results shown are the half of the round-trip time of a
ping-pong test and its corresponding bandwidth.
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Figure 3: Point-to-point communication performance on Amazon EC2 CC instances over
10 Gigabit Ethernet

On CC1 instances (left graph) OpenMPI and FastMPJ obtains the lowest
start-up latency (55 µs), slightly better than MPICH2 latencies (around 57
µs), but quite high compared to the usual 10 Gigabit Ethernet start-up
latencies on bare-metal, which can be as low as 10 µs. Regarding bandwidth
the three libraries show similar performance on CC1 instances, up to 4.9 Gbps
bandwidth, quite far from the theoretical 10 Gbps bandwidth provided by
the interconnection technology and the 9 Gbps that message-passing libraries
can achieve without virtualization overhead.

The results on CC2 instances (right graph) show slightly better perfor-
mance (10% in the best case -OpenMPI-) than using CC1 instances, which
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can be motivated by the higher performance (about 31%) of the CC2 pro-
cessor core (5.5 ECUs) compared to the computational power of the CC1
processor core (4.2 ECUs). Thus, these libraries obtain start-up latencies
around 50 - 54 µs, whereas observed bandwidths are up to 5.4 Gbps, also
suffering from poor network virtualization support. Despite these minimum
improvements the overhead in the paravirtualized access of VMs to the 10
Gigabit Ethernet NIC still represents the main performance bottleneck.

5.2. Intra-VM Point-to-point Micro-benchmarking

Figure 4 shows point-to-point performance of message-passing transfers
in the intra-VM scenario, where data transfers are implemented on shared
memory (hence, without accessing the network hardware). Thus, the ob-
served shared memory performance results are significantly better than the
inter-VM scenario.
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Figure 4: Point-to-point shared memory communication performance on Amazon EC2 CC
instances

Performance results on CC1 instances (left graph) present very low start-
up latencies, 0.3 µs for OpenMPI and 0.4 µs for MPICH2 and FastMPJ, and
similar high bandwidths, up to 60.9 Gbps for OpenMPI and 62.5 Gbps for
MPICH2 and FastMPJ, which confirms the efficient virtualization support
in the Xen hypervisor for CPU- and memory-intensive operations when no
I/O network activity is involved.

Regarding CC2 instances (right graph), start-up latencies are slightly
higher than on CC1: OpenMPI also obtains the lowest values, 0.35 µs,
whereas MPICH2 and FastMPJ obtain around 0.47 µs, probably due to the
lower clock frequency of the processor in CC2 instances (2.60 GHz) than
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in CC1 (2.93 GHz). The three evaluated libraries show again similar long
message performance results, which suggests that their communication pro-
tocols are close to the maximum effective memory bandwidth. The measured
shared memory bandwidths are slightly higher in CC1, particularly in the
range 1 KByte-1 MByte, due to its higher clock frequency. However, from
2 MBytes CC2 shared memory performance is higher as its L3 cache size
(20 MBytes shared by 8 cores) is larger than CC1 L3 cache size (8 MBytes
shared by 4 cores). In fact, CC1 performance results fall from 2 MBytes on as
the messages and the intermediate shared memory buffer (used internally by
message-passing libraries) exceed the L3 cache region that can be addressed
by a single process (4 MBytes). Moreover, as the message size increases
the percentage of the message that fits in L3 cache reduces and as a direct
consequence its performance falls. It has to be taken into account that the
OS generally schedules the two communicating processes on the same pro-
cessor, thus reducing the L3 cache region available for each one. However,
this scheduling strategy improves the overall communication performance,
especially the start-up latency.

This significant influence of the cache hierarchy on the performance of
shared memory communications on both CC1 and CC2 instances confirms
the low virtualization overhead experienced, thus providing highly efficient
shared memory message-passing communication on virtualized cloud envi-
ronments.

5.3. HPC Kernels Performance Analysis

The impact of the paravirtualized network overhead on the scalability of
representative HPC codes has been analyzed using the MPI and MPJ im-
plementations of the NPB, selected as it is probably the benchmarking suite
most commonly used in the evaluation of languages, libraries and middle-
ware for HPC. Four representative NPB kernels, the most communication-
intensive codes of the suite, have been evaluated: CG (Conjugate Gradient),
FT (Fourier Transform), IS (Integer Sort) and MG (Multi-Grid). As men-
tioned in Section 4, NPB Class C workloads have been used.

