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Abstract 

Frailty, a condition involving increased risk of disability and mortality in older adults, has emerged as a reliable way 

to predict the effect of aging. Genomic instability may help to anticipate recognition of frail individuals and 

improving frailty outcomes. Our objective was to evaluate the potential of the micronucleus frequency, evaluated in 

lymphocytes and buccal cells, to anticipate frailty identification and improve diagnosis reliability. Our results, from a 

group of older adults over 65, showed that frail individuals had significantly higher frequencies of micronucleus in 

lymphocytes (19.16 ± 0.66 vs. 13.07 ± 0.78, p < .001) and of binucleated buccal cells (82.65 ± 3.42 vs. 37.16 ± 2.85, 

p < .001) and lower frequencies of pyknotic and condensed chromatin buccal cells, than nonfrail subjects. When 

cognitive status was considered, similar results were obtained. Moreover, the presence of frailty and cognitive 

impairment were independently related to increases in frequencies of lymphocyte micronucleus and binucleated 

buccal cells. Our results encourage the use of micronucleus frequency in lymphocytes as a complement to clinical 

parameters in frailty identification. However, these results have to be further evaluated in prefrail patients, to better 

understand the connection between genomic instability and frailty and to establish these parameters as actual 

biomarkers of frailty in clinical practice. 
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Frailty in older adults is an important geriatric syndrome that represents a risk factor for poor health 

outcomes for those over 65 years old. Nowadays, there are several definitions of frailty; however, Morley 

and colleagues (1), in the Frailty Consensus Conference of 2012, reached the following consensus 

definition for physical frailty: “frailty is a medical syndrome with multiple causes and contributors that is 

characterized by diminished strength, endurance, and reduced physiological function that increases an 

individual’s vulnerability for developing increased dependency and/or death.” Those authors also agreed 

that frailty is potentially preventable and can be reversible in its early stages. This idea is also supported 

by several recent studies (2,3). 

 

Currently, several tools are employed to recognize frailty in older people. One of the most commonly 

used is the frailty phenotype criteria proposed by Fried and colleagues (4), which includes unintentional 

weight loss, exhaustion, low physical activity, slow walking time, and low grip strength. The major 

limitation of this assessment is the late identification of frailty, which is possible only after the onset of 

clinical manifestations. Therefore, to improve the clinical impact of frailty screening, it is necessary to 

develop new tools that allow a timely identification of those individuals more prone to develop this 

syndrome. The availability of these new tools would facilitate the implementation of personalized 

therapies and the improvement of health outcomes by means of prevention and intervention programs. 

Within this framework, cellular and molecular biomarkers have been proposed as a feasible end point to 

widen the definition of frailty (5) and to provide a more accurate identification of frail people in early and 

potentially reversible stages or prefrail status. 

 

Along an individual’s lifetime, DNA is exposed to exogenous stressors and endogenous agents that 

can damage it. Some of the lesions induced, for example, mutations and chromosomal rearrangements, 

lead to a gradual destabilization of the genome integrity called genomic instability, which is one of the 

main hallmarks of the aging process (6). The involvement of genomic instability in different age-related 

phenotypes has been previously reported as a consequence of the loss of balance between DNA damage 

and the correct function of cellular DNA repair mechanisms (6,7). However, recent studies reviewed by 

Gorbunova and Seluanov (8) suggest the possibility that this imbalance can be the cause of the aging 

process and age-related phenotypes, rather than its consequence. These authors suggested that not only 

mutations accumulate with age but also the rate of mutation accumulation increases with age, which 

could be due to the DNA repair pathways becoming less efficient (7). 

The evaluation of chromatin alterations could be important for a better understanding of mutations in 

age-related changes (8). The micronucleus (MN) test is one of the most commonly used methods for 

assessing chromosome damage. MN assay provides a reliable measure for both chromosome loss and 

chromosome breakage because MN is formed from chromosome fragments or whole chromosomes that 

lag behind during anaphase in cell division (9). MN frequency can be evaluated in different cells and 

surrogate tissues. For a number of reasons, including ease of sample collection and reproducibility, 

peripheral blood lymphocytes and exfoliated buccal cells are the most suitable, and consequently, the 

most frequently employed tissues for MN studies in human populations (10). 

 

The cytokinesis-block MN (CBMN) cytome assay performed in peripheral lymphocytes is a 

comprehensive system for measuring DNA damage (11); it has been regularly applied in human 

biomonitoring of genotoxic exposures and is increasingly used in preventive medicine and nutrition (12–

14). MN frequency is strongly associated with the aging process, and increases of this biomarker have 

been reported in several age-related diseases including cancer, diabetes, neurodegenerative diseases such 

as Alzheimer’s or Parkinson’s, and arthrosis (15,16). 

 

The buccal MN cytome (BMNCyt) assay is an attractive candidate for the study of human populations 

due to its noninvasive nature. This technique, firstly proposed by Stich and Rosin in 1983 (17), has been 

employed in multiple studies as a sensitive biomarker of genetic damage and cell death caused by 

lifestyle-related factors such as alcohol and tobacco consumption, or nutritional deficiencies, and 

environmental exposures to pollutants, medical procedures, as well as inherited genetic defects in DNA 

repair (11,18). Together with MN formation, this assay allows as well to identify other abnormalities 

indicative of different kinds of cellular alterations. These abnormalities are shown as alterations in the 



nuclear morphology, such as binucleated cells, nuclear buds, pyknosis, karyorrhexis, abnormally 

condensed chromatin, and karyolysis (19). 

