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SUMMARY

Providing high-performance inter-node communication is a key capability for running High Performance
Computing (HPC) applications efficiently on parallel architectures. In fact, current systems deployments are
aggregating a significant number of cores interconnected via advanced networking hardware with Remote
Direct Memory Access (RDMA) mechanisms, that enable zero-copy and kernel-bypass features. The use
of Java for parallel programming is becoming more promising thanks to some useful characteristics of
this language, particularly its built-in multithreading support, portability, easy-to-learn properties and high
productivity, along with the continuous increase in the performance of the Java Virtual Machine (JVM).
However, current parallel Java applications generally suffer from inefficient communication middleware,
mainly based on protocols with high communication overhead that do not take full advantage of RDMA-
enabled networks. This paper presents efficient low-level Java communication devices that overcome these
constraints by fully exploiting the underlying RDMA hardware, providing low-latency and high-bandwidth
communications for parallel Java applications. The performance evaluation conducted on representative
RDMA networks and parallel systems has shown significant point-to-point performance increases compared
with previous Java communication middleware, allowing to obtain up to 40% improvement in application-
level performance on 4096 cores of a Cray XE6 supercomputer. Copyright c© 0000 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Java is a highly portable and flexible programming language, enjoying a dominant position in

a wide diversity of computing environments. Some of the interesting features of Java are its

built-in multithreading support in the core of the language, object orientation, automatic memory

management, type-safety, platform independence, portability, easy-to-learn properties and thus

higher productivity. Furthermore, Java has become the leading programming language both in

academia and industry.

The Java Virtual Machine (JVM) is currently equipped with efficient Just-in-Time (JIT) compilers

that can obtain near-native performance from the platform independent bytecode [1]. In fact, the

JVM identifies sections of the code frequently executed and converts them to native machine code

instead of interpreting the bytecode. This significant improvement in its computational performance

has narrowed the performance gap between Java and natively compiled languages (e.g., C/C++,
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2 ROBERTO R. EXPÓSITO ET AL.

Fortran). Thus, Java is currently gaining popularity in other domains which usually make use of

High Performance Computing (HPC) infrastructures, such as the area of parallel computing [2, 3] or

in Big Data analytics, where the Java-based Hadoop distributed computing framework [4] is among

the preferred choices for the development of applications that follow the MapReduce programming

model [5].

With the continuously increasing number of cores in current HPC systems to meet the

ever growing computational power needs, it is vitally important for communication middleware

to provide efficient inter-node communications on top of high-performance interconnects.

Modern networking hardware provides Remote Direct Memory Access (RDMA) capabilities that

enable zero-copy and kernel-bypass features, key mechanisms for obtaining scalable application

performance. However, it is usually difficult to program directly with RDMA hardware. In this

context, it is fundamental to fully harness the power of the likely abundant processing resources and

take advantage of the interesting features of RDMA networks with still ease-to-use programming

models. The Message-Passing Interface (MPI) [6] remains as the de-facto standard in the area of

parallel computing, being the most commonly used programming model for writing C/C++ and

Fortran parallel applications, but remains out of the scope of Java. The main reason is that current

parallel Java applications usually suffer from inefficient communication middleware, mainly based

on protocols with high overhead that do not take full advantage of RDMA-enabled networks [7].

The lack of efficient RDMA hardware support in current Message-Passing in Java (MPJ) [8]

implementations usually results in lower performance than natively compiled codes, which has

prevented the use of Java in this area. Thus, the adoption of Java as a mainstream language on

these systems heavily depends on the availability of efficient communication middleware in order

to benefit from its appealing features at a reasonable overhead.

This paper focuses on providing efficient low-level communication devices that overcome these

constraints by fully exploiting the underlying RDMA hardware, enabling low-latency and high-

bandwidth communications for Java message-passing applications. The performance evaluation

conducted on representative RDMA networks and parallel systems has shown significant point-

to-point performance improvements compared with previous Java message-passing middleware,

in addition to higher scalability for communication-intensive HPC codes. These communication

devices have been integrated seamlessly in the FastMPJ middleware [9], our Java message-passing

implementation, in order to make them available for current MPJ applications. Therefore, this paper

presents our research results on improving the RDMA network support in FastMPJ, which would

definitely contribute to increase the use of Java in parallel computing. More specifically, the main

contributions of this paper are:

• The design and implementation of two new low-level communication devices, ugnidev and

mxmdev. The former device is intended to provide efficient support for the RDMA networks

used by the Cray XE/XK/XC family of supercomputers. The latter includes support for the

recently released messaging library developed by Mellanox for its RDMA adapters.

• An enhanced version of the ibvdev communication device for InfiniBand systems [10],

which now includes new support for RDMA networks along with an optimized

communication protocol to improve short-message performance.

• An experimental comparison of representative MPJ middleware, which includes a micro-

benchmarking of point-to-point primitives on several RDMA networks, and an application-

level performance analysis conducted on two parallel systems: a multi-core InfiniBand cluster

and a large Cray XE6 supercomputer.

The remainder of this paper is organized as follows. Section 2 presents background information

about RDMA networks and their software support. Section 3 introduces the related work. Section

4 presents the overall design of xxdev, the low-level communication device layer included in

FastMPJ. This is followed by Sections 5, 6 and 7, which describe the design and implementation of

the new xxdev communication devices presented in this paper: ugnidev, ibvdev and mxmdev,

respectively. Section 8 shows the performance results of the developed devices gathered from a

micro-benchmarking of point-to-point primitives on several RDMA networks. Next, this section

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



LOW-LATENCY JAVA COMMUNICATION DEVICES ON RDMA-ENABLED NETWORKS 3

analyzes the impact of their use on the overall performance of representative Java HPC codes.

Finally, our concluding remarks are summarized in Section 9.

2. OVERVIEW OF RDMA-ENABLED NETWORKS

Most high-performance clusters and custom supercomputers are deployed with high-speed

interconnects. These networking technologies typically rely on scalable topologies and advanced

network adapters that provide RDMA-capable specialized hardware to enable zero-copy and kernel-

bypass facilities. Some of the main benefits of using RDMA hardware are low-latency and high-

bandwidth inter-node communication with low CPU overhead.

In recent years, the InfiniBand (IB) architecture [11] has become the most widely adopted RDMA

networking technology in the TOP500 list [12], especially for multi-core clusters. In addition, two

other popular RDMA implementations, the Internet Wide Area RDMA Protocol (iWARP) [13] and

RDMA over Converged Ethernet (RoCE) [14], have also been proposed to extend the advantages

of RDMA technologies to ubiquitous Internet Protocol (IP)/Ethernet-based networks. On the one

hand, iWARP defines how to perform RDMA over a connection-oriented transport such as the

Transmission Control Protocol (TCP). Thus, iWARP includes a TCP Offload Engine (TOE) to

offload the whole TCP/IP stack onto the hardware, while the Direct Data Placement (DDP)

protocol [15] implements the zero-copy and kernel-bypass mechanisms. On the other hand, RoCE

takes advantage of the more recent enhancements to the Ethernet link layer. The IEEE Converged

Enhanced Ethernet (CEE) is a set of standards, defined by the Data Center Bridging (DCB) task

group [16] within IEEE 802.1, which are intented to make Ethernet reliable and lossless (like IB).

This allows the IB transport protocol to be layered directly over the Ethernet link layer. Hence,

RoCE utilizes the same transport and network layers from the IB stack and swaps the link layer

for Ethernet, providing IB-like performance and efficiency to ubiquitous Ethernet infrastructures.

Compared to iWARP, RoCE is a more natural extension of message-based transfers, and therefore

usually offers better efficiency than iWARP. However, one disadvantage of RoCE is that it requires

DCB-compliant Ethernet switches, as it does not operate with standard ones.

Although the current market is dominated by clusters, many of the most powerful computing

installations are custom supercomputers [12] that usually rely on specifically designed Operating

Systems (OS) and proprietary RDMA-enabled interconnects. Some examples are the IBM Blue

Gene/Q (BG/Q) and the Cray XE/XK/XC family of supercomputers. On the one hand, the compute

nodes of the IBM BG/Q line are interconnected via a custom 5D torus network [17]. On the other

hand, Cray XE/XK architectures include the Gemini interconnect [18] based on a 3D torus topology,

while the XC systems provide the Aries interconnect that uses a novel network topology called

Dragonfly [19].

2.1. Software support

The IB architecture has no standard Application Programming Interface (API) within the

specification. It only defines the functionality provided by the RDMA adapter in terms of an abstract

and low-level interface called Verbs†, which has initially resulted in different vendors developing

their own incompatible APIs. For instance, one of the first proprietary interfaces available for

IB was the Mellanox Verbs API (mVAPI). However, mVAPI is vendor- and IB-specific (i.e., it

cannot work either with non-Mellanox hardware or iWARP adapters), and it is currently deprecated.

The de-facto standard is the implementation of the Verbs interface developed by the OpenFabrics

Alliance (OFA) [20], which includes both user- and kernel-level APIs. This open-source software

stack has been adopted by most vendors and it is released as part of the OpenFabrics Enterprise

Distribution (OFED). As a software stack, OFED spans both the OS kernel, providing hardware-

specific drivers, and the user space, implementing the Verbs interface. Although OFED was initially

†A verb is a semantic description of a function that must be provided.
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Figure 1. Overview of the RDMA software stack

developed to work over IB networks, currently it also includes support for iWARP and RoCE.

Hence, it offers a uniform and transport-independent low-level API for the development of RDMA

and kernel-bypass applications on IB, iWARP and RoCE interconnects. In addition to the OFED

stack, some vendors provide additional user-space libraries that are specifically designed for their

RDMA hardware. Examples of these libraries are the Performance Scaled Messaging (PSM)

and MellanoX Messaging (MXM), which are currently available for Intel/QLogic and Mellanox

adapters, respectively. These libraries can offer a higher level API than Verbs, usually also matching

some of the needs of upper level communication middleware (e.g., message-passing libraries).