The native (C/Fortran) implementations of the kernels have been com-
piled using the GNU and Intel compilers (both with -O3 flag), showing their
performance for the serial kernels, including also Java results, in Figure 5.
As it can be seen, the impact of the compiler on the performance of these
codes is almost negligible. Thus, for clarity purposes next graphs only show
results obtained with the best performer compiler for each kernel.
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Figure 5: NPB kernels serial performance

Figures 6 and 7 present the performance of CG, FT, IS and MG using up
to 512 cores on Amazon EC2 CC platform (hence, using 64 CC1 and 32 CC2
instances). The performance metrics reported are MOPS (left graphs), and
their corresponding speedups (right graphs). The number of CC instances
used in the performance evaluation is the number of cores used divided by
the number of cores per instance type (8 cores for CC1 and 16 cores for CC2).

The analysis of the NPB kernels performance shows that the evaluated
libraries obtain good results when running entirely on shared memory (on a
single VM) using up to 8 and 16 cores in CC1 and CC2 instances, respectively,
due to the higher performance and scalability of intra-VM shared memory
communications. However, when using more than one VM, the evaluated
kernels scale poorly, experiencing important performance penalties due to the
network virtualization overhead. The poorest scalability has been obtained
by FT kernel on CC2 instances, CG on CC1, and IS both on CC1 and CC2.

CG kernel, characterized by multiple point-to-point data movements,
achieves on CC1 its highest speedup value of 22 using 64 cores, dropping
dramatically its performance from that point on as it has to rely on inter-
VM communications, where the network virtualization overhead represents
the main performance bottleneck. CG obtains higher performance on CC2
instances, a speedup of 40 on 256 cores, although its parallel efficiency is
very poor in this case, below 16%. FT kernel achieves a limited scalability
on CC1 whereas it does not scale at all on CC2. In fact, FT shows similar
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Figure 6: NPB kernels performance and scalability on Amazon EC2 CC1 instances
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Figure 7: NPB kernels performance and scalability on Amazon EC2 CC2 instances
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results on CC2 using a single instance (16 cores) and 32 instances (512 cores).
The reason for this behavior is that FT uses extensively Alltoall primitives
which access massively the interconnection network, increasing significantly
the network overhead imposed by the hypervisor by having 8/16 processes
on each instance accessing the paravirtualized NIC.

IS kernel is a communication-intensive code whose scalability greatly de-
pends on the performance of the Allreduce primitive and point-to-point com-
munication start-up latency. Thus, this code only scales when using a single
VM thanks to the high performance of intra-VM transfers, whereas it suffers
a significant slowdown when using more than one VM, both for CC1 and
CC2 instance types. Finally, MG kernel is the less communication-intensive
code under evaluation and for this reason it presents the highest scalability
on Amazon EC2, especially on CC2 instances, achieving a maximum speedup
value of 53 for FastMPJ.

The analysis of scalability has revealed an important issue: the high start-
up latencies and limited bandwidths imposed by the paravirtualized access
to the NIC limit severely the scalability of communication-intensive codes.
The presence of processors with higher computational power in the new CC2
instances partly alleviates this issue for some codes but also aggravates the
situation when communication-intensive collective operations (e.g., Alltoall
or Allreduce) are involved. Thus, a more efficient I/O network virtualization
support, such as a direct access to the NIC in virtualized environments, is
needed together with techniques that reduce the number of communicating
processes accessing simultaneously through the paravirtualized NIC.

5.4. HPC Kernels Cost Analysis

The use of a public cloud infrastructure like Amazon involves a series
of associated costs that have to be taken into account. In order to ease the
analysis of the cost of Amazon EC2 resources for HPC we present in Figure 8
the productivity in terms of USD per GOPS (Giga Operations Per Second)
of the already evaluated NPB codes. This proposed metric is independent
of the number of cores being used. Moreover, these kernels ran on-demand
CC1 and CC2 instances. The use of spot instances from the spot market [42]
enables bidding for unused Amazon EC2 capacity, which can significantly
reduce costs as they provide the same performance as on-demand instances
but at lower cost. However, the spot price fluctuates periodically depending
on the supply and the demand for spot instance capacity. Moreover, the
provision of the requested number of instances, especially when it is a high
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Figure 8: NPB kernels productivity on Amazon EC2 CC instances

number, something that it can be expected for an HPC application, is not
fully guaranteed unless the resources are invoked as on-demand instances.

