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Abstract 

Starting from the FIB database, this work is aimed to analyze the current equations which predict the main datum that 

can be provided by bond tests: the ultimate bar stress when the failure is reached. Furthermore, Genetic Programming 

(GP) techniques are also applied in order to enhance the expression of the FIB, which achieves the best adjustment so 

far, giving rise to the new Model Code 2010. The final result shown is a highly predictive equation. The results are 

compared with those included in the Model Code and it is showed the influence of the main variables on the 

phenomenon (concrete strength, yield strength of steel, concrete cover, transverse reinforcement and diameter of the 

bar). 
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1 Introduction 

Since the dawn of the 20th century, when Abrams’s tests were performed, the bond between concrete 

and steel led to numerous scientific papers, complex laboratory tests and many approaches of structural 

codes. There are very few expressions that are so different when comparing the various rules, such as 

those aimed at predicting the anchorage length of reinforcing bars in structural concrete. Two main lines 

were created starting from the works carried out by Orangun, Jirsa & Breen [1], precursors of the ACI 

code equation, and the studies performed by Tepfers [2], which inspired the guidelines of the Model 

Code, leading to the Eurocode. The tests carried out in Spain also were of great importance, as they gave 

rise to a specific formulation, extremely conservative for large-diameter reinforcement.  

 

Despite the varied approaches, the three lines have a common nexus: the proposals are developed 

from the experimental evidence. From a basic expression of bond stress, dependent on a main variable are 

incorporated as a multiplicative factor the effect of other variables When a pull-out test is performed, a 

state of radial tension is generated around the bar that can cause damage to the surrounding concrete. The 

damage can be mitigated by the placement of transverse reinforcement, and having adequate cover bar. 

Figure 1 shows graphically the phenomenon of a bar anchorage [3]. 

 
 

 
Fig. 1. Phenomenon of a bar anchorage 

Various factors affect the bond capacity. They are generally associated with different origins: the 

materials used, the geometric conditions and, finally, the applied loads.  

 

The design equations for the anchorage length determination are based in the basic straight anchorage 

length necessary to reach the break of the bar. On this equation, of experimental base, are added the 

effects of other variables, also obtained experimentally [1],[4].  

2 FIB Model  

The workgroup TG4.5 of the Fédération Internationale du Beton (FIB) [5] has been working for a 

long time in the analysis of the anchorage and the bond characteristics of reinforcement steel bars. Based 

in the works of Canbay and Frosch [6], the group has proposed two equations: the version 2006 (1) and 

the current version employed in the development of the Model Code 2010 (2), that provides the work 

stress that can be reached on an anchored bar. This equation depends on the parameters seen until now 

and is protected by a contrast with a strong experimental database.  

 

The variables described in both formulas correspond to the bond stresses (σsu), compressive strength 

in cylindrical specimen (fc), diameter of the bar (db), length of anchored bar (ls), maximum and minimum 

coatings of the bar (cmin, cmax) and the contribution of the transverse reinforcement (Ktr).  
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2.1 Dataset 

The database currently contains data (variables and results measured or calculated) corresponding to 

813 trials. As will be applied GP techniques for analysis, so that the database range is consistent and 

frequencies of each of the data must be analyzed. Considering the frequency histogram data, several 

filters are applied and are accepted those recommended by the FIB [5]. One of the most important is 

related to the output data σsu, the stress reached by the bar during the test. Since any bar limits its 

maximum stress fy, the maximum value that can take the relationship σsu/fy is 1.05. In other variables their 

relative values are also limited, for example those related to the concrete cover. Thus, filters over cmin/cmax 

and cmin/db are applied. Table 1 shows the parameters used for filtering and the filter finally applied.   

Table 1. Filters applied to the dataset 

Variables Filter 

  

fc >15 and <115 MPa 
db < 37 mm 

ls < 2100 mm 

Cb <136 mm 
cmin/cmax ≥ 1.0 and ≤ 5.0 

cmin/db ≥ 0.5 and ≤ 3.0 

σsu /fy ≤ 1.05 
  

 

After applying the filter, the BD is reduced to a total of 628 trials, of which 77.5% (487 trials), by 

random selection, are used for training, dedicating the remaining 22.5% (141 trials) to check. Table 2 

shows the final range of the data in each of the subsets set (training and verification). 

 

On the BD filtered FIB expressions produce results whose accuracy is presented in the following 

sections. 