Regarding supercomputer systems, vendors provide a specific interface to their custom interconnects

intended to be used for user-space communication. These interfaces are usually low-level APIs

that directly expose the RDMA capabilities of the hardware (like Verbs), on top of which the

communication middleware and applications can be implemented. For instance, IBM includes the

System’s Programming Interface (SPI) to program the torus-based interconnect of the BG/Q system,

while Cray provides two different interfaces for implementing communication libraries targeted for

Gemini/Aries interconnects: Generic Network Interface (GNI) and Distributed Memory Application

(DMAPP). Note that all these programming interfaces are only available in C and therefore any

communication support from Java must resort to the Java Native Interface (JNI).

Finally, existing sockets-based middleware and applications are usually able to run over RDMA

networks without rewriting, using additional extensions known as Upper Layer Protocols (ULP).

Examples of ULPs are the IP emulation over IB (IPoIB) [21] and the IP over Gemini Fabric

(IPoGIF) modules. However, these ULPs are unable to take full advantage of the RDMA hardware,

introducing additional TCP/IP processing overhead and performance penalties (e.g., multiple data

copies, high CPU utilization) compared with native RDMA interfaces. In order to overcome these

issues, some high-performance sockets implementations are available as additional ULPs. For

instance, the Sockets Direct Protocol (SDP) [22] provides a user-space preloadable library and

kernel module that bypasses the TCP/IP stack to take advantage of the IB/iWARP/RoCE hardware

features. However, SDP has limited utility as only applications relying on the TCP/IP sockets API

can use it, and other IP stack uses or TCP layer modifications (e.g., IPSec, UDP) cannot benefit

from it. In addition, because of the restrictions of the socket interface, SDP cannot provide the

low latencies of native RDMA. Furthermore, OpenFabrics has recently ended the support for SDP

and now is considered deprecated. Figure 1 provides a graphical overview of the described RDMA

software support.
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3. RELATED WORK

There have been several early works about Java for HPC soon after its release that have identified its

potential for scientific computing [23, 24]. Moreover, some projects have been focused particularly

on Java communication efficiency. These related works can be classified into: (1) Java over the

Virtual Interface Architecture (VIA) [25]; (2) Java sockets implementations; (3) Java Remote

Method Invocation (RMI) protocol optimizations; (4) Java Distributed Shared Memory (DSM)

projects; (5) low-level Java libraries on RDMA networks; and (6) efficient MPJ middleware.

Javia [26] and Jaguar [27] provide access to high-speed cluster networks through VIA. The VIA

architecture is one of the several approaches for user-level networking developed in the 90s, which

has served as basis for IB. More specifically, Javia reduces data copying using native buffers, and

Jaguar acts as a replacement of the JNI layer in the JVM, providing an API to access VIA. Their

main drawbacks are the use of particular APIs, the need of modified Java compilers that ties the

implementation to a certain JVM, and the lack of non-VIA communication support. Additionally,

Javia exposes programmers to buffer management and uses a specific garbage collector.

The widespread socket API can be considered as the standard low-level communication layer.

Thus, sockets have been the choice for implementing in Java the lowest level of network

communication. However, Java sockets lack efficient high-speed network support and HPC

tailoring, so they have to resort to inefficient TCP/IP emulations (e.g., IPoIB) for full networking

support [7]. Ibis sockets partly solve these issues adding Myrinet support and being the base of

Ibis [28], a parallel and distributed Java computing framework. However, Ibis lacks support for

current RDMA networks, and its implementation on top of JVM sockets limits the performance

benefits to serialization improvements. Aldeia [29] is a proposal of an asynchronous sockets

communication layer over IB whose preliminary results were encouraging, but requires an extra-

copy to provide asynchronous write operations, which incurs an important overhead, whereas the

read method is synchronous. Java Fast Sockets (JFS) [30] is our high-performance Java sockets

implementation that relies on SDP (see Figure 1) to support Java communications over IB. JFS

avoids the need for primitive data type array serialization and reduces buffering and unnecessary

copies. Nevertheless, the use of the socket API still represents an important source of overhead and

lack of scalability in Java communications, especially in the presence of high-speed networks [7].

Other related work about performance optimization of Java communications included many

efforts in RMI, which is a common communication facility for Java applications. ProActive [31] is a

fully portable “pure” Java (i.e., 100% Java) RMI-based middleware for parallel, multithreaded and

distributed computing. Nevertheless, the use of RMI as its default transport layer adds significant

overhead to the operation of this middleware. Therefore, the optimization of the RMI protocol

has been the goal of several projects, such as KaRMI [32], Manta [33], Ibis RMI [28] and Opt

RMI [34]. However, the use of non-standard APIs, the lack of portability and the insufficient

overhead reductions, still significantly larger than socket latencies, have restricted their applicability.

Therefore, although Java communication middleware used to be based on RMI, current middleware

use sockets due to their lower overhead.

Java DSM projects are usually based on sockets and thus benefit from socket optimizations,

but their performance on top of high-speed networks still suffers from significant communication

overheads. In order to reduce their impact, two DSM projects have implemented their

communications relying on low-level libraries: CoJVM [35] uses VIA, whereas Jackal [36]

includes RDMA support through the Verbs API [37]. Nevertheless, these projects share unsuitable

characteristics such as the use of modified JVMs, the need of source code modification and limited

interoperability and portability (e.g., Jackal is a Java-to-native compiler that does not provide any

API to Java developers, implementing data transfers specifically for Jackal).

Other approaches are low-level Java libraries restricted to specific RDMA networks. For instance,

Jdib [38, 39] is a Java encapsulation of the Verbs API through JNI, which increases Java

communication performance using directly RDMA mechanisms. The main drawbacks of Jdib are

its low-level API (like Verbs) and the JNI call overhead incurred for each Jdib operation (i.e., each

function of the Verbs interface has to be wrapped through JNI). jVerbs [40] is a networking API
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and library for the JVM that offers RDMA semantics and exports the Verbs interface to Java. jVerbs

maps the RDMA hardware resources directly into the JVM, allowing Java applications to transfer

data without OS involvement. Although jVerbs is able to achieve almost bare-metal performance,

its low-level API demands a high programming effort (as with Jdib). Additionally, jVerbs requires

specific user drivers for each supported RDMA adapter, as the access to hardware resources in the

data path is device specific. Currently, it only supports some models and vendors (e.g., Mellanox

ConnectX-2).

Regarding MPJ libraries, there have been several efforts to develop a message-passing framework

since the inception of Java. Although the current MPI standard declaration is limited to C and

Fortran languages, there have been a number of standardization efforts made towards introducing

an MPI-like Java binding. The most widely used API has been proposed by the mpiJava [41]

developers, known as the mpiJava 1.2 API [42]. Currently, the most relevant implementations of

this API are Open MPI Java, MPJ Express and FastMPJ, next presented.

mpiJava [41] consists of a collection of wrapper classes that use JNI to interact with an underlying

native MPI library. However, mpiJava can incur a noticeable JNI overhead [43] and presents some

inherent portability and interoperability issues derived from the amount of native code that is

involved in a wrapper-based implementation (note that all the methods of the MPJ API have to

be wrapped). More recently, Open MPI [44] has revamped this project and included Java support in

the developer code trunk. The Open MPI Java interface is based on the original mpiJava code and

integrated as a set of bindings on top of the Open MPI core [45].

MPJ Express [46] presents a modular design which includes a pluggable architecture of low-

level communication devices that allows to combine the portability of the “pure” Java shared

memory device (smpdev) and New I/O (NIO) sockets communications (niodev), along with

the native Myrinet support (mxdev) through JNI, implemented on top of the Myrinet eXpress

(MX) library [47]. Additionally, the hybrid device (hybdev) allows to use simultaneously niodev

and smpdev for inter- and intra-node communications, respectively. Furthermore, the recently

released native device [48] enables MPJ Express to exploit the latest features of native MPI libraries

through JNI. However, the overall design of MPJ Express relies on an internal buffering layer that

significantly limits performance and scalability [43].

Finally, FastMPJ [9] is our Java message-passing implementation that includes a layered design

approach similar to MPJ Express, but avoiding its data buffering overhead by supporting direct

communication of any serializable Java object. Moreover, FastMPJ includes a scalable collective

library which implements up to six algorithms per collective primitive. More details about FastMPJ

design and communications support are presented in Section 4.

This paper introduces new communication devices that provide efficient RDMA network support

in the context of the Java language and the FastMPJ software. Previous MPJ middleware (e.g.,

mpiJava, MPJ Express) can also provide this specific support (i.e., not using TCP/IP emulations), but

only when relying on an underlying native message-passing library. In fact, most of the contributions

of the implemented Java communication devices have been motivated by the success of related

works in native MPI libraries, where far more research has been done. For instance, Liu et al. [49, 50]

explored the feasibility of providing high-performance RDMA communications over InfiniBand in

the context of the MPICH project [51]. Sur et al. [52] proposed several alternatives to exploit the

RDMA Read operation in MVAPICH [53] for implementing an efficient long-message protocol over

InfiniBand. The efficient support of custom Cray supercomputers (e.g., XT/XE/XK/XC) and their

proprietary high-speed networks (e.g., SeaStar/Gemini/Aries) has also been an important research

topic in the context of MPI libraries [54, 55, 56]. Our work tries to adapt all the research conducted

in MPI to MPJ, taking into account the particulars of the Java language (e.g., buffer management,

garbage collector).