CC2 instances provide twice the number of physical cores and 2.6 times
more memory than CC1. Additionally, CC2 instances are based on Sandy
Bridge, a more modern microarchitecture than Nehalem, the technology be-
hind CC1, which results in more performance per core. However, CC2 does
not provide communication-intensive HPC applications with a performance
increase proportional to its higher features due to the network overhead which
severely limits the scalability of these applications. If we take into account
the cost of each instance (as of May 2012), $1.30 for CC1 and $2.40 for
CC2, it can ben easily concluded with the aid of Figure 8 that the use of
CC2 instances is generally more expensive than the use of CC1 instances
and therefore it is worth recommending CC2 only for applications with high
memory requirements that cannot be executed on CC1.
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5.5. Impact of Process Allocation Strategies

It seems intuitive that after allocating a certain number of EC2 instances
the best option would be running as many processes per instance as cores
has the instance, thus fully using the paid resources. However, in terms of
performance, this option is not going to be always the best.

Figure 9 presents performance results of the NPB kernels with CC1 in-
stances (left graphs) and CC2 ones (right graphs) using only one process per
instance (labeled as “1 ppi”) until it reaches the maximum number of avail-
able instances, and posteriorly two, four, and finally eight processes per in-
stance. This scheduling strategy, which is significantly much more expensive
than the previous one, is able to obtain higher performance in the evaluated
kernels, except for CG where this strategy seems to perform similarly (for
CC1) or even slightly worse (for CC2). For the other kernels this scheduling
achieves up to 7 times better results for IS on CC2 instances (OpenMPI), 3.3
times on CC1 instances (MPICH2) or 2.3 for FT on CC1 instances (Open-
MPI). Here FT and IS take full advantage of this approach as the use of less
processes per instance alleviates the overhead introduced by the hypervisor
in collective communications, frequently used in these kernels. This strategy
can be very useful when there is a strong constraint about the execution time
of a particular application, such as meeting a deadline, in exchange for much
higher costs.

5.6. Using Several Levels of Parallelism

The popularity of hybrid shared/distributed memory architectures, such
as clusters of multi-core processors, is currently leading to the support of
several levels of parallelism in many prominent scientific problems. The
NPB suite is not an exception, existing an NPB Multi-Zone (NPB-MZ) im-
plementation that takes advantage of two-level parallelism through hybrid
MPI+OpenMP codes. The NPB-MZ contains three applications, the Lower-
Upper Symmetric Gauss-Seidel (LU, but limited to 16 MPI processes in the
MZ version), Scalar Penta-diagonal (SP), and Block Tri-diagonal (BT) ap-
plications, whose serial performance is shown in Figure 10. FastMPJ results
are not shown due to the lack of an NPB-MZ implementation in Java.

Figure 11 shows performance results, in terms of speedups, of the hybrid
NPB-MZ Class C workloads, together with their NPB counterparts. The
NPB-MZ codes have been executed with the following two configurations:
(1) a single MPI process per instance with as many OpenMP threads as
cores of the instance (8 and 16 for CC1 and CC2, respectively); and (2) two
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Figure 9: NPB kernels performance on Amazon EC2 CC instances (ppi = processes per
instance)
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Figure 10: NPB/NPB-MZ kernels serial performance

MPI processes per instance with as many OpenMP threads as cores of each
processor (4 and 8 for CC1 and CC2, respectively). Additional configurations
have also been evaluated, such as the use of 4 MPI processes per instance
and 2 and 4 threads for CC1 and CC2, respectively, but the results obtained
were worse.

These results have revealed some important facts: (1) although these
codes (BT, LU and SP) are not as communication-intensive as the previously
evaluated kernels (CG, FT, IS and MG), the pure MPI versions present poor
scalability on CC instances (the maximum speedup achieved is 60 for BT
on CC2 using 512 cores); (2) NPB-MZ kernels can overcome this issue and
outperform significantly NPB kernels (the maximum reported speedup is 185
on 512 cores for BT-MZ on CC2). Thus, as the message transfers through
the network are reduced to only one (or two) MPI processes communicating
per instance, the overhead caused by the paravirtualized access to the NIC is
drastically decreased; (3) BT and SP obtain the best performance using two
MPI processes per instance, which suggests that the right balance between
MPI processes and OpenMP threads has to be found for each particular
application; and (4) CC2 significantly outperforms CC1 for BT-MZ and SP-
MZ in the best configuration (for LU-MZ similar results are obtained) as their
overall performance does not rely heavily on the communication performance.
Unlike NPB kernels, BT-MZ and SP-MZ present a better cost/performance
ratio on CC2 than on CC1.

