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Cheda en la Universidade da Coruña (Departamento de Matemáticas) en el marco
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always technical support.

To my parents, for being my foundation, for their constant support and for being

always there in all those things of life beyond a PhD. I cannot adequately express

how thankful I am. To my family, for believing in me. To my couple, for accom-

panying me through this entire process of the thesis, and to my friends, for making

me forget about it.

Thank you for everything that helped me get to this day.



The PhD student’s research was sponsored by the Spanish FPU (Formación de

Profesorado Universitario) Grant from MECD (Ministerio de Educación, Cultura y

Deporte) with reference FPU13/01371. The work has been partially carried out du-
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Abstract

A completely nonparametric method for the estimation of mixture cure models is

proposed. An incidence estimator is extensively studied and a latency estimator is

presented. These estimators, which are based on the Beran estimator of the condi-

tional survival function, are proven to be the local maximum likelihood estimators.

Two i.i.d. representations for the incidence and the latency estimators are obtained.

Moreover, an asymptotic expression for the mean squared error of the latency es-

timator is derived, and its asymptotic normality is proven. In addition, bootstrap

bandwidth selection methods for each nonparametric estimator are introduced. The

proposed nonparametric estimators are compared with existing semiparametric ap-

proaches in simulation studies, in which the performance of the bootstrap bandwidth

selectors are also assessed. The nonparametric incidence and latency estimators are

applied to a dataset of colorectal cancer patients from the University Hospital of A

Coruña (CHUAC).

Furthermore, a nonparametric covariate significance test for the incidence is pro-

posed. The method is extended to non continuous covariates: binary, discrete and

qualitative, and also to contexts with a large number of covariates. The efficiency of

the procedure is evaluated in a Monte Carlo simulation study, in which the distri-

bution of the test is approximated by bootstrap. The test is applied to a sarcomas

dataset.
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Resumen

Se propone un método completamente no paramétrico para la estimación de modelos

de curación de tipo mixtura. Se estudia ampliamente un estimador para la inciden-

cia y se presenta un estimador para la latencia. Se demuestra que estos estimadores,

basados en el estimador de Beran de la función de supervivencia condicional, son los

estimadores máximo verośımiles locales. Se obtienen representaciones i.i.d. de los es-

timadores de la incidencia y de la latencia. Además, se halla una expresión asintótica

para el error cuadrático medio del estimador de la latencia y se demuestra su nor-

malidad asintótica. También se presentan métodos de selección de la ventana, de

tipo bootstrap, para cada estimador no paramétrico. Los estimadores no paramétri-

cos propuestos se comparan con otros enfoques semiparamétricos existentes en la

literatura en estudios de simulación, en donde también se evalúa el comportamiento

de los selectores de la ventana. Los estimadores no paramétricos de la incidencia

y la latencia se aplican a una base de datos de pacientes de cáncer colorrectal del

Complejo Hospitalario Universitario de A Coruña (CHUAC).

Además, se propone un test no paramétrico de significación de covariables. El método

se extiende a covariables no continuas: binarias, discretas y cualitativas, y también

a contextos con un gran número de covariables. Se evalúa su eficiencia en un estudio

de simulación de Monte Carlo, en el cual la distribución del test es aproximada por

bootstrap. Se aplica el método a una base de datos de pacientes con sarcomas.
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Resumo

Proponse un método completamente non paramétrico para a estimación de modelos

de curación de tipo mixtura. Estúdase ampliamente un estimador para a incidencia e

preséntase un estimador para a latencia. Demóstrase que estes estimadores, baseados

no estimador de Beran da función de supervivencia condicional, son os estimadores

máximo verośımiles locais. Obtéñense representacións i.i.d. dos estimadores da inci-

dencia e da latencia. Ademais, áchase unha expresión asintótica para o erro cadrático

medio do estimador da latencia e demóstrase a súa normalidade asintótica. Tamén

se presentan métodos de selección da ventá, de tipo bootstrap, para cada estimador

non paramétrico. Compáranse os estimadores non paramétricos propostos con outros

enfoques semiparamétricos existentes na literatura en estudos de simulación, onde

tamén se avaĺıa o comportamento dos selectores da ventá. Apĺıcanse os estimadores

non paramétricos da incidencia e da latencia a unha base de datos de doentes de

cancro colorrectal do Complexo Hospitalario Universitario de A Coruña (CHUAC).

Ademais, proponse un test non paramétrico de significación de covariables. O método

é extendido a covariables non continuas: binarias, discretas e cualitativas, e tamén a

contextos cun gran número de covariables. Avaĺıase a súa eficiencia nun estudo de si-

mulación de Monte Carlo, no que a distribución do test é aproximada por bootstrap.

Apĺıcase o método a unha base de datos de doentes con sarcomas.

v
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Preface

This work intends to summarize all the study developed along the PhD trajectory.

Mainly, it is focused on estimation and covariate significance tests for nonparame-

tric mixture cure models. Specifically, the methodology is applied to two medical

datasets: one related to colorrectal cancer patients from the University Hospital of A

Coruña (CHUAC), and other related to patients with sarcomas from the University

Hospital of Santiago (CHUS).

Chapter 1 is devoted to introduce the reader to the context in which the thesis

is developed: cure models. It begins with a presentation of survival analysis and

the different types of censoring in Section 1.1. Since the work is carried out in a

nonparametric context, a small introduction to nonparametric curve estimation, in-

cluding some definitions and a small review of the basic concepts is given in Section

1.2. It consists of an overview of the distribution function estimation (including the

study of the Kaplan-Meier and Beran estimators and some asymptotic properties

of both of them), and to the density function and regression estimation. In Section

1.3 a detailed description of the bootstrap method is provided, considering also the

case with censored data and an explanation of the bootstrap bandwidth selection

method. Cure models are presented in Section 1.4, which includes a small biblio-

graphical review about parametric and semiparametric methods, and presents the

need of nonparametric techniques in this context.

In Chapter 2, the main results for the nonparametric estimator of the probability

of cure are introduced. Section 2.2 presents the notation which will be used along the

thesis, and Section 2.3 introduces the asymptotic results. Moreover, the bootstrap

bandwidth selection method is detailed in Section 2.4. In order to evaluate the

performance of the proposed nonparametric estimator and to assess the practical

behavior of the bootstrap bandwidth selector, a simulation study is carried out in

Section 2.5. Coming up next, in Section 2.6 the methodology is applied to a dataset

of colorectal cancer patients from CHUAC.

x



The nonparametric latency estimator is deeply studied in Chapter 3. Asymp-

totic results for the estimator considering two different bandwidths and considering

only one bandwidth are included in Sections 3.2 and 3.3, respectively. A bootstrap

bandwidth selector for the latency estimator is proposed in Section 3.4. In Section

3.5 the results of a simulation study are presented. It consists of three different

parts: in the first one, it is shown that little efficiency is lost when considering only

one bandwidth in the nonparametric latency estimator; in the second one, the good

practical behavior of the proposed estimator is evaluated; and in the third one, the

performance of the bootstrap bandwidth selector is assessed. The proposed methods

are applied to the colorrectal cancer dataset from CHUAC in Section 3.6.

In Chapter 4, a covariate significance test for the probability of cure is presented

in Sections 4.1 and 4.2. Furthermore, the method is extended to non continuous

covariates: binary, discrete and qualitative. In Section 4.3, the case with only one

covariate (that is, when it is tested if the cure rate, as a function of that cova-

riate, can be considered as a constant value) is introduced. Section 4.4 presents

the case where, under the null hypothesis, the probability of cure depends on a

one-dimensional covariate. Under the alternative hypothesis, the same probability

depends on an m-dimensional covariate, with m > 1. In Section 4.5, this approach

is also extended to contexts with a large number of covariates. An extensive simu-

lation study is included in Section 4.6. To conclude this chapter, in Section 4.7, the

methodology is applied to two medical datasets: one related to colorrectal cancer

patients from CHUAC and, for the high dimensional case, a database related to

patients with sarcomas from CHUS.

Some comments about future work are given in Chapter 5. The possibility of

applying the proposed methodology to high dimensional datasets which include ana-

lysis of images, related to cancer for medical diagnosis, is considered. Another plan

is to develop an R package with all the techniques studied. Moreover, some other

problems for future work are introduced: studying the presmoothed estimator of the

probability of cure, extending the methods to cases with truncated and/or interval

censored data, using single-index models in survival analysis for censored data, and

proving the consistency of the bootstrap methods, studying the limit convergence

of the bootstrap.

In Appendices A.1 and A.2, the proofs for the theoretical results in Chapters 2

and 3 are collected.





1

Chapter 1

State of the art

1.1 Survival analysis (censored data)

Survival analysis is a collection of statistical techniques used to describe and quantify

time to event data. The term failure is used to specify the occurrence of the event of

interest, and the survival time refers to the length of time from the beginning of the

study until the occurrence of the event. In biomedical applications, this time may

represent the survival time of a living organism or the time until a disease is cured.

Survival analysis can also be applied to data from different areas: social sciences

(time for doing some task); economics (time looking for employment) or engineering

(time to a failure of some electronic component).

The main goals of survival analysis are:

• Estimating and comparing the survival functions of different groups. These

cumulative survival functions are defined as S(t) = P (T > t) = 1− F (t).

• Assessing the relationship of covariates to time-to-event.

The distinguishing feature of survival analysis is that it may incorporate cen-

soring: the exact survival time is only known for those individuals who show the

event of interest during the follow-up period. The other individuals (those who are

disease free at the end of the observation period and those that were lost) are called

censored observations. Among common cases in censoring we highlight:

• Right censoring : it occurs when a subject leaves the study before the event

happens, or the study ends before the event has occurred. It arises often in

medical and biological applications. For example, an objective of the study of

the colorectal cancer patients dataset presented in Section 2.6 is to study the
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lifetimes. The study ends after 19 years. In this case, censoring may occur

in the form of loss to follow-up, drop-out or termination of the study (that

is, those patients who are alive by the end of the 19th year are censored).

Therefore, the event is only observed if it occurs prior to some specified time.

• Left censoring : the lifetime is considered to be left censored if it is known that

the failure occurs some time before the recorded follow-up period. That is, the

event of interest has already occurred for the individual before the observed

time. For example, onset of a pre-symptomatic illness such as cancer, or

infection with a sexually-transmitted disease such as HIV/AIDS.

• Interval censoring : a subject is interval censored if it is known that the event

occurs between two times, but the exact time of failure is not known. Such

interval censoring occurs, for example, when patients in a clinical trial or

longitudinal study have periodic follow-up.

Furthermore, the reasons which cause an observation to be censored can be random

or controlled. It leads to distinguish between two types of censoring:

• Type I Censoring : the event is observed if it occurs before a fixed time C.

In this case, C is a constant predetermined for all the sample. This type of

censoring is common when, for different reasons, the study ends before all the

subjects have experienced the event of interest.

• Type II Censoring : the study ends when a fixed number of events amongst

the subjects has occurred. The observed lifetimes are the r smallest values of

the data.

Note that some subjects may experience other occurrences (independent of the event

of interest), which cause their dropout of the study. It is called random censoring,

where the censoring variable is supposed to be independent of the variable of interest.

In this thesis we assume that each individual is subject to random right censoring.

Let us denote by Y the time to occurrence of the event, and denote by C the

censoring time. In the presence of random right censoring, for each subject it is

only observed the pair (T, δ), where T = min(Y,C) is the observed time and δ =

I(Y ≤ C) is the uncensoring indicator. Note that I(A) is the indicator function of

the event A. Associated to this censoring model, some functions can be defined:

• The distribution function of Y is denoted by F (t) = P (Y ≤ t), and its survival

function is denoted by S(t) = 1− F (t) = P (Y > t).
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• The distribution function of C is denoted by G(t) = P (C ≤ t), and its survival

function is 1−G(t) = P (C > t).

• The distribution function of the observed variable T is denoted by H(t) =

P (T ≤ t) and its corresponding survival function is 1 − H(t) = P (T > t) =

P (min(Y,C) > t) = P (Y > t,C > t). Under the assumption that Y and C

are independent, it is straightforward that 1−H(t) = (1− F (t))(1−G(t)).

1.2 Nonparametric curve estimation

Nonparametric curve estimation has been one of the most active fields in statis-

tics during the last decades. Methods for nonparametric curve estimation allow

to analyze data without much prior information about them, that is, without any

parametric assumption on the distribution of the underlying variables.

1.2.1 Distribution function estimation

If the data are not censored, Ti ≡ Yi, the survival function estimation would be

simply the empirical survival function (see, for example, Andersen et al., 1993), that

is, the proportion of subjects alive at time t:

Sn(t) =
1

n

n∑
i=1

I(Ti > t). (1.1)

Unlike the context with complete data, in the presence of censored subjects we

do not observe a sample of size n of the variable Y , but we do observe the sample

{(Ti, δi)}ni=1, where Ti is equal to Yi only when δi = 1. If we estimate S(t) using the

reduced sample {(Ti, δi) : δi = 1}, besides being working with a biased estimator,

we would be working with a complete dataset with a smaller sample size and the

information provided by the censored data would not be considered.

Kaplan & Meier (1958) extended the estimate in (1.1) to censored data:

Ŝ(t) =

n∏
i:T(i)≤t

(
1−

δ[i]

n− i+ 1

)
, (1.2)

where δ[i] is the corresponding uncensoring indicator concomitant of T(i), and T(1) ≤
T(2) ≤ . . . ≤ T(n) are the ordered Ti’s. Note that if t < T(1) then Ŝ(t) = 1. The

Kaplan-Meier estimator, also known as the product-limit (PL) estimator, is the sur-

vival function estimator mostly used for random right censored data. This estimator

has some relevant properties:
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• It is very simple to calculate.

• If there are no censored data, it is equivalent to the classical empirical estima-

tor. From (1.2) and considering that when there are no censored observations

we have that δ = 1 and T = Y , then:

Ŝ(t) =
∏

i:Y(i)≤t

(
n− i

n− i+ 1

)

=
n− 1

n

n− 2

n− 1

n− 3

n− 2
· · · n− k

n− k + 1
=
n− k
n

= 1−
n∑
i=1

I(Yi ≤ t)
n

,

where k = max{i : Y(i) ≤ t} (and clearly k =
∑n

i=1 I(Yi ≤ t)).

• It uses the censored data, which the reduced sample estimator does not con-

sider.

• It presents a stair-step shape with jumps only at the uncensored observations,

and weights which depend on the number of censored observations among

them. The size of the jump at Ti can be expressed in the following and equi-

valent ways:

Ŝ(T(i−1))− Ŝ(T(i)) =
δ[i]

n− i+ 1

i−1∏
k=1

(
1− 1

n− k + 1

)δ[k]
=

δ[i]

n− i+ 1
Ŝ(T(i−1)).

• It is the nonparametric maximum likelihood estimator of S(t) for censored

data. The proof is shown in Section 5 of Kaplan & Meier (1958), see also

Johansen (1978) and Wang (1987).

• Since a censored observation of Yi corresponds to an uncensored observation

of Ci, then the Kaplan-Meier estimator for the distribution function G is the

following:

Ĝ(t) = 1−
∏

i:T(i)≤t

(
1−

1− δ[i]

n− i+ 1

)
= 1−

∏
i:T(i)≤t

(
1− 1

n− i+ 1

)1−δ[i]
.

• It is always monotone and has smaller variance than the reduced sample esti-

mator.

It is important to note that the Kaplan-Meier estimator relies on the indepen-

dence between the censoring and the survival times. Specifically, it may overestimate

the survival function of Y if the survival time and the censoring time are positively
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correlated, and underestimate the survival function if the times are negatively cor-

related. Therefore, if independence does not hold, the estimator may be biased (see

Kaplan & Meier, 1958).

We will introduce some asymptotic properties of this estimator.

Property 1. (Theorem 1 in Phadia & Shao, 1999)

Let Ŝ be the Kaplan-Meier estimator of the survival function S based on (Ti, δi),

i = 1, 2, . . . , n. Then the k−th moment of Ŝ is given by:

E[Ŝk(t)] =

n−1∑
i=0

n!

(n− i)!
H̄n−i(t)

∫ t

0

∫ ti

0
· · ·
∫ t2

0

∏
j≤i

dφj(tj), (1.3)

where H̄(t) = 1−H(t) = S(t)(1−G(t)), 0 < t1 < t2 < · · · < ti ≤ t and

φj(t) =

[
H(t)−H1(t) +H1(t)

(
n− j

n− j + 1

)k]
,

with H1(t) = P (T ≤ t|δ = 1). The product is taken over j = 1, 2, . . . , i. For i = 0,

the product is defined to be 1.

Gill (1980) suggested to estimate 1−F (t) for t > T(n) with Ŝ(T(n)) = 1−F̂ (T(n)),

that is, considering that the individual will fail at time t =∞. It is easy to see that

for Gill’s version the summation in the above expression (1.3) extends to n. However,

the above exact formula is not readily amenable to practical applications. Therefore,

Phadia & Shao (1999) propose the following approximation.

Property 2. (Theorem 2 in Phadia & Shao, 1999)

If we approximate each φj(x) defined above by its linear component [(φj(t)−φj(0))/t]x

on the interval (0, t) and substitute in the above expression (1.3), we get:

E
[
Ŝk(t)

]
≈

n−1∑
i=0

(
n

i

)
H̄n−i(t)

∏
j≤i

[
H(t)−H1(t) +H1(t)

(
n− j

n− j + 1

)k]
.

Breslow & Crowley (1974) obtained the asymptotic normality.

Property 3. (Asymptotic normality in Breslow & Crowley, 1974)

Let F (·) and G(·) be two continuous distribution functions, and the distribution

function H(·) is defined by:

1−H(t) = (1− F (t))(1−G(t)).

Moreover, let bH = sup{t > 0 : H(t) < 1} be the right endpoint of the distribution

function H(·). Then,
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1. For all 0 < t < bH ,

√
n
(
F̂ (t)− F (t)

)
d−→ N(0, σ(t)),

where

σ2(t) = (1− F (t))2

∫ t

0
(1−H(v))−2dH1(v).

2. The stochastic process
√
n(F̂ − F ) converges globally in D[0, T ], for each T <

bH , to a Gaussian process Z(·):

√
n(F̂ − F )

d−→ Z(·),

with mean equal to 0 and the following covariance function:

Cov(Z(x), Z(t)) = (1− F (x))(1− F (t))

∫ min(x,t)

0
(1−H(v))−2dH1(v),

where D[0, T ] = {H a function from [0, T ] in R: H is right continuous, with

discontinuities, at most, of jump}.

Földes & Rejtö (1981), among others, studied the consistency of the Kaplan-

Meier estimator.

Property 4. (Strong uniform consistency in Földes & Rejtö, 1981)

1. Let 0 < T < bH . Therefore,

|F̂ − F | → 0 a.s. uniformly in [0, T ].

2. Besides that, if G(b−F ) > 0, where bF = sup{t : F (t) < 1}, then:

|F̂ − F | → 0 a.s. uniformly in R.

Lo & Singh (1986) obtained a strong uniform approximation of the difference

between the Kaplan-Meier estimator, F̂ (·), and the theoretical distribution function,

F (·), as a mean of independent and identically distributed (i.i.d.) bounded random

variables, plus a neglibible term of known order. These approaches allow us to work

with a sum of i.i.d. variables, easier to manipulate than the product which defines

the estimator F̂ (·). Departing from it, properties such as the asymptotic normality

and the convergence of the process can be easily studied.
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Property 5. (Almost sure representation in Lo & Singh, 1986)

Under the hypothesis that F (·) and G(·) are continuous, then for all t ≤ T < bH :

F̂ (t)− F (t) = n−1
n∑
i=1

ξ(Ti, δi, t) + rn(t),

where

ξ(T, δ, t) = (1− F (t))

[
g(min(T, t)) +

1

1−H(T )
I(T ≤ t, δ = 1)

]
,

with

g(t) =

∫ t

0
(1−H(v))−2d(1−H1(v))

and

sup
0≤t≤T

|rn(t)| = O

((
lnn

n

)3/4
)

a.s.

Furthermore, for all α ≥ 1,

sup
0≤t≤T

E|rn(t)|α = O

((
lnn

n

)3α/4
)
.

The order of the term rn(·) is sufficient to prove most of the properties of the

Kaplan-Meier estimator.

The nonparametric estimation of the conditional survival function with censored

data has been studied by different authors. In order to estimate the conditional sur-

vival function for a continuous covariate X, Beran (1981) introduces the conditional

PL estimator, also known as the generalized Kaplan-Meier estimator:

Ŝh(t|x) =
∏

i:T(i)≤t

(
1−

δ[i]Bh(i)(x)∑n
r=iBh(r)(x)

)
, (1.4)

where

Bh(i)(x) =
Kh(x−X[i])∑n
j=1Kh(x−X[j])

are the Nadaraya-Watson (NW) weights with Kh(·) = 1
hK

( ·
h

)
the rescaled kernel

with bandwidth h→ 0. Here X[i] is the covariate concomitant of T(i). We will also

denote F̂h(t|x) = 1− Ŝh(t|x) the Beran estimator of F (t|x).

The Beran estimator of the conditional survival function has been deeply studied

in the literature. Depending on the design (fixed or random) and on the weights,
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different properties of the estimator are obtained. Dabrowska (1989), in Theo-

rem 2.1, shows its asymptotic unbiasedness, considering Nadaraya-Watson weights.

Furthermore, using Gasser-Müller weights, González-Manteiga & Cadarso-Suárez

(1994) give an almost sure representation for the estimator as a sum of independent

variables plus a remainder term, and Van Keilegom & Veraverbeke (1997b) prove

an asymptotic representation for the bootstrapped estimator and obtain a strong

consistency of the bootstrap approximation for the conditional distribution function.