4. OVERVIEW OF THE FASTMPJ COMMUNICATION DEVICE LAYER

Figure 2 presents a high-level overview of the FastMPJ design, whose point-to-point communication

support relies on the xxdev device layer for interaction with the underlying hardware. This
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Figure 2. Overview of the FastMPJ communication devices

layer is designed as a simple and pluggable architecture of low-level communication devices that

enables the incremental development of FastMPJ. Furthermore, it also eases the development

of new xxdev devices reducing their implementation effort, and minimizing the amount of

native code needed to support a specific network through JNI, as only a very small number

of methods must be implemented. Hence, it allows to combine the portability of “pure” Java

communication devices with high-performance network support wrapping native communication

libraries through JNI. These xxdev devices abstract the particular operation of a communication

protocol conforming to an API on top of which FastMPJ implements its communications. Therefore,

FastMPJ communication devices must conform with the API provided by the abstract class

xxdev.Device [9]. The low-level xxdev API only provides basic point-to-point communication

methods and is not aware of higher level MPI abstractions like communicators. Thus, it is

composed of basic message-passing operations such as point-to-point blocking and non-blocking

communication methods, including also synchronous communications. The use of pluggable low-

level devices for implementing the communication support is the most adopted approach in native

message-passing libraries, such as the Byte Transfer Layer (BTL) and Matching Transport Layer

(MTL), both included in Open MPI [44].

Among the main benefits of the xxdev device layer are its flexibility, portability and modularity

thanks to its encapsulated design. Furthermore, this layer supports the direct communication of

any serializable Java object without data buffering. Hence, xxdev provides native devices (i.e.,

devices that implement the xxdev layer through JNI) with the buffer management of the Java

arrays involved in a certain communication operation (either send or receive). In fact, this service

can return a copy of the array using the Get/Release[Type]ArrayElements() family of JNI functions

or a direct pointer to the contents of the array via Get/ReleasePrimitiveArrayCritical(). By using this

service, specific implementations of native devices can potentially reduce some unnecessary data

copies when possible (e.g., using blocking communications). Therefore, this fact allows xxdev

communication devices to implement zero-copy protocols when communicating primitive data

types using, for instance, RDMA-enabled networks.

Currently, FastMPJ includes three xxdev devices that support RDMA-enabled networks (see

Figure 2): (1) mxdev, for Myrinet adapters and additionally for generic Ethernet hardware; (2)

psmdev, for the InfiniPath family of IB adapters from Intel/QLogic; and (3) ibvdev, for IB

adapters in general terms. These devices are implemented on top of MX/Open-MX, InfiniPath

PSM and Verbs native communication layers, respectively. Furthermore, the TCP/IP stack support is

included through Java NIO (niodev) and IO (iodev) sockets, whereas high-performance shared

memory systems can benefit from the thread-based device (smdev). The release of niodev as an

open-source device is forthcoming.

As mentioned before, this paper presents two new xxdev communication devices, ugnidev

and mxmdev, implemented on top of the user-level GNI (uGNI) and MXM native communication

layers, respectively. The mxmdev device also includes efficient intra-node shared memory

communication provided by MXM. An enhanced version of the ibvdev device, which extends
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8 ROBERTO R. EXPÓSITO ET AL.

its current support to RoCE and iWARP networking hardware and introduces an optimized short-

message communication protocol, is also included. These communication devices (highlighted in

italics and red in Figure 2) have been integrated transparently into FastMPJ thanks to its modular

structure. Therefore, the developed devices allow current MPJ applications to benefit transparently

from a more efficient support of RDMA networks (depicted by red arrows at the hardware level).

5. SCALABLE COMMUNICATIONS ON CRAY SUPERCOMPUTERS: UGNIDEV

The Cray XE/XK/XC family is nowadays an important class of custom supercomputers for running

highly computationally intensive applications, with several systems ranked in the TOP500 list [12].

A critical component in realizing this level of performance is the underlying network infrastructure.

As mentioned in Section 2, the Cray XE/XK architectures include the Gemini interconnect, whereas

the newer XC systems are equipped with the Aries interconnect, both providing RDMA capabilities.

Cray provides two low-level interfaces for implementing communication libraries targeted for these

interconnects: Generic Network Interface (GNI) and Distributed Memory Application (DMAPP).

In particular, the GNI API is mainly designed for applications whose communication patterns

are message-passing in nature, while the DMAPP interface is geared towards Partitioned Global

Address Space (PGAS) languages. Therefore, GNI would be the preferred interface on top of which

a message-passing communication device as ugnidev should be implemented.

5.1. GNI API overview

The GNI interface exposes a low-level API that is primarily intended for: (1) kernel-space

communication through a Linux device driver and the kernel-level GNI (kGNI) implementation; and

(2) direct user-space communication through the user-level GNI (uGNI) library, where the driver is

used to establish communication domains and handle errors, but can be bypassed for data transfer.

Hence, the ugnidev device has been layered over the uGNI API, which provides two hardware

mechanisms for initiating RDMA transactions using either Fast Memory Access (FMA) or Block

Transfer Engine (BTE).

On the one hand, the FMA hardware provides in-order RDMA as a low-overhead, kernel-bypass

pathway for injecting messages into the network, achieving the lowest latencies and highest message

rates for short messages. Several forms of FMA transactions are available:

• FMA Short Messaging (SMSG) and FMA Shared Message Queue (MSGQ) provide a reliable

messaging protocol with send/receive semantics that can be used for short point-to-point

messages. These facilities are implemented using a specialized RDMA PUT operation with

remote notification.

• FMA Distributed Memory (FMA DM) is used to execute RDMA PUT, GET, and Atomic

Memory Operations (AMOs), moving user data between local and remote memory.

On the other hand, the BTE hardware offloads the work of moving bulk data from the host

processor to the network adapter, also providing RDMA PUT and GET operations. The BTE

functionality is intended primarily for long asynchronous data transfers between nodes. More

time is required to set up data for a transfer than for FMA, but once initiated, there is no further

involvement by the CPU. However, the FMA hardware can give better results than BTE for medium

size RDMA operations (2-8 KB), whereas BTE transactions can achieve the best computation-

communication overlap because the responsibility of the transaction is completely offloaded to the

network adapter, providing an essential component for realizing independent progress of messages.

To achieve maximum performance, it is important to properly combine FMA and BTE mechanisms

in the ugnidev implementation.

The memory allocated by an application must be registered with the network adapter before

it can be given to a peer as a destination buffer or used as a source buffer for most uGNI

transactions. Thus, in order to directly access a memory region on a remote node, the region

must have been previously registered at that node. uGNI provides memory registration interfaces

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



LOW-LATENCY JAVA COMMUNICATION DEVICES ON RDMA-ENABLED NETWORKS 9

for the applications that allow to specify access permissions and memory ordering requirements.

uGNI returns an opaque Memory Handle (MH) structure upon successful invocation of one of

the memory registration functions. The MH can then be used for FMA/BTE RDMA transactions

and SMSG/MSGQ messaging protocols. The registration and unregistration operations can be

very expensive, which is an important performance factor that must be taken into account in the

implementation of the ugnidev communication protocols.

Finally, uGNI also provides Completion Queues (CQ) management, as a lightweight event

notification mechanism for applications. For example, an application may use the CQ to track the

progress of local FMA/BTE transactions, or to notify a remote node that data have been delivered

to its memory. An application can check for presence of CQ Events (CQE) on a CQ in either

polling or blocking mode. A CQE includes application-specific data, information about what type

of transaction is associated with the CQE, and whether the transaction associated with the CQE was

successfully completed or not. More specific details of the uGNI API can be found in [57].

5.2. FastMPJ support for Cray ALPS

Current Cray systems utilize the Cray Linux Environment (CLE), which is a suite of HPC tools

that includes a Linux-based OS designed to run large applications and scale efficiently to a high

number of cores. Hence, compute nodes run a lightweight Linux called Compute Node Linux (CNL)

which ensures that OS services do not interfere with application scalability. Two separate execution

environments for running jobs on the compute nodes of a Cray machine are currently available:

Extreme Scalability Mode (ESM) and Cluster Compatibility Mode (CCM).

On the one hand, ESM is the high-performance and native execution environment specifically

designed to run large applications at scale, which dedicates compute nodes for each user job and

sets up the appropriate parallel environment automatically. This mode is required in order to access

the underlying interconnect via the native uGNI API, thus allowing to obtain the highest network

performance. However, ESM does not provide the full set of Linux services (e.g., ssh) needed to

run standard cluster-based applications, which requires the implementation of specific support for

this mode, as will be shown below. On the other hand, the CCM execution environment allows

standard applications to run without modifications. Thus, users can request the CNL on compute

nodes to be configured with CCM through the use of a special queue at job submission. This mode

comes with a standardized communication layer (e.g., TCP/IP) and emulates a Linux-based cluster

which provides the services needed to run most cluster-based third-party applications on Cray

machines. However, this feature is generally site dependent and may not be available. In addition,

it poses important constraints such as that the number of cores that can be used under this mode

is usually very limited and there is no support for core specialization. Furthermore, the uGNI API

cannot be used to directly access the underlying interconnect, which prevents the implementation

of ugnidev. Therefore, a mandatory prerequisite for this device is the implementation of the ESM

mode support in FastMPJ, which basically involves modifying the FastMPJ runtime to work in

conjunction with the specific Cray scheduler, as described next.

The Application Level Placement Scheduler (ALPS) [58] is the Cray supported mechanism for

placing and launching applications under the ESM mode. More specifically, “aprun” is the user

command that must be used to launch a parallel application to a set of compute nodes reserved

through ALPS. The FastMPJ support for Cray ALPS mainly consists of two distinct parts. The first

one is the “alps-spawner” utility, a small C program (< 400 source lines) intended to be launched

with the “aprun” command that acts as a bridge between ALPS and FastMPJ. This utility uses the

C-based implementation of the Process Management Interface (PMI) [59], which is provided by

Cray to interact with ALPS. The PMI library allows to obtain the necessary data from ALPS to

properly set up the parallel environment of FastMPJ (e.g., rank of each process in the application).