 

The relationship between genome instability and frailty has not been established yet. It is not clear 

whether or in which way genome instability may influence the susceptibility to frailty, and even the few 

preliminary studies in this regard failed in finding any association (20). However, due to the well-founded 

belief that genome instability is involved in the frailty syndrome, given its strong association with aging 

and age-related diseases, further investigations should be carried out in this line. For this reason, the 

objective of the present study was to explore the possible relationship between genome instability and 

frailty status and to determine the suitability of MN assay as a potential biomarker to be employed for 

early identification of frailty. To this aim, MN frequency in both peripheral blood lymphocytes and 

exfoliated buccal cells, together with other cellular alterations in buccal mucosa, was evaluated in a 

population of Spanish older adults, classified as frail, prefrail, and nonfrail according to the Fried’s 

criteria (4). To provide a more comprehensive evaluation of clinical features associated with frailty, the 

possible association between nutritional status and cognitive impairment with the level of genomic 

instability was also evaluated. 

Materials and Methods 

Subjects and Sample Collection 

A total of 257 volunteer donors (84 males and 173 females), aged 65 years or more (79.4 ± 8.8, range 

65–102), were recruited from associations of retired older people and nursing homes located in Galicia 

(NW of Spain). A post hoc assessment of the statistical power of the study based on the MN frequency in 

lymphocytes, showed that—given the actual size of the three groups—the study had adequate statistical 

power (80%) to detect, with a type I error of 0.05, a minimum increase of 21.6% in frail versus nonfrail 

subjects and of 20.1% in prefrail versus nonfrail subjects (Post-hoc Power Calculator by 

www.ClinCalc.com). All donors, or their relatives in case of inability, signed an informed consent form 

and completed a questionnaire to collect demographic, lifestyle, and medical information. The study 

protocol followed the principles embodied in the Declaration of Helsinki and was approved by the 

University of A Coruña Ethics Committee (reference number CE 18/2014). Qualified staff with extensive 

experience in the gerontology field (i.e., psychologists, occupational therapists, nurses) was in charge of 

the clinical evaluation. To unify the criteria in completing the clinical evaluation, all staff members were 

equally trained prior to the start of the study. Participants were excluded if they were taking medications 

included in the Anatomical Therapeutic Chemical (ATC) category L (antineoplastic or 

immunomodulating agents) (21) or they had cancer or any chronic infection (e.g., HIV, HCV, HBV), or if 

they denied signing the informed consent. 

 

Table 1 shows the general characteristics of the study population. Due to the small number of current 

smokers and ex-smokers (n = 5 and n = 48, respectively) a new category, “ever smokers,” was created 

combining both conditions. Similarly, a single category was considered including together malnourished 

individuals (n = 14) and individuals at risk of malnutrition (n = 80). 
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Table 1. Description of the Study Population 

 
Total Nonfrail Prefrail Frail p Value 

      

Total n (%)  257 (100) 39 (15.4) 131 (50.6) 87 (34.0) 
 

Gender n (%) 

 Males  84 (32.7) 26 (66.7) 36 (27.5) 22 (25.3) <.001b 

 Females  173 (67.3) 13 (33.3) 95 (72.5) 65 (74.7) 
 

Age (years old)a  79.4 ± 8.8 (65–102) 73.3 ± 5.6 (65–85) 77.1 ± 7.7 (65–100) 85.6 ± 7.8 (65–102) <.001c 

 65–69  43 (16.8) 12 (30.8) 29 (22.1) 2 (2.3) <.001b 

 70–74  41 (16.0) 11 (28.2) 26 (19.8) 4 (4.7) 
 

 75–79  47 (18.4) 10 (25.6) 24 (18.3) 13 (15.1) 
 

 80–84  46 (18.0) 5 (12.8) 27 (20.7) 14 (16.3) 
 

 ≥85  79 (30.9) 1 (2.6) 25 (19.1) 53 (61.6) 
 

Smoking habits, n (%) 

 Nonsmokers  199 (79.0) 22 (56.4) 102 (78.5) 75 (90.4) <.001b 

 Ever smokers  53 (21.0) 17 (43.6) 28 (21.5) 8 (9.6) 
 

 No. cigarettes/da  18.4 ± 13.8 (2–60) 16.1 ± 8.8 (3–40) 15.7 ± 13.9 (2–60) 31.4 ± 15.7 (20–60) .020c 

 Years smokinga  26.7 ± 16.6 (4–66) 19.4 ± 9.1 (10–34) 30.4 ± 18.7 (4–66) 29.3 ± 18.2 (6–52) .154c 

BMI (kg/m2)a  
28.5 ± 5.6 (16.5–

53.2) 

28.1 ± 3.2 (21.1–

35.1) 

29.1 ± 5.0 (18.9–

47.4) 