We now summarize the most interesting properties of the conditional product-

limit estimator under censoring.

Property 6. Following Beran (1981), the PL estimator in (1.4) is equal to:

• The kernel type estimator of the conditional survival function (for complete

data) if there are no censored observations.

• The Kaplan-Meier estimator if there are no covariates.

Property 7. The product of the PL estimators for the survival functions of the

variables Y and C is equal to the nonparametric survival estimator of the variable

T :

(1− F̂h(t|x))(1− Ĝh(t|x)) = 1− Ĥh(t|x). (1.5)

Detailing the equations of the left hand side in (1.5),

∏
i:T(i)≤t

(
1−

δ[i]Bh(i)(x)∑n
r=iBh(r)(x)

) ∏
i:T(i)≤t

(
1−

(1− δ[i])Bh(i)(x)∑n
r=iBh(r)(x)

)

=
∏

i:T(i)≤t

(
1−

Bh(i)(x)∑n
r=iBh(r)(x)

)
= 1−

n∑
i=1

Bh(i)(x)I(T(i) ≤ t).

Property 8. The PL estimator in (1.4) is a step function, with jumps at the un-

censored observations. Departing from Efron (1967), who works in an unconditional

context, the magnitude of the jump at Ti in our case is equal to:

dF̂h(Ti|x) =
δiBh,i(x)

1− Ĥh(Ti|x)

(
1− F̂h(T−i |x)

)
, (1.6)

where T−i is the left limit of Ti. Note that Equation (1.6) is equivalent to

dF̂h(T(i)|x) =
δ[i]Bh(i)(x)

1− Ĥh(T(i)|x)

(
1− F̂h(T(i−1)|x)

)
.
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Property 9. The PL estimator in (1.4) for the survival function of the censoring

variable C contitional on X, 1−G(t|x), is the following:

1− Ĝh(t|x) =
∏

i:T(i)≤t

(
1−

(1− δ[i])Bh(i)(x)∑n
r=iBh(r)(x)

)
,

since a censored observation of Yi corresponds with an uncensored observation of Ci

and vice versa.

Property 10. (Asymptotic normality obtained by González-Manteiga & Cadarso-

Suárez, 1994, and Van Keilegom & Veraverbeke, 1997b).

Under certain conditions,

(nh)1/2[F̂h(·|x)− F (·|x)]
d−→ N(·|x) in D[0, T ],

where N(·|x) is a Gaussian process with mean equal to 0 and covariance function:

Γ(y, t|x) = (1− F (y|x))(1− F (t|x))

(∫
K2(z)dz

)(∫ min(y,t)

0

dH1(u|x)

(1−H(u|x))2

)
,

and D[0, T ] = {f a function from [0, T ] in R: f is right continuous, with discon-

tinuities, at most, of jump}, considering the topology of Skorohod (see Billingsley,

1968, pg. 111).

The weak convergence of the process (nh)1/2[F̂h(·|x) − F (·|x)] is studied in Van

Keilegom & Veraverbeke (1997a).

1.2.2 Density function estimation

Let (X1, X2, . . . , Xn) be an independent and identically distributed sample drawn

from some unknown distribution function F with density function f . Suppose we

are interested in estimating the density function. The most common nonparametric

estimator for the density function of a random variable X is the kernel type estimator

proposed by Parzen (1962) and Rosenblatt (1956) which, in the complete data setup

(uncensored case), is:

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
=

1

n

n∑
i=1

Kh(x−Xi),

where Kh(u) = 1
hK

(
u
h

)
, K is a kernel function (bounded and symmetric real func-

tion with
∫∞
−∞K(x)dx = 1), and h > 0 is the smoothing parameter.



1.2. Nonparametric curve estimation 10

In the presence of right censoring, Diehl & Stute (1988) obtained an i.i.d. repre-

sentation of the kernel estimator of f under censoring:

fh(t) =
1

h

∫
K

(
t− x
h

)
F̂h(dx),

where (h) = (hn) is a sequence of bandwidths tending to zero at appropriate rates,

K is a smooth kernel and 1 − F̂h(x) is the Kaplan-Meier estimator of the survival

function 1 − F (x). The main results for the kernel estimator of the density under

censoring are obtained in Földes et al. (1981), Mielniczuk (1986), Diehl & Stute

(1988), Lo et al. (1989) and Ghorai & Pattanaik (1990), among others. Furthermore,

in Cai (1998), dependent data are also considered.

1.2.3 Regression estimation

Nonparametric regression smoothing includes many techniques to estimate the re-

gression function without making any assumption about its shape.

Let (X,Y ) be a two-dimensional random variable such that E(|Y |) < ∞. We

will estimate the regression function r(x) = E(Y |X = x), that can be also expressed

as:

r(x) =

∫
yf2|1(y|x)dy =

∫
y
f(x, y)

f1(x)
dy =

∫
yf(x, y)dy

f1(x)

=

∫
yf1|2(x|y)f2(y)dy

f1(x)
=

Φ(x)

f1(x)
,

where f1(x) is the marginal density function of X and

Φ(x) =

∫
yf1|2(x|y)f2(y)dy = E(Y f1|2(x|Y )).

Note that E(Y f1|2(x|Y )) can be estimated by 1
n

∑n
i=1 Yif1|2(x|Yi), and the condi-

tional density f1|2(x|Yi) can be estimated with a kernel type estimator and conside-

ring only one observation Xi (n = 1). Therefore, both functions f1(x) and Φ(x) can

be estimated by the kernel method:

f̂1,h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
and Φ̂h(x) =

1

nh

n∑
i=1

K

(
x−Xi

h

)
Yi,

which lead to the Nadaraya-Watson kernel estimator (Nadaraya (1964) and Watson

(1964)):

r̂h(x) =
Φ̂h(x)

f̂1,h(x)
=

1
nh

∑n
i=1K

(
x−Xi
h

)
Yi

1
nh

∑n
i=1K

(
x−Xi
h

) =

n∑
i=1

Bhi(x)Yi, (1.7)
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where

Bhi(x) =

1
nhK

(
x−Xi
h

)
1
nh

∑n
j=1K

(
x−Xj

h

) =
K
(
x−Xi
h

)
∑n

j=1K
(
x−Xj

h

) . (1.8)

Intuitively, r̂h(x) is a weighted local average, that is, r(x) is estimated by a

weighted mean of Yi, where the weights, Bhi(x), take into account the distance be-

tween the values Xi and x, and the smoothing parameter, h, adjusts the size of the

weights near x.

Following Nadaraya (1964) and Watson (1964), the asymptotic distribution of

(1.7) can be obtained under moment and regularity conditions and also under the

necessary conditions for consistency of the estimator (h→ 0, nh→∞ if n→∞).

If these conditions are fulfilled and the bandwidth h is chosen as c0n
−1/5, then:

√
nh (r̂h(x)− r(x))

d−→ N(B(x), V (x)),

with

B(x) =
1

2
c

5/2
0 dK

r′′(x)f(x) + 2r′(x)f ′(x)

f(x)
and V (x) = cK

σ2(x)

f(x)
,

where

dK =

∫
v2K(v)dv, (1.9)

cK =

∫
K2(v)dv, (1.10)

f(x) is the marginal density function of X and σ2(x) = V ar(Y |X = x) is the con-

ditional variance of Y given X = x. Furthermore, it can be proven that the asymp-

totically optimal value of h regarding the mean squared error (MSE) has the form:

h = c0n
−1/5. The smoothing parameter can be selected using automatic data-

dependent methods. The bandwidth selection techniques that will be mentioned in

this thesis are plug-in, cross validation (CV) and bootstrap methods.

1.3 Bootstrap

A common problem in a nonparametric context is to study a specific characteristic

of the distribution of some statistics, but making no assumptions about its shape.

Let Y = (Y1, Y2, . . . , Yn) be a simple random sample of the unknown distribution F .

The bootstrap method approximates R(Y, F ) by R∗ = R(Y∗, F̂ ) using the following

procedure:
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1. From the empirical distribution function:

F̂ (y) =
1

n

n∑
i=1

I(Yi ≤ y),

obtain bootstrap resamples (Y ∗1 , Y
∗

2 , . . . , Y
∗
n ), that is, Y ∗i = Yj with probability

1/n, for j = 1, . . . , n.

2. Approximate the sampling distribution R(Y, F ) by the distribution in the

resampling of R∗ = R(Y∗, F̂ ). Specifically, the theoretical distribution is re-

placed by the empirical distribution, and the observed sample is replaced by

the bootstrap resample.

Note that in order to approximate the distribution of R∗, the Monte Carlo method is

used. We generate B bootstrap resamples of size n from the distribution F̂ (·), that

is, we obtain Y∗1,Y
∗
2, . . . ,Y

∗
B random bootstrap resamples drawn from F̂ . Then,

with the values R(Y∗1, F̂ ), R(Y∗2, F̂ ), . . . , R(Y∗B, F̂ ), we obtain the approximation

of R.

A noticeable disadvantage of this method is that it is computationally expen-

sive, since it is based on Monte Carlo. Apart from that, the most important benefit

is that the bootstrap method does not need any hypothesis about the mechanism

which generates the data (see Efron, 1979; Hall, 1992; Efron & Tibshirani, 1993,

among others).

From now on, we will use the notation E∗ and P ∗ for bootstrap expectation and

probability, i.e., conditionally on the original observations.

1.3.1 Bootstrap with censored data

The resampling needs to be adaptable to each context. With censored data, Efron

(1981) introduced two equivalent resampling methods known as simple bootstrap and

obvious bootstrap (see also Reid, 1981; Akritas, 1986). Both procedures approxi-

mate the distribution of an statistic R(T, δ), where T = (T1, T2, . . . , Tn) and δ =

(δ1, δ2, . . . , δn).

The simple bootstrap consists of the following steps:

1. From the sample {(T1, δ1), (T2, δ2), . . . , (Tn, δn)}, obtain the two-dimensional

empirical distribution, F̂ T,δ.
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2. From the empirical distribution in Step 1, obtain {(T ∗1 , δ∗1), (T ∗2 , δ
∗
2), . . . , (T ∗n , δ

∗
n)}

considering:

P ((T ∗, δ∗) = (Ti, δi)) =
1

n
, for i = 1, 2, . . . , n.

3. Evaluate the statistic R∗ = R(T∗, δ∗), with T∗ = (T ∗1 , T
∗
2 , . . . , T

∗
n) and δ∗ =

(δ∗1 , δ
∗
2 , . . . , δ

∗
n).

4. Approximate the sampling distribution of the statistic R(T, δ) by the resam-

pling distribution of the corresponding bootstrap statistic R(T∗, δ∗).

Furthermore, the obvious bootstrap can be applied following the steps:

1. Obtain the Kaplan-Meier estimators of the variable of interest, F̂ (t), and the

censoring variable, Ĝ(t).

2. Obtain independent observations, Y ∗i with distribution F̂ and C∗i with distri-

bution Ĝ, for i = 1, 2, . . . , n.

3. For i = 1, 2, . . . , n, define T ∗i = min (Y ∗i , C
∗
i ) and δ∗i = I(Y ∗i ≤ C∗i ), and

consider the bootstrap resample (T∗, δ∗), with T∗ = (T ∗1 , T
∗
2 , . . . , T

∗
n) and

δ∗ = (δ∗1 , δ
∗
2 , . . . , δ

∗
n).

4. Approximate the sampling distribution of the statistic R(T, δ) by the resam-

pling distribution of the corresponding bootstrap statistic R(T∗, δ∗).

Note that this method is computationally more expensive than the simple bootstrap.

It is straightforward to prove that the simple and the obvious bootstrap are

equivalent when there are no ties between censored and uncensored observations

(see Efron, 1981). Then, the bootstrap distribution of (T ∗, δ∗) is the same for both

methods.

1.3.2 Bootstrap with covariates

Li & Datta (2001) propose a two-stage bootstrap method for nonparametric regres-

sion with right censored data. Its asymptotic validity is established using counting

process techniques and martingale central limit theory. The method is applied to

construct confidence intervals and bands for the conditional survival function esti-

mate.
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The proposed resampling is carried out in two steps. In the first stage, they

resample with replacement from the set {X1, ..., Xn} to obtain the bootstrap sam-

ple for the covariate {X∗1 , ..., X∗n}. Then, in the second stage, they generate a pair

(T ∗i , δ
∗
i ) for each X∗i ; using ideas similar to that of Efron (1981). The additional

phase of covariate resampling also introduces a technical challenge for establishing

the asymptotic validity of the bootstrap.

Li & Datta (2001) give two equivalent resampling algorithms for bootstrapping

the Beran estimate of the conditional survival function: the simple weighted boot-

strap and the obvious bootstrap.

The simple weighted bootstrap with covariates is detailed in the following steps:

1. Generate X∗1 , . . . , X
∗
n i.i.d. from the empirical distribution of {X1, . . . , Xn}.

2. For each i, generate a pair (T ∗i , δ
∗
i ) from the weighted empirical distribution

F̂h(·, ·|X∗i ) of {(T1, δ1), . . . , (Tn, δn)}, where

F̂h(u, v|x) =
n∑
i=1

Bhi(x)I(Ti ≤ u, δi ≤ v),

and Bhi(x) is defined in (1.8).

3. The bootstrap resample is formed as {(T ∗1 , δ∗1 , X∗1 ), . . . , (T ∗n , δ
∗
n, X

∗
n)}.

Regarding the obvious bootstrap with covariates, let us recall Ŝh(t|x) and Ĝh(t|x)

as the Beran estimates of S(t|x) and G(t|x), respectively, using the same weight

function Bhi(x) in (1.8). Li & Datta (2001) force Ŝh(t|X∗i ) and Ĝh(t|X∗i ) to 0

beyond the larger of the last jump points of the two step functions to make both

proper survival functions in order to sample the failure and censoring times described

below:

1. Generate X∗1 , . . . , X
∗
n i.i.d. from the empirical distribution of {X1, . . . , Xn}.

2. For each i, generate Y ∗i from Ŝh(t|X∗i ) and C∗i from Ĝh(t|X∗i ) independently,

and define:

T ∗i = min(Y ∗i , C
∗
i ) and δ∗i = I(Y ∗i ≤ C∗i ).

3. The bootstrap resample is formed as {(T ∗1 , δ∗1 , X∗1 ), . . . , (T ∗n , δ
∗
n, X

∗
n)}.

The equivalence of the two methods is parallel to that of Efron (1981) resampling

procedures for the unconditional setting.
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1.3.3 Bootstrap bandwidth selection

The choice of the bandwidth is a crucial issue in kernel estimation, since it controls

the trade-off between bias and variance. Suppose that we want to study a generic

function, φ. Note that when choosing the bandwidth, a large parameter value will

oversmooth the data, which will lead to a biased estimate of φ. On the contrary,

a small parameter value will undersmooth the data and it will give an estimator

for φ with high variability. Most of the methods for smoothing parameter selection

in nonparametric curve estimation look for a small error when approximating the

underlying curve by the smooth estimate.

The general idea of a bootstrap bandwidth selector consists of estimating, by

resampling, the mean squared error (MSEx(hx)) or the mean integrated squared

error (MISEx(hx)), and obtain the bandwidth which minimizes its bootstrap ver-

sion.

For a variable X with distribution function F , and considering the classical

notation for the bootstrap method, it is important to know the distribution of the

random variable:

Rh(X, F ) =

∫ (
φ̂h(v)− φ(v)

)2
w(v)dv,

where h is the smoothing parameter, φ is a generic function depending on F , φ̂h is a

smooth estimator of φ, and w is a weight function. The bootstrap method approxi-

mates the distribution of Rh(X, F ) by the bootstrap distribution of R∗ = Rh(X∗, F̂ ),

that is, the theoretical distribution F is replaced by an estimation F̂ , and the ob-

served sample X is replaced by the bootstrap resample X∗, drawn from F̂ (·). The

most commonly used technique for approximating the bootstrap distribution of R∗

is by means of Monte Carlo, by generating B resamples of size n: X1
∗, . . . ,XB

∗,

from F̂ (·) and approximating the resampling distribution of R∗ by the empirical

distribution of R∗1 = Rh(X1
∗, F̂ ), . . . , R∗B = Rh(XB

∗, F̂ ).

A common error criterion for bandwidth selection is MISE(h) = E[Rh(X, F )],

which can be estimated by its bootstrap version MISE∗(h) = E∗[Rh(X∗, F̂ )], that

can be approximated by Monte Carlo using 1
B

∑B
j=1Rh(X∗j , F̂ ).

In this thesis, for the bootstrap bandwidth selector for the cure probability es-

timator, we consider the simple weighted bootstrap, without resampling the cova-

riate X, and we depart from the simple weighted bootstrap proposed by Li & Datta
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(2001). Regarding the bootstrap bandwidth selector for the estimator of the survival

function of the uncured patients, we consider an unconditional censoring bootstrap

resampling, assuming that G(t|x) = G(t). The resampling method is based on the

obvious bootstrap proposed by Li & Datta (2001).

1.4 Cure models

In the last two decades there has been a remarkable progress in cancer treatments,

which led to longer patient survival and improved their quality of life. Consequently,

data coming from cancer studies typically have heavy censoring (due to long term

survival) at the end of the follow-up period, and a standard survival model is inap-

propriate. To accommodate for the cured or insusceptible proportion of subjects,

a cure fraction can be explicitly incorporated into survival models and, as a conse-

quence, cure models arise.

These models are a useful tool to analyze and describe cancer survival data, since

they express and predict the prognosis of a patient considering, as a novelty, the real

possibility that the subject may never experience the event of interest. They gene-

rally require long-term follow-up and large sample sizes, as well as empirical and

biological evidence of a nonsusceptible subpopulation (Farewell, 1986). In Figure

1.1 we can see a standard survival function and a survival function with a fraction

of cured patients.

Although cure models were originally proposed to model long-term survival of

cancer patients, as in this thesis, they can be applied to any survival context in

which it is assumed that a group of individuals will not experiment the event of

interest, no matter how long they are followed. For example, credit scoring where a

proportion of borrowers will not default during the loan term.

Let us introduce a real example in which we do not consider the cure possibility.

We work with a dataset related to colorectal cancer patients from CHUAC (Com-

plexo Hospitalario Universitario de A Coruña), Spain. It contains 414 observations

on 8 variables. The event of interest is the follow-up time, in months, since the diag-

nostic until death. Censoring is caused by death by a different cause, dropout, or

end of the study. The dataset is described in detail in Section 2.6. Figure 1.2 shows

the Kaplan-Meier estimator for the survival function for the complete dataset, Ŝ, to-
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Figure 1.1: Standard survival function (left) and survival function with a fraction of cured
patients (right).

gether with the survival function of the uncured individuals, Ŝ0. We can appreciate

that the survival curve of Ŝ has a plateau at the end of the study. This non-zero

asymptote could be taken as an estimator of the cure rate, that is, the proportion

of patients who will not die from colorectal cancer (so they can be considered as

“cured”). Specifically, the estimated cure probability is 1− p̂ = 0.16 for this dataset.

Since a standard survival model does not take into account the proportion of cured

patients, it is not an appropriate way to analyze the data. On the contrary, a cure

model may be a suitable alternative.

Figure 1.2: Standard survival function (solid line) and survival function with a fraction of
cured patients (dashed line).
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There are two main classes of cure models: mixture and non-mixture models.

The first papers in non-mixture models were due to Haybittle (1959, 1965). One

category, belonging to this group, is the proportional hazards (PH) cure model, also

known as the promotion time cure model, proposed by Yakovlev & Tsodikov (1996):

S̄(t, x) = G(−a(θ, x)F0(t)),

where a is a known link function depending on the unknown parameter θ, and G

is a known transformation function. The unknown terms in this model can be esti-

mated parametrically (Yakovlev et al., 1994; Chen et al., 1999, 2002; Yin, 2005; Chi

& Ibrahim, 2007) or semiparametrically (Tsodikov, 1998, 2003; Zeng et al., 2006).

Betensky & Schoenfeld (2001) applied a competing risks model and showed it to be

equivalent to a mixture model. Li et al. (2001) investigated the identifiability of a

standard cure model based on a mixture distribution and based on a non-mixture

proportional hazards model with long-term survivors. Furthermore, they derived an

estimator for the variance of the cumulative incidence function. Moreover, Tsodikov

(2001) proposed a nonparametric estimator of the incidence, but it cannot handle

continuous covariates. Liu & Shen (2009) presented a semiparametric nonmixture

cure model for the regression analysis of interval-censored time-to-event data. They

developed semiparametric maximum likelihood estimation for the model using the

expectation-maximization (EM) method for interval-censored data.