20



1 16 32 64 128 256 512
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

S
p

e
e
d

u
p

Number of Cores

BT/BT-MZ C Class Scalability (cc1.4xlarge)

MPICH2 - BT-MZ (4tpp-2ppi)
OpenMPI - BT-MZ (4tpp-2ppi)
MPICH2 - BT-MZ (8tpp-1ppi)
OpenMPI - BT-MZ (8tpp-1ppi)
MPICH2 - BT
OpenMPI - BT

1 16 32 64 128 256 512
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

S
p

e
e
d

u
p

Number of Cores

BT/BT-MZ C Class Scalability (cc2.8xlarge)

MPICH2 - BT-MZ (8tpp-2ppi)
OpenMPI - BT-MZ (8tpp-2ppi)
MPICH2 - BT-MZ (16tpp-1ppi)
OpenMPI - BT-MZ (16tpp-1ppi)
MPICH2 - BT
OpenMPI - BT

1 16 32 64 128 256 512
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

S
p

e
e
d

u
p

Number of Cores

LU/LU-MZ C Class Scalability (cc1.4xlarge)

MPICH2 - LU-MZ (4tpp-2ppi)
OpenMPI - LU-MZ (4tpp-2ppi)
MPICH2 - LU-MZ (8tpp-1ppi)
OpenMPI - LU-MZ (8tpp-1ppi)
MPICH2 - LU
OpenMPI - LU

1 16 32 64 128 256 512
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

S
p

e
e
d

u
p

Number of Cores

LU/LU-MZ C Class Scalability (cc2.8xlarge)

MPICH2 - LU-MZ (8tpp-2ppi)
OpenMPI - LU-MZ (8tpp-2ppi)
MPICH2 - LU-MZ (16tpp-1ppi)
OpenMPI - LU-MZ (16tpp-1ppi)
MPICH2 - LU
OpenMPI - LU

1 16 32 64 128 256 512
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

S
p

e
e
d

u
p

Number of Cores

SP/SP-MZ C Class Scalability (cc1.4xlarge)

MPICH2 - SP-MZ (4tpp-2ppi)
OpenMPI - SP-MZ (4tpp-2ppi)
MPICH2 - SP-MZ (8tpp-1ppi)
OpenMPI - SP-MZ (8tpp-1ppi)
MPICH2 - SP
OpenMPI - SP

1 16 32 64 128 256 512
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

S
p

e
e
d

u
p

Number of Cores

SP/SP-MZ C Class Scalability (cc2.8xlarge)

MPICH2 - SP-MZ (8tpp-2ppi)
OpenMPI - SP-MZ (8tpp-2ppi)
MPICH2 - SP-MZ (16tpp-1ppi)
OpenMPI - SP-MZ (16tpp-1ppi)
MPICH2 - SP
OpenMPI - SP

Figure 11: NPB/NPB-MZ kernels scalability (tpp = threads per process − ppi = processes
per instance)
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6. Conclusions

The scalability of HPC applications on public cloud infrastructures relies
heavily on the performance of communications, which depends both on the
network fabric and its efficient support in the virtualization layer. Amazon
EC2 Cluster Compute (CC) platform provides powerful HPC resources with
access to a high-speed network (10 Gigabit Ethernet), although without a
proper I/O virtualization support as these resources rely on a paravirtualized
access to the NIC.

The contributions of this paper are: (1) it has evaluated the performance
of communications on Amazon EC2 CC platform, both 10 Gigabit Ethernet
and shared memory transfers for CC1 and CC2 instances; (2) it has assessed
the scalability of representative message-passing codes (NPB) using up to
512 cores; (3) it has revealed that the new CC2 instances, despite providing
more computational power and slightly better point-to-point communication
performance, present poorer scalability than CC1 instances for collective-
based communication-intensive applications; (4) the use of CC1 instances is
generally more cost-effective than relying on CC2 instances; (5) it is possi-
ble to achieve higher scalability running only a single process per instance,
thus reducing the communications performance penalty in the access to the
network; (6) finally, it has been proposed the use of multiple levels of paral-
lelism, combining message-passing with multithreading, as the most scalable
and cost-effective option for running HPC applications on Amazon EC2 CC
platform.
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