27.7 ± 7.0 (16.5–

53.2) 
.191c 

Nutritional status, n (%) 

 Normal nutrition status  158 (62.7) 35 (89.7) 106 (80.9) 17 (20.7) <.001b 

 At risk or malnourished  94 (36.3) 4 (10.3) 25 (19.1) 65 (79.3) 
 

 MNA-SF scorea  11.8 ± 2.5 (4–14) 13.3 ± 1.4 (8–14) 12.8 ± 1.7 (4–14) 9.7 ± 2.4 (4–14) <.001c 

Cognitive status, n (%) 

 No cognitive impairment  174 (69.6) 39 (100) 118 (90.1) 17 (21.2) <.001b 

 Cognitive impairment  76 (30.4) — 13 (9.9) 63 (78.8) 
 

Living conditions, n (%) 

 Family home  157 (61.1) 39 (100) 113 (86.3) 5 (5.7) <.001b 

 Family home + daycare 

center  
27 (10.5) — 4 (3.1) 23 (26.4) 

 

 Nursing home  73 (28.4) — 14 (10.6) 59 (67.9) 
 

Education years, n (%) 

 ≤8  115 (45.3) 19 (48.7) 73 (55.7) 23 (27.4) <.001b 

 9–17  96 (37.8) 12 (30.8) 32 (24.4) 52 (61.9) 
 

 >17  43 (16.9) 8 (20.5) 26 (19.9) 9 (10.7) 
 

      

 
Note: ANOVA = analysis of variance; BMI = body mass index. Boldfaced values mean statistical significance. 
aMean ± SD (range). bChi-square test (two tails). cANOVA test (two tails). 

Peripheral blood and buccal mucosa samples were collected by nurses and trained technicians. Whole 

blood was collected by venipuncture into Vacutainer tubes containing heparin as an anticoagulant for MN 

assay in peripheral blood lymphocytes. Exfoliated cells were obtained by gently swabbing oral mucosa on 

the inner side of both cheeks with a cytobrush and kept in a buffer solution (see below). Samples were 

transported to the laboratory immediately, where they were processed within 4 hours of collection. All 

samples were coded at the moment of collection and analyzed under blind conditions. 

  



Frailty Criteria 

All subjects included in the study were classified as frail (n = 87), prefrail (n = 131), or nonfrail (n = 

39) according to the five Fried’s criteria (4). Individuals positive for three or more criteria were classified 

as frail; those positive for one or two criteria were classified as prefrail, meanwhile those with no positive 

items were classified as nonfrail. 

Clinical Assessment 

The nutritional status of the participants in the study was screened using the Spanish version (22) of 

the Mini-Nutritional Assessment-Short Form (MNA-SF) (23). The sum of the MNA-SF score 

distinguishes between elderly patients with (i) normal nutritional status (MNA-SF between 12 and 14 

points); (ii) at risk of malnutrition (MNA-SF 8–11 points); and (iii) malnourished (MNA-SF 0–7 points). 

The Spanish version (24) of the Mini-Mental State Examination (MMSE) scale (25) was employed to 

evaluate the global cognitive status. MMSE scores, ranging from 0 to 30, were adjusted for age and level 

of education, and participants were considered as cognitively impaired if they scored ≤24. 

Lymphocyte Micronucleus Assay 

The CBMN assay was performed following the protocol described by Fenech (11). MN automated 

scoring was performed using a Metafer4 System fluorescence, connected to an Axio Imager Z2 

microscope (Carl Zeiss Microscopy GmbH, Jena, Germany), equipped with an Automated Slide Feeder 

x80, controlling the microscope components for automated focusing, light source adjustment (for bright 

field imaging), and fluorescence filter changes. A minimum of 2,000 binucleated (BN) cells per 

individual, 1,000 from each duplicate culture, were scored to determine the number of MN in 

lymphocytes (MN-L). After the automated scan, the image gallery was visually reviewed by an 

experienced scorer, following the criteria described by Fenech (11) for MN and BN cells, in order to 

reject unsuitable cells and to correct feature values if necessary. 

Buccal Micronucleus Assay 

The BMNCyt assay was performed as described by Thomas and colleagues (18). Slides were scored 

blindly by a single scorer in a Nikon E-800 fluorescence microscope with ethidium bromide filter. The 

scoring criteria for the distinct cell types and nuclear anomalies were based on those described by Tolbert 

and colleagues (26) and Thomas and colleagues (18). A minimum of 1,000 cells was scored to determine 

the frequency of each cell type in the sample, including basal and differentiated cells, binucleated cells 

(BN-B), condensed chromatin cells (Cond-chrom-B), karyorrhectic cells (Karyorrhectic-B), pyknotic 

cells (Pyknotic-B), and karyolytic cells (Karyolytic-B). A minimum of 2,000 differentiated cells was 

scored to analyze the number MN (MN-B) and the number of cells with nuclear buds (NBUD-B). 