The model belonging to the other category of cure models, called two-component

mixture cure model, is the one studied in this work. Mixture cure models were

proposed by Boag (1949) and they consider the survival function as a mixture of two

groups of subjects: the susceptible group and the cured group. More specifically,

they allow to estimate the probability of cure, also known as incidence, and the

survival function of the uncured population, denoted by latency. The model can be

formulated as follows:

S(t|x) = 1− p(x) + p(x)S0(t|x),

where x is a set of covariates, S(t|x) is the survival function of all the (cured and

uncured) patients, 1 − p(x) is the incidence and S0(t|x) is the latency. An impor-

tant benefit of this model is that it allows covariates to have different influence on

cured and uncured patients. Maller & Zhou (1996) provided a detailed review of

this model. More recently, Corbière et al. (2009) presented the main approaches so

far for mixture cure models. In these models, the incidence is usually assumed to

have a logistic form and the latency is usually estimated parametrically (Farewell,
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1982, 1986; Cantor & Shuster, 1992; Ghitany et al., 1994; Denham et al., 1996) or

semiparametrically (Kuk & Chen, 1992; Peng et al., 1998; Peng & Dear, 2000; Sy

& Taylor, 2000; Zhang & Peng, 2007). Farewell (1982, 1986) studied the logistic

Weibull mixture cure model when the survival function of the uncured population

is the Weibull distribution and covariates are related to the cure probability by a

logistic expression. Yamaguchi (1992) used an accelerated failure time model with

generalized Gamma distribution as the latency. Kuk & Chen (1992) proposed to

model the effect of covariates on the failure time of uncured patients by the pro-

portional hazards assumption. They applied a marginal likelihood approach and

used an estimation method involving Monte Carlo simulation. Taylor (1995) imple-

mented an EM algorithm for the parameter inference in the mixture cure model by a

Kaplan-Meier type estimator of the survival function of the susceptible population.

Peng et al. (1998) proposed to use a generalized F distribution for the survival func-

tion of uncured patients. Peng & Dear (2000), Sy & Taylor (2000) and Sy & Taylor

(2001) employed an EM algorithm for the Cox’s proportional hazard cure model. Li

& Taylor (2002) introduced a semiparametric accelerated failure-time cure model,

where the latency distribution is determined by an AFT model with unspeciffied

baseline distribution. The approach by Peng (2003) is based on recognizing that

the M-step of the proposed EM algorithm consists of fitting a proportional hazards

model and a logistic model, respectively, with some fixed coefficients. Lu & Ying

(2004) proposed a class of semiparametric transformation models incorporating cure

fractions, which included the aforementioned mixture cure rate models as special

cases. To take account for unobserved heterogeneity which cannot be explained via

observed covariates, Peng & Zhang (2008) included a frailty into Cox’s proportional

hazards mixture cure model. Othus et al. (2009) extended their model to allow for

time dependent covariates and dependent censoring. Some recent topics covered in

the mixture cure models literature include multivariate survival data (Yu & Peng,

2008), clustered survival data (Lai & Yau, 2010) and accelerated models (Zhang et

al., 2013). More recently, Lu (2010) proposed an accelerated failure time model with

cure fraction, where the unknown error density was estimated by the kernel method.

Due to the fact that the effects of the covariate on the cure rate and on the

latency cannot always be well approximated using parametric or semiparametric

methods, a nonparametric approach is needed. In the literature, some nonpara-

metric methods for the estimation of the cure rate have been studied: Maller &

Zhou (1992) proposed a consistent nonparametric estimator of the incidence, but

it cannot handle covariates. In order to overcome this drawback, Laska & Meis-
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ner (1992) proposed another nonparametric estimator of the cure rate, but it only

works for discrete covariates. They study the nonparametric generalized maximum

likelihood product limit point estimators and confidence intervals for a cure model

with random censorship. They also developed one-, two- and K-sample likelihood

ratio tests for inference on the cure rates. Furthermore, Wang et al. (2012) proposed

a cure model with a nonparametric form in the cure probability. To ensure model

identifiability, they assumed a nonparametric proportional hazards model for the

hazard function, whose relative risk part also takes a flexible nonparametric form,

different from the traditional semiparametric proportional hazards model. The es-

timation was carried out by an EM algorithm for a penalized likelihood. They

defined the smoothing spline function estimates as the minimizers of the penalized

likelihood, which consists of the negative log likelihood representing the goodness-

of-fit, a roughness penalty enforcing smooth conditions, and a smoothing parameter

balancing the tradeoff. In Van Keilegom (2013), the problem of goodness-of-fit tests

for regression models with cured data was briefly considered. More recently, a com-

pletely nonparametric approach to the mixture cure model was firstly addressed by

Xu & Peng (2014), proposing a nonparametric incidence estimator which allows for

a continuous covariate, and proving its consistency and asymptotic normality.

Although the aforementioned papers have a nonparametric flavor, they fail to

consider a completely nonparametric mixture cure model which works for discrete

and continuous covariates in both the incidence and the latency. To overcome this

problem, in Chapters 2 and 3 a two-component mixture cure model is proposed with

nonparametric forms for both the cure probability and the survival function of the

uncured individuals. Even though it is considered only one covariate, the method

can be directly extended to a case with multiple covariates (using, for example, the

Nadaraya-Watson kernel estimator, obtaining Ŝh(t|x), and facing the problem of

high dimensional estimation in nonparametric contexts). This enables the mixture

cure model with covariates to be addressed in a completely nonparametric way.

To the best of our knowledge, no nonparametric significance testing has been pro-

posed yet in cure models. To fill this important gap, a covariate significance test for

the incidence is presented in Chapter 4. The method is based on the significance test

by Delgado & González-Manteiga (2001). Its efficiency is evaluated in a Monte Carlo

simulation study, in which the distribution of the test is approximated by bootstrap.
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1.5 Content of the thesis

The rest of the thesis is organized as follows. In Chapter 2 some notation and a

completely nonparametric method for the estimation of mixture cure models are

introduced. The nonparametric incidence estimator by Xu & Peng (2014) is ex-

tensively studied and an i.i.d. representation for it is obtained. As a consequence,

an asymptotically optimal bandwidth is found. Moreover, a bootstrap bandwidth

selection method is proposed. The nonparametric estimator is compared with exis-

ting semiparametric approaches in a simulation study, in which the performance of

the bootstrap bandwidth selector is also assessed. Finally, the method is applied to

a dataset of colorectal cancer from the University Hospital of A Coruña (CHUAC).

The nonparametric latency estimator is deeply studied in Chapter 3. An i.i.d. repre-

sentation is obtained, the asymptotic mean squared error of the latency estimator

is found, and its asymptotic normality is proven. A bootstrap bandwidth selector

for the latency estimator is introduced and its efficiency is evaluated in a simulation

study. The proposed nonparametric latency estimator, together with the bandwidth

selector, are applied to the colorectal cancer dataset. In Chapter 4, a covariate

significance test for the incidence is presented. The method is extended to non

continuous covariates: binary, discrete and qualitative, and also to contexts with a

large number of covariates. The behavior of the test is assessed in a simulation study,

and finally it is applied to two datasets: the colorrectal cancer patients dataset from

CHUAC and a sarcomas dataset from CHUS (University Hospital of Santiago). The

proofs for the theoretical results in Chapters 2 and 3 are collected in Appendices

A.1 and A.2.
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Chapter 2

Nonparametric incidence

estimator

2.1 Introduction

In this chapter, we introduce some notation and we study the nonparametric inci-

dence estimator by Xu & Peng (2014). We address the identifiability problem and

we obtain an i.i.d. representation for the estimator. We also find an asymptotic

expression of the mean squared error of the incidence estimator. Furthermore, we

propose a bootstrap bandwidth selection method. We assess the performance of both

the nonparametric estimator and the bootstrap bandwidth selector in a simulation

study. Finally, we apply the methodology to a dataset of colorectal cancer patients

from CHUAC. The results of this chapter have been published in López-Cheda et

al. (2017a).

2.2 Notation

Let ν be a binary variable where ν = 0 indicates if the individual belongs to the

susceptible group (the individual will eventually experience the event of interest if

followed for long enough) and ν = 1 indicates if the subject is cured (the individual

will never experience the event). The proportion of cured patients and the survival

function in the group of uncured patients can depend on certain characteristics of

the subject, represented by a set of covariates X. Let p(x) = P (ν = 0|X = x) be

the conditional probability of not being cured, and let Y be the time to occurrence

of the event. When ν = 1 it is assumed that Y =∞.
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As mentioned in Chapter 1, we will denote the conditional distribution function

of Y as F (t|x) = P (Y ≤ t|X = x). Note that the corresponding survival function,

S(t|x), is improper when cured patients exist, since limt→∞ S(t|x) = 1 − p(x) > 0.

The conditional survival function of Y given that the subject is not cured is denoted

as

S0(t|x) = P (Y > t|X = x, ν = 0).

Total probability theorem gives:

P (Y > t|X = x) = P (Y > t|X = x, ν = 1)P (ν = 1|X = x)

+ P (Y > t|X = x, ν = 0)P (ν = 0|X = x).

Then, the mixture cure model can be written as:

S(t|x) = 1− p(x) + p(x)S0(t|x), (2.1)

where 1−p(x) is the incidence and S0(t|x) is the latency. We assume that each indi-

vidual is subject to random right censoring and that the censoring time, C, with dis-

tribution function G, is independent of Y given the covariates X. Let T = min(Y,C)

be the observed time with distribution function H and δ = I(Y ≤ C) the uncenso-

ring indicator. Observe that δ = 0 for all the cured patients, and it also happens

for uncured patients with censored lifetime. Without loss of generality, let X be a

univariate continuous covariate with density function m(x). Therefore, the obser-

vations will be {(Xi, Ti, δi), i = 1, . . . , n}, i.i.d. copies of the random vector (X,T, δ).

In order to introduce the nonparametric approach in mixture cure models, we

consider the generalized Kaplan-Meier estimator by Beran (1981) to estimate the

conditional survival function with covariates:

Ŝh(t|x) =
∏

i:T(i)≤t

(
1−

δ[i]Bh(i)(x)∑n
r=iBh(r)(x)

)
, (2.2)

where

Bh(i)(x) =
Kh(x−X[i])∑n
j=1Kh(x−X[j])

(2.3)

are the Nadaraya-Watson (NW) weights with Kh(·) = 1
hK

( ·
h

)
the rescaled kernel

with bandwidth h > 0. In the case of fixed design, the Gasser-Müller (GM) weights

(Gasser & Müller, 1984) are more common. Here T(1) ≤ T(2) ≤ . . . ≤ T(n) are

the ordered Ti’s, and δ[i] and X[i] are the corresponding uncensoring indicator and

covariate concomitants. We will also denote F̂h(t|x) = 1 − Ŝh(t|x) for the Beran
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estimator of F (t|x). The estimator (2.2) can be extended to the case of multi-

ple covariates X = (X1, . . . , Xq) using, for example, the product kernel (Simonoff,

1996). Discrete covariates can also be included by splitting the sample into subsam-

ples corresponding to the different category combination of the discrete covariates,

for each subsample conducting a nonparametric Beran estimator on the continuous

covariates. Note that the previous approach requires enough data. Another possibi-

lity is smoothing the discrete covariates with certain kernel functions (Li & Racine,

2004).

It is worth mentioning that the Beran estimator can be written in terms of the

original (unordered) sample:

Ŝh(t|x) =
∏
i:Ti≤t

(
1− δiBhi(x)∑n

r=1Bhr(x)I(Tr ≥ Ti)

)
,

where

Bhi(x) =
Kh(x−Xi)∑n
j=1Kh(x−Xj)

.

Starting from the Beran estimator, Xu & Peng (2014) introduced the following

kernel type incidence estimator:

1− p̂h(x) =

n∏
i=1

(
1−

δ[i]Bh(i)(x)∑n
r=iBh(r)(x)

)
= Ŝh(T 1

max|x), (2.4)

where T 1
max = max

i:δi=1
(Ti) is the largest uncensored failure time. These authors also

proved the consistency and asymptotic normality of the estimator in (2.4).

The identifiability of a cure model is needed to obtain unique estimates of the

model functions. In a cure model, all observed uncensored lifetimes (δi = 1) corres-

pond necessarily to uncured subjects (νi = 0); but it is impossible to distinguish if a

subject with a censored time (δi = 0) belongs to the susceptible group (νi = 0) or to

the non-susceptible group (νi = 1), because some censored subjects may experience

failures beyond the study period. This leads to difficulties in making a distinction

between models with high incidence and long tails of the latency distribution, and

low incidence and short tails of the latency distribution. Lemma 2.2.1 addresses this

problem.

Lemma 2.2.1. Let D be the support of X. Model (2.1), with p (x) and S0 (t|x)

unspecified, is identifiable if S0 (t|x) is a proper survival function for x ∈ D.

The proof of Lemma 2.2.1 is included in Appendix A.1. Note that Lemma 2.2.1

also holds in a context with no covariates.
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2.3 Asymptotic results

The nonparametric estimator of the incidence function in (2.4) is strongly based on

the Beran estimator in (2.2). The Beran estimator of the conditional survival func-

tion has been deeply studied in the literature. Dabrowska (1989), in Theorem 2.1,

shows its asymptotic unbiasedness, considering NW weights. Furthermore, using

GM weights, González-Manteiga & Cadarso-Suárez (1994) give an almost sure i.i.d.

representation for the estimator, and Van Keilegom & Veraverbeke (1997b) prove

an asymptotic representation for the bootstrapped estimator and obtain the strong

consistency of the bootstrap approximation for the conditional distribution function.

Let

Ĥh(t|x) =

n∑
i=1

Bhi(x)I(Ti ≤ t) (2.5)

and

Ĥ1
h(t|x) =

n∑
i=1

Bhi(x)I(Ti ≤ t, δi = 1) (2.6)

be the empirical estimators of

H(t|x) = P (T ≤ t|X = x) and H1(t|x) = P (T ≤ t, δ = 1|X = x) , (2.7)

respectively. Moreover, τH(x) = sup {t : H(t|x) < 1}, τS0(x) = sup {t : S0(t|x) > 0}
and τG(x) = sup {t : G(t|x) < 1}. Since S(t|x) is an improper survival function,

then S(t|x) > 0 for any t ∈ [0,∞), and 1−H(t|x) = S(t|x)× Ḡ(t|x) with Ḡ(t|x) =

1−G(t|x) the proper conditional survival function of the censoring time C, we have

τH(x) = τG(x).

Let τ0 = supx∈D τS0(x). As in Xu & Peng (2014), we assume

τ0 < τG (x) ,∀x ∈ D. (2.8)

This condition states that the support of the censoring variable is not contained

in the support of Y , which guarantees that censored subjects beyond the largest

observable failure time are cured. Hence, our estimator does not overestimate the

true cure rate. A similar assumption was used by Maller & Zhou (1992, 1994) in

unconditional cases. As pointed out in Laska & Meisner (1992), if the censoring

variable takes values always below a time τG < τ0, for example in a clinical trial

with a fixed maximum follow-up period, the largest uncensored observation T 1
max

may occur at a time not larger than τG and therefore always before τ0. In such a

case, for a large sample size, the estimator in (2.4) is an estimator of 1− p, which is
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strictly larger than 1−p. This comment shows the need of considering the length of

follow-up in the design of a clinical trial carefully, so that S0(τG) is sufficiently small

to take the estimator (2.4) as a good estimator of 1 − p(x) for practical purposes.

The simulations in Xu & Peng (2014) show that if the censoring distribution G(t|x)

has a heavier tail than S0(t|x), the estimates using the proposed method will tend

to have small biases regardless the value of τS0(x).

Maller & Zhou (1992) dealt with the problem of testing a similar condition to

(2.8) in an unconditional setting. They proposed to test H0 : τ0 > τG versus the

alternative H1 : τ0 ≤ τG. One of the weak points of this approach is to include

condition (2.8) in the alternative hypothesis. Since this is a neutral assumption,

it seems more reasonable to keep (2.8) if there are no strong evidences against it.

In that sense, it is more natural to include (2.8) in the null hypothesis. This test

is depply studied by Maller & Zhou (1994), with the difference that the neutral

assumption in set in the null hypothesis. Apart from that, the ideas by Maller &

Zhou (1992) can be extended to a conditional setting as follows. Let us consider

Π(t) = E(δ|T = t) and define τG = infx∈D τG(x). Condition (2.8) implies that

∃a < τG such that Π(t) = 0 ∀t ≥ a. Consequently, this condition can be checked in

practice by the following hypothesis test:{
H0 : ∃a < τG : Π(t) = 0, ∀t ≥ a
H1 : ∀a < τG, ∃t ≥ a : Π(t) > 0

.

This can be tested by means of nonparametric regression estimators of Π(t) based

on the sample {(T1, δ1), . . . , (Tn, δn)}. To do that, it is necessary to estimate τG in

a nonparametric way. This can be done by just estimating the support of G(t|x),

via the Beran estimator.

We need to consider the following assumptions, to be used in the asymptotic

results for the incidence estimator:

(A1) X, Y and C are absolutely continuous random variables.

(A2) Condition (2.8) holds.

(A3) (a) Let I = [x1, x2] be an interval contained in the support of m, and Iδ =

[x1 − δ, x2 + δ] for some δ > 0 such that

0 < γ = inf{m (x) : x ∈ Iδ} < sup{m (x) : x ∈ Iδ} = Γ <∞

and 0 < δΓ < 1. For all x ∈ Iδ the random variables Y and C are

conditionally independent given X = x.
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(b) There exist a, b ∈ R, with a < b satisfying 1−H(t|x) ≥ θ > 0 for (t, x) ∈
[a, b]× Iδ.

(A4) The first derivative of the function m(x) exists and is continuous in x ∈ Iδ

and the first derivatives with respect to x of the functions H(t|x) and H1(t|x)

exist and are continuous and bounded in (t, x) ∈ [0,∞)× Iδ.

(A5) The second derivative of the function m(x) exists and is continuous in x ∈
Iδ and the second derivatives with respect to x of the functions H(t|x) and

H1(t|x) exist and are continuous and bounded in (t, x) ∈ [0,∞)× Iδ.

(A6) The first derivatives with respect to t of the functions G(t|x), H(t|x), H1(t|x)

and S0(t|x) exist and are continuous in (t, x) ∈ [a, b]×D.

(A7) The second derivatives with respect to t of the functions H(t|x) and H1(t|x)

exist and are continuous in (t, x) ∈ [a, b]×D.

(A8) The second partial derivatives with respect to t and x of the functions H(t|x)

and H1(t|x) exist and are continuous and bounded for (t, x) ∈ [0,∞)×D.

(A9) Let us define Hc,1(t) = P (T < t|δ = 1). The first and second derivatives of

the distribution and subdistribution functions H(t) and Hc,1(t) are bounded

and bounded away from zero in [a, b]. Moreover, H ′c,1(τ0) > 0.

(A10) The functions H(t|x), S0(t|x) and G(t|x) have bounded second-order deriva-

tives with respect to x for any given value of t.

(A11) The kernel function, K, is a symmetric density vanishing outside (−1, 1) and

the total variation of K is less than some λ < ∞.

(A12) The density function of T , fT , is bounded away from 0 in [a, b].

(A13)

∫ ∞
0

dH1(t|x)

(1−H(t|x))2
<∞ ∀x ∈ I.

Assumptions (A1) , (A3)-(A9) and (A11)-(A12) are necessary in Theorem 2.3.2

and in Theorem 3.3.2 because their proofs are strongly based on Theorem 2 of

Iglesias-Pérez & González-Manteiga (1999). Assumptions (A2) and (A10) are needed

to prove Lemma A.1.1. Similar results in the literature are stated for a fixed t such

that 1−H(t|x) ≥ θ > 0 in (t, x) ∈ [a, b]×Iδ. Moreover, assumptions (A2) and (A10)

are needed to prove these results for a random value t = T 1
max. Assumptions (A4)-

(A8) and (A10) are regularity conditions for the functions involved in the proofs and

in the asymptotic results. Assumption (A13) is necessary to bound the result of an
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integral in Lemma A.1.4.

Next theorem states that the proposed nonparametric incidence estimator is the

local maximum likelihood estimator of 1− p(x). Its proof is in Appendix A.1.

Theorem 2.3.1. The estimator 1 − p̂h (x) given in (2.4) is the local maximum

likelihood estimator of 1− p (x) for the mixture cure model (2.1), for any x ∈ D.

An i.i.d. representation for the incidence estimator is obtained in the next theo-

rem, whose proof is also included in Appendix A.1.

Theorem 2.3.2. Under assumptions (A1)-(A13), for any sequence of bandwidths

satisfying nh5(lnn)−1 = O(1) and lnn/(nh)→ 0, then

(1− p̂h(x))− (1− p(x)) = (1− p (x))
n∑
i=1

B̃hi(x)ξ (Ti, δi,∞, x) +Rn (x) ,

where

B̃hi(x) =

1
nhK

(
x−Xi
h

)
m(x)

, (2.9)

ξ (Ti, δi, t, x) =
I(Ti ≤ t, δi = 1)

1−H(Ti|x)
−
∫ t

0

I(u ≤ Ti)dH1(u|x)

(1−H(u|x))2 (2.10)

and

sup
x∈I
|Rn(x)| = O

((
lnn

nh

)3/4
)
a.s.

Observe that

ξ (Ti, δi,∞, x) =
δi

1−H(Ti|x)
−
∫ Ti

0

dH1(u|x)

(1−H(u|x))2 . (2.11)

Finally, from the representation in Theorem 2.3.2 and following Iglesias-Pérez &

González-Manteiga (1999), an asymptotic expression of the mean squared error of

the incidence estimator,

MSEx(hx) = E[(p̂hx(x)− p(x))2], (2.12)

is obtained in Corollary 2.3.1.