After setting this information via environment variables, “alps-spawner” executes a new JVM using

the execvp() function. Each JVM represents one of the Java processes of the MPJ application

running a specific Java class of the FastMPJ runtime. This Java class, which is the second part

of the implemented support, initializes the FastMPJ runtime with the information gathered from the

environment and then invokes the main method of the MPJ application using the Java reflection
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facility. The MPJ application to be executed is one of the input parameters that are accepted by the

“alps-spawner” utility, which can be specified using both class and JAR file formats. Once the main

method is running, the application will call at some point the Init method of the MPJ API in order

to initialize the FastMPJ execution environment, and hence the ugnidev device initialization takes

place.

5.3. Initialization

Since the uGNI interface allows for user-space RDMA communication, there is a hardware

protection mechanism to validate all RDMA requests generated by the applications. To utilize

this mechanism, uGNI provides applications with a Communication Domain (CDM), which is

essentially a software construct that must be attached to a network adapter in order to enable data

transfers. Hence, processes must use a previously agreed upon protection tag (ptag) to define and

join a CDM. For user-space applications, ALPS supplies a ptag value for each job together with the

network adapter that the processes on the local node can use. This information is available in the

ugnidev device initialization as part of the procedure described in the previous section, in which

the required data is first obtained from ALPS/PMI and then is set up by the FastMPJ runtime.

Therefore, ugnidev first creates a CDM using the ptag value provided by the FastMPJ runtime,

and then attaches the CDM to the available network adapter. All the processes of the job must sign

on to the CDM, as any attempt to communicate with a process outside of the CDM generates an

error. In addition, each process must supply a 32-bit instance identifier which is unique within the

CDM. The rank of the process within the global MPJ communicator (i.e., MPI.COMM WORLD)

is used for this purpose. After this step, ugnidev is able to create the CQs and register memory

with the CDM. Having completed this sequence of steps, all processes can initiate communications.

These operations are all asynchronous, with CQEs being generated when an operation or sequence

of operations has been completed.

5.4. Communication protocols

The ugnidev device implements all its communication routines as non-blocking primitives

through native methods in JNI. Therefore, blocking communication support is implemented as

a non-blocking primitive followed by a wait-like call. Note that the current implementation

of the ugnidev communication protocols does not make use of any additional thread (i.e.,

message progression for pending non-blocking communication requests occurs, if needed, when

any ugnidev method is invoked). A message in ugnidev consists of a header plus user data (or

payload). The message header includes the source identifier, the message size, the message tag and

control information (e.g., message type).

As mentioned in Section 5.1, two mechanisms are provided to transfer data using uGNI: FMA

and BTE. It is clear that efficiently transferring message data requires to select the best mechanism

based on the message size and the overhead associated with each one. Thus, the ugnidev device

implements two different communication protocols, which are widely used in message-passing

libraries:

1. Eager protocol: the sending process eagerly sends the entire message to the receiver, on the

assumption that the receiver has available storage space. This protocol is used to implement

low-latency message-passing communications for short messages (see Section 5.5).

2. Rendezvous protocol: this protocol negotiates, via special control messages, the buffer

availability at the receiving side before the message is actually transferred. This protocol

is used for transferring long messages, whenever the sender is not sure whether the receiver

actually has enough buffer space to hold the entire message (see Section 5.6).

The maximum message size that can be sent using the eager protocol is a configurable runtime

option of ugnidev that serves as a threshold for switching from one protocol to another. By default,

the value of this threshold is set to 16 KB. The benefits of these protocols on the performance

of MPJ applications can be significant. On the one hand, the eager protocol reduces the start-up
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Figure 3. First path of the eager protocol in ugnidev

latency, allowing Java applications with intensive short-message communications to increase their

scalability. On the other hand, the rendezvous protocol maximizes communication bandwidth, thus

reducing the overhead of message buffering and network contention.

5.5. Eager protocol

The eager protocol of ugnidev has been implemented using two different paths depending on the

message size. The first path uses the FMA SMSG facility, as it provides the highest performance in

terms of latency and short-message rates, but comes at the expense of memory usage. Although

the FMA MSGQ messaging protocol can be more scalable in terms of memory usage, it was

discarded because provides lower performance than SMSG, particularly in terms of short-message

rate. Additionally, the maximum message size that can be sent using MSGQ is limited to 128 bytes.

In theory, SMSG can be used to deliver messages up to 64 KB, but owing to memory footprint

constraints and performance considerations, the practical upper limit is usually lower.

Figure 3 shows the operation of the first path using the FMA SMSG facility. In this path,

each process creates and registers with the network adapter per-process destination buffers called

mailboxes (MB in the figure). During a message transfer, the sender directly writes data to its

designated mailbox at the receiving side (step 1 in Figure 3). Next, the received data is copied out

from the mailbox to the application buffer provided by the user (step 2). SMSG handles the delivery

to the remote mailbox and raises both a local and a remote CQE on the sending and receiving sides,

respectively, upon successful delivery. Note that SMSG transactions are implemented internally by

the Gemini/Aries hardware as a special class of RDMA PUT operations which require remote buffer

memory registration (i.e., the mailbox), but not local memory registration, which allows to send the

data directly from the unregistered application buffer to the destination mailbox, as depicted in

Figure 3 (see the color key). Furthermore, SMSG allows to specify a header separately from the

message payload to be sent. Every send request of ugnidev has been defined with a small buffer

(16 bytes) that contains the message header, which is not shown in the figure for clarity purposes.

However, using the SMSG protocol requires a significant amount of registered memory resources

which scale linearly with the number of processes in the job. To alleviate this problem, SMSG is

only used for communications up to a certain short message size, which is a configurable runtime

option. By default, the maximum message size that can be sent using SMSG varies with the job

size, with smaller mailboxes being used as the job size increases, in order to decrease the amount of

memory used for SMSG mailboxes for larger jobs (see table in Figure 3).

Above the maximum message size used by the FMA SMSG path, but below the rendezvous limit

(16 KB by default), ugnidev switches to the second path that is implemented using both FMA DM

and BTE mechanisms. These mechanisms require the memory addresses and handles of the send

and receive buffers. Therefore, the second path uses a small shared pool of pre-registered buffers

as opposed to the per-process mailboxes of the FMA SMSG path. Each buffer in the pool is large

enough to contain an entire eager message. The buffers are used in a copy in/out fashion (from/to

application buffer), as the overhead of data copies is relatively small for short messages. Since the

entire pool is pre-registered during the initialization of the ugnidev device, there is no additional

registration overhead for each message. Figure 4 illustrates the operation of the second path. As

can be seen in the left part of the figure, the sending process reserves one buffer from the pool and

copies the user data in it (step 1). Next, a control message (EAGER GET INIT) that includes buffer
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information is sent to the receiver through the FMA SMSG path (step 2). All control messages of

ugnidev are short enough to be sent using the SMSG path. Once the receiving side has processed

the control message, a buffer is reserved from the pool and, based on the message size, either FMA

DM or BTE is used to initiate an RDMA GET of the message data from the sender’s memory

(step 3). Once the receiving process completes the GET operation, it sends an EAGER GET END

message to the sender to complete the message transfer (step 4). Upon receipt of this message, the

sender marks the message as complete and puts the buffer back to the pool. The receiver will copy

the data out from the buffer in the pool to the application buffer when a recv operation matches the

corresponding send (step 5). The choice between using FMA DM or BTE is also configurable via a

runtime option. By default, messages up to 2 KB are sent using the FMA DM hardware, while BTE

is more suitable for longer transfers, as mentioned in Section 5.1.

However, current Gemini/Aries network adapters impose some buffer size and alignment

restrictions when using GET operations. More specifically, transfers using RDMA GET require

that the size of the data buffer at both sides be a multiple of 4 and its start address be 4-byte

aligned. When these restrictions are not met, ugnidev uses a PUT-based eager protocol (see

right part of Figure 4). Hence, if the violation of these restrictions occurs at the sending side, an

EAGER PUT INIT message is used after step 1 to express the intent to send an eager message

using the PUT-based protocol (step 2). When the receiver has processed this message and has

taken a buffer from the pool, it replies to the sender with an EAGER PUT RTR message to express

that is ready to receive the data (step 3). Upon receiving this message, the sender uses the buffer

information included in the control message to send the data using an RDMA PUT operation (step

4). If the restrictions are met at the sending side (i.e., the sender is using the GET-based protocol

shown in the left part of the figure), but the violation occurs at the receiving side (e.g., the data

size to be received is not a multiple of 4), the receiver sends an EAGER PUT RTR message to

the sender in response to the EAGER GET INIT, including information of the receive buffer. This

control message causes the sender to switch to the PUT-based protocol, using RDMA PUT to send

the data (step 4). Once the PUT operation is complete, the sender sends an EAGER PUT END

message in order to indicate the completion of the message transfer at the receiving side (step 5).

Thus, the receiver is ready to copy the data out from the buffer in the pool to the application buffer

if the corresponding recv operation has been issued (step 6).

One clear advantage of the GET-based protocol over the PUT-based is that the latter requires one

extra control message, which increases the protocol overhead. Furthermore, the GET-based protocol

can offer better computation-communication overlap since the receiver can progress independently

of the sender once the EAGER GET INIT message is sent. In order to achieve the lowest latency

for short messages, the GET-based protocol is always used when possible, whereas the PUT-based

path only acts as a fallback protocol due to the alignment restrictions of GET operations.