Statistical Analysis 

Statistical analyses were carried out following the recommendations given by Thomas and colleagues 

(18) for the buccal MN cytome assay. The three groups of older adults (nonfrail, prefrail, and frail) were 

compared by sociodemographic factors (i.e., gender, age, living conditions, and years of education), 

lifestyle factors (i.e., smoking habit, alcohol consumption, and nutritional status), and clinical 

characteristics (i.e., body mass index [BMI] and cognitive status). The chi-square test was applied for 

categorical variables and the analysis of variance (ANOVA) for continuous variables. 

  



The effect of frailty status on MN tests parameters was preliminarily tested through ANOVA with the 

Tukey’s post hoc test. Kolmogorov–Smirnov goodness-of-fit test was applied to assess normal 

distribution of the data; only MN-L followed a normal distribution. A log-transformation of the data was 

applied to BN-B, and a square root transformation was applied to Karyorrhectic-B, to achieve a better 

approximation to the normal distribution. No improvement was achieved with transformation in all other 

parameters, so the Kruskal–Wallis test with Bonferroni’s correction was applied for univariate statistics. 

 

Best fitting multiple regression models were used to estimate the effect of frailty status, nutritional 

status, and cognitive status. All models included gender, age, BMI, and smoking habit (never/ever 

smokers). Poisson regression was carried out with NBUD-B, Cond-chrom-B, and Pyknotic-B, and 

negative binomial regression was fitted for MN-L, MN-B, BN-B, Karyorrhectic-B, and Karyolytic-B. 

Mean ratio (MR) was used as the point estimate of effect accompanied by its 95% confidence interval 

(95% CI). For those MN test parameters significantly influenced by frailty, cognitive status, and 

nutritional status new models were run including frailty and cognitive status or frailty and nutritional 

status mutually adjusted, and adjusting also by gender, age, BMI, and smoking habit. 

 

Partial correlation coefficients adjusted by gender, age, BMI, and smoking were used to estimate 

associations between MN tests parameters. The threshold of significance was established at 0.05. The 

statistical software used for the analyses were the IBM SPSS software package V. 20 (SPSS, Inc) and the 

STATA/SE software package V. 12.0 (StataCorp LP). 

Results 

A total of 257 older adults (age range 65–102, including 31% aged 85 and over) were included in this 

study. After clinical classification based on Fried’s criteria, 39 subjects (15.4%) were classified as 

nonfrail, 131 (50.6%) as prefrail, and 87 (34.0%) as frail (Table 1). Sixty-eight per cent (n = 89) of 

prefrail subjects showed only one frailty criterion, while 32% (n = 42) showed two frailty criteria. The 

most commonly reported positive item (96%, n = 126) was muscle weakness (low grip strength). 

Smoking was more frequent in the nonfrail group. Although the number of cigarettes smoked per day was 

higher in the frail smokers, no significant difference in the duration of smoking was observed among the 

three groups. The proportion of individuals malnourished or at risk for this condition was much higher 

among the group of frail (79.2%), than in prefrail (19.1%) or nonfrail (10.3%) and, accordingly, the 

MNA-SF score was significantly lower in the frail group. The presence of cognitive impairment was 

observed in 9.9% of prefrail subjects and in the 78.8% of frail subjects. No case of cognitive impairment 

was reported in the nonfrail individuals. All nonfrail subjects and the large majority of prefrails lived at 

family home. Most frail subjects lived in nursing homes, although a quarter of them lived at family home 

but attending daycare centers. The duration of education was similar in the nonfrail and prefrail groups, 

whereas frail subjects presented a significantly lower number of years of education. 

 

Table 2 shows the results of both MN assays in the nonfrail, prefrail, and frail groups. Buccal basal 

cells were not observed in any of the individuals analyzed, and all micronucleated buccal cells contained 

only one MN. Univariate analysis of data showed that the frequencies of MN-L and BN-B increased 

progressively with frailty status, showing significant differences when frail and nonfrail subjects are 

compared. On the contrary, decreases in the frail group were observed in the frequencies of Pyknotic-B, 

as compared with the other two groups, and Karyolytic-B, as compared to the group of nonfrail 

individuals. No differences were obtained for the frequencies of MN-B, NBUD-B, Cond-chrom-B, or 

Karyorrhectic-B. 

  



Table 2. Results of Micronuclei Evaluation in Lymphocytes and Buccal Cells in the Study Group, Classified According to Frailty 
Status (Univariate Analysis) 

  

Nonfrail  Prefrail  Frail  

p Valuea 

n Mean ± SE  n Mean ± SE  n Mean ± SE  

           

‰MN-L  37 13.07 ± 0.78  122 14.87 ± 0.45  83 19.16 ± 0.66b,c  <.001 

‰MN-B  30 0.70 ± 0.36  102 0.46 ± 0.10  81 0.75 ± 0.17  .582 

‰NBUD-B  30 0.10 ± 0.06  102 0.03 ± 0.02  81 0.02 ± 0.02  .151 

‰BN-B  30 36.17 ± 2.85  102 43.13 ± 2.18  81 82.65 ± 3.42b,c  <.001 

‰Cond-chrom-B  30 0.53 ± 0.40  102 0.04 ± 0.02  81 0.02 ± 0.02  .554 

‰Karyorrhectic-B  30 22.50 ± 3.12  102 18.96 ± 1.34  81 22.14 ± 2.06  .537 

‰Pyknotic-B  30 0.57 ± 0.14  102 0.33 ± 0.07  81 0.11 ± 0.04b,c  .001 

‰Karyolytic-B  30 3.37 ± 0.90  102 2.21 ± 0.26  81 2.63 ± 0.65b  .018 

           