Corollary 2.3.1. An asymptotic expression of the mean squared error of the inci-

dence estimator is given by:

AMSEx(h) =
1

nh
(1− p(x))2cKσ

2(x) +

[
h2 1

2
dK(1− p(x))µ(x)

]2

, (2.13)
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where the first term corresponds to the asymptotic variance and the second one to

the asymptotic squared bias, with dK in (1.9) and cK in (1.10) and, following a

notation similar to that in Dabrowska (1992):

σ2(x) =
1

m(x)

∫ ∞
0

dH1(t|x)

(1−H(t|x))2

and

µ(x) =
2Φ′(x,∞, x)m′(x) + Φ′′(x,∞, x)m(x)

m(x)
, (2.14)

where

Φ (y, t, x) =

∫ t

0

dH1 (v|y)

1−H(v|x)
−
∫ t

0
(1−H(v|y))

dH1(v|x)

(1−H(v|x))2 , (2.15)

with Φ′(y, t, x) = ∂Φ(y, t, x)/∂y and Φ′′(y, t, x) = ∂2Φ(y, t, x)/∂y2. Note that the

AMSE denotes the MSE of the dominant part of the almost sure representation

of the incidence estimator. If the censoring distribution does not depend on the

covariate, then µ(x) can also be written as follows:

µ (x) =
1

m (x)

(
[p (x)m (x)]′′ − p (x)m′′ (x)

)(
1−

∫ ∞
0

S (dv|x)

S (v|x)2

)
. (2.16)

The straightforward calculations to obtain the AMSE for the incidence estimator

are detailed in Appendix A.1.

2.4 Bandwidth selection

The choice of the bandwidth is a crucial issue in kernel estimation, since it con-

trols the trade-off between bias and variance. Most of the methods for smoothing

parameter selection in nonparametric curve estimation look for a small error when

approximating the underlying curve by the smooth estimate. The asymptotically op-

timal local bandwidth to estimate the cure rate, 1−p(x), in the sense of minimizing

the asymptotic expression of the MSEx in (2.13), is given by:

hAMSE(x) =

(
cKσ

2(x)

d2
Kµ

2(x)

)1/5

n−1/5, (2.17)

which is an asymptotic approximation of the bandwidth hMSE(x) that minimizes the

MSEx. The optimal bandwidth hAMSE(x) depends on unknown functions through

µ(x) and σ2(x). It is worth mentioning that the bandwidth hAMSE(x) fulfills the

conditions on the bandwidth required in Theorem 2.3.2.
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Considering Dabrowska (1989), a plug-in bandwidth selector can be obtained by

replacing those unknown functions by consistent nonparametric estimates that need

additional smoothing parameters. This gives rise to a never-ending process, which

seems even harder than the original problem of incidence estimation. We drew some

simulation studies following the proposal by Dabrowska (1989), together with the

approach by Härdle & Marron (1985) for the choice of the pilot bandwidths. We did

not obtain good results, since the second derivative of a function in the term µ2(x)

is very hard to estimate. On the other hand, the finite-sample behavior of the cross

validation (CV) bandwidth selector in this context turned out to be disappointing.

We followed Iglesias-Pérez (2007) and we also tested a few modifications of this

criterion. Unfortunately, the CV bandwidth in this context is highly variable and

tends to undersmooth.

2.4.1 Bootstrap bandwidth selector

Another way to select the bandwidth is to use the bootstrap method. It consists of

minimizing a bootstrap estimate of the mean squared error, MSEx(hx).

The bootstrap bandwidth is the minimizer of the bootstrap version of MSEx(hx)

in (2.12),

MSE∗x,gx(hx) = E∗[(p̂∗hx,gx(x)− p̂gx(x))2], (2.18)

which consists of replacing the original sample by the bootstrap resample, the kernel

incidence estimator based on the sample by its bootstrap version and the theoreti-

cal incidence function by the estimated incidence based on a pilot bandwidth, gx.

Equation (2.18) can be approximated, using Monte Carlo, by:

MSE∗x,gx(hx) ' 1

B

B∑
b=1

(p̂∗bhx,gx(x)− p̂gx(x))2, (2.19)

where p̂∗bhx,gx(x) is the kernel estimator of p(x) using bandwidth hx and based on the

b-th bootstrap resample generated from F̂gx , and p̂gx(x) is the kernel estimator of

p(x) computed with the original sample and pilot bandwidth gx.

Considering a bandwidth search grid {h1, . . . , hL}, the procedure for obtaining

the bootstrap bandwidth selector for a fixed covariate value, x, is as follows:

1. Generate B bootstrap resamples of the form:{(
X

(b)
1 , T

∗(b)
1 , δ

∗(b)
1

)
, . . . ,

(
X

(b)
n , T

∗(b)
n , δ

∗(b)
n

)}
, b = 1, . . . , B.
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2. For the b-th bootstrap resample (b = 1, ..., B), compute the nonparametric esti-

mator p̂∗bhl,gx(x) with bandwidth hl, l = 1, 2, . . . , L.

3. With the original sample and the pilot bandwidth gx, compute p̂gx(x).

4. For each bandwidth hl in the grid, compute the Monte Carlo approximation of

MSE∗x,gx(hl), given by (2.19).

5. The bootstrap bandwidth, h∗x, is the minimizer of the Monte Carlo approximation

of MSE∗x,gx(hl) over the grid of bandwidths {h1, . . . , hL}.

In Step 1, we consider the simple weighted bootstrap, without resampling the

covariate X, which is equivalent to the simple weighted bootstrap proposed by Li

& Datta (2001). For fixed x and i = 1, . . . , n, we set X∗i = Xi and generate a pair

(T ∗i , δ
∗
i ) from the weighted empirical distribution F̂gx(·, ·|X∗i ), where

F̂gx(u, v|x) =

n∑
j=1

Bgxj(x)I(Tj ≤ u, δj ≤ v)

and Bgxj(x) is the NW weight in (2.3) with pilot bandwidth gx. The resulting

bootstrap resample is {(X1, T
∗
1 , δ
∗
1), . . . , (Xn, T

∗
n , δ
∗
n)}. It is easy to generate (T ∗i , δ

∗
i )

using the marginal distribution of T ∗i , P ∗(T ∗ ≤ u) =
∑n

j=1Bgx,j(Xi)I(Tj ≤ u) and

the conditional probability P ∗(δ∗ = 1|T ∗ = Tζ) = δζ , if there are no ties in the Tj ’s.

Based on the results in Van Keilegom & Veraverbeke (1997b, 1997a) for fixed

design with GM weights, the optimal pilot bandwidth, gx, could be chosen so that

it minimizes (2.18) for a given sample. To the best of our knowledge, there are no

similar results for random design. However, preliminary studies (see results below)

showed that the choice of the pilot bandwidth has a small effect on the final bootstrap

bandwidth. Consequently, a simple rule is proposed to select gx as a global pilot

bandwidth of order n−1/9 (see Equation (2.25) in Section 2.5.3).

Remark: The bandwidth sequence gx = gn has to be typically asymptotically

larger than hx = hn. This oversmoothing pilot bandwidth is required for the boot-

strap bias and variance to be asymptotically efficient estimators for the bias and

variance terms. The order n−1/9 for this asymptotically optimal pilot bandwidth

satisfies the conditions in Theorem 1 of Li & Datta (2001), and it coincides with

the order obtained by Cao & González-Manteiga (1993) for the uncensored case in

nonparametric regression.
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2.5 Simulation study

The software used in all the simulation studies in this thesis is R, a free environ-

ment for statistical computing and graphics. The procedures, coded in R language,

were drawn in the computers of the Department of Mathematics, at the Faculty of

Computer Sciences in the University of A Coruña (UDC).

In this section we compare the proposed nonparametric incidence estimator with

the semiparametric incidence estimator by Peng & Dear (2000), implemented in the

smcure package in R (Cai et al., 2012), which fits a semiparametric PH mixture cure

model. The cure probability part is estimated by a generalized linear model which

allows the logit link function, and the latency part follows a PH model. The semi-

parametric estimation procedures are based on the EM algorithm for both models.

Specifically, the logit link function that Peng & Dear (2000) assume for the proba-

bility of uncure is given by

p(x) =
exp(βTx)

1 + exp(βTx)
,

where β is a vector of unknown parameters, used to model the effect of the cova-

riates x.

We carry out a simulation study with two purposes. First, we evaluate the finite

sample performance of the nonparametric estimator, 1− p̂hx , computed in a grid of

bandwidths, and we compare the results with those of the semiparametric estimator.

Second, the practical behavior of the bootstrap bandwidth selector is assessed. We

consider two different models. For both, the censoring times are generated according

to an exponential distribution with mean 1/0.3 and the covariate X is U(−20, 20).

The Epanechnikov kernel, defined in (2.20), optimal in a mean square error sense,

is used for all the simulation studies in this thesis:

K(u) =
3

4
(1− u2)I(|u| ≤ 1). (2.20)

Note that the choice of the kernel, K, is a problem of little importance, since the

shape of the estimator is not very sensitive to the choice of K, and different kernels

produce good estimates. Due to this reason, results using other kernels are omitted.

Model 1 For comparison reasons, this simulated setup is the same as the so-called

mixture cure (MC) model considered in Xu & Peng (2014). The data are generated
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from a logistic-exponential MC model, where the probability of not being cured is

p(x) =
exp(β0 + β1x)

1 + exp(β0 + β1x)
,

with β0 = 0.476 and β1 = 0.358, and the survival function of the uncured subjects

is:

S0(t|x) =


exp(−λ(x)t)− exp(−λ(x)τ0)

1− exp(−λ(x)τ0)
if t ≤ τ0

0 if t > τ0

,

where τ0 = 4.605 and λ (x) = exp ((x+ 20)/40). The percentage of censored data

is 54% and of cured data is 47%. In Figure 2.1 (top) we show the shape of the

theoretical incidence (cure rate) and latency functions. Note that in this model the

incidence is a logistic function and the latency is very close to fulfill the proportional

hazards model, that has been truncated to guarantee condition (2.8). Therefore, the

semiparametric estimators are expected to give very good results in this model.

Model 2 The data are generated from a cubic logistic-exponential mixture model,

where the incidence (cure rate) is:

1− p(x) = 1−
exp

(
β0 + β1x+ β2x

2 + β3x
3
)

1 + exp (β0 + β1x+ β2x2 + β3x3)
,

with β0 = 0.0476, β1 = −0.2558, β2 = −0.0027 and β3 = 0.0020, and the latency is:

S0(t|x) =
1

2

(
exp(−α(x)t5) + exp(−100t5)

)
,

with

α(x) =
1

5
exp((x+ 20)/40).

The percentages of censored and cured data are 62% and 53%, respectively. Figure

2.1 (bottom) shows the theoretical incidence and latency in this model. The inci-

dence is not a logistic function and the effect of the covariate on the failure time of

the uncured patients does not fit a PH model anymore. So, the results will show

the gain of using the proposed nonparametric estimators, that do not require any

parametric or semiparametric assumptions, with respect to the semiparametric ones.

2.5.1 Preliminary studies for the pilot bandwidth selection

We considered different pilot bandwidths. For the sake of brevity, only the results of

two approaches are shown. In the first one, we work with a constant pilot bandwidth:

g =
X(n) −X(1)

10
, (2.21)
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Figure 2.1: Theoretical incidence (left) and latency (right) functions for Model 1 (top) and
Model 2 (bottom).

where X(1) and X(n) are the minimum and maximum values of the covariate X,

respectively.

The second approach consists of working with the pilot bandwidth which is

optimal in the sense of providing efficient estimates of Ḧ(t|x) =
∂2

∂x2
H(t|x), the

second derivative of H(t|x) in (2.7), using the second derivative of the smoothed

estimator given in (2.5),

̂̈Hg(t|x) =

n∑
i=1

B
(2)
g(i)(x)I(Ti ≤ t), (2.22)
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with

B
(2)
g(i)(x) =

∂2

∂x2
Bg(i)(x) =

∂2

∂x2

 K
(
x−Xi
g

)
∑n

j=1K
(
x−Xj

g

)
 .

Cao (1991) obtains the MSE and the MISE for the estimator ̂̈Hg(t|x) in (2.22).

Departing from these results, the optimal global bandwidth for the estimation of̂̈Hg(t|x) is

g (x) =

 5cK′′
(∫∞
−∞ σ

2 (t|x) dt
)
m (x)∫∞

−∞

(
∂4

∂x4
(H (t|x)m (x))− ∂2

∂x2
(H (t|x)m′′ (x))

)2
dt


1/9

n−1/9. (2.23)

In this preliminary study, we obtain two bootstrap bandwidths: one computed

with the global pilot bandwidth in (2.21) and the other computed with the local pilot

bandwidth in (2.23). Both bootstrap bandwidths are compared with the optimal

bandwidth, hMSE , in Figure 2.2. Furthermore, in Figure 2.3, the incidence computed

with the optimal bandwidth is compared with the incidence computed with the two

bootstrap bandwidths. Note that for simplicity, we consider sample size n = 100,

κ = 100 trials, B = 100 bootstrap resamples and Model 2, detailed in Section 2.5.

Figures 2.2 and 2.3 show that there are no important differences in the bootstrap

bandwidth, h∗x, and in the estimation of 1− p(x), computed with the different pilot

bandwidths. Therefore, we decided to work with a constant pilot bandwidth, keeping

the optimal order, n−1/9 (see Equation (2.25)).

2.5.2 Efficiency of the nonparametric incidence estimator

A total of κ = 1000 samples of size n = 100 are drawn to approximate, by Monte

Carlo, the mean squared error (MSE) of the incidence estimator evaluated at 41

values {−20,−19, . . . , 19, 20} of the covariate X, and for a grid of 100 bandwidths

in a logarithmic scale, from h1 = 1.2 to h100 = 20. The results for both models are

shown in Figure 2.4.

Regarding the MSE of the incidence estimators, Figure 2.4 shows that in Model

1 there is a range of bandwidths, from h50 = 4.83 to h70 = 8.53 (light blue lines) for

which the nonparametric estimator is quite competitive with respect to the semi-

parametric estimator in values x of the covariate near the endpoints of the support

of X, and it works much better when the value of the covariate is around 0. In
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Figure 2.2: Theoretical optimal bandwidth, hMSE , (red) for Model 2. On the left, h∗x
obtained using a constant pilot bandwidth (green). On the right, h∗x obtained using a pilot
bandwidth estimated with the nonparametric approach (green).

Figure 2.3: Theoretical incidence, 1 − p(x), (black), and incidence estimators computed
with hMSE (red), with h∗x (green) obtained using a constant pilot bandwidth (left), and
using a pilot bandwidth estimated with the nonparametric approach (right).

Model 2, as expected, the nonparametric estimator outperforms the semiparametric

one for a wide range of bandwidths except for 3 singular values of the covariate X.
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Figure 2.4: MSE for the semiparametric (black line) and the nonparametric estimator of
1 − p(x) computed with different bandwidths: from h1 = 1.2 (red line) to h100 = 20 (dark
blue line). The data were generated from Model 1 (left) and Model 2 (right).

Note that, from Corollary 2.3.1, the dominant term of the bias of p (x) is

1

2
h2dK (1− p (x))µ (x) , (2.24)

where µ (x), defined in (2.14), can be expressed as

µ (x) =
1

m (x)

(
[p (x)m (x)]′′ − p (x)m′′ (x)

)(
1−

∫ ∞
0

S (dv|x)

S (v|x)2

)
if the censoring distribution does not depend on the covariate.

In this simulation study, since the distribution of the covariate X is uniform and

the distribution of the censoring variable does not depend on the covariate, then the

expression of µ (x) in (2.16) reduces to

µ (x) = p′′ (x)

(
1−

∫ ∞
0

S (dv|x)

S (v|x)2

)
,

and the dominant term of the bias of p(x) in Equation (2.24) is zero in points where

the second derivative of p (x) is also zero. Therefore, the dominant part of the AMSE

is the asymptotic variance, which tends to zero when h tends to infinity.

Moreover, the denominator of the asymptotic expression of the bandwidth which

minimizes the AMSE in (2.17) is also equal to 0, which makes the hAMSE bandwidth
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to tend to infinity. Consequently, the hMSE has peaks in these points (see Figure

2.8). Specifically, in Model 1, if the covariate is uniform in [−20, 20], then m′(x) = 0.

Therefore, 2p′(x)m′(x) + p′′(x)m(x) is given by 1
40p
′′(x), and the asymptotic bias of

p̂h(x) is zero at x0 = −1.3296. If the density of the covariate is not constant, but

m(x) = 3
80000x

2 + 0.02, then the asymptotic bias of p̂h(x) is zero at x0 = −1.505.

Figure 2.5 shows the MSE for Model 1 with m(x) = 3
80000x

2 + 0.02.

Figure 2.5: MSE for the semiparametric (black line) and the nonparametric estimator of
1 − p(x) computed with different bandwidths: from h1 = 1.2 (red line) to h100 = 20 (dark
blue line). The data were generated from Model 1 with m(x) = 3x2/80000 + 0.02.

2.5.3 Efficiency of the bootstrap bandwidth selector

In this simulation study, we consider sample sizes of n = 50, 100 and 200. For

κ = 1000 trials, we approximate the MSEx and the optimal bandwidth, hx,MSE , of

the proposed nonparametric estimator of the incidence. The MSEx(h∗x,gx) and the

bootstrap bandwidth h∗x,gx are also approximated.

Note that minimizing MSE∗x(hx) in hx for each value, x, of the covariate, is

a computationally expensive algorithm. For that reason, we carry out a two-step

method with a double search in each stage. In the first step, we draw B = 80 boot-

strap resamples and consider a number of 21 bandwidths equispaced on a logarithmic

scale, from h1 = 0.2 to h21 = 50 in the first search, whereas in the second search the

grid is centered around the optimal bandwidth obtained in the first search. Then,

we carry out the second step with also a double search in a similar way we did for the
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first step, but now with two differences: we draw B = 1000 bootstrap resamples and

we consider a finer smaller grid of 5 bandwidths in both the first and second search.

It is important to highlight that for all the simulation studies which involve the use

of a smoothing parameter, a logarithmic scale on the bandwidth is considered, since

it acts as a multiplicative form.

In view of the fact that the choice of gx has a low effect on the final bootstrap

bandwidth, we propose to use a naive selector, keeping the n−1/9 optimal order.

Since the distribution of the covariate is uniform, we consider the following global

pilot bandwidth, that does not depend on the value x for which the estimation is to

be carried out:

g =
X(n) −X(1)

107/9
n−1/9, (2.25)

where (X(1), . . . , X(n)) is the ordered sample of covariates. Note that, for X ∈
U(−20, 20), when n = 100 the value of the global pilot bandwidth g is (X(n) −
X(1))/10 ' 4. Similarly, g ' 4.32 (g ' 3.70) when n = 50 (n = 200). For a naive

pilot bandwidth selector if the distribution of X can not be assumed uniform, see

Section 2.6. The MSE for the semiparametric incidence estimator, together with

that of the nonparametric estimator computed with the optimal bootstrap band-

width, are shown in Figure 2.6. It is important to highlight the similarity of the

shape between both MSE curves in Model 1. In Model 2, the nonparametric esti-

mator with the bootstrap bandwidth outperforms the semiparametric estimator for

a wide range of covariate values.

Figure 2.7 shows the MSEx evaluated at the median, 25th and 75th percentiles

of the proposed bootstrap bandwidth, along the κ = 1000 simulated samples. The

value of the MSEx for the nonparametric estimator, approximated by Monte Carlo

and evaluated at the MSE bandwidth, hx,MSE , is also given as reference. We ob-

serve that the median, 25th and 75th percentiles of the bootstrap bandwidths have

an MSE close to the optimal value. As expected, the similarity increases with the

sample size. Moreover, we can also check how MSEx(hx,MSE) and MSEx(h∗) de-

crease as n becomes larger.

The performance of the bootstrap bandwidth for Models 1 and 2 is shown in

Figure 2.8. The optimal hx,MSE , approximated by Monte Carlo, is displayed to-

gether with the median and the 25th and 75th percentiles of the 1000 bootstrap

bandwidths, h∗x. We can appreciate how the bootstrap bandwidth, h∗x, approaches

hx,MSE , adapting properly to the shape of hx,MSE for the three sample sizes. The
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Figure 2.6: MSE for the semiparametric (black line) and the nonparametric estimator of
1−p(x) computed with the bootstrap bandwidth (red line) and with the optimal bandwidth
(green line). The data were generated from Model 1 (left) and Model 2 (right), with sample
size n = 100.

optimal bandwidth, hx,MSE , has got peaks at the values x of the covariate for which

p′′(x) = 0. Those peaks only occur at points x for which µ(x) = 0, and the dominant

term of the AMSE is of order 1/(nh). As a consequence, the asymptotically optimal

bandwidth is infinitely large and the best choice is to smooth as much as possible,

that is, the best local fit is a global fit. Note that if such large bandwidths are used,

those values of x correspond to the values where the MSEx shows deep valleys, that

is, there is a noticeable improvement in the incidence estimation.

Regarding the computational times, the method for the simulation study related

to Figure 2.4 is considerably fast (taking less than 20 seconds for each model, with

sample size n = 100). The simulations for the bootstrap bandwidth selector (Fi-

gures 2.6, 2.7 and 2.8) are more computationally expensive, even though they are

drawn using a two-step method. For obtaining the Monte Carlo approximation of

the theoretical functions in each model, the algorithm lasts around 20, 35 and 70

minutes, with n = 50, n = 100 and n = 200, respectively. Additionally, the method

used to obtain the bootstrap bandwidth, together with the bootstrap MSE, takes

136.81 hours with n = 50, 242.20 hours with n = 100 and 462.91 hours with n = 200.
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Figure 2.7: MSEx of the nonparametric estimator of the incidence evaluated at hx,MSE

(red line), and MSEx evaluated at the median (solid blue line), 25th (dotted blue line) and
75th (dashed blue line) percentiles of the bootstrap bandwidth, h∗x, along κ = 1000 samples
of sizes n = 50 (top), n = 100 (center) and n = 200 (bottom), for Model 1 (left) and Model
2 (right).
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Figure 2.8: Optimal hx,MSE (red line), median (solid blue line), 25th (dotted blue line)
and 75th (dashed blue line) percentiles of the bootstrap bandwidth, h∗x, along κ = 1000
samples of sizes n = 50 (top), n = 100 (center) and n = 200 (bottom), for Model 1 (left)
and Model 2 (right).
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2.6 Application to real data

We applied both the semiparametric and the nonparametric estimators to a real

dataset of 414 colorectal cancer patients from CHUAC, Spain. It consists of 8

variables:

• The censoring indicator.