5.6. Rendezvous protocol

The rendezvous protocol is used for delivering messages exceeding the eager message size

threshold. When transferring long messages it is extremely beneficial to avoid extra data copies

through a zero-copy protocol. The zero-copy protocol of ugnidev first negotiates the buffer
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availability at the receiving side using control messages. Thus, the application buffers are registered

on-the-fly and the buffer addresses are exchanged via control messages. However, the actual data

can be transferred by using either RDMA GET or PUT. The efficiency of the RDMA GET operation

in Gemini/Aries is sensitive to the alignment of the send and receive buffers, and better performance

is obtained when these buffers start at the same relative offset into a cache line. However, RDMA

PUT operations are much less sensitive to alignment and thus usually provide higher bandwidth

than RDMA GET, especially for the long messages used in the rendezvous protocol. Hence,

ugnidev employs a GET-based path up to a certain message size in order to benefit from its

better computation-communication overlap capabilities, and a PUT-based path for longer transfers.

The threshold for switching from using RDMA GET to PUT is also a configurable runtime option,

set to 64 KB by default. Additionally, the PUT-based path must also be used when buffer size and

alignment restrictions of GET operations are not met, as occurred in the eager protocol.

In the GET-based path (left part of Figure 5), when a sending process is ready to send a long

message, it first registers the application buffer (step 1) and then sends a RNDZV GET INIT

message to the receiving process (step 2). This control message, in addition to expressing the intent

to send the message, also provides the receiver with information of the send application buffer for

performing an RDMA GET operation. Once the receiver is prepared to receive the message (i.e., the

corresponding recv operation has been issued and the receive buffer has been registered in step 3),

an RDMA GET operation is initiated to access the message data directly from the send buffer (step

4). As in the eager protocol, the GET operation can be performed using either the FMA DM or the

BTE hardware, depending on the value of the corresponding threshold. Using the default settings, all

rendezvous transactions select BTE as it generally provides better performance for long messages.

Next, a RNDZV GET END message is sent to the sending process once the GET operation has

finished at the receiving side (step 5). Finally, buffers are unregistered at both sides (step 6).

The PUT-based path (right part of Figure 5) is implemented as a seven-step protocol which starts

when the sending process sends a RNDZV PUT INIT message to the receiver after the registration

of the send buffer (steps 1 and 2). Once the receiver is prepared to receive the message, it registers

the application buffer (step 3) and replies with a RNDZV PUT RTR message to express that is ready

to receive the data (step 4). This reply message contains the information of the receive application

buffer to access that memory region. Upon receiving this control message, the sender directly writes

data to the target receive buffer by using a PUT operation (step 5). After this operation is finished,

a RNDZV PUT END message is sent to indicate the completion of the message transfer at the

receiving side (step 6), and finally buffers can be unregistered (step 7).

5.7. Registration cache

When using the rendezvous protocol, application buffers are registered/unregistered on-the-fly

causing a performance penalty, especially for very long-message transfers. However, the overhead

of the memory registration/unregistration can be hidden or at least reduced by using the pin-down

cache technique [60]. The idea is to maintain a cache of registered buffers; thus, when a buffer

is first registered it is put into the cache, and when the buffer is unregistered the actual unregister
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operation is not carried out and the buffer stays in the cache. Hence, the next time the buffer needs

to be registered, no operation is performed because it is already in the cache.

The registration cache of the ugnidev device is implemented as a special Last In-First Out

(LIFO) stack which can also be linearly traversed. By adding new elements at the top of the stack,

buffers that are frequently used by a certain application can be found faster than those buffers that are

rarely used. Hence, the effectiveness of this technique heavily depends on how often the application

reuses its buffers and the way it does. If the reuse rate is high, most of the buffer registration and

unregistration operations can be avoided. Moreover, if buffers are reused in an efficient way (i.e.,

first trying to reuse recently used buffers), the cost of the linear search is significantly reduced as they

would be at the top positions. Nevertheless, the Gemini/Aries hardware imposes strong restrictions

on the number of buffers that can be registered by user applications. Hence, the size of this cache has

been limited, which also helps to decrease the cost of the linear search, especially for the worst-case

scenario (i.e., the requested buffer is the last element). Furthermore, the cache is bypassed when it

is already full and a certain number of consecutive cache misses has been reached in order to likely

avoid costly and useless searches. By default, the ugnidev device uses the registration cache, but

it can be disabled via a configurable runtime option.

6. EFFICIENT SUPPORT FOR RDMA ADAPTERS BASED ON VERBS: IBVDEV

The ibvdev device is a low-level message-passing device for communication on InfiniBand (IB)

systems. This device directly implements its communication protocols on top of the Verbs interface

through JNI. An initial proof-of-concept implementation of ibvdev was first integrated into the

MPJ Express library [10] for internal testing purposes, but was never part of the official release.

Although it was able to provide better performance than using the IPoIB protocol, the buffering

layer in MPJ Express significantly limited its performance and scalability. Next, the ibvdev device

was reimplemented to conform with the xxdevAPI and adapted for its integration into the FastMPJ

middleware in order to improve its performance.

However, the ibvdev device still presents two important limitations: (1) it does not include

support for the RDMA Communication Manager (RDMA CM), relying instead on TCP sockets

to exchange the necessary information for establishing the initial connections between processes

during the initialization method. This causes ibvdev to only work on IB adapters, thus not

supporting the remaining RDMA-compliant adapters based on the Verbs interface: iWARP and

RoCE. And (2) it does not take advantage of the inline feature that is provided by some RDMA

adapters to improve the latency of short messages. Currently, ibvdev has overcome these

constraints by establishing initial connections through RDMA CM and implementing a more

efficient eager protocol that uses the inline feature. The new connection setup using RDMA

CM allows ibvdev to support iWARP and RoCE networks while avoiding any TCP processing

overhead during the initialization method. These new features in ibvdev will be discussed in the

next sections.

6.1. Eager protocol optimization

The ibvdev device implements both the eager and rendezvous protocols relying on the Reliable

Connection (RC) transport service defined in Verbs, which provides reliability, delivery order and

data loss and error detection. The eager protocol of ibvdev is illustrated in Figure 6. In the original

implementation, the buffer registration/unregistration overhead is avoided by using a shared pool of

pre-registered, fixed size buffers for communication. For sending an eager message, the user data

along with the message header are first copied to one of the available buffers from the pool (step

1 of the figure). Next, it is sent out from this buffer to the Send Queue (SQ) of the corresponding

Queue Pair (QP). This is done by using the ibv post send() function (step 2), which posts a Work

Request (WR) to the SQ. At the receiving side, a number of buffers from the pool are pre-posted in

the Receive Queue (RQ) using ibv post recv() (step 0). This function, which posts a WR to the RQ,

is the receiving counterpart of ibv post send(). Once the message is received through the network
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(step 3), the message payload is copied out to the user destination buffer (step 4) and the receive

buffer is returned back to the pool.

However, this implementation does not take advantage of sending data as inline, a feature that is

supported by some modern RDMA adapters. Using this feature, the memory buffer that holds the

message is placed inline in the WR posted to the SQ. This means that the CPU (i.e., not the RDMA

adapter) will read the data from the buffer. Therefore, the data is transferred to the adapter at the

same time that ibv post send() transfers the WR. The main benefit is that sending short messages as

inline provides lower latency since it eliminates the need of the RDMA device to perform an extra

read over the PCIe bus in order to read the message payload. In addition, the memory buffer used

for communication at the sending side does not have to be registered with the RDMA adapter.

The inline feature is an implementation extension not defined in the RDMA specification. Hence,

there is not any defined verb that specifies the maximum message size that can be sent inline in

the SQ of a QP. In some RDMA adapters with this feature, creating a QP will set the value of the

max inline data attribute to the message size that can be sent as inline (usually less than 1 KB). In

other adapters, the message size to be sent inline must be explicitly specified before the creation of

a QP. In the latter case, the maximum value supported by the RDMA adapter is calculated during

the initialization method of ibvdev following an iterative approach, which first creates a dummy

QP specifying a high initial value, and then continues to decrease if the QP creation fails. When the

QP creation is successful, the inline size of the dummy QP is used to create all the QPs needed for

establishing the connections between processes.

In the original implementation of ibvdev, when a WR is posted to the SQ, the buffer that holds

the message cannot be modified since it is not possible to know when the RDMA adapter will stop

reading from it. That is to say, the WR is considered outstanding until a completion event is raised,

which means that the buffer can now be reused. However, when using inline data the buffer can be

reused immediately after ibv post send() is finished, since the data has been already transferred to

the RDMA adapter. This allows to have a single dedicated buffer to send inline data to all processes.

Therefore, the pool of pre-registered buffers can be bypassed when using the new implemented

path: if the message is short enough to be sent inline, the message header and payload are now

copied to a dedicated buffer (step 1’ in Figure 6) and then sent out from this buffer to the SQ

using ibv post send() with the appropriate flags (step 2’). As mentioned before, this path reduces

the latency of short messages, between 15-30% according to our tests, depending on the underlying

RDMA adapter and CPU being used (see Section 8.1.2). Additionally, it allows more buffers to be

available to send messages through the original path if the message size is above the inline value,

but below the rendezvous limit. Furthermore, all control messages of the rendezvous protocol can

take advantage of this optimization, as they are small enough to be sent inline. This also contributes

to increase the number of outstanding WRs that can be posted to the SQ at a time, which improves

the overall efficiency of the RDMA adapter while memory consumption remains almost the same

(only one additional buffer is needed). Note that this optimized path is only relevant at the sending

side, as the receiver is not aware of the fact that a WR is sent inline.
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Figure 7. RDMA CM-based connection setup in ibvdev

6.2. RDMA CM-based connection setup

The basic communication in ibvdev is achieved over connected QPs using the RC transport

service. In the initialization method, an RC-based QP connection is established between every

two processes (see Figure 6). To enable data transfers, each QP needs to be set up and must be

transitioned through an incremental sequence of states. In order to transition into the final connected

state, some information from the remote process is required: (1) the number of the remote QP

to connect with (this value is returned at QP creation); and (2) the Local IDentifier (LID) of the

remote process, which is a unique 16-bit address assigned to end nodes by the subnet manager.