 
Note: ANOVA = analysis of variance; MN-L = micronuclei in lymphocytes; MN-B = micronucleus in buccal cells; NBUD-B = 

nuclear buds in buccal cells; BN-B = binucleated buccal cells; Cond-chrom-B = buccal cells with condensed chromatin; 
Karyorrhectic-B = karyorrhectic buccal cells; Pyknotic-B = pyknotic buccal cells; Karyolytic-B = karyolitic buccal cells. Boldfaced 

values mean statistical significance. 
aMultiple group comparison (ANOVA or Kruskal–Wallis test). bStatistically different from nonfrail. cStatistically different from 

prefrail (Tukey’s test or Bonferroni’s correction). 

When correlations between MN-L and all parameters obtained in the BMNCyt assay were assessed, a 

significant association was only found for BN-B (r = .367, p < .001). In order to determine the single 

contribution of each frailty criterion to MN-L frequency, this parameter was compared in the groups of 

subjects negative and positive for each individual criterion (Figure 1). Highly significant increases in 

MN-L rate were observed in subjects positive for the criteria low physical activity, slow walking time and 

low grip strength when compared to those individuals negative for the corresponding criterion. No 

difference was observed in unintentional weight loss, and a borderline significant difference in 

exhaustion. 

 
 

 
Micronuclei in lymphocytes (MN-L) frequency in the older adult population, according to each frailty criterion (4). The number of 

individuals included in each group is indicated inside each rod. *p < .05, **p < .001, significant difference with regard to negative 
(Student’s t test). Bars represent mean standard error. UWL = unintentional weight loss; E = exhaustion; LPA = low physical 

activity; SWT = slow walking time; LGS = low grip strength. 

  



Results obtained in the multivariate statistical analyses, adjusting for gender, age, BMI, and smoking 

habit, confirmed previous univariate analysis results (Table 3), that is, frail individuals showed a 44% 

significant increase in the frequency of MN in lymphocytes, a significant doubling of binucleated buccal 

cells, and significant decreases in the frequencies of pyknotic buccal cells, and of condensed chromatin 

buccal cells. Only in this last outcome, prefrail subjects presented a significant result, whereas all the 

other parameters did not significantly differ from nonfrail subjects. 

Table 3. Effect of Frailty Status on MN Tests Parameters in Lymphocytes and Buccal Cells 

 
‰MN-L   ‰MN-B   ‰NBUD-B   ‰BN-B  

  Mean Ratio 95% CI  Mean Ratio 95% CI  Mean Ratio 95% CI  Mean Ratio 95% CI 

Frailty status 

 Nonfrail  1.00 
 

 1.00 
 

 1.00 
 

 1.00 
 

 Prefrail  1.07 (0.94–1.22)  0.77 (0.24–2.47)  0.39 (0.06–2.42)  1.14 (0.94–1.39) 

 Frail  1.44** (1.24–1.67)  1.23 (0.32–4.70)  0.41 (0.04–4.63)  2.06** (1.65–2.57) 

  ‰Cond-chrom-B  ‰Karyorrhectic-B  ‰Pyknotic-B  ‰Karyolytic-B 

Frailty status 

 Nonfrail  1.00 
 

 1.00 
 

 1.00 
 

 1.00 
 

 Prefrail  0.15* (0.04–0.50)  0.84 (0.60–1.16)  0.72 (0.37–1.41)  0.68 (0.35–1.35) 

 Frail  0.13** (0.02–0.84)  1.02 (0.70–1.49)  0.29* (0.10–0.81)  0.85 (0.39–1.86) 

            

 
Note: CI = confidence interval; BMI = body mass index; BN-B = binucleated buccal cells; Cond-chrom-B = buccal cells with 

condensed chromatin; Karyolytic-B = karyolitic buccal cells; Karyorrhectic-B = karyorrhectic buccal cells; MN-B = micronucleus 
in buccal cells; MN-L = micronuclei in lymphocytes; NBUD-B = nuclear buds in buccal cells; Pyknotic-B = pyknotic buccal cells. 

Models are adjusted by age, sex, BMI, and smoking habit. Boldfaced values mean statistical significance. 

*p < .05; **p < .01. 

A borderline significant influence of age on the study outcomes was found for the frequency of MN-L 

and Pyknotic-B (MR = 0.99, 95% CI = 0.99–1.00, p = .022 and MR = 0.96, 95% CI = 0.92–1.00, p = 

.029, respectively). Females presented significantly higher rates of MN-L than males (MR = 1.18, 95% CI 

= 1.09–1.29, p < .001), but significantly lower values of Cond-chrom-B (MR = 0.16, 95% CI = 0.05–

0.55, p = .003). BMI influenced significantly and inversely the frequency of Karyolytic-B (MR = 0.96, 

95% CI = 0.92–0.99, p = .014). 