Table 2. Distribution of data in subsets defined over the BD filtered 

 Training (#487)  Test (#141) 

 Min Max  Min Max 

      

ls (mm)  50 2095  120 2032 

db (mm)  8 35.81  10 35.81 
cmin (mm)  8 76  8 76 

cmax (mm)  20 140  20 140 

fc (MPa)  15 114  20 110 
Ktr  0 0.114  0 0.106 

σsu  126 788  182 814 

      

  



3 Method 

The method followed is oriented to improving the FIB equations developed for predicting the stress of 

bar anchored. The method used follows the same guidelines referred to in the paper developed by Pérez et 

al [7]. In summary, the method is based on GP techniques, imposing some restrictions based on 

knowledge of the problem provided by an expert. Symbolic regression data is one of the capabilities 

provided by the GP.  

 

Having a data set (input-output), the GP is able to relate these data algebraically by an equation. Its 

complexity may vary, and dimensional integrity is not guaranteed. This technique, applied in many cases 

in civil engineering, is one of those followed by Ashour al [8], for example, to predict shear strength in 

concrete beams. Naturally, the form of the equations obtained is very different from the ones in the 

common codes. The presented method improves the terms accepted by the scientific community, getting a 

better fit when the results are applied to a database.   

 

It starts from the expression FIB-2006, because it shows better results over the database. The search 

expression will determine the bar stress predicted (spred) to be compared with the real stress test (σtest). 

Firstly, it is necessary to define how individuals will be evaluated in the fitness function (equation 4). In 

this equation, σtest is the bar stress at failure, α is the parsimony coefficient, si is the number of nodes in the 

expression and n is the number of cases of the database. It should set the parameters pi and lbias defined in 

equation 3. 

 

After performing several tests, was adopted lbias = 1.0, and equation 4 shows the value of pi (DP). This 

equation is based on the use of the technique of "demerit points". 
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The technique was adapted for “oriented” searches were possible, with different purposes. 

 

The orientation was introduced through impositions or restrictions, which include: 

 

 restriction on the type of functions that link the variables 

 preferred selection of individuals with the highest ratios σtest/σpred. From the structural point of 

view, is much more appropriate this option for safety reasons 

  



The method used starts with the establishment of a “framework” from wich genetic programming will 

make the evolutive process, taking into account the restrictions and impositions. 

 

The framework is defined directly from the equation FIB-2006, which is divided into subexpressions. 

Also, each subexpression is written indicating which factor (branch) may change in the search process. 

The working lines can find: 

 

 The optimization of the numerical coefficients of the equation. The branches will be Real values 

 The introduction of a new subexpression. This can be a Real number or a function (new branch) 

linked to a variable 

 

As mentioned, in this type of model is very important that the predicted stress is equal to or greater 

than the actual value. 

 

In general, if an individual differs from the real value is penalized during training. From a 

mathematical point of view, S values equal to 0.5 or 1.5 should be penalized equally. To take into account 

the structural safety, the individual 0.5 should be penalized more than the individual 1.5, as it causes 

structural insecurity (collapse). 

 

This is achieved through the technique of demerit points, whereby the error of the expression is 

weighted according to the ranges defined by Pérez [9]. The fitness function (3) shows how the pi factor 

weights the prediction error, according to the intervals and values of the equation (4). 

 

The method used starts with the establishment of a “framework” about whom genetic programming 

will make the evolutive process, taking into account the restrictions and impositions. Such “framework” 

is based on the 2006 FIB formulation, about which it will be introduced new variables or its coefficients 

will be modified. 

 

In the searching process it has been proposed three basic equations (5)(6)(7). Each branch is 

designated as Bi. Table 3 shows the default settings implemented, based on the initial tests. The input data 

have not been standardized, so expressions can be used directly. 

Table 3. Parameters used 

Parameter  Default value  Other values 

   

Population size  1000  
Crossover rate  80%  

No-terminal selection rate:  90%  

Mutation rate:  20%  
 Selection: Tournament  

Algorithms: Initialization: Ramped Half & Half  

 Mutation& Crossover: Subtree  
Elitist strategy  Yes  

Parsimony  0  0.0001, 1*10-6 ó 1*10-9 

Initial tree depth  4  5 

Maximum tree depth  6  7 

Maximum mutation depth  4  5 
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By default, addition, subtraction, multiplication and protected division were chosen as operators or 

non-terminal nodes. Variables from the data set (ls, db, cmin, cmax and fc), and integers in the range [-10, 10] 

were adopted as terminal nodes. 

 

Constraints over the equations are showed in table 4. Equation (5) have three types of constraints 

(“A”, “B” and “C”), the constraint “D” is imposed to equation (6) and finally the constraint “E” is 

imposed to equation (7). 