This information needs to be exchanged through some out-of-band mechanism. As a first step,

the original initialization method of ibvdev uses sockets to set up a TCP connection between

every two processes. Second, the necessary information is exchanged through TCP sockets. Third,

the QPs are transitioned and connected to each other. Finally, the TCP connection is closed. The

described connection setup works perfectly on IB adapters, which was the main goal of the original

implementation of the device. However, it poses an important drawback: the iWARP protocol

requires RDMA CM to establish connections, which prevents ibvdev from working on iWARP

adapters. Another drawback is the additional TCP connection that is established in advance to

initialize the device, which can add a noticeable delay and TCP processing overhead on IB adapters

when using a high number of processes. These issues have been overcome by implementing an

alternative connection method using RDMA CM.

RDMA CM is an abstraction layer for connection management defined by the OpenFabrics

Alliance (OFA) [20], designed to establish connections between the QPs of a pair of processes.

In fact, it is an event-driven connection manager based on a high-level IP address/port number

abstraction that can set up connections over the multiple RDMA networks supported by Verbs, but is

only mandatory for iWARP. The main responsibilities of RDMA CM include exchanging necessary

connection information and transitioning the QPs through their states into the connected state, thus

avoiding the additional TCP connection of ibvdev. It is to be noted that RDMA CM sets up

the connections in a traditional client-server mechanism. Therefore, the API is based on sockets, but

adapted for QP-based semantics: communication is over a specific RDMA device, and data transfers

are message-based. RDMA CM provides only the communication management functionality (i.e.,

connection setup and teardown), and works in conjunction with the Verbs interface for data transfers.

The initialization method of ibvdev has been modified to use the RDMA CM manager in

order to automate and simplify the connection setup. As mentioned before, RDMA CM uses the

traditional TCP style, client-server mechanism to set up connections. Due to this, all the process

pairs need to be separated into client-server pairs before any setting up of connections. For every

pair of processes, the process with the lower rank takes the role of server (passive side or responder),

and the process with the higher rank takes the role of client (active side or initiator). The main
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steps to complete the connection setup using RDMA CM are shown in Figure 7, as follows.

(1) Each process identifies the port and IP address based on the RDMA adapter to use. This is

accomplished via the information provided by the FastMPJ runtime to the ibvdev device. (2) Both

sides allocate a communication identifier via rdma create id(), which is conceptually equivalent to

a socket for RDMA communication. (3) The server must bind the RDMA identifier to a source

address and listen for incoming connection requests. In the case of a client, it first resolves the

server address and then allocates a new RDMA connection (i.e., a QP) via the rdma resolve addr()

and rdma create qp() functions, respectively. (4) The client sends a connection request to the server

using rdma connect() after having resolved the destination route. (5) When the request is received

at the server side, the responder then allocates a new RDMA connection and uses rdma accept()

to confirm the connection to the client. (6) The connections are established internally by RDMA

CM, exchanging the necessary information and transitioning the corresponding QPs through their

sequence of states. (7) The final transition into the connected state is detected via an event at both

sides, which completes the establishment of the RDMA connection. (8) At this point, the processes

synchronize with a barrier to make sure that all the peer processes are ready for communication.

These steps are repeated for the setup of each of the QPs between a pair of processes. The overall

procedure can be done concurrently due to the event-driven nature of the connection manager.

As mentioned before, the RDMA CM-based connection setup allows ibvdev to provide

support for iWARP adapters while leveraging the existing communication protocols of the device.

Additionally, as RDMA CM is also valid for RoCE adapters, ibvdev now supports all RDMA-

compliant adapters based on Verbs: IB, iWARP and RoCE. The original TCP-based connection

setup is still interesting to be supported as it serves as a fallback option in case of any issue with

RDMA CM or even if it is not available in the system. Although the TCP-based approach cannot

work on iWARP since RDMA CM is mandatory for this network, its support for RoCE has also

been implemented, as described next.

The OFA specifies that Verbs applications which run over IB/iWARP should work on RoCE

as long as the Global Routing Header (GRH) information is provisioned when creating Address

Handles (AH). The GRH is required for routing between subnets and is optional within IB/iWARP

subnets. However, RoCE encapsulates the IB transport and GRH headers in Ethernet packets bearing

a dedicated ether type. In this case, the GRH is used for routing inside the subnet and therefore

is mandatory. The GRH information can be provisioned in the AH of a QP when using the RC

transport. The AH describes the path to the remote QP and is needed to make the transition from the

initial state to the ready-to-receive state. This is the reason why using RDMA CM works seamlessly

on RoCE without any change (QPs are transitioned and set up automatically). However, using the

original TCP-based method the GRH information must be specified manually using the Global

IDentifier (GID) of the remote process, which is a unique 128-bit address used to identify a port on

a network adapter that is assigned by the subnet manager. Hence, this method has been modified

as follows. First, each process has to query its GID via ibv query gid(). Next, this value needs to

be exchanged with the remote process along with the previously required information (LID and QP

number). Once the TCP communication phase has been completed, the required GRH information

for RoCE can be provisioned in the AH of each QP using the remote GID value. Finally, each QP

can be transitioned through the required sequence of states as occurred in the original TCP-based

implementation.

To sum up, the ibvdev device currently provides full support for IB, iWARP and RoCE through

the new RDMA CM-based connection setup and, as a fallback option, IB and RoCE are also

supported using the TCP-based approach.

7. A SPECIFIC DEVICE FOR MELLANOX RDMA ADAPTERS: MXMDEV

Another contribution of this paper is the introduction of the mxmdev device, which provides

native support for the networking infrastructure provided by Mellanox RDMA hardware over

the MellanoX Messaging (MXM) accelerator. MXM is a user-space messaging library that

implements intra-node shared memory and inter-node communication protocols, which are
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completely transparent to the application. It includes a variety of enhancements that take advantage

of Mellanox IB/RoCE adapters including proper management of resources and memory structures,

efficient memory registration, handling of transport services and a tag matching mechanism at the

receiving side. Hence, many of the low-level network features are built-in in MXM, which allows

developers to work at a higher level and the main effort to be spent on the overall application

development.

Therefore, the most important benefit of MXM is that it provides the developer with a higher level

API than Verbs, based on a set of communication primitives with messaging semantics that eases

the development of applications on top of the Mellanox RDMA hardware. However, MXM is not

primarily intended for use by end-user applications. Instead, portable communication middleware

(e.g., message-passing libraries) usually provide specific support for MXM, which allows the user

to benefit from a higher level of abstraction without source code modifications. This fact has

motivated the implementation of mxmdev, a new xxdev device layered on top of the MXM library.

FastMPJ with mxmdev provides the programmer with all the high-level features of the MPJ layer

(e.g., collective communications, virtual topologies, intra- and inter-communicators) while taking

advantage of the infrastructure provided by FastMPJ, such as the runtime system. Furthermore, it

frees Java developers from the implementation of JNI calls, which is usually a cumbersome and time

consuming development task. Hence, the mxmdev device allows the developer to benefit from the

MPJ programmability, which greatly enhances productivity without trading off much performance.

7.1. Connection setup

The MXM library is initialized using the mxm init() method. Next, the connection setup must

be carried out in order to enable communications. In MXM, messages are exchanged between

endpoints, which are software representations of the Mellanox IB/RoCE adapters. At present, MXM

does not include any communication manager to ease the connection setup. Thereby, in order to

establish the initial connections between endpoints, the mxmdev device has to rely on an out-

of-band mechanism to distribute the endpoint addresses between all the processes. Hence, each

process first creates and sets up an endpoint using the mxm ep create() function. After initializing

endpoints, a Matched Queue (MQ) interface is created via mxm mq create(). Basically, an MQ is

a specific context of sending and receiving messages which maintains ordering between requests.

It exposes a simplified messaging interface that resembles an MPI communicator, but supporting

only basic point-to-point communications. Next, the endpoint addresses are exchanged between all

processes relying on TCP sockets, selected as the ubiquitous out-of-band mechanism. Finally, the

mxm ep connect() function must be used to establish the endpoint connections with the information

gathered from the TCP communication phase, thus enabling data transfers.

7.2. Basic communication operation

The MXM library provides a C-based API which includes a small set of point-to-point

communication primitives similar to those needed to implement the xxdev interface (see

Section 4). Thus, mxmdev acts as a thin wrapper over the MXM library, so that the implementation

of a method in xxdev generally delegates directly in a native method that performs the requested

operation in MXM through JNI. Therefore, mxmdev deals with the marshaling and communication

of Java objects, the JNI transfers and the handling of MXM parameters, by implementing a series

of three steps: (1) get the associated parameters of the Java objects that are required for calling

the corresponding function in MXM; (2) call the MXM function; and (3) save the results in the

appropriate attributes of the Java objects involved in the communication. As a general rule, the

caching of object references has been extensively used in the implementation of the JNI layer, thus

minimizing the overhead associated with the JNI calls.