 

The possible influence of nutritional status and cognitive status on the various study parameters was 

assessed (Table 4). Individuals malnourished or at risk of malnutrition presented significantly higher 

values of MN-L and BN-B and significantly lower frequency of Pyknotic-B than individuals with normal 

nutrition. Equivalent results were observed for subjects with cognitive impairment, as compared to 

subjects with normal cognitive status. 

  



Table 4. Effect of Nutritional Status and Cognitive Status on MN Tests Parameters in Lymphocytes and Buccal Cells 

  

‰MN-L   ‰MN-B   ‰NBUD-B   ‰BN-B  

Mean 
Ratio  

95% CI   
Mean 
Ratio  

95% CI   
Mean 
Ratio  

95% CI   
Mean 
Ratio  

95% CI  

Nutritional status  

Normal nutrition  1.00     1.00     1.00     1.00    

At risk or malnourished  1.23**  (1.12–1.35)   1.38  
(0.55–
3.46)  

 0.73  
(0.11–
4.74)  

 1.50**  
(1.29–

1.75)  

Cognitive status  

No cognitive 
impairment  

1.00     1.00     1.00     1.00    

Cognitive impairment  1.40**  (1.27–1.55)   2.11  
(0.91–

4.88)  
 0.81  

(0.13–

5.18)  
 1.87**  

(1.61–

2.17)  

  ‰Cond-chrom-B   ‰Karyorrhectic-B   ‰Pyknotic-B   ‰Karyolytic-B  

Nutritional status  

Normal nutrition  1.00     1.00     1.00     1.00    

At risk or malnourished  1.57  
(0.17–

14.71)  
 1.27  

(1.01–

1.61)  
 0.39*  

(0.18–

0.88)  
 1.28  

(0.77–

2.11)  

Cognitive status  

No cognitive 

impairment  
1.00     1.00     1.00     1.00    

Cognitive impairment  0.35  (0.07–1.72)   1.08  
(0.84–

1.38)  
 0.28**  

(0.11–

0.73)  
 1.15  

(0.68–

1.94)  

            

 
Note: CI = confidence interval; BMI = body mass index; BN-B = binucleated buccal cells; Cond-chrom-B = buccal cells with 

condensed chromatin; MN-B = micronucleus in buccal cells; Karyolytic-B = karyolitic buccal cells; Karyorrhectic-B = 

karyorrhectic buccal cells; MN-L = micronuclei in lymphocytes; NBUD-B = nuclear buds in buccal cells; Pyknotic-B = pyknotic 
buccal cells. Models are adjusted by age, sex, BMI, and smoking habit. Boldfaced values mean statistical significance. 

*p < .05; **p < .01. 

When frailty status and cognitive status were mutually adjusted, the presence of frailty and cognitive 

impairment were independently related to an increase in the frequency of MN-L (MR = 1.22, 95% CI = 

1.02–1.46, p < .05 for frailty and MR = 1.25, 95% CI = 1.10–1.43, p < .01 for cognitive impairment) and 

BN-B (MR = 1.59, 95% CI = 1.23–2.05, p < .001 for frailty and MR = 1.45, 95% CI = 1.21–1.75, p < 

.001 for cognitive impairment), both of them remaining significant. A decrease of Pyknotic-B frequency 

remained, not any longer significant (MR = 0.54, 95% CI = 0.13–2.31, p = .404 for frailty and MR = 

0.38, 95% CI = 0.10–1.40, p = .146 for cognitive impairment). On the contrary, the inclusion of frailty in 

models fitting nutritional status reduced the strength of the association between this parameter and all end 

points of the cytome assay, which resulted not any longer significant. 

  



Discussion 

Frailty is a multidimensional geriatric syndrome characterized by increased vulnerability to stressors, 

resulting from a decline in reserve and function across multiple physiological systems. Hence, frailty is 

associated with an increased risk of adverse health outcomes including morbidity, disability, falls, 

hospitalization, institutionalization, and mortality (27). The association of genomic instability and the 

aging process has been widely described (7,8,28). Frailty is considered a consequence of the deregulation 

of several physiological systems (immune, endocrine, muscular) occurred during the aging process. For 

this reason, a direct association between frailty and genomic instability seems to be also plausible, and, 

accordingly, it has been previously assessed by evaluating different genomic biomarkers, including 

telomere length (29), DNA methylation (30), or DNA damage and repair impairment (31). Nevertheless, 

all these studies failed in finding a relationship between frailty and any of these genomic parameters. 

 

Since MN frequency is a well-established biomarker of genomic instability, and in order to address its 

suitability as a potential biomarker of frailty, in the present study MN formation in peripheral blood 

lymphocytes and exfoliated buccal cells was determined in a population of elder individuals classified as 

nonfrail, prefrail, or frail, according to the five phenotypic criteria proposed by Fried and colleagues (4). 