• The observed survival time. The variable of interest, Y , is the time, in months,

since the diagnostic until death. In this dataset, the follow-up time is almost

19 years.

• The location: colon or rectum.

• The age: from 23 to 102 years.

• The stage TNM , which is the main determinant in prognosis of these patients.

The stage has 3 components: T , which describes the size of the tumor and

whether it has invaded nearby tissue; N , which measures the lymph nodes

that are involved; and M , which evaluates the presence (or not) of metastasis.

The information of these 3 aspects can be combined and it lets us classificate

each patient in a unique (and numeric) stage. That is, the variable stage,

which takes values from 1 to 4, is defined from the variables T , N and M .

An individual is considered cured if he or she will not die because of colorrectal

cancer. Censoring is caused by “cure”, death due to any other cause different to

colorrectal cancer, dropout, or end of the study. We work with two covariates listed

above: the stage and the age. Note that since no important differences are expected

in the survival depending on the location, we work with the complete dataset, regard-

less the location value in each patient. About 50% of the observations are censored,

with the percentage of censoring varying from 30% to almost 71%, depending on

the stage. In Table 2.1 we show a summary of the dataset.

The incidence is estimated with both the semiparametric logistic and the non-

parametric estimators. The age of the patients has been considered as a continuous

covariate, and the data have been split into four groups according to the categorical

covariate stage.

Note that in order to obtain the bootstrap bandwidth selector, B = 1000 boot-

strap resamples are used. In a similar way as we did in Section 2.5.3, we carry out a

one-step procedure with a double search. We consider a number of 21 bandwidths
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Stage Number of Number of % Censoring Age
patients censored data Min. Max.

1 62 44 70.97 23 84
2 167 92 55.09 36 102
3 133 53 39.85 30 88
4 52 16 30.77 43 88

414 205 49.52

Table 2.1: Colorectal cancer patients from CHUAC.

equispaced on a logarithmic scale in both searches. The first search is performed

between 0.2 and the empirical range of X. The second one is carried out using a

narrower grid centered around the optimal bandwidth obtained in the first search.

For the bandwidth selector of the nonparametric estimator of 1 − p(x), a naive

pilot bandwidth has been proposed in (2.25) if the distribution of X is uniform.

The idea is to provide a data-driven pilot bandwidth which only depends on both

the sample size and on the distribution of the covariate, keeping the n−1/9 optimal

order. Taking into account that, in this case, the distribution of the covariate is not

uniform (see Figure 2.9), we propose to use the following local pilot bandwidth:

gx =
d+
k (x) + d−k (x)

2
1001/9n−1/9,

where d+
k (x) is the distance from x to the k-th nearest neighbor on the right, d−k (x)

the distance from x to the k-th nearest neighbor on the left, and k a suitable integer

depending on the sample size. If there are not at least k neighbors on the right

(or left), we use d+
k (x) = d−k (x) (or d−k (x) = d+

k (x), respectively). Our numerical

experience shows that a good choice is to consider k = n/4. Note that when n = 100

the value of the local pilot bandwidth gx is the mean distance to the 25th nearest

neighbor on both the left and right sides.

Alongside the bootstrap bandwidth, we have also used a smoothed bootstrap

bandwidth for the incidence estimator. We followed Cao et al. (2001), who applied

a method for smoothing local bandwidths for a kernel-type estimator of the relative

density (or grade density). Let (X(1), . . . , X(n)) be the ordered observations of X.

The bootstrap bandwidths have been computed in the equispaced grid x0 < x1 <

. . . < xm of the interval [X(1), X(n)] given by xi = X(1) + ∆i, i = 0, 1, 2, . . . ,m where

∆ = (X(n) −X(1))/m and m + 1 is the number of points considered in the grid of

values of X in each stage. The smoothed bootstrap bandwidth for the covariate
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value xl is computed as follows:

h∗ smoothxl
=



∑l+5
j=0 h

∗
xj

l+6 , l = 0, 1, 2, 3, 4∑l+5
j=l−5 h

∗
xj

11 , l = 5, 6, 7, . . . ,m− 5∑m
j=l−5 h

∗
xj

m−l+6 , l = m− 4,m− 3,m− 2,m− 1,m

.

Figure 2.9 shows the estimations of the probability of being cured for the diffe-

rent stages with respect to the age of the patients. We can see that the effect of the

age on the incidence changes with the stage. The cure probabilities in Stages 1 and

2 are higher than in Stages 3 and 4. The reason is that, in initial stages, most of the

surgeries have healing purposes, whereas in advanced stages, surgeries are usually

palliative treatments, and therefore the incidence for these patients is lower. For

example, using the nonparametric incidence estimation, in Stage 1, patients have

a probability of survival between 25% and 65%, depending on the age; whereas in

Stage 3, for patients above 60, in a 10 years gap that probability decreases conside-

rably from 40% to almost 0%. It is important to highlight the difference between

the nonparametric and the semiparametric curves, that seems to indicate that the

logistic model is not valid for the data. The results in Stage 4 deserve some com-

ments. A total of 11 in the 12 greatest lifetimes in Stage 4, including the largest

lifetime, are uncensored and, consequently, uncured. This causes that the nonpara-

metric estimation of the probability of being cured is equal to 0. Although it should

not be stated that it is impossible for a patient with Stage 4 colorectal cancer to

survive, this estimation reinforces the assertion that long-term survival in patients

with Stage 4 colorectal cancer is uncommon (Miyamoto et al., 2015). This fact, far

from being a weakness of the nonparametric method, is an important advantage,

since it allows to detect situations in which introducing the possibility of cure does

not contribute to improve the model.

We show the resulting bootstrap bandwidths, with the corresponding local pilot

bandwidths, for the different values of the covariate age in Figure 2.10. The reason

why the bootstrap bandwidth is larger than the pilot bandwidth for almost all the

covariate values in the four stages seems to be that the number of data is limited. It

is assumed that for larger sample sizes, the pilot bandwidth will increase to become

as expected, asymptotically larger than the bootstrap bandwidth.
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Figure 2.9: Semiparametric (black line) and nonparametric estimations of the incidence
in Stages 1-4 depending on the age, computed with the bootstrap bandwidth h∗x (solid blue
line) and with the smoothed bootstrap bandwidth h∗ smoothedx (dashed blue line). The green
line represents the Parzen-Rosenblatt kernel density estimations of the covariate age, using
Sheather and Jones’ plug-in bandwidth.

2.6.1 Test by Maller & Zhou (1992)

As we studied in Section 2.3, for the incidence estimator to be consistent, assumption

(2.8) should hold. In order to check this condition, Maller & Zhou (1992) propose a

test for an unconditional context. Let T 1
max be the largest uncensored failure time,

and T(n) the largest (censored or uncensored) time. If T(n) is not censored, then the

estimator of the cure probability is zero. Therefore, we can assume that T 1
max < T(n)

and, on the interval (T 1
max, T(n)], the survival estimator evaluated at T 1

max takes a
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Figure 2.10: Bootstrap bandwidth h∗x (solid line), smoothed bootstrap bandwidth
h∗ smoothedx (dashed line) and local pilot bandwidth gx (dotted line) used for the nonpara-
metric incidence estimator for patients in Stages 1-4.

constant value, equal to 1− p̂h(T 1
max). The length of this final plateau is indicative

of whether τ0 < τG or not.

The method by Maller & Zhou (1992) consists of testing the hypothesis H0 : τ0 >

τG. For that purpose, the length of the interval of constancy at the right extreme

of the survival estimator, T(n) − T 1
max, is considered. If T(n) − T 1

max is too large, the

hypothesis will be rejected. The p-value for the test is

P (T(n) − T 1
max > ςn) = P (T 1

max < T(n) − ςn), (2.26)
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where ςn is the observed value of T(n) − T 1
max. Note that the largest censored obser-

vation can not exceed τG, and therefore (2.26) is bounded above by

P (T 1
max < τG − ςn). (2.27)

Furthermore, the distribution of T 1
max can be obtained by

q(a) = P (T 1
max ≤ a) = {P (T ≤ a) + P (T > a, Y > C)}n

= {1− P (a < Y ≤ C)}n for a > 0,

where Y is the failure time, C is the censoring variable and T is the observed time.

The observed value of T 1
max in the dataset, wn, will be replaced by τG in (2.27),

which should be a close value given that for large sample sizes, wn is similar to τG

under the null hypothesis. Then, q(a) can be estimated by

q̂n(a) =

(
1− number of uncensored observations > a

n

)n
,

and an approximation to the upper bound (2.27) for the p-value, Maller & Zhou

(1992) propose

αn = q̂n{min ((wn − ςn), 0)}.

Consequently, the null hypothesis should be rejected if αn < α, where α is the

significance level, since the observed value of the difference T(n) − T 1
max is then im-

probable under H0. Note that the value q̂n(wn − ςn) is the number of uncensored

observations which belong to the interval (2T 1
max − T(n), T

1
max], due to the fact that

there are no uncensored observations greater than T 1
max.

We apply the test by Maller & Zhou (1992) to the colorrectal cancer dataset.

The largest uncensored failure time, T 1
max is 183.05; and the largest time (censored

or uncensored), T(n), is 225.64. Then, ς = T(n) − T 1
max = 42.59, and the interval

we have to consider is (183.05 − 42.59, 183.05] = (140.46, 183.05]. Examining the

dataset, there are 7 uncensored observations within this interval. Therefore,

αn =

(
1− 7

414

)414

= 0.0008589.

Since αn < α = 0.05, we reject the null hypothesis and then condition (2.8) holds.
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Chapter 3

Nonparametric latency

estimator

3.1 Introduction

In this chapter, we thoroughly study the nonparametric latency estimator. We start

introducing a general estimator using two different bandwidths, b1 and b2. Then,

we consider the nonparametric latency estimator for only one bandwidth, b1 = b2.

We obtain an i.i.d. representation, we find the asymptotic mean squared error and

we prove the asymptotic normality. Then, we focus on the nonparametric latency

estimator which considers only one bandwidth. Similarly as for the incidence, we

propose a bootstrap bandwidth selection method. We assess the performance of the

nonparametric latency estimator and we evaluate the efficiency of the bandwidth se-

lector in a simulation study. Finally, we apply these methods to the colorectal cancer

dataset. The main results of this chapter have been published in López-Cheda et

al. (2017b).

Departing from (2.1), a general form for the nonparametric latency estimator is:

Ŝ0,b1,b2(t|x) =
Ŝb2(t|x)− (1− p̂b1(x))

p̂b1(x)
, (3.1)

where Ŝb2(t|x) is the Beran estimator of S(t|x) in (2.2) and 1−p̂b1(x) is the estimator

by Xu & Peng (2014) in (2.4). Two different bandwidths are considered since the

optimal bandwidth for Ŝb(t|x) needs not to be the optimal bandwidth for p̂b(x).

The latency estimator in (3.1) does not yield necessarily a proper survival function,

since its limit as t tends to infinity is not required to be zero. In fact, it is not even

guaranteed to be non negative. On the other hand, as it will be shown in Section
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3.5.1, the optimal values for b1 and b2 in (3.1) are nearly equal. As a consequence,

in this thesis we focus on the nonparametric latency estimator, which depends on

one unique bandwidth, b = b1 = b2:

Ŝ0,b(t|x) =
Ŝb(t|x)− (1− p̂b(x))

p̂b(x)
, (3.2)

where b is a smoothing parameter not necessarily equal to h in (2.4). For the esti-

mator in (3.2) it is clear that Ŝ0,b(t|x) is decreasing in t, 0 ≤ Ŝ0,b(t|x) ≤ 1 for all x

and t, limt→−∞ Ŝ0,b(t|x) = Ŝ0,b(0|x) = 1 and limt→+∞ Ŝ0,b(t|x) = 0. So Ŝ0,b(t|x) is

a proper survival function in t.

3.2 Asymptotic results considering two different band-

widths

Theorem 3.2.1 gives an i.i.d. representation of Ŝ0,b1,b2(t|x), the nonparametric la-

tency estimator considering two different bandwidths, b1 and b2, defined in Equation

(3.1).

Additionally to Assumptions (A1)-(A13) introduced in Section 2.3, we need to

consider the following condition, to be used in the asymptotic results for the latency

estimator:

(A14) bi → 0, lnn
nbi
→ 0,

nb5i
lnn = O(1), (ln lnn)4

(lnn)3
bi
nb2j

= O(1) and (ln lnn)2

(lnn)3
nb11i
b2j

= O(1), for

i, j = 1, 2, i 6= j.

This condition needs to hold in order to obtain the i.i.d. representation (Theorems

3.2.1 and 3.3.2), to find the asymptotic mean squared error (Theorems 3.2.2 and

3.3.3) and to prove the asymptotic normality of the nonparametric latency estima-

tor (Theorems 3.2.4 and 3.3.4). If the bandwidths are b1 = c1n
−a + o(n−a) and

b2 = c2n
−b + o(n−b), then the second condition in (A14), lnn

nbi
→ 0, implies that

a > 0 and b > 0; the third condition,
nb5i
lnn = O(1), implies that a < 1 and b < 1; the

fourth condition, (ln lnn)4

(lnn)3
bi
nb2j

= O(1), implies that 2b− 1 ≤ a ≤ 1
2(b+ 1); and finally,

the fifth condition, (ln lnn)2

(lnn)3
nb11i
b2j

= O(1), implies that, 1
11(2b + 1) ≤ a ≤ 1

2(11b − 1).

In the particular case that both bandwidths have the same order a = b = 1/5, all

the conditions are fulfilled.
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Theorem 3.2.1. Under assumptions (A1)-(A13), and for two sequences of band-

widths satisfying (A14), then the i.i.d. representation of the nonparametric latency

estimator in (3.1) is:

Ŝ0,b1,b2(t|x)−S0(t|x) =

n∑
i=1

ηb1,b2(Ti, δi, Xi, t, x) +O

((
lnn

nb1

)3/4

+

(
lnn

nb2

)3/4
)
a.s.,

where

ηb1,b2(Ti, δi, Xi, t, x) = −S(t|x)

p(x)
B̃b2i(x)ξ(Ti, δi, t, x) (3.3)

− (1− p(x))(1− S(t|x))

p(x)2
B̃b1i(x)ξ(Ti, δi,∞, x),

with ξ(Ti, δi, t, x) defined in (2.10) and B̃bji(x), j = 1, 2 in (2.9).

From Theorem 3.2.1, the asymptotic expression for the MSE of the nonpara-

metric latency estimator can be obtained.

Theorem 3.2.2. Under assumptions (A1)-(A13), and for two sequences of band-

widths satisfying (A14), then the mean squared error of the latency estimator satisfies

MSE(Ŝ0,b1,b2(t|x)) = AMSE(Ŝ0,b1,b2(t|x))

+ o(b42) + o(b41) + o
(
b21b

2
2

)
+O

(
b2
n

)
+O

(
b1
nb2

)
,

where

AMSE(Ŝ0,b1,b2(t|x)) =

(
b22
2
dKB1 (t, x) +

b21
2
dKB2 (t, x)

)2

+
1

nb2
V1 (t, x) cK

+
1

nb1
V2 (t, x) cK + 2

1

nb1
V3 (t, x)

∫
K (u)K

(
b2
b1
u

)
du,

and

B1 (t, x) =
S(t|x)

p(x)m(x)

(
Φ′′ (x, t, x)m(x) + 2Φ′ (x, t, x)m′(x)

)
, (3.4)

B2 (t, x) =
(1− p(x))(1− S(t|x))

p2(x)m(x)

×
(
Φ′′ (x,∞, x)m(x) + 2Φ′ (x,∞, x)m′(x)

)
, (3.5)

Φ (y, t, x) =

∫ t

0

dH1 (v|y)

1−H(v|x)
−
∫ t

0
(1−H(v|y))

dH1(v|x)

(1−H(v|x))2 ,
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where Φ′ and Φ′′ are the partial derivatives of Φ(y, t, x) with respect to y. Further-

more,

V1 (t, x) =

(
S(t|x)

p(x)

)2 1

m(x)

∫ t

0

dH1 (v|x)

(1−H(v|x))2 , (3.6)

V2 (t, x) =

(
(1− p(x))(1− S(t|x))

p2(x)

)2 1

m(x)

∫ ∞
0

dH1 (v|x)

(1−H(v|x))2 and (3.7)

V3 (t, x) =
(1− p(x))S(t|x)(1− S(t|x))

p3(x)m (x)

∫ t

0

dH1 (v|x)

(1−H(v|x))2 , (3.8)

with dK in (1.9) and cK in (1.10).

Note that, except for some constants, B1(t, x) in (3.4) and B2(t, x) in (3.5) are

the dominant terms of the asymptotic bias of the estimators Ŝb2 and 1− p̂b1 in (2.2)

and (2.4), respectively. Similarly, the terms V1(t, x) in (3.6) and V2(t, x) in (3.7) are

the dominant terms of the corresponding asymptotic variances of Ŝb2 and 1 − p̂b1 .

Finally, V3(t, x) in (3.8) accounts for the covariance of both estimators.

Remark: The expression AMSE(Ŝ0,b1,b2(t|x)) in Theorem 3.2.2 denotes the MSE

of the almost sure dominant term of the estimator Ŝ0,b1,b2(t|x) as shown in Theorem

3.2.1.

Departing from Theorem 3.2.1 and Theorem 3.2.2, the optimal bandwidths which

minimize the AMSE of the latency estimator are obtained in Theorem 3.2.3.

Theorem 3.2.3. The bandwidths which minimize the asymptotic expression of

MSE(Ŝ0,b1,b2(t|x)) are

b̂1(t, x) =

( cK
Ln(t,x)V1 (t, x) + cKV2 (t, x) + 2V3 (t, x)

∫
K(u)K(Ln(t, x)u)du

d2
K (L2

n(t, x)B1 (t, x) +B2 (t, x))2

)1/5

n−1/5

and

b̂2(t, x) = Ln(t, x)̂b1(t, x),

where

Ln(t, x) = arg min
L>0

ψ (t, x, L)

and

ψ (t, x, L) =
(
L2B1 (t, x) +B2 (t, x)

)
(3.9)

×
(
cK
L
V1 (t, x) + cKV2 (t, x) + 2V3 (t, x)

∫
K(u)K(Lu)du

)2

,
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with B1(t, x) in (3.4), B2(t, x) in (3.5), V1 (t, x) in (3.6), V2 (t, x) in (3.7) and

V3 (t, x) in (3.8).

In Theorem 3.2.4, the asymptotic normality of the latency estimator is proven.

Theorem 3.2.4. Under assumptions (A1)-(A13), if bi → 0 for i = 1, 2 and

((lnn)3 /nbi)× (bj/(b1 + b2))2 → 0 for i, j = 1, 2 with i 6= j, it follows that

a) If nb5i
bj

b1+b2
→ 0 for i, j = 1, 2 and i 6= j, then√

nb1
b2

b1 + b2

(
Ŝ0,b1,b2(t|x)− S0(t|x)

)
d−→ N

(
0, σ2

a (t, x)
)
,

where

σ2
a (t, x) =


V2 (t, x) cK , if b1/b2 → 0

V1 (t, x) cK , if b2/b1 → 0
C1

C1+C2

(
V1 (t, x) cK + 2V3 (t, x)

∫
K(u)K

(
C1

C2
u
)
du
)

+ C2

C1+C2
V2 (t, x) cK ,

if b1 = C1n
−α + o(n−α), b2 = C2n

−α + o(n−α), with α > 1
5

with V1(t, x) in (3.6), V2(t, x) in (3.7) and V3(t, x) in (3.8).

b) If nb51 → 0 and nb52 → C5
2 > 0, then√

nb1
b2

b1 + b2

(
Ŝ0,b1,b2(t|x)− S0(t|x)

)
d−→ N

(
0, σ2

b (t, x)
)
,

with σ2
b (t, x) = V2 (t, x) cK .

c) If nb51 → C5
1 > 0 and nb52 → 0, then√
nb1

b2
b1 + b2

(
Ŝ0,b1,b2(t|x)− S0(t|x)

)
d−→ N

(
0, σ2

c (t, x)
)
,

with σ2
c (t, x) = V1 (t, x) cK .

d) If nb51 → C5
1 > 0 and nb52 → C5

2 > 0, then√
nb1

b2
b1 + b2

(
Ŝ0,b1,b2(t|x)− S0(t|x)

)
d−→ N

(
b (t, x) , σ2

d (t, x)
)
,

where

b (t, x) =
1

2
dK

(
C1C2

C1 + C2

)1/2 (
C2

2B1(t, x) + C2
1B2(t, x)

)
and

σ2
d (t, x) =

C1

C1 + C2

(
V1 (t, x) cK + 2V3 (t, x)

∫
K(u)K

(
C1

C2
u

)
du

)
+

C2

C1 + C2
V2 (t, x) cK .

In Section 3.3, similar asymptotic results are easily obtained for the nonpara-

metric latency estimator in (3.2), Ŝb(t|x), which considers only one bandwidth

b = b1 = b2.
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3.3 Asymptotic results considering one bandwidth

As we mentioned in Section 3.1, the latency estimator in (3.1) does not yield necessa-

rily a proper survival function (indeed, it is not even guaranteed to be non negative).