Every message operation in MXM, either sending or receiving, starts with a non-blocking

communication request (e.g., mxm req send()). This request is queued by MXM, returning

the control to mxmdev. Next, the mxmdev device is responsible for checking the successful

completion of the communication operation using one of the supported mechanisms in MXM

(e.g., mxm wait(), mxm req test()). The MXM tag matching mechanism at the receiving side is
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based on a 32-bit value (mxm tag t), which must be specified by both communication peers in

order to deliver incoming messages to the right receive requests. The tag value specified by the

programmer at the corresponding MPJ-level method (e.g., MPI.COMM WORLD.Send()) is used

for this purpose. Hence, incoming MXM messages are stored according to their MPJ tags to

pre-posted receive buffers. In this case note that, unlike the ugnidev and ibvdev devices,

the underlying communication protocols are implemented internally by MXM. Currently, MXM

includes both intra-node (via shared memory) and inter-node communication protocols, allowing

MPJ applications to take full advantage of hybrid shared/distributed memory architectures, which

are currently the most generally adopted solutions in HPC.

8. PERFORMANCE EVALUATION

This section presents a performance evaluation of the FastMPJ communication devices presented

in this paper: ugnidev, ibvdev and mxmdev. The experimental results have been obtained

at the MPJ/MPI level in order to analyze the impact of their use on the overall middleware

performance. Hence, FastMPJ (labeled as FMPJ in the graphs) has been evaluated comparatively

with representative native and Java messaging middleware: Open MPI [44], Open MPI Java [45]

and MPJ Express [46]. First, this section includes a micro-benchmarking of point-to-point

communication primitives on several RDMA networks (Section 8.1). Next, the impact of the

communication devices on the overall application performance of representative parallel codes is

analyzed (Section 8.2).

8.1. Micro-benchmarking of MPJ/MPI point-to-point primitives

The goal of this micro-benchmarking is the comparative performance evaluation of MPJ/MPI

point-to-point communications between two nodes across different RDMA networks (i.e., inter-

node latency and bandwidth). This evaluation has been carried out using a representative micro-

benchmarking suite, the Intel MPI Benchmarks (IMB) [61], and our own MPJ counterpart, which

adheres to its measurement methodology. Here, the metric shown is the half of the round-trip time

of a ping-pong test for short messages (up to 1 KB), and the corresponding bandwidth for longer

messages (up to 16 MB). In order to obtain optimized JIT compiled bytecode results, 20,000 warm-

up iterations have been executed before the actual measurements. The results shown are the average

of 10,000 iterations, although the observed standard deviations were not significant. The transferred

data are byte arrays, avoiding the Java serialization overhead that would distort the analysis of the

results, in order to present a fair comparison with MPI.

8.1.1. Experimental configuration. Two different systems have been used in the evaluation of point-

to-point primitives. The first testbed consists of two nodes, each of them with one Intel Xeon E5-

2643 quad-core Sandy Bridge-EP processor at 3.3 GHz and 32 GB of memory. These nodes have

been used to evaluate three different RDMA networks: IB (Mellanox MT27500 4x FDR, 56 Gbps),

RoCE (Mellanox MT27500, 40 Gbps) and iWARP (Intel NetEffect NE020, 10 Gbps). Hence, this

testbed allows the evaluation of the ibvdev device on IB, RoCE and iWARP, while mxmdev can

be assessed on IB and RoCE. Regarding software configuration, the OS is Linux CentOS 6.4 with

kernel 2.6.32-358 and the JVM is OpenJDK 1.7.0 25. Finally, the native communication layers are

OFED driver 3.5-2 and MXM version 1.5.

The second testbed is the Hermit supercomputer installed at the High Performance Computing

Center Sttutgart (HLRS), ranked #44 in the June 2014 TOP500 list [62]. This system is a petaflop

Cray XE6 supercomputer with 113,664 cores and 126 TB of memory. More specifically, Hermit

consists of 3552 compute nodes, each of them with 2 AMD Opteron 6276 16-core Interlagos

processors at 2.3 GHz and 32/64 GB of memory. The nodes are connected via the custom Gemini

interconnect [18], which allows the evaluation of the ugnidev device. This network has a 3D

torus topology built from Gemini Application-Specific Integrated Circuits (ASICs) that provide 2

network adapters and a 48-port router. Hence, each ASIC connects two nodes to the network. In the
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ping-pong test, two adjacent nodes (i.e., connected to the same ASIC) have been used in order to

report the lowest latencies and highest bandwidths for inter-node communications (i.e., results are

shown using the minimum hop network count). Regarding software settings, this system runs CLE

version 4.1.UP01 with kernel 2.6.32.59, which is an OS based on SUSE Linux Enterprise Server.

The JVM is Oracle JDK 1.7.0 45 and the uGNI library version is 4.0-1. This supercomputer is also

one of the systems selected for the analysis of performance scalability of parallel Java applications

(shown in Section 8.2).

Regarding the messaging middleware under comparison, Open MPI 1.7.4 has been evaluated as

a representative open-source native MPI implementation. This middleware has been specifically

configured with the openib BTL, which is implemented over Verbs on IB, RoCE and iWARP

networks. Open MPI results using the mxm MTL, implemented over MXM, are not shown for clarity

purposes, as we have checked that the openib BTL generally obtains better performance than the

mxm MTL. Furthermore, Open MPI can benefit from its specific support for the Cray machine,

which allows to use the ESM mode and the uGNI library via the ugni BTL. Open MPI Java‡ has

been evaluated under the same BTL settings, whereas MPJ Express results are shown using the

native communication device (version 0.43) on top of Open MPI 1.7.4, thus taking advantage of

RDMA networks and avoiding inefficient TPC/IP emulations (e.g., IPoIB).

8.1.2. Analysis of the results. Figure 8 shows point-to-point latencies and bandwidths on IB,

RoCE, iWARP and Gemini networks. The latency graphs (at the left) serve to compare short-

message performance (up to 1 KB), whereas the bandwidth graphs (at the right) show long-message

performance (up to 16 MB). Latency graphs of IB, RoCE and iWARP networks show performance

results both for the previous version of ibvdev without inline support (labeled as “w/o inline”) and

the new device with inline support (labeled as “w/ inline”). As can be observed, the improved eager

protocol of ibvdev provides latency reductions of up to 30% and 15% for IB/RoCE and iWARP,

respectively. As expected, these performance improvements are only noticeable when transferring

messages up to the maximum message size which is configured to be sent as inline data (i.e., 128

and 32 bytes for IB/RoCE and iWARP adapters, respectively). From now on, only the performance

results of the new version of the ibvdev device are considered for comparison purposes.

The performance results on IB reveal that both FastMPJ devices (i.e., ibvdev and mxmdev)

obtain the lowest start-up latencies for MPJ, around 1 µs, showing an overhead reduction of

approximately 43% and 63% compared with MPJ Express (1.75 µs) and Open MPI Java (2.7

µs), respectively, whereas native MPI latencies are around 0.82 µs. Regarding bandwidth, the

ibvdev device obtains the best MPJ performance with up to 47 Gbps, only slightly lower than

MPI (48 Gbps), whereas the maximum bandwidth for mxmdev is around 43 Gbps. Here, FastMPJ

clearly outperforms the other Java middleware for long messages, achieving up to 2.9 times higher

bandwidth for 8 MB messages than MPJ Express, which suffers significantly from the high overhead

of its buffering layer. Open MPI Java incurs a noticeable overhead from 256 KB on, showing poor

long-message bandwidths.

The analysis of the performance results on RoCE shows a very similar pattern. On the one

hand, FastMPJ devices obtain slightly higher latencies than on IB, around 1.10 µs, significantly

outperforming MPJ Express (1.83 µs) and Open MPI Java (2.8 µs). MPI latencies also slightly

increase on RoCE, around 0.90 µs. On the other hand, the maximum bandwidths obtained by

ibvdev and mxmdev are 36.6 and 35.7 Gbps, respectively, up to 2.3 times better performance

than MPJ Express. In fact, FastMPJ bandwidths are quite close to MPI (37.2 Gbps) and to the limit

for this networking technology (40 Gbps). Both Open MPI Java and MPJ Express incur once again

a high overhead and buffering penalty, which affects especially long-message performance. These

results confirm that RoCE is able to provide IB-like latencies on the Ethernet infrastructure, while

the maximum bandwidth of RoCE adapters is increasing and approaching IB.

‡Open MPI Java version 1.9a1r29129 has been used, which is a snapshot from the code trunk that is fully compliant with
the mpiJava 1.2 specification.
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Figure 8. Performance of MPJ/MPI point-to-point communications on RDMA-enabled networks
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The start-up latencies on iWARP are relatively high, at least compared with those obtained

on IB and RoCE. This fact suggests that the TCP/IP processing overhead seems to be the main

performance bottleneck for short-message performance, even though it is offloaded onto the iWARP

hardware. In fact, all MPJ middleware achieve very similar latencies, around 8 µs, while native MPI

results are around 6 µs. The observed bandwidths for FastMPJ and MPI are quite similar, up to 9.2

Gbps, which allows ibvdev to outperform MPJ Express (8 Gbps) and Open MPI Java (6.7 Gbps).

In this scenario, the iWARP network, with a theoretical maximum bandwidth of 10 Gbps, turns out

to be the main performance bottleneck for FastMPJ and MPI bandwidth results.

Finally, the performance results on the Cray Gemini interconnect show that the start-up latencies

of the ugnidev device are around 1.45 µs, only slightly higher than MPI (1.38 µs) and significantly

lower than MPJ Express (4.2 µs) and Open MPI Java (4.9 µs). This means that FastMPJ is able

to provide a reduction of the communication overhead for short messages of up to 65% and

70% compared with MPJ Express and Open MPI Java, respectively. It can also be observed that

the performance increase of ugnidev for long-message bandwidth is up to 275% with respect

to the best MPJ alternative. This improvement is obtained for 4 MB messages, where FastMPJ

achieves 49.2 Gbps and Open MPI Java is limited to around 13.1 Gbps. Furthermore, this maximum

bandwidth for FastMPJ is very close to that obtained by the native MPI library (50.4 Gbps).