Results obtained showed a significant progressive increase in the frequency of MN-L with frailty severity, 

whereas no difference among groups was found in the frequency of MN-B. Although similar results 

would be initially expected from both approaches, this discrepancy between results obtained from 

lymphocytes and buccal cells was previously reported (e.g., in subjects with Down’s syndrome regarding 

healthy controls (32) and in Alzheimer’s disease patients and controls (16)). As suggested by Ferreira and 

colleagues (32), this may be due to differences in metabolism and/or apoptosis levels between exfoliated 

buccal cells and lymphocytes. In addition, buccal epithelial cells are considered short-lived cells due to 

their continuous renewal; therefore, the presence of MN in buccal mucosa has been mainly linked to 

recent exposure to genotoxic agents more than to fixed genetic damage (33), a condition that would 

contribute to explain the differences found in our study between the two tissues. 

 

As previously indicated, MN production was associated with aging and age-related diseases in both 

peripheral lymphocytes and buccal cells in a number of previous studies (10,15,28). Moreover, this 

biomarker has also been associated with features of the aging phenotype, including loss of function, 

mental retardation, disability, and death (34). However, to the best of our knowledge, this is the first study 

evaluating MN formation in buccal mucosa cells from frail older subjects and the second one in applying 

this approach to lymphocytes of older adults classified according to frailty status. Opposing to our results, 

this single previous study (35) failed in finding a relationship between frailty and MN-L frequency in an 

Italian elder population. However, in that work, no distinction was considered between prefrail and 

nonfrail groups, so they were analyzed together. This decision could have possibly masked the difference 

between frail subjects and nonfrail controls, due to the lower MN-L frequency in the prefrail group. 

Moreover, their sample population size was smaller (N = 180), and the regression models applied did not 

include BMI and smoking habit, which could have consistently contributed to explain the lack of 

association reported. 

 

Although in our study, the significant increase in MN-L frequency regarding the nonfrail subjects was 

only found in the frail group, prefrail individuals also showed a slight increase in this parameter, 

supporting a possible linear association between genomic instability and frailty. 

 

Another original result from this study refers to the different contributions of the five different frailty 

criteria (4) to the increase of the MN-L (Figure 1); low physical activity, slow walking time, and low grip 

strength contribute the most, whereas unintentional weight loss does not contribute at all. The lack of 

contribution of this last criterion was in some way unexpected, especially considering the observed effect 

of nutritional status on the final results (Table 4) and the previous studies linking diet deficiencies and 

chromosomal damage (36). However, it must be taken into account that unintentional weight loss in 

elderly, or aging-related sarcopenia, has multifactorial causes including disuse, changing endocrine 

function, chronic diseases, and so on, being nutritional deficiencies just one of them (37). 

  



Although less employed than the CBMN test, the BMNCyt assay in exfoliated cells is a useful and 

minimally invasive method for monitoring genetic damage in humans. It has been previously employed as 

a tool to evaluate age-associated genomic instability both in healthy individuals (25) and Down’s 

syndrome individuals, who experience premature aging (28,32). In these cases, a positive association 

between MN production and aging was found. Besides, an increase in MN-B frequency was previously 

reported in several age-related diseases such as diabetes (38), cancer (39), or rheumatoid arthritis (40). 

 

Tissue regenerative capacity depends on the number and division rate of the proliferating cells, along 

with genomic stability and propensity to cell death. This process is basic for healthy aging. Buccal 

mucosa offers the possibility to study the regenerative capacity of the epithelial tissue, in an easily 

accessible and noninvasive sampling procedure (18). Thus, together with MN evaluation, BMNCyt assay 

allows studying several endpoints for other nuclear abnormalities that occur during the normal cell 

division. These abnormalities have been previously employed as a biomarker of DNA damage (NBUD-

B), defects in cytokinesis (BN-B) and proliferative potential (basal cell frequency), and/or cell death 

(Cond-chrom-B, Karyorrhectic-B, Pyknotic-B, and Karyolytic-B) (19). 

 

Even though the rate of BN-B decreased significantly with age, it was found significantly higher in 

the frail group and showed a progressive increase with frailty severity. Thus, these results indicate 

alterations in the cytokinesis process, which could lead to alterations in cell proliferation, in frail subjects. 

Besides, decreases were obtained in buccal cell death parameters (Pyknotic-B, Karyolytic-B, and Cond-

chrom-B, the two former significant) in the frail group with regard to the other two. Since significant 

increases in apoptosis indicative parameters (Cond-chrom-B, Karyorrhectic-B) were previously observed 

in healthy older subjects (aged 65–70) as compared with younger individuals (aged 18–25) (41), our 

results may reflect important changes in the profile of the buccal mucosa related to frailty and not 

associated with age. 

 

The proportion of basal cells and cells undergoing cell death in buccal mucosa is an indication of the 

regenerative capacity of this tissue (18). In our study, no basal cells were found in the scored samples, 

possibly due to the subjects’ advanced age and the expected wear of their mucous tissue. Besides, the 

rates of cells undergoing cell death (Cond-chrom-B, Pyknotic-B, and Karyolytic-B) resulted significantly 

decreased in frail and prefrail groups, suggesting a minor regenerative capacity of the buccal mucosa in 

these individuals. 