Since the optimal values for b1 and b2 in (3.1) are nearly equal, as it will be shown in

Section 3.5.1, we focus on the nonparametric latency estimator using one bandwidth.

Assumptions (A1)-(A12) presented in Section 2.3 are needed to prove the asymp-

totic results for the latency estimator. The following theorems are introduced for

the latency estimator considering one bandwidth, b.

In the next theorem we show that the proposed nonparametric latency estimator

is the local maximum likelihood estimator of S0(t|x). Its proof is in Appendix A.1.

Theorem 3.3.1. The estimator Ŝ0,b(t|x), given in (3.2) is the local maximum like-

lihood estimator of S0(t|x) for the mixture cure model (2.1), for any x ∈ D and

t ≥ 0.

In Theorem 3.3.2 we obtain an i.i.d. representation for Ŝ0,b(t|x) in (3.2).

Theorem 3.3.2. Suppose that conditions (A1)-(A13) hold. If lnn
nb → 0 and b =

O
((

lnn
n

)1/5)
, then we have an i.i.d. representation for the nonparametric latency

estimator for any t ∈ [a, b]:

Ŝ0,b(t|x)− S0(t|x) =

n∑
i=1

ηb(Ti, δi, Xi, t, x) +O

((
lnn

nb

)3/4
)
a.s.,

with

ηb(Ti, δi, Xi, t, x) = −S(t|x)

p(x)
B̃bi(x)ξ(Ti, δi, t, x)

− (1− p(x))(1− S(t|x))

p2(x)
B̃bi(x)ξ(Ti, δi,∞, x),

where ξ(Ti, δi, t, x) has been defined (2.10) and B̃bi(x) in (2.9).

From Theorem 3.3.2, important properties of the nonparametric latency estima-

tor can be obtained: the first one is an asymptotic expression of the mean squared

error (MSE) given in Theorem 3.3.3, and the second one is the asymptotic normality,

shown in Theorem 3.3.4.
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Theorem 3.3.3. Suppose that conditions (A1)-(A13) hold. If lnn
nb → 0 and b =

O
((

lnn
n

)1/5)
, then the mean squared error of the latency estimator is

MSE(Ŝ0,b(t|x)) =
b4

4
d2
KB

2 (t, x) +
cK
nb
V (t, x) + o(b4) +O

(
1

n

)
,

where dK and cK have been defined in (1.9) and (1.10), respectively, and

B (t, x) = B1 (t, x) +B2 (t, x) , (3.10)

V (t, x) = V1 (t, x) + V2 (t, x) + 2V3 (t, x) , (3.11)

with t ∈ [a, b], B1(t, x), B2(t, x), V1(t, x), V2(t, x) and V3(t, x) in (3.4)-(3.8).

Theorem 3.3.4. Suppose that conditions (A1)-(A13) hold. If b→ 0 and (lnn)3

nb → 0,

it follows that, for any t ∈ [a, b]:

a) If nb5 → 0, then

√
nb
(
Ŝ0,b(t|x)− S0(t|x)

)
d−→ N (0, V (t, x) cK) .

b) If nb5 → C5 > 0, then

√
nb
(
Ŝ0,b(t|x)− S0(t|x)

)
d−→ N

(
B (t, x)C5/2dK , V (t, x) cK

)
.

3.4 Bandwidth selection

From Theorem 3.3.3, the asymptotic mean integrated squared error of the latency

estimator is:

AMISE(Ŝ0,b(·|x)) =
1

4
d2
Kb

4

∫
B2 (t, x) dt+

cK
nb

∫
V (t, x) dt,

where B(t, x) and V (t, x) were defined in (3.10) and (3.11). The bandwidth which

minimizes the asymptotic mean integrated squared error is

bAMISE(x) =

(
cK
∫
V (t, x)dt

d2
K

∫
B2(t, x)dt

)1/5

n−1/5,

which depends on plenty of unknown functions that are very hard to estimate.

Consequently we propose to select the bandwidth using the bootstrap method.
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3.4.1 Bootstrap bandwidth selector

The bootstrap bandwidth selector is the minimizer of the bootstrap version of the

mean integrated squared error (MISE), that can be approximated, using Monte

Carlo, by:

MISE∗x,g(b) '
1

B

B∑
j=1

∫ (
Ŝ
∗(j)
0,b (t|x)− Ŝ0,g(t|x)

)2
w(t)dt, (3.12)

where w is an appropriate weight function, Ŝ
∗(j)
0,b (t|x) is the kernel estimator of

S0(t|x) in (3.2) using bandwidth b and based on the j-th bootstrap resample, and

Ŝ0,g(t|x) is the same estimator computed with the original sample and pilot band-

width g.

We consider an unconditional censoring bootstrap resampling, assuming that

G(t|x) = G(t), ∀x, t. Note that this resampling method is equivalent to the one for

the incidence presented in Section 2.4.1. The procedure for obtaining the bootstrap

bandwidth selector for a fixed covariate value, x, is as follows:

1. For i = 1, 2, . . . , n, generate C∗i from the product-limit estimator Ĝ.

2. For i = 1, 2, . . . , n, fix the bootstrap covariates X∗i = Xi and generate Y ∗i from

Ŝ0,g(·|X∗i ) with probability p̂g(X
∗
i ), and Y ∗i =∞ otherwise.

3. Finally, define T ∗i = min(Y ∗i , C
∗
i ) and δ∗i = I (Y ∗i ≤ C∗i ) for i = 1, 2, . . . , n.

4. Repeat Steps 1-3 above B times to generate bootstrap resamples of the form{
(X

(j)
1 , T

∗(j)
1 , δ

∗(j)
1 ), . . . , (X

(j)
n , T

∗(j)
n , δ

∗(j)
n )

}
, j = 1, . . . , B.

5. For the j-th bootstrap resample (j = 1, 2 . . . , B), compute Ŝ
∗(j)
0,b (t|x) with

bandwidth bl ∈ {b1, . . . , bL}.

6. With the original sample and pilot bandwidth g, compute Ŝ0,g(t|x).

7. For each bandwidth bl ∈ {b1, . . . , bL}, compute the Monte Carlo approximation

of MISE∗x,g(bl) as in (3.12).

8. Find b∗x = arg min
bl∈{b1,...,bL}

MISE∗x,g(bl).

Similarly as for the nonparametric incidence estimator, the effect of the pilot

bandwidth, g, on the bootstrap bandwidth, b∗x, is very weak. Preliminary studies

(see related results below) showed that a good choice would be to consider the same
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naive pilot bandwidth selector as in Chapter 2, g = C(X(n) − X(1))n
−1/9, with

C = 0.75, and where X(n) (X(1)) is the maximum (minimum) observed value of the

covariate X.

3.5 Simulation study

There are three purposes of this simulation study: firstly, to show that little effi-

ciency is lost if we consider only one bandwidth, b = b1 = b2 in the nonparametric

latency estimator. Secondly, to evaluate the good practical behavior of the proposed

estimator in (3.2), computed in a grid of bandwidths with the Epanechnikov ker-

nel, the MISE of Ŝ0,bx is compared with the MISE of the semiparametric latency

estimator by Peng & Dear (2000). Note that this estimator, implemented in the

“smcure” package, considers a proportional hazards assumption for modeling the

effect of covariates on the failure time of patients who are not cured,

S0(t|x) = U0(t)exp(βT x),

where U0(t) is a basal function. The third objective is to assess the performance

of the bootstrap bandwidth selector for the nonparametric estimator and the weak

effect of the pilot bandwidth. We worked with the same two models considered

in Section 2.5, where X is U(−20, 20). The results are obtained in the grid of 41

equispaced values of X given by {−20,−19, . . . , 19, 20}.

3.5.1 Results for the latency considering two different bandwidths

We present some results for the latency estimator in (3.1), that is, when two diffe-

rent bandwidths are considered: b1 for the incidence and b2 for the improper survival

function, S. Note that, for the sake of brevity, we only work with Model 1 and sam-

ple size n = 100, considering κ = 1000 samples.

Figure 3.1 provides the theoretical MISE bandwidths (approximated by Monte

Carlo), (b1, b2), as a function of x. Note that for most of the covariate values both

optimal bandwidths are very similar, being even equal for the values of x larger than

5.

The MISE of the nonparametric latency estimator, Ŝ0,b1,b2(t|x), in (3.1), as a

function of (b1, b2), is shown in Figure 3.2 for some fixed covariate values: x = 5,

x = 10, x = 15 and x = 18. The MISE for other values of x is similar, but not shown

here. We can see that for all cases, the minimum MISE (purple color) is reached
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Figure 3.1: Optimal b1 bandwidth (solid line) and b2 bandwidth (dashed line), in terms of
MISE.

around the diagonal, that is, when b1 = b2. Therefore, little efficiency is lost when

considering one only bandwidth b1 = b2 to estimate S0, while this guarantees that

the resulting estimator is a proper survival function, as pointed out in Section 3.1.

3.5.2 Efficiency of the nonparametric latency estimator

Figure 3.3 shows the MISE of the latency estimator using one bandwidth, b, approxi-

mated by Monte Carlo, for a grid of 100 values equispaced in a logarithmic scale,

from b1 = 10 (red line) to b100 = 40 (dark blue line). A total of κ = 1000 samples

of size n = 100 were drawn. Note that the MISE, as a function of the bandwidth

b, has a U-shape, since it starts being very large for small bandwidths (red, orange

and yellow lines) and then, for medium bandwidths (green and light blue lines), the

MISE function decreases considerably, reaching its minimum. Finally, the MISE

function becames larger when using the largest bandwidths (dark blue colors). For

further clarification, Figure 3.4 shows the MISE for the nonparametric latency esti-

mator depending on the bandwidth b, for four different values of the covariate.

It is noteworthy that in Model 1, for values of the covariate from x = −20

to x = 10, there is also a very wide range of bandwidths, specifically, between

b30 = 15.01 (light green lines) and b100 = 40 (dark blue lines), for which the MISE

of the nonparametric estimator is smaller than the MISE of the semiparametric es-

timator. In Model 2, the nonparametric estimator of the latency, computed with
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Figure 3.2: MISE(b1, b2) of Ŝ0,b1,b2 for x = 5 (top left), x = 10 (top right), x = 15 (bottom
left) and x = 18 (bottom right). The grid of bandwidths (equispaced on a logarithmic scale),
where b1 = b2, is represented with light blue dots.

bandwidths between b20 = 13.05 (yellow lines) to b100 = 40 (dark blue lines), outper-

forms the semiparametric estimator for all the covariate values, except for x ∈ [4, 9],

where the semiparametric estimator is very competitive.

In short, both the nonparametric incidence (in Chapter 2) and latency estimators

are quite comparable to the semiparametric ones in situations where the latter are

expected to give better results, as in Model 1, and they outperform the semiparame-

tric estimators when the incidence is not a logistic function and the latency does not

fit a PH model (Model 2). The efficiency of the nonparametric estimators depends
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Figure 3.3: MISE for the semiparametric (black line) and the nonparametric estimators of
S0(t|x) computed with different bandwidths: from b1 = 10 (red line) to b100 = 40 (dark blue
line). The data, with sample size n = 100, were generated from Model 1 (left) and Model 2
(right).

Figure 3.4: MISE for the nonparametric latency estimator depending on the bandwidth,
for four different values of the covariate, x ∈ {−5, 5, 10, 15}, with sample size n = 100, for
Model 1 (left) and Model 2 (right). The value of the bandwidth where the minimum MISE
is reached for each covariate is marked with crosses of the corresponding color.

on the choice of the bandwidth, but although the optimal value of the bandwidth

remains unknown, the simulations show that, for quite wide ranges of bandwidths,

the proposed nonparametric methods outperform the existing semiparametric esti-

mator by Peng & Dear (2000).
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3.5.3 Efficiency of the bootstrap bandwidth selector

A total of κ = 1000 trials and B = 200 bootstrap resamples of sizes n = 50, n = 100

and n = 200 were drawn to approximate the bootstrap version of the MISEx for

the nonparametric latency estimator, Ŝ0,b. A grid of 35 bandwidths (from 5 to 100),

equispaced on a logarithmic scale, is considered. Note that, although the covariate

X has distribution U [−20, 20], we only work with x ∈ [−10, 20]. The reason is that

p(x) ' 0 for −20 ≤ x ≤ −10 (see Figure 2.1, left). This implies that almost all the

subjects are cured for x ∈ [−20,−10), and therefore the estimation of the survival

function of the uncured population can not be obtained.

Firstly, we compare the values of the resulting bootstrap bandwidth, b∗x, and the

optimal bMISE,x bandwidth by means of the ratio b∗x/bMISE,x (see Figures 3.5 and

3.6). It is important to highlight that the bootstrap bandwidth b∗x might be larger

(smaller) than bMISE,x in Model 1 (Model 2). Note that in Model 1, the median

of the ratio b∗x/bMISE,x is closer to 1 for covariate values x ∈ [−10, 8], whereas in

Model 2, the covariate values in which the bootstrap bandwidth is more similar to

the optimal bandwidth are x ∈ [9, 20].

This difference between the bootstrap and optimal bandwidths can also be seen

in Figure 3.7, where the density of the bootstrap bandwidths, b∗x, is compared with

the optimal bMISE,x bandwidth. The MISE values obtained considering these

bandwidths are also shown. We can appreciate how the bootstrap bandwidth might

be larger (smaller) than bMISE,x in Model 1 (Model 2), for most of the covariate val-

ues. However, it is important to highlight that this slight difference between b∗x and

bMISE,x implies very little difference in terms of MISE between the estimates with

the optimal and the bootstrap bandwidths. The reason is that MISE(Ŝ0,b(·|x)),

and consequently MISE∗x,g(b), is almost constant in a very wide interval around

its minimizer (see Figure 3.4). This feature implies that very different bandwidths

could yield very similar good estimates in terms of MISE. In order to check this,

the performance of the bootstrap bandwidth, b∗x, with respect to bMISE,x has been

assessed in terms of MISE using the ratio

MISE(b∗x)−MISE(bMISE,x)

MISE(bMISE,x)
.

For both models, Figures 3.8 and 3.9 show that there is very little difference in

terms of MISE between the estimates with the optimal and the bootstrap band-

widths. The relative error when using b∗x instead of bMISE,x is generally less than

10%, except with Model 1, when the covariate value is close to 20, then the relative
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error is slightly higher.

Similarly as in Section 2.5, we detail the computational time needed in each

simulation study. For the latency estimator computed with two bandwidths (Figures

3.1 and 3.2), the simulations take 9.5 hours to be completed. Regarding the efficiency

of the latency estimator (Figure 3.3), the method lasts around 40 minutes for each

model, considering n = 100. Finally, for evaluating the efficiency of the bootstrap

bandwidth selector (Figures 3.5, 3.6, 3.7, 3.8 and 3.9), the method is computationally

more expensive: 6.5 hours, 7.3 hours and 11.8 hours for each model, with sample

sizes n = 50, n = 100 and n = 200, respectively.

Preliminary studies for the pilot bandwidth selection

Only some results of the preliminary studies are shown here. Similarly as for the

incidence, we decided to use a global pilot bandwidth for the nonparametric la-

tency estimator. Specifically, we consider the following constant values for the pilot

bandwidth: g = 5, 10, 25 and 40. Moreover, we consider a pilot bandwidth which

depends on the support of the covariates and which keeps the optimal order:

g = (X(n) −X(1))n
−1/9.

Figure 3.10 shows the theoretical MISE for the nonparametric and semipara-

metric estimators, and MISE for the nonparametric estimator computed with the

bootstrap bandwidth and using the different pilot bandwidths introduced above.

Note that for simplicity, we consider sample size n = 100, κ = 50 trials, B = 50

bootstrap resamples and Models 1 and 2, detailed in Section 2.5.
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Figure 3.5: Boxplot of the ratio b∗x/bMISE,x depending on the covariate, for Model 1, with
sample sizes n = 50 (top), n = 100 (center) and n = 200 (bottom).
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Figure 3.6: Boxplot of the ratio b∗x/bMISE,x depending on the covariate, for Model 2 with
sample sizes n = 50 (top), n = 100 (center) and n = 200 (bottom).
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Figure 3.7: MISE contour plot depending on the bandwidth and on the covariate, for
Model 1 (left) and Model 2 (right), with sample sizes n = 50 (top), n = 100 (center) and
n = 200 (bottom). The density of the bootstrap bandwidth is displayed in grayscale and
the bMISE,x bandwidth, for each covariate value, is represented with crosses.
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Figure 3.8: Boxplot of the ratio (MISE(b∗x)−MISE(bMISE,x)) /MISE(bMISE,x) de-
pending on the covariate, for Model 1, with sample sizes n = 50 (top), n = 100 (center) and
n = 200 (bottom).
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Figure 3.9: Boxplot of the ratio (MISE(b∗x)−MISE(bMISE,x)) /MISE(bMISE,x) de-
pending on the covariate, for Model 1 (top) and Model 2 with sample sizes n = 50 (top),
n = 100 (center) and n = 200 (bottom).
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Figure 3.10: Theoretical optimal MISE for the nonparametric estimator (red), MISE for
the semiparametric estimator (black), and MISE for the nonparametric estimator computed
with the bootstrap bandwidth and using the different pilot bandwidths, for Model 1 (left)
and Model 2 (right).

Since MISE for the nonparametric latency estimator computed with different

pilot bandwidths is very similar in all cases, we decided to work with the following

pilot bandwidth, g = C(X(n) −X(1))n
−1/9, with C = 0.75.

3.6 Application to real data

The proposed method was applied to the dataset used in Section 2.6, composed of

414 colorectal cancer patients from CHUAC.

In Figures 3.11 and 3.12 we show the latency estimation for Stages 1, 2, 3 and 4

for two different ages, 45 and 76. The nonparametric estimator Ŝ0,bx is computed

with five different constant bandwidths: b = 10, 15, 20, 25 and 30. It is noteworthy

that in Stages 1 and 2 for 45 years, the bandwidth selection influences considerably

latency estimation. This is due to the low density of the covariate around this age,

as we can see in Figure 2.9.

Due to the small sample sizes in each stage, the results are presented in two

groups: Stages 1-2 and Stages 3-4. First, the bootstrap bandwidth depending on

the covariate age is studied. Then, the latency estimation computed with b∗x for

three different ages (35, 50 and 80) is shown. The number of bootstrap resamples

are B = 200. Similarly to the simulation study in Section 3.5, we considered a grid

of 35 bandwidths from b1 = 5 to b35 = 100 equispaced on a logarithmic scale.
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Figure 3.11: Estimated latency for patients of age 45 in Stages 1-4, using the semiparame-
tric (black line) and nonparametric estimators with 5 equispaced bandwidths ranging from
b0 = 10 (red line) to b4 = 30 (purple line).

Figure 3.13 shows the resulting bootstrap bandwidth, b∗x, for Stages 1-2 and

Stages 3-4. Note that since there is no enough data near the endpoints of the sup-

port of X, obtaining the bootstrap bandwidth for all the covariate values is not

possible. It is remarkable that for patients younger than 65, the bandwidth b∗x
for Stages 1-2 is larger than the resulting bandwidth for Stages 3-4. However, for

patients older than 65, both bandwidths are very similar. This can be explained

because in Stages 1-2 the censoring is much higher and there are less young patients

than in Stages 3-4, which leads to a large resulting bootstrap bandwidth.
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Figure 3.12: Estimated latency for patients of age 76 in Stages 1-4, using the semiparame-
tric (black line) and nonparametric estimators with 5 equispaced bandwidths ranging from
b0 = 10 (red line) to b4 = 30 (purple line).

The latency estimation computed with the bootstrap bandwidth, Ŝ0,b∗(t|x), for

different ages (35, 50 and 80) is shown in Figure 3.14. We can observe that for Stages

1-2 the covariate age does not seem to be determining for the latency estimation,

since all the estimated latency functions are very similar for the whole grid of ages.

On the contrary, for Stages 3-4, the latency estimation varies considerably depending

on the age: the short-term survival is larger in young patients, whereas the long-

term survival is larger in old individuals. For example, the probability that the

follow-up time since the diagnostic until death is larger than 4.5 years (54 months)
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Figure 3.13: Bootstrap bandwidth, b∗x, depending on the covariate, for patients in Stages
1-2 (dashed line) and 3-4 (dotted line).

is around 0.2 for patients with ages 35 and 50, whereas for 80 year old patients,

that probability is larger than 0.4. The reason is that when a colorrectal cancer

is diagnosed in a young patient, it is usually in an advanced stage and with worse

prognosis, since the cancer cells are more active in young individuals.

Figure 3.14: Latency estimation for patients in Stages 1-2 (left) and 3-4 (right) with ages
35 (solid line), 50 (dashed line) and 80 (dotted line), computed using the nonparametric
estimator, Ŝ0,b(t|x), with the bootstrap bandwidth, b∗x.
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Chapter 4

Covariate significance testing

4.1 Introduction

Significance testing is of primary importance in regression analysis, because the

number of potential covariates to be included in the model can be large. In par-

ticular, in mixture cure models, variable selection is of outstanding interest, since

the covariates having an effect on the survival of the uncured patients are not ne-

cessarily the same as those impacting the probability of cure. In this chapter, we

propose a covariate significance test for the incidence based on the method by Del-

gado & González-Manteiga (2001), who introduced a test for selecting explanatory

variables in nonparametric regression without censoring. The main advantage over

other smoothed tests is that it only requires a smooth nonparametric estimator of

the regression function depending on the explanatory variables which are significant

under the null hypothesis. This feature is computationally convenient and solves,

in part, the problem of the “curse of dimensionality” when selecting regressors in a

nonparametric context.