This micro-benchmarking has shown significant improvements on the performance of MPJ point-

to-point communications when using the Java devices presented in this paper. Moreover, FastMPJ

results are even very close to those obtained by MPI. However, the usefulness of these devices

depends on their impact on the overall application performance, as will be analyzed next.

8.2. Performance analysis of parallel codes

This section presents the performance analysis of representative HPC kernels and applications. On

the one hand, the performance of two message-passing kernels selected from the NAS Parallel

Benchmarks (NPB) implementation for MPI (NPB-MPI) [63] and MPJ (NPB-MPJ) [64] have been

evaluated (Section 8.2.2): FT (Fourier Transform) and MG (Multi-Grid). On the other hand, the

scalability of an MPJ version of the Finite-Difference Time-Domain (FDTD) method [65], which

is a widely used numerical technique in computational electromagnetics, has been analyzed at the

application level (Section 8.2.3). The selection of these parallel codes has been motivated by their

high communication intensiveness, which allows the assessment of the impact of the developed

communication devices on their scalability.

8.2.1. Experimental configuration. The experimental results have been conducted on two systems.

The first testbed is Pluton, a 16-node multi-core cluster. Each node has 2 Intel Xeon E5-2660 octa-

core Sandy Bridge-EP processors at 2.2 GHz (hence 16 cores per node) and 64 GB of memory.

The performance results have been obtained using 16 processes per node (i.e., 256 cores in total),

since we have checked that the use of 32 processes per node when resorting to the HyperThreading

technology does not provide any performance benefit for the evaluated codes. The nodes of Pluton

are interconnected via IB (Mellanox MT27500 4x FDR, 56 Gbps), which allows the assessment of

the ibvdev and mxmdev devices. Regarding software configuration, the OS is Linux CentOS 6.4

with kernel 2.6.32-358 and the JVM is OpenJDK 1.7.0 25. Finally, the native communication layers

are OFED driver 3.5-1 and MXM version 2.0.

The second testbed is Hermit, the Cray XE6 supercomputer described in Section 8.1.1. The AMD

Opteron processor of Hermit has a quite complex architecture that provides up to 16 integer cores

and 8 256-bit Floating Point Units (FPUs) per chip. A dual-processor node can provide up to 32

integer cores that access the half of the FPU executing 128-bit instructions, or 16 integer cores

accessing the entire FPU with 256-bit instructions. This is due to the sharing of each FPU between

the two integer cores of a Bulldozer module, which is the building block of this architecture.

Therefore, the results are shown using 16 processes per node (i.e., one process per Bulldozer

module) in order to maximize the FPU performance on this system. We have experimentally

checked that this configuration obtains the best performance for the evaluated codes, which carry

out extensive double-precision floating-point operations, and thereby the results using 32 processes
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(a) NPB results on the multi-core cluster (Pluton)
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(b) NPB results on the Cray XE6 supercomputer (Hermit)

Figure 9. Performance of NPB-MPJ/MPI kernels

per node are not shown for clarity purposes. Moreover, the reported results for a given application

and core count were obtained within a single resource allocation to minimize timing differences due

to node placement.

Regarding the messaging middleware, Open MPI has been configured on Pluton with the

openib BTL for inter-node communications and the sm BTL for intra-node communications,

whereas the ugni and vader BTLs have been used on Hermit for inter- and intra-node

communications, respectively. Hence, Open MPI Java and MPJ Express (using again the native

communication device) have been evaluated with these BTL settings.

8.2.2. MPJ/MPI Kernel Performance Analysis. Figure 9 presents performance results for the FT

and MG kernels on Pluton and Hermit using up to 256 and 2048 cores, respectively. In order to

present a fair comparison between MPJ and MPI and provide a reference of the absolute NPB

performance, the metric reported is Millions of Operations Per Second (MOPS), which refers to the

number of operations performed in the kernel rather than the number of CPU operations. In fact,

NPB-MPJ/MPI results in terms of scalability should not be compared directly, as the sequential

runtimes of the native and Java implementations for these kernels are different, and thus their parallel

execution times. Hence, the longer runtime on one core for Java, whose performance is on average

around 65% of the native counterpart, favors the scalability of the MPJ kernels (a heavy workload

reduces the impact of communications on the overall performance scalability). In these experiments,

the problem size is fixed using the NPB class C workload while the number of cores is increased,

hence applying a strong scaling model.
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Regarding the results on Pluton (see Figure 9(a)), FastMPJ using ibvdev shows the best MPJ

performance for the FT kernel from 32 cores on, outperforming Open MPI Java and MPJ Express

up to approximately 31% and 43%, respectively. FastMPJ with the mxmdev device achieves very

similar performance to Open MPI Java. The native MPI library (Open MPI) obtains the highest

MOPS for FT, a pattern that is maintained in the remaining experiments. However, FastMPJ results

are highly competitive, obtaining up to 91% of the native MPI performance when using 256 cores.

The reported MOPS for the MG kernel are quite similar for FastMPJ (using both devices) and Open

MPI Java, which are around 70% of the MPI performance. This fact suggests that the memory access

bandwidth turns out to be the main performance bottleneck for the Java code on this testbed. MPJ

Express shows the poorest results, below 145,000 MOPS on 256 cores, which is around 32% lower

than FastMPJ.

The analysis of the results on Hermit (see Figure 9(b)) shows that the use of the ugnidev

device allows FastMPJ to become the best MPJ middleware for both kernels. Regarding FT results,

FastMPJ clearly outperforms Open MPI Java and MPJ Express, especially from 64 cores on,

providing a performance improvement of up to 28% and 45% on 2048 cores, respectively. FastMPJ

results are again quite competitive when compared with MPI, around 87% of the native performance

using the maximum number of cores. The peak values for the MG kernel are achieved on 1024

cores for all MPJ middleware, where ugnidev provides FastMPJ with a performance increase of

32% and 157% when compared with Open MPI Java and MPJ Express, respectively. In this case,

FastMPJ obtains around 75% of the MPI performance when using 1024 cores. From this point, the

performance of the MPJ codes degrades whereas the MPI one continues to improve.

8.2.3. Performance Analysis of the MPJ FDTD application. Figure 10 shows the runtime and

scalability results for the MPJ codes of the FDTD application on Pluton (Figure 10(a)) and Hermit

(Figure 10(b)) using up to 256 and 4096 cores, respectively §. This application simulates a Ricker

wavelet propagating in free space surrounded by perfectly electrically conducting walls that reflect

impinging electromagnetic waves. The parallel code is based on a domain decomposition approach

that divides the workload equally among the cores, requiring frequent data transfers between

processes during the entire simulation (mainly point-to-point communications). The results are

shown for a simulation that consists of 2,500 time steps using a fixed 16384x8192 grid (i.e., strong

scaling).

According to the reported results, FastMPJ achieves the highest speedups, as shown in the right

graphs, especially when using a high number of cores. In particular, the performance improvements

compared with Open MPI Java are 24% on Pluton and 40% on Hermit when using the highest core

count on each testbed. Note that the ibvdev and mxmdev devices achieve very similar scalability

results on Pluton. Regarding MPJ Express, the speedup increases provided by FastMPJ are 31%

on Pluton (for 256 cores) and 81% on Hermit (for 1024 cores). Note also that while MPJ Express

obtains similar speedups to Open MPI Java on Pluton using up to 256 cores, it is not able to scale

on Hermit when using more than 1024 cores.

The analysis of the results of this evaluation reinforce one of the main conclusions of this paper,

that the use of efficient low-level communication devices can improve transparently the scalability

of parallel Java applications.

9. CONCLUSIONS

RDMA is a well-known mechanism that enables zero-copy and kernel-bypass features, providing

low-latency and high-bandwidth communications with low CPU utilization. However, RDMA-

enabled networks also usually pose some important challenges (e.g., high programming effort)

that require appropriate middleware support for the development of scalable parallel applications

with underlying hardware transparency. In order to take full advantage of the abundant hardware

§MPI results are not shown due to the unavailability of the code.
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(a) MPJ FDTD results on the multi-core cluster (Pluton)
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Figure 10. Runtime and scalability of the FDTD parallel Java application

resources due to the current trend of increasing the number of cores, applications have to

resort to efficient middleware. Nevertheless, current Java communication middleware is usually

based on protocols with high communication overhead which do not usually provide scalable

communications on RDMA networks.

This paper has described in detail the implementation of several low-latency communication

devices, which have been successfully integrated in our Java message-passing implementation,

FastMPJ. These devices have considered several communication protocols in order to provide

scalable support for RDMA networks, enabling 1-µs start-up latencies and up to 49 Gbps bandwidth

for Java message-passing applications, thanks to the efficient exploitation of the underlying RDMA

hardware. In order to evaluate the benefits of these devices, their performance has been analyzed

comparatively with other Java and native communication middleware on representative RDMA

networks (IB, RoCE, iWARP, Cray Gemini) and parallel systems (a multi-core InfiniBand cluster

and a TOP500 Cray supercomputer). The analysis of the results has demonstrated experimental

evidence of significant performance improvements when using the developed devices in FastMPJ.

In fact, the scalability of parallel Java codes can benefit transparently from this efficient support on

RDMA networks, reducing the latency by up to 65% and 70%, and increasing the bandwidth by up

to 3.9 and 3.7 times compared with MPJ Express and Open MPI Java, respectively. Furthermore,

the analysis of the impact of the use of these devices on representative HPC kernels has shown that

FastMPJ is able to obtain up to 87% of the native MPI performance on 2048 cores. Therefore,

the reported advances in the efficiency of Java communications can contribute to increase the

benefits of the adoption of Java for parallel computing, in order to improve productivity in parallel

programming.
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