 

Together with data on frailty, the possible influence of the nutritional status and the cognitive 

impairment of the study subjects on the obtained results were analyzed. Malnourishment is a common 

status in the elderly adults. In our study population, 14.6% frail individuals were malnourished, whereas 

79.2% frail and 19.1% prefrail individuals were at risk of being malnourished. When the influence of 

nutritional status on MN tests parameters was assessed, higher levels of MN-L and BN-B and lower 

levels of Pyknotic-B were observed in individuals malnourished or at risk of malnutrition regarding those 

with normal nutrition. These results coincide with those for frailty status, which is not unexpected 

because it has been previously described that those individuals with an impaired nutritional status are 

more likely to be frail (42). Furthermore, the frailty criterion unintentional weight loss is related to 

nutritional status, indeed “involuntary weight loss during the last three months” is one of the items 

included in the MNA-SF questionnaire. 

 

Micronutrient status plays an important role in the protection against genome damage by providing 

co-factors required for an efficient DNA repair, detoxification, or maintenance of genome methylation 

(43). Consequently, and in agreement with our results, vitamin and mineral deficiencies in diet could be 

associated with increased genomic damage and cancer risk (44). In this regard, Fenech and colleagues 

(45) also reported an increase in MN-L frequency in older men (aged 50–70) with nonoptimal values of 

serum folate and homocysteine regarding subjects with higher levels of these micronutrients. A complete 

review on the effects of dietary intervention on MN levels concluded that micronutrient supplementation 

(e.g., with vitamins, antioxidants, wine) could lead to a significant reduction of MN frequency, in both 

peripheral lymphocytes and buccal mucosa cells, in supplemented subjects (43). This observation, 

together with the influence of nutritional status found in the present study, would support the idea that 



MN-L frequency associated with frailty or prefrailty status could be reduced, at least in part, with a proper 

diet intervention in the elderly adults. 

 

A similar relationship was found when the influence of cognitive status was assessed. In particular, 

increases in MN-L and BN-B cells and a decrease in Pyknotic-B were observed in subjects with cognitive 

impairment. Supporting this last result, decreases in the buccal cell death parameters (Karyorrhectic-B, 

Cond-chrom-B) were previously observed in Alzheimer’s patients with regard to healthy controls (41). 

However, since the significant effect on MN-L and BN-B cells remained when both statuses were 

mutually adjusted, it seems that cognitive status has a strong influence on the obtained results. 

Accordingly, a relationship between frailty status and cognitive impairment has been previously described 

(46), as well as the association between MN frequency, as a biomarker of genomic instability, and 

cognitive impairment (41). This demonstrated association between both statuses, frailty and cognitive, 

strongly complicates the distinction between genomic or cellular alterations related to frailty condition 

and those due to cognitive impairment. The Fried’s criteria, frequently used in clinical settings and 

employed in the present study to identify frail people, do not consider cognitive features of the 

individuals, and consequently, the initial distinction between subjects with differential cognitive status 

cannot be conducted. However, more and more authors are increasingly claiming for differentiating 

physical frailty from cognitive frailty (47). Our results would support the need for this distinction in order 

to enhance reliability when testing the suitability of a potential biomarker for frailty identification. 

Conclusions 

Different studies support the reversibility of frailty status or its improvement by changes in diet, 

physical exercise, and medications (2,3). Identifying frail people as early as possible seems, therefore, 

crucial for geriatricians and health care professionals because it would allow to implement 

interdisciplinary and personalized cares and to improve outcomes by means of prevention and 

intervention programs. All this would lead to decrease the need for admission to nursing homes and 

hospitals, lowering the risk of dependence and death, and eventually improve the welfare and personal 

satisfaction, reducing the health, social, and economic costs associated with frailty. 

 

The use of biomarkers could result highly helpful in identifying frailty of prefrailty status. Given its 

sensitivity, specificity, objectivity, and predictive capacity, several authors have pointed out that cellular 

and molecular biomarkers may potentially be used for frailty identification (20). However, to date, no 

specific biological marker has been identified as a definitive marker for frailty. 

 

In order to deeply investigate this, the potential use of MN frequency, as an indicator of genomic 

instability, for frailty identification has been addressed in the present study. According to our findings, 

MN frequency evaluated in lymphocytes (as a marker of fixed or accumulated genetic damage), but not in 

buccal cells (reflection of recent damage) could be considered as a biomarker of frailty. Thus, these 

results demonstrate for the first time a direct relationship between frailty in older adults and genome 

instability. Even though this association resulted statistically significant only in the frail group, also 

individuals with a prefrail status showed an increase in the MN-L frequency, supporting this relationship 

and opening the door to further investigations in this line. Moreover, associations between frailty and cell 

death parameters were obtained from the BMNCyt assay, which supports the use of this minimally 

invasive method as a complement in frailty identification, at least in its advanced state, where these 

differences resulted statistically significant. 

 

In summary, our results support the use of MN frequency evaluated in lymphocytes for frailty 

identification. However, because this association was significant only when the frailty is phenotypically 

more evident and not in a prefrail status, which would be desirable from a clinical point of view, 

additional research is necessary to fully understand the connection between genomic instability and frailty 

syndrome in the elderly adults. Besides, given the influence of the individual cognitive impairment on the 

MN-L results, it is also necessary to determine the weight of cognitive impairment in this association 

prior to establishing this parameter as an actual biomarker of frailty in clinical practice.  
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