Following Delgado & González-Manteiga (2001), let us denote Yn = {Xi, i =

1, . . . , n}, independent copies of X = (Y,W), which has probability space (S,F , P ),

where Y is unidimensional and W = (X,Z), where X is Rq-valued and Z is Rm-

valued. Consider the regression function m(·) = E(Y |X = ·). The goal is to test

H0 : E(Y |W) = m(X), that is, if the conditional expectation of Y given W depends

only on X but not on Z. The test is based on:

Tn(w) =
1

n

n∑
i=1

f̂h(Xi)(Yi − m̂h(Xi))I(Wi ≤ w), (4.1)

where f̂h(Xi) is the nonparametric estimator of the density function of X, and
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m̂h(Xi) is a nonparametric estimator of m(·) = E(Y |X = ·).

The test statistic is a functional of n1/2Tn, for instance, the Cramer-von Mises’

statistic

Cn =
n∑
i=1

Tn(Wi)
2,

or the Kolmogorov-Smirnov statistic

Kn = sup
w
|n1/2Tn(w)|.

In the particular case that X has one dimension, the bootstrap version corres-

ponding to Tn, proposed by Delgado & González-Manteiga (2001), is

T ∗n(w) =
1

n

n∑
i=1

f̂h(Xi)(Y
∗
i − m̂∗h(Xi))I(Wi ≤ w),

with Y ∗i = m̂h(Xi) + ε∗i , where {ε̂∗i = Viε̂i, i = 1, . . . , n} is the bootstrap re-

sample of the nonparametric residuals, with Vi obtained from a N(0, 1) and ε̂i =

Yi − m̂h(Xi), and considering m̂∗h(Xi) = (nhqf̂h(Xi))
−1
∑n

i=1 Y
∗
i Kij , where Kij =

K((Xi−Xj)/h). That is, T ∗n is the bootstrap version of Tn computed with the “wild

resample” {(Y ∗i , Xi), i = 1, . . . , n}. Furthermore, the bootstrap version of Cn and

Kn are

C∗n =
n∑
i=1

T ∗n(Wi)
2 and K∗n = sup

w
|n1/2T ∗n(w)|.

When the number of simultaneous tests is large, like in genomics and other

biology-related fields, the probability of getting a significant result simply due to

chance is high. In order to deal with this problem, we consider the method by

Benjamini & Hochberg (1995). It consists of controlling the expected proportion of

falsely rejected hypotheses, that is, the false discovery rate (FDR). This error rate

is equivalent to the familywise error rate (FWER) when all hypotheses are true, but

is smaller otherwise. Therefore, in problems where the control of the FDR rather

than that of the FWER is desired, there is potential for a gain in power.

Benjamini & Hochberg (1995) consider testing H1
0 , H2

0 , . . . , Hm
0 , based on the

corresponding p-values: p1, p2, . . . , pm. Let p(1) ≤ p(2) ≤ · · · ≤ p(m) be the or-

dered p-values, and denote by H
(i)
0 the null hypothesis corresponding to p(i). The

Bonferroni-type multiple-testing procedure consists of defining k as the largest i for

which p(i) ≤ i
mα, and then rejecting all H

(i)
0 , for i = 1, 2, . . . , k. If no such i exists,
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reject no hypothesis. Note that this procedure controls the FDR at α, for indepen-

dent test statistics and for any configuration of false null hypotheses.

When trying to use the FDR approach in practice, dependent test statistics are

encountered more often than independent ones. Therefore, for the study of signifi-

cance tests with high dimensional data, appart from the approach by Benjamini

& Hochberg (1995), we also consider the conservative modification by Benjamini &

Yekutieli (2001) to achieve the FWER control. When many of the tested hypotheses

are rejected, indicating that many hypotheses are not true, the error from a single

erroneous rejection is not always as crucial for drawing conclusions from the family

tested, and the proportion of errors is controlled instead. The correction consists of

comparing p(i) to α
m−i+1 instead of i

mα. Specifically, the method can be described

as follows. Define:

k = max

{
i : p(i) ≤

α

m− i+ 1

}
and reject H

(1)
0 , . . . ,H

(k)
0 .

4.2 Significance tests for the incidence

In cancer studies it is interesting to test if a covariate has some influence on the cure

rate or on the survival time of the susceptible patients. Müller & Van Keilegom

(2018) propose a test statistic to assess whether the cure rate, 1 − p (as a func-

tion of the covariates) satisfies a certain parametric model. However, to the best

of our knowledge, no significance testing has been proposed yet for nonparametric

cure models. We fill this important gap by proposing a covariate significance test

for the incidence. The behavior of this method is assessed in some simulation studies.

Let us denote by W = (X,Z) = (X1, . . . , Xq, Z1, . . . , Zm) the explanatory cova-

riates. We would like to test if the cure probability, as a function of the covariate

vector W, only depends on X, but not on Z:

H0 : E (ν|X,Z) ≡ 1− p (X) vs. H1 : E (ν|X,Z) ≡ 1− p (X,Z) ,

where the function p(X,Z) depends on Z (i.e. is a function that depends not only

on X but also on Z).

Note that ν is not observed due to the censoring, since it is unknown if a censored

individual will be eventually cured (ν = 1) or not (ν = 0). Let us define the variable
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η as follows:

η =
ν(1− I(δ = 0, T ≤ τ(X)))

1−G (τ(X)|X)
,

where τ(X) is a time beyond which a subject is considered cured and X is the co-

variate vector that influences the cure rate under H0. The idea of the unknown

variable, ν, is easy to understand, since it consists of identifying the cured indi-

viduals with weight equal to 1, and the uncured patients with weight equal to 0.

Therefore, if we knew exactly which subjects are cured and which ones are not,

we would use the corresponding weights. Note that the average of these weights is

E(ν) = P (ν = 1) = P (cure). Nevertheless, we only know that the individuals with

δ = 1 are not cured (then η = 0), and for the subset of patients with δ = 0, there

are both cured and uncured subjects. By definition, in the subset with δ = 0, we set

as cured those who, in addition, fulfill the condition T > τ(X) (then η 6= 0). But

in this subset with δ = 0 there are also some cured individuals with T ≤ τ(X), and

they are impossible to identify (we would assign, erroneously, weight η = 0). For

this reason, we use weight η > 1 (specifically, η = 1/(1−G(τ(X))) for the patients

which we know that they are cured (δ = 0, T > τ(X)), in order to balance out the

cured subjects in (δ = 0, T ≤ τ(X)), with η = 0.

Furthermore, it is easy to check that E(η|X) = E(ν|X) under the following

assumption:

(A15) The distribution of (C|X, ν = 0) equals that of (C|X, ν = 1).

Specifically,

E(η|X) = E(η|X, ν = 0)P (ν = 0|X) + E(η|X, ν = 1)P (ν = 1|X).

Since ν = 0 implies η = 0, then E(η|X, ν = 0) = 0 and E(η|X) reduces to

E(η|X) =
E(ν(1− I(δ = 0, T ≤ τ(X)))|X, ν = 1)

1−G(τ(X)|X)
P (ν = 1|X). (4.2)

Note that ν = 1 implies δ = 0, hence T = C and the numerator in (4.2) is,

E(ν(1− I(δ = 0, T ≤ τ(X)))|X, ν = 1)

= E(1− I(C ≤ τ(X))|X, ν = 1) = E(T > τ(X)|X, ν = 1)

= P (C > τ(X)|X, ν = 1) = 1−G(τ(X)|X, ν = 1).
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Considering assumption (A15), C and ν are independent conditionally on X, then

1−G(τ(X)|X, ν = 1)

= P (C > τ(X)|X, ν = 1)[P (ν = 1|X) + P (ν = 0|X)]

= P (C > τ(X)|X, ν = 1)P (ν = 1|X) + P (C > τ(X)|X, ν = 0)P (ν = 0|X)

= P (C > τ(X)|X) = 1−G(τ(X)|X).

As a consequence, E(η|X) in (4.2) is

E(η|X) =
1−G(τ(X)|X, ν = 1)

1−G(τ(X)|X)
P (ν = 1|X) = P (ν = 1|X) = E(ν|X).

Note that if there is no covariate X, in practice, we consider τ(xi) = T 1
max =

maxi:δi=1 Ti. In any other case, without loss of generality, we estimate τ(X) in the

following way for a continuous univariate covariate X: using a bandwidth hτ , we

consider a subset of individuals j with |xj −xi| < hτ , and τ(xi) will be estimated as

the largest Tj with δj = 1 in the subset. If there is no δj = 1 in the subset, then τ(xi)

is equal to the available τ(xl) for the nearest xl to xi. If there are several nearest

values to determine xl, then we estimate τ(xi) as the mean of those. Preliminary

studies suggested that a good bandwidth choice is:

hτ =
(
X(n) −X(1)

)
0.25 n−1/9.

Moreover, it is assumed that C does not depend on the covariates, X, and then

G (τ(Xi)|X) is estimated by the product limit estimator, Ĝ(τ(Xi)). This gives the

following estimations for the ηi:

• δi = 1 (failure) ⇒ uncured (νi = 0) ⇒ η̂i = 0.

• δi = 0 (censored) and Ti ≤ τ(Xi) ⇒ η̂i = νi(1−1)

1−Ĝ(τ(Xi))
= 0.

• δi = 0 (censored) and Ti > τ(Xi)⇒ cured (νi = 1)⇒ η̂i = 1
1−Ĝ(τ(Xi))

.

For W = (X,Z) the three cases in Table 4.1 can be considered.

Case Dimension W Dimension X Dimension Z

1: H0 : 1− p(z) = 1− p m 0 m

2: H0 : 1− p(x, z) = 1− p(x) 1 +m 1 m

3: H0 : 1− p(x, z) = 1− p(x) q +m q m

Table 4.1: Different cases of covariate significant testing.
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In Sections 4.3 and 4.4 we introduce Case 1 and Case 2, respectively. Moreover,

in Section 4.5, Case 1 is extended to contexts with a large number of covariates.

The behavior of these methods is assessed in a simulation study in Section 4.6. In

Section 4.7, the test is applied to the colorectal cancer dataset and to the sarcomas

dataset.

4.3 Case 1

First, we focus on the case with only one covariate, W = Z. We study if the cure

rate, as a function of Z, is a constant value versus if it depends on the covariate:

H0 : E (ν|Z) = 1− p constant vs H1 : E (ν|Z) = 1− p(Z), (4.3)

where p(Z) is not a constant function of Z. Our test will be based on the following

observations: {(Zi, η̂i), i = 1, . . . , n}.

4.3.1 Z quantitative

Following Delgado & González-Manteiga (2001), the statistics we will propose when

Z is a quantitative variable is based on the following process:

Tn(z) =
1

n

n∑
i=1

η̂i −
 1

n

n∑
j=1

η̂j

 I (Zi ≤ z) , (4.4)

which is a weighted mean of the difference between the observations of η and the

values of the conditional mean of η under the null hypothesis. Possible test statis-

tics are the Cramér-von Mises (CvM) test, Cn =
n∑
i=1

T 2
n(Zi), or the Kolmogorov-

Smirnov (KS) test, Kn = max
i=1,...,n

|n1/2Tn(Zi)|. The test statistic null distribution

is approximated by bootstrap, using an independent naive resampling. Specifically,

the bootstrap procedure is the following:

1. For i = 1, 2, . . . , n, obtain Z∗i and η̂∗i from (Z1, . . . , Zn) and (η̂1, . . . , η̂n) inde-

pendently, by random resampling with replacement.

2. With the bootstrap resample, {(Z∗i , η̂∗i ), i = 1, . . . , n}, obtain the bootstrap

version of Tn:

T ∗n(z) =
1

n

n∑
i=1

η̂∗i −
 1

n

n∑
j=1

η̂∗j

 I(Z∗i ≤ z)
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and the corresponding bootstrap version of the Cramér-von Mises and Kolmo-

gorov-Smirnov statistics:

C∗n =
n∑
i=1

T ∗n(Z∗i )2 and K∗n = max
i=1,...,n

|n1/2T ∗n(Z∗i )|.

3. Repeat B times Steps 1-2 in order to generate B values of C∗n and K∗n. Define

the critical values d∗C and d∗K as the values which are in position d(1 − α)Be
in the sorted vectors.

4. Compare the value of the statistic, Cn (respectively, Kn), obtained with the

original sample with d∗C (respectively, d∗K), and reject the null hypothesis if

Cn > d∗C (respectively, Kn > d∗K). In addition, the p-value can be calculated

as the proportion of resamples for which the bootstrap statistic, C∗n (K∗n) is

larger than the value of the statistic with the original sample, Cn (Kn).

Remark: Since Z∗i and η̂∗i are resampled independently in Step 1, the bootstrap

resampling plan mimics H0.

In the simulations in Section 4.6 we will repeat Steps 1-4 κ times. The power of

the test is approximated as the proportion of rejections out of κ.

4.3.2 Z ordinal qualitative

The procedure is identical to when Z is quantitative. Specifically, departing from

(4.3), the implementation of the algorithm is the same as for discrete Z.

4.3.3 Z non ordinal qualitative

In the case with only one qualitative non ordinal covariate, W = Z, there is no

natural way to order the values of Z from lowest to highest. This makes impossible

to compute the indicator function in the test statistic (4.4). We propose to consider

all the possible k! combinations of the values of Z and compute Tn(z) (and also Cn

and Kn) for each “ordered” combination. For example, if Z can take 3 values, there

will be 3! = 6 possible values of Tn(z) (from which we obtain Cn and Kn), each

corresponding to every sorting of those values. Finally, we compute the maximum

of Cn and Kn along all these possible permutations and compare it with the critical

point obtained by bootstrap likewise.
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A different approach consists of working with dummy variables. For example,

considering a qualitative variable Z which can take k = 3 different values, we define

D1 (equal to 1 if the original qualitative variable is the first value of the covariate

and 0 otherwise) and D2 (equal to 1 if the original variable takes the second value

and 0 otherwise). In general, it would be necessary to define k−1 dummy variables.

Note that the vector of the dummy variables, (D1, D2), is equal to (0, 0) if the value

is the third one, (0, 1) if it is the second value and (1, 0) if it is the first value. The

main advantage of this method is that we only need to compute k − 1 times the

value of the statistic (one for each value of the covariate), whereas with the previous

method, we have to compute the statistic k! times (one per each permutation of

the k values). Therefore, this approach is considerably less computationally expen-

sive. Specifically, considering sample size n = 100, κ = 5000 trials and B = 2000

bootstrap resamples, the previous method takes 10050 seconds (see Table 4.13) and

the approach using dummy variables takes 5657 seconds. On the other hand, by

adressing the covariance testing using dummy variables, every new dummy variable

have to be tested individually and it could be the case that the test leads to different

conclusions for the dummy variables.

4.4 Case 2

In this case, W = (X,Z) has m+ 1 dimension, with a one-dimensional covariate X

and an m-dimensional covariate Z. We study if the cure probability, as a function

of (X,Z), only depends on the covariate X, that is:

H0 : E (ν|X,Z) = 1− p(X), vs H1 : E (ν|X,Z) = 1− p(X,Z), (4.5)

where p(X,Z) depends on Z under the alternative hypothesis. To do this, we use

the observations {(Xi,Zi, η̂i), i = 1, . . . , n}. Note that in Case 2, we estimate τ(xi)

as mentioned in Section 4.2.

For the sake of simplicity, in this section we only considered a univariate Z and

the most representative situations of Case 2, according to the distribution of X and

Z. Nevertheless, in Section 4.6.2 we will show the results considering all the different

possibilities: X and Z continuous, X continuous and Z discrete, X continuous and

Z binary, X continuous and Z qualitative, X discrete and Z continuous, . . . , X

qualitative and Z qualitative.
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4.4.1 X continuous

Based on the process Tn in (4.1), the statistic is defined as:

Tn(w) =
1

n

n∑
i=1

f̂h(Xi) (η̂i − m̂h(Xi)) I (Wi ≤ w) , (4.6)

where f̂h is the estimated density function of the covariate X which depends on the

bandwidth h, m̂h is the nonparametric estimator of the regression function m(x) =

E (η̂|X = x), obtained by the Nadaraya-Watson kernel method, and Wi ≤ w means

that the inequality ≤ is checked for each component: Wj ≤ wj , j = 1, . . . ,m + 1.

Note that the process in (4.6) is a weighted mean of the difference between the ob-

servations of η and the values of the conditional mean of η under the null hypothesis.

Similarly to Case 1, we consider the Cramér-von Mises, Cn =
n∑
i=1

T 2
n(Wi) and the

Kolmogorov-Smirnov, Kn = max
i=1,...,n

|n1/2Tn(Wi)| statistics. The test distribution

under H0 is approximated by bootstrap, considering the following procedure:

1. We fix the covariate X∗i = Xi and we obtain Z∗i from (Z1, . . . ,Zn) by random

resampling with replacement, for i = 1, 2, . . . , n. Furthermore, we compute

η̂∗gi = ˆ̂ηgi + viε̂i, where ˆ̂ηgi = m̂g(Xi) is the Nadaraya-Watson kernel regression

estimate computed with the original sample, vi is obtained from a N(0, 1) and

ε̂i = η̂i − ˆ̂ηgi is the i-th residual. Note that the Nadaraya-Watson estimation

of m(Xi) is bounded between 0 and 1, i.e. 0 ≤ ˆ̂ηgi ≤ 1, i = 1, 2, . . . , n.

2. With the bootstrap resample, {(Xi,Z
∗
i , η̂
∗
i ), i = 1, . . . , n}, obtain the bootstrap

version of Tn:

T ∗n(w) =
1

n

n∑
i=1

f̂h(Xi)
(
η̂∗gi − m̂h(Xi)

)
I (W∗

i ≤ w) ,

and the corresponding bootstrap version of the Cramér-von Mises and Kolmo-

gorov-Smirnov statistics:

C∗n =
n∑
i=1

T ∗n(W∗
i )

2 and K∗n = max
i=1,...,n

|n1/2T ∗n(W∗
i )|.

3. Repeat Steps 1-2 B times in order to generate B values of C∗n and K∗n. Define

the critical values d∗C and d∗K as the values which are in position d(1 − α)Be
in the sorted vectors.
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4. Compare the value of the statistic, Cn (respectively, Kn) obtained with the

original sample with d∗C (respectively, d∗K), and reject the null hypothesis if

Cn > d∗C (respectively, Kn > d∗K).

Steps 1-4 will be repeated κ times in the simulations in Section 4.6. The power of

the test is approximated as the proportion of rejections out of κ.

Remark: To mimic H0 in (4.5), the values η̂∗gi defined in Step 1 do not depend on

Z∗i (just on X∗i ).

Note that in this procedure we need to select a bandwidth, h, and a pilot band-

width, g. Although the results are quite insensitive to the value of the pilot band-

width, preliminary studies showed that a good choice is g = 2h (see related results

below). Moreover, since we do not have a bandwidth selection method, we consider

the values h = Cn−1/3, where n is the sample size and C = 10, 20, 40, 60. In practice,

we suggest to use any of the bandwidth selection methods for nonparametric tests

proposed in the literature. There are two main approaches: Kulasekera & Wang

(1997) focuses on power maximization under the alternative hypothesis, whereas

Mart́ınez-Camblor (2010); Mart́ınez-Camblor & de Uña-Álvarez (2013) considers the

idea of minimizing p-values. The two approaches are strongly related (see Mart́ınez-

Camblor & de Uña-Álvarez (2013)).

4.4.2 X categorical or discrete

For a categorical (dichotomous, qualitative) or discrete variable X, the estimated

density, f̂h(Xi), and the estimated regression function, m̂h(Xi), in the test statistic

in (4.6) are replaced by

Π̂(Xi) =
1

n

n∑
j=1

I(Xj = Xi)

and

m̂(Xi) =

∑n
j=1 I(Xj = Xi)η̂j∑n
j=1 I(Xj = Xi)

=
1
n

∑n
j=1 I(Xj = Xi)η̂j

Π̂(Xi)
,

respectively.

Similarly as in Case 1, for a qualitative variable in W with no intrinsic order in

its values, the indicator function I (Wi ≤ w) in the test statistic is computed for all

the possible “ordered” permutations of the values of W.
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For example, for the case of W = (X,Z) qualitative, we consider that the values

of the variables are Xi ∈ {a1, . . . , alx} and Zi ∈ {b1, . . . , blz}. The general test

statistic is defined as:

Tn(x, z) =
1

n

n∑
i=1

Π̂(Xi) (η̂i − (1− m̂(Xi))) I (Xi ≤ x) I (Zi ≤ z) . (4.7)

We will study the CvM, Cn =
n∑
i=1

T 2
n(Wi), and the KS, Kn = max

i=1,...,n
|n1/2Tn(Wi)|

tests.

Since both variables are qualitative (which are neither numeric, nor ordinal) then

there is no a natural order among them. Therefore, we obtain all the possible ordered

values of W (for instance, if m = 2 and each variable can take 3 different values,

then we will have (3!)(3!) = 36 different orders of these values), we sort them and we

consider the maximum values of the tests Cn and Kn evaluated in W. Finally, we

compare them with their corresponding critical point obtained by bootstrap likewise.

Specifically, let us denote by Sn(aj , bk):

Sn(aj , bk) =
1

n

n∑
i=1

Π̂(Xi) (η̂i − (1− m̂(Xi))) I (Xi = aj) I (Zi = bk) .

In order to compute the statistic Tn(x, z) in (4.7), we take into account that

Tn(a1, b1) = Sn(a1, b1). In general:

Tn(aj , bk) =

j∑
r=1

k∑
s=1

Sn(ar, bs), j = 1, . . . , lx; k = 1, . . . , lz,

for each “ordered” combination of the values of X and Z: a1 < a2 < · · · < alx ;

b1 < b2 < · · · < blz .