Table 4. Constraints 

Eq. Const. B1 B2 B3 B4 B5 B6 B7 B8 B9 

           

(5) A 
ls db cmin 
cmax fc 

Const. 2 
dec. 

Const. 2 
dec. 

Const. 2 
dec. 

Const. 2 
dec. 

Const. 2 
dec. 

Const. 2 
dec. 

Const. 2 
dec. 

- 

(5) B 
db cmin cmax 

fc 

Const. 2 

dec. 

Const. 2 

dec. 

Const. 2 

dec. 

Const. 2 

dec. 

Const. 2 

dec. 

Const. 2 

dec. 

Const. 2 

dec. 
- 

(5) C 
db cmin cmax 

fc 

Const. 2 

dec. 

Const. 2 

dec 
0.5 

Const. 2 

dec 

Const. 

Ent. 

Const. 2 

dec 

Const. 2 

dec 
- 

(6) D 
Const. 2 

dec. 
db cmin 
cmax fc 

Const. 2 
dec 

Const. 2 
dec 

- - - - - 

(7) E 
Const. 2 

dec. 

Const. 2 

dec. 

Const. 2 

dec. 

Const. 2 

dec. 

Const. 2 

dec. 

Const. 2 

dec. 

Const. 2 

dec. 

Const. 2 

dec. 

Const. 2 

dec. 

           

 

4 Results 

In total, more than 4,500 executions were carried out. The results are analyzed essentially through the 

following indicators: COV (variation coefficient), σtest/σpred , R
2
 (square root of Pearson product-moment 

correlation coefficient), MSE (mean square root error), ME (mean error), and finally demerit points 

calculated according to equation (4). 

 

According to the best results, a select group of equations was chosen. If the denominator could be 

negative, expressions containing function "protected division" were rejected. Also too complex equations 

were also discarded. PG_9RSC4 (8), PG_8v2R5 (9), PG_7v3F2 (10), PGcc6 (11) were more accurate 

equations. Since not provide substantial improvements, these equations do not contain the derivatives of 

the classic GP. The results are shown in Table 5. The significant improvement achieved is evident by 

comparing the results of the equations FIB. 

  



Table 5. Results 

 FIB (2006) FIB CM2010 PG_7v3F2 PG_8v2R5 PG_9RSC4 PGcc6 

       
COV  15.683 16.010 14,404 14,900 15,239 15,442 

σtest/σpred  0.9712 0.9748 1,0254 1,0082 0,9994 1,0079 

Max (σtest/σpred)  1.5091 1.5367 1,5228 1,5119 1,4815 1,5684 
Min (σtest/σpred)  0.4990 0.4885 0,5702 0,5137 0,5016 0,4873 

R2  0.7095 0.6938 0,7545 0,7400 0,7271 0,7193 

MSE  4215 4343 3551 3608 3740 3847 
ME  51.26 52.19 46.08 47.24 48.10 48.40 

DP  2642 2646 2398 2492 2508 2486 

       

 

Some of the expressions stand out by different appearances. PG_9RSC4 is a simple improvement of 

the FIB equation, achieved with better adjusts of the exponents and constants. To clear the value of the 

length, it is necessary to impose conditions to the search, proposing a first free function, not dependent on 

the length, and a adjust coefficient for the rest of parameters: the equation PG_8v2R5 arises this way. The 

marked tendency that exhibits the exponent (ls/db) to the value 0.5, induces a new group of executions in 

which this constant is fixed. With this procedure, the PG_7v3F2 equation is obtained, achieving a very 

noticeable distribution. 
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𝑃𝐺𝑐𝑐6:   𝜎𝑠𝑢 = 𝑙𝑠0.5 ∗ ((
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In the last remarkable groups, it is allowed the apparition of a free function (without ls) that multiplies 

ls with constant exponent and the classical term of transversal reinforcement contribution, improved with 

constants. This is the PGcc6 expression, which exhibit a strong concentration around the unit. 

 

Next, the stresses that can be developed for some specific variables are compared in two of the 

equations found against the FIB deduced expressions. It can be observed the similarity of the approach, 

even for equations that are not born from the structure of the FIB. 

 

As a result of the previously exposed, it can be recommended to adopt the expression PG_7v3F2 as a 

good equation to get the bond behavior of the passive reinforcement in a concrete element. 

  



5 Conclusions 

FIB equation to determine rebar tension stress was improved with the application of heuristic 

techniques. 

 

In the applied method, structural safety was taken into account, through the weighting provided by 

demerit points 

 

As a final conclusion and summary it should be noted that it has managed to implement a novel 

method based on genetic programming to extract knowledge from experimental data based on the 

experience. This experience is implemented through constraints that are induced in the algorithm. 
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