4.5 Case 1 with high dimensional covariate vector Z

This procedure can be applied to Case 1 or Case 2, provided that Z is a m-

dimensional covariate vector. In this thesis, only Case 1 is considered.

Departing from (4.3), we consider the case with an m-dimensional covariate Z.

The method consists of considering m hypotheses in Equation (4.3) to be tested

independently, H1
0 , . . . ,H

m
0 . Depending on the type (quantitative or qualitative) of

each covariate, Zi, we use its corresponding Tn defined in Sections 4.3.1-4.3.3.
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In order to control the false discovery rate (FDR), we depart from the approach

by Benjamini & Hochberg (1995) to problems of multiple significance testing. Fur-

thermore, to achieve the family wise error rate (FWE) control, we consider the

method by Benjamini & Yekutieli (2001). The procedure to test H1
0 , . . . ,H

m
0 with

level α is the following:

1. Sort the p-values obtained when testing Hj
0 , pj , for j = 1, 2, . . . ,m:

p(1) ≤ p(2) ≤ · · · ≤ p(m).

2. Define: k = max{i : p(i) ≤ α
m−i+1}.

3. Reject H
(1)
0 , . . . ,H

(k)
0 , that is, the hypotheses which lead to the k smallest

p-values.

Note that if there is no i which fulfills the condition p(i) ≤ α
m−i+1 in Step 2, then

no hypotheses will be rejected.

4.6 Simulation studies

The purpose of the simulation studies is to assess the practical behavior of the pro-

posed significance tests. We work with three different sample sizes: n = 50, n = 100

and n = 200. A total of κ = 5000 trials and B = 2000 bootstrap resamples are

drawn.

4.6.1 Case 1

Under the null hypothesis, H0 : E(ν|Z) = 1− p, we consider four different constant

values for the incidence: 1−p = 0.7, 1−p = 0.5, 1−p = 0.3 and 1−p = 0.2. Under

the alternative hypothesis, H1 : E(ν|Z) = 1 − p(Z), and when Z is a continuous

covariate, we study the same two models as in Section 2.5, but replacing the covariate

X by Z. If Z is discrete, binary or qualitative, we only consider Model 1 in order

to generate the data.

Model 1 The incidence is 1− p(z), where

p(z) =
exp(β0 + β1z)

1 + exp(β0 + β1z)
, (4.8)
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with β0 = 0.476 and β1 = 0.358, and the latency is a function which almost fulfills

the proportional hazard model and that it has been truncated

S0(t|z) =


exp(−λ(z)t)−exp(−λ(z)τ0)

1−exp(−λ(z)τ0) if t ≤ τ0

0 if t > τ0

,

where τ0 = 4.605 and λ (z) = exp ((z + 20)/40). The percentage of censored data is

54% and of cured data is 47%.

Model 2 The probability of uncure is:

p(z) =
exp

(
β0 + β1z + β2z

2 + β3z
3
)

1 + exp (β0 + β1z + β2z2 + β3z3)
, (4.9)

with β0 = 0.0476, β1 = −0.2558, β2 = −0.0027 and β3 = 0.0020 and the survival

function of the susceptible population is

S0(t|z) =
1

2

(
exp(−α(z)t5) + exp(−100t5)

)
,

with

α(z) =
1

5
exp((z + 20)/40).

The percentages of censored and cured data are 62% and 53%, respectively.

Preliminary studies for the selection of the bandwidths

For sample size n = 100, B = 1000 bootstrap resamples and κ = 1000 trials, we

draw the significance tests for Case 2, with X and Z continuous. We work with the

same Model 1 and Model 2 defined in Section 4.6.2. The significance level considered

is α = 0.05.

For these preliminary simulations, we considered 3 studies. In the first one, we

set the pilot bandwidth, g, equal to the bandwidth h. The results are shown in

Table 4.2. In the second study (see Table 4.3), we fix the bandwidth h = 8.62, since

it seems to give good results, and we work with different pilot bandwidths. Finally,

in Table 4.4, we use g = 2h, for a grid of bandwidths h.

According to the results in Table 4.3, it seems that the effect of the bandwidth

g is negligible for a fixed bandwidth h. From Tables 4.2 and 4.4, we can appreciate

that g = 2h could be an appropriate choice, since the asymptotic pilot bandwidth
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H0 H1

Model 1 Model 2 Model 1 Model 2
g = h CvM KS CvM KS CvM KS CvM KS

4.31 0.039 0.044 0.040 0.048 0.428 0.457 0.665 0.571

8.62 0.033 0.041 0.054 0.048 0.427 0.448 0.651 0.579

12.93 0.039 0.066 0.078 0.083 0.390 0.412 0.632 0.576

17.24 0.070 0.124 0.097 0.102 0.335 0.369 0.614 0.571

34.47 0.712 0.903 0.125 0.147 0.165 0.213 0.615 0.586

Table 4.2: Size of the test under the null hypothesis (on the left) and power of the test
under the alternative hypothesis (on the right), for Case 2 with X and Z continuous with
distribution U(−20, 20) for Model 1 and Model 2.

H0 H1

Model 1 Model 2 Model 1 Model 2
g CvM KS CvM KS CvM KS CvM KS

4.31 0.033 0.043 0.048 0.047 0.439 0.450 0.660 0.591

8.62 0.034 0.042 0.050 0.049 0.431 0.448 0.660 0.588

12.93 0.033 0.041 0.054 0.048 0.427 0.448 0.651 0.579

17.24 0.034 0.048 0.051 0.041 0.424 0.447 0.642 0.567

34.47 0.038 0.059 0.045 0.035 0.423 0.444 0.642 0.556

Table 4.3: Size of the test under the null hypothesis (on the left) and power of the test
under the alternative hypothesis (on the right), for Case 2 with X and Z continuous with
distribution U(−20, 20) for Model 1 and Model 2, and considering a fixed value for the
bandwidth, h = 8.62.

H0 H1

Model 1 Model 2 Model 1 Model 2
h CvM KS CvM KS CvM KS CvM KS

2.15 0.044 0.037 0.043 0.046 0.280 0.331 0.575 0.492

4.31 0.034 0.036 0.044 0.050 0.427 0.442 0.647 0.549

8.62 0.038 0.059 0.045 0.035 0.423 0.444 0.642 0.556

12.93 0.054 0.087 0.067 0.068 0.383 0.405 0.632 0.565

17.24 0.090 0.152 0.099 0.104 0.335 0.363 0.613 0.563

Table 4.4: Size of the test under the null hypothesis (on the left) and power of the test
under the alternative hypothesis (on the right), for Case 2 with X and Z continuous with
distribution U(−20, 20) for Model 1 and Model 2, and considering g = 2h.

is larger than h. Regarding the value of h, we follow the approach by Delgado &

González-Manteiga (2001). They choose a bandwidth of the form h = Cn−1/3m, for

different values of C, where m is the dimension of the covariate vector Z that is
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being tested. Note that in our case, m = 1. Delgado & González-Manteiga (2001)

explains that this bandwidth is compatible with assumptions (A4) and (A4′) in their

paper. Therefore, we decided to work with h = Cn−1/3, where n is the sample size,

and C = 10, 20, 40, 60.

Z continuous

Under H1, we considered Models 1 and 2 for a continuous covariate Z ∼ U(−20, 20).

Figure 4.1 shows the cure probability, 1 − p(z), under H0 and H1. The results in

Table 4.5 (Table 4.6) were obtained under the null (alternative) hypothesis. It is

noteworthy that, under H0, the size of the test is very similar to the significance

level, α=0.05, for the different constant values for p. Furthermore, under H1, the

power of the test is very close (or even equal) to 1.

Figure 4.1: Cure probability, 1 − p(z), under the null (left) and the alternative (right)
hypotheses, with Z continuous, for Case 1 in Model 1 (black) and Model 2 (red).

Z discrete

We work with a discrete covariate Z with 3 ordered values b1 < b2 < b3. The values

p(bi), i = 1, 2, 3 underH0 andH1 are given in Tables 4.7 and 4.8, respectively. Under

H1, there are two scenarios, one with similar values for p(bi), i = 1, 2, 3, and another

one with more variable values of p(·) as a function of Z. We consider two situations

according to the probability mass function of Z given by Πz(bi) = P (Z = bi):

in the first one, (Πz(b1),Πz(b2),Πz(b3)) = (1/3, 1/3, 1/3) and in the second one,

(Πz(b1),Πz(b2),Πz(b3)) = (3/5, 1/5, 1/5), where the value b1, with the lowest value
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Model 1 Model 2
n p CvM KS CvM KS

50 0.3 0.0484 0.0600 0.0550 0.0636
0.5 0.0500 0.0564 0.0490 0.0582
0.7 0.0446 0.0472 0.0510 0.0504
0.8 0.0418 0.0360 0.0400 0.0412

100 0.3 0.0608 0.0636 0.0544 0.0584
0.5 0.0494 0.0562 0.0488 0.0586
0.7 0.0444 0.0520 0.0474 0.0468
0.8 0.0414 0.0396 0.0484 0.0470

200 0.3 0.0490 0.0530 0.0528 0.0534
0.5 0.0552 0.0616 0.0540 0.0572
0.7 0.0498 0.0508 0.0516 0.0514
0.8 0.0446 0.0432 0.0466 0.0480

Table 4.5: Size of the test for Case 1 with Z continuous with distribution U(−20, 20) under
the null hypothesis.

Model 1 Model 2
n CvM KS CvM KS

50 0.9890 0.9862 0.4200 0.4148

100 0.9994 0.9992 0.7330 0.7402

200 1 1 0.9670 0.9746

Table 4.6: Power of the test for Case 1 with Z continuous with distribution U(−20, 20)
under the alternative hypothesis.

of p(·), is given the highest probability.

Even when Z is not a continuous covariate, the data are also generated from

Model 1 in the following way: the values of Z, {b1, b2, b3}, will be those that, in

Model 1, yield fixed probabilities p(b1) = p(b2) = p(b3) ∈ {0.2, 0.3, 0.5, 0.7}, under

H0 (see Table 4.7), and p(b1) ∈ {0.1, 0.3}, p(b2) = 0.5 and p(b3) ∈ {0.7, 0.9} (see

Table 4.8) under H1. This procedure is also applicable in Case 2 when X and/or Z

are discrete, for the uncure probability p(x, z) in (4.10).

The results in Table 4.7 (Table 4.8) were obtained under the null (alternative)

hypothesis. We can see that, for the different values of p, the results under the null

hypothesis are very similar to the significance level, α = 0.05, regardless the value

of p(bi), i = 1, 2, 3. Moreover, under the alternative hypothesis, the power of the

test is very close to 1 for large sample sizes and when the values of the incidence, as
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a function of z, are more distant, that is, p(b1) = 0.1, p(b2) = 0.5 and p(b3) = 0.9

and the values of Z are equiprobable.

n p CvM KS

50 0.2 0.0472 0.0530
0.3 0.0472 0.0536
0.5 0.0474 0.0534
0.7 0.0488 0.0436

100 0.2 0.0502 0.0526
0.3 0.0596 0.0610
0.5 0.0490 0.0534
0.7 0.0498 0.0494

200 0.2 0.0526 0.0510
0.3 0.0504 0.0528
0.5 0.0518 0.0512
0.7 0.0514 0.0536

Table 4.7: Size of the test for Case 1 with Z discrete with probability mass function
(Πz(b1),Πz(b2),Πz(b3)) = (1/3, 1/3, 1/3) under the null hypothesis, H0 : E(ν|Z) = 1 − p.
Note: the distribution of Z does not have any influence on the results.

n (Πz(b1),Πz(b2),Πz(b3)) p(b1) p(b2) p(b3) CvM KS

50 (1/3, 1/3, 1/3) 0.3 0.5 0.7 0.2968 0.2764
(3/5, 1/5, 1/5) 0.3 0.5 0.7 0.2690 0.2528
(1/3, 1/3, 1/3) 0.1 0.5 0.9 0.8574 0.8214
(3/5, 1/5, 1/5) 0.1 0.5 0.9 0.8076 0.7880

100 (1/3, 1/3, 1/3) 0.3 0.5 0.7 0.4800 0.4358
(3/5, 1/5, 1/5) 0.3 0.5 0.7 0.4264 0.4090
(1/3, 1/3, 1/3) 0.1 0.5 0.9 0.9804 0.9714
(3/5, 1/5, 1/5) 0.1 0.5 0.9 0.9504 0.9440

200 (1/3, 1/3, 1/3) 0.3 0.5 0.7 0.6970 0.6556
(3/5, 1/5, 1/5) 0.3 0.5 0.7 0.6376 0.6218
(1/3, 1/3, 1/3) 0.1 0.5 0.9 0.9982 0.9966
(3/5, 1/5, 1/5) 0.1 0.5 0.9 0.9964 0.9956

Table 4.8: Power of the test for Case 1 with Z discrete, with values {b1, b2, b3}, under the
alternative hypothesis.

Z binary

Let Z be a binary variable with values b1 = 0, b2 = 1. We consider 3 situa-

tions depending on the probability mass function, (Πz(b1),Πz(b2)). In the first one,

(9/10, 1/10), in the second one, (7/10, 3/10) and in the third one, (1/2, 1/2). The
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binary covariate Z was generated from Model 1 as explained for a discrete covariate.

Let p(0) = p(b1) and p(1) = p(b2). Under H0, p(0) = p(1) = p ∈ {0.2, 0.3, 0.5, 0.7},
whereas under H1, p(0),p(1) ∈ {0.2, 0.3, 0.5, 0.7}, with p(0) > p(1).

Table 4.9 shows the results obtained under the null hypothesis. Similarly as it

happened in the case where Z is discrete, for the different values of p, the size of

the test is very close to the significance level, α = 0.05. Furthermore, Table 4.10

contains the results under the alternative hypothesis. As it was expected, the lowest

power is obtained when the values of p(0) and p(1) are similar. It also happens

when p(0) and p(1) are small, since in such a case the probability of cure is high,

and therefore the censoring percentage is large (see, for instance, the case p(0) = 0.3

and p(1) = 0.2 in Table 4.10). On the contrary, if p(0) = 0.7 and p(1) = 0.2, then the

power of the test is very close to 1 for sample sizes n = 200 and when Πz(1) = 3/10

or Πz(1) = 1/2.

p n CvM KS

50 0.0536 0.0534
0.2 100 0.0528 0.0536

200 0.0512 0.0516

50 0.0538 0.0542
0.3 100 0.0578 0.0582

200 0.0514 0.0518

50 0.0530 0.0528
0.5 100 0.0590 0.0588

200 0.0510 0.0512

50 0.0506 0.0504
0.7 100 0.0538 0.0544

200 0.0536 0.0538

Table 4.9: Size of the test for Case 1 with Z binary under the null hypothesis.

Z qualitative

A qualitative covariate Z with three possible values {b1, b2, b3} was considered. Two

situations, according to the probability mass function given by (1/3, 1/3, 1/3) and

(3/5, 1/5, 1/5), were studied. The observations were simulated from Model 1, finding

the numerical values (b′1, b
′
2, b
′
3) that yield p(b′1) = 0.5, p(b′2) = 0.2, and p(b′3) = 0.7,

that is, b′i, i = 1, 2, 3 denotes the value z at which p(z) was evaluated to get p(bi).

Note that the power of the test will be higher when the values b2 and b3 are

more frequent in the sample, since p(b2) = 0.2 and p(b3) = 0.7 correspond to
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CvM KS
Πz(1) Πz(1)

p(0) p(1) n 1/10 3/10 1/2 1/10 3/10 1/2

50 0.1460 0.1722 0.1576 0.1418 0.1686 0.1586
0.7 0.5 100 0.1760 0.2462 0.2458 0.1730 0.2440 0.2460

200 0.2354 0.3658 0.3806 0.2342 0.3626 0.3816

50 0.2766 0.4350 0.4548 0.2682 0.4288 0.4586
0.7 0.3 100 0.3964 0.6184 0.6658 0.3924 0.6164 0.6658

200 0.5692 0.8260 0.8712 0.5676 0.8250 0.8718

50 0.3838 0.5830 0.6160 0.3762 0.5746 0.6174
0.7 0.2 100 0.5158 0.7836 0.8316 0.5112 0.7828 0.8322

200 0.6968 0.9332 0.9614 0.6946 0.9333 0.9616

50 0.1114 0.1478 0.1418 0.1068 0.1426 0.1408
0.5 0.3 100 0.1302 0.1998 0.2096 0.1280 0.2002 0.2118

200 0.1756 0.2910 0.3250 0.1740 0.2912 0.3258

50 0.1558 0.2432 0.2674 0.1508 0.2382 0.2664
0.5 0.2 100 0.2076 0.3548 0.3936 0.2058 0.3522 0.3956

200 0.3052 0.5308 0.5936 0.3032 0.5294 0.5954

50 0.0670 0.0806 0.0818 0.0626 0.0780 0.0814
0.3 0.2 100 0.0722 0.0900 0.0886 0.0706 0.0900 0.0894

200 0.0834 0.1018 0.1106 0.0828 0.1004 0.1114

Table 4.10: Power of the test for Case 1 with Z binary under the alternative hypothesis.

the extreme values of p(·) as a function of Z. On the contrary, the power will

be lower if b1 is more frequent than b2 or b3, because p(b1) = 0.5 is an interme-

diate value between 0.2 and 0.7. Therefore, we expect to obtain low power when

(Πz(b1),Πz(b2),Πz(b3)) = (3/5, 1/5, 1/5), whereas with probability mass function

(1/3, 1/3, 1/3) the power of the test will be higher.

The results in Table 4.11, which were obtained under the null hypothesis, are

very similar to the significance level, α = 0.05. Regarding the alternative hypothesis

(see Table 4.12), the power of the test is higher for large sample sizes and when the

probability mass function of Z is equal in probability, as expected.

Computational summary in Case 1

All the simulation studies were coded in R language. The procedures were drawn

in the computers of the Department of Mathematics, at the Faculty of Computer

Sciences in the University of A Coruña. The computational times taken for each

study are shown in Table 4.13.
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n p CvM KS

50 0.2 0.0512 0.0526
0.5 0.0494 0.0520

100 0.2 0.0544 0.0538
0.5 0.0488 0.0532

200 0.2 0.0486 0.0500
0.5 0.0456 0.0516

Table 4.11: Size of the test for Case 1 with Z qualitative under the null hypothesis with
Πz(b1) = Πz(b2) = Πz(b3) = 1/3. Note: the probability mass function of Z does not have
any influence on the results.

n (Πz(b1),Πz(b2),Πz(b3)) p(b1) p(b2) p(b3) CvM KS

50 (1/3, 1/3, 1/3) 0.5 0.2 0.7 0.3402 0.3408
(3/5, 1/5, 1/5) 0.5 0.2 0.7 0.1680 0.1606

100 (1/3, 1/3, 1/3) 0.5 0.2 0.7 0.5588 0.5600
(3/5, 1/5, 1/5) 0.5 0.2 0.7 0.2748 0.2690

200 (1/3, 1/3, 1/3) 0.5 0.2 0.7 0.8028 0.7994
(3/5, 1/5, 1/5) 0.5 0.2 0.7 0.4552 0.4448

Table 4.12: Power of the test for Case 1 with Z qualitative under the alternative hypothesis.

Type of Z Scenario Computational time

Continuous Model 1 270610 sec (75.20 h)
Model 2 269420 sec (74.84 h)

Discrete Model 1 970 sec (16.17 min)

Binary Model 1 3560 sec (59.33 min)

Qualitative Model 1 10050 sec (2.79 h)

Table 4.13: Computational times for simulations in Case 1, considering sample size n = 100,
κ = 5000 trials and B = 2000 bootstrap resamples.

4.6.2 Case 2

In this case, W = (X,Z) has dimension m + 1, with a one-dimensional covariate

X and a m-dimensional covariate Z. For the sake of simplicity, in this simulation

study we suppose that Z is also one-dimensional.

We consider two different scenarios, Model 1 and Model 2, when X and Z are

continuous. In any other case, we only consider Model 1.

Model 1 Under the null hypothesis, H0 : E(ν|X,Z) = 1 − p(X), the probability

of uncure p(x) is that in (4.8), corresponding to Model 1 in Section 4.6.1. Under
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the alternative, the incidence is 1− p(x, z), where

p(x, z) =
exp(β0 + β1x(1 + β2z))

1 + exp(β0 + β1x(1 + β2z))
, (4.10)

with β0 = 0.476, β1 = 0.358 and β2 = 0.225, and the latency is:

S0(t|x, z) =


exp(−λ(x,z)t)−exp(−λ(x,z)τ0)

1−exp(−λ(x,z)τ0) if t ≤ τ0

0 if t > τ0

,

where τ0 = 4.605 and λ (x, z) = exp ((x+ z + 20)/40). Figure 4.2 (top) shows the

incidence function in Model 1.

Model 2 The probability of uncure, p(x), under H0 : E(ν|X,Z) = 1 − p(X), is

that in (4.9), corresponding to Model 2 in Section 4.6.1. Under the alternative, the

probability of uncure is:

p(x, z) =
exp

(
β0 + β1x+ β2x

2 + β3x
3(1 + β4z)

)
1 + exp (β0 + β1x+ β2x2 + β3x3(1 + β4z))

,

with β0 = 0.0476, β1 = −0.2558, β2 = −0.0027, β3 = 0.0020 and β4 = 0.5, and the

survival function of the susceptible population is

S0(t|x, z) =
1

2

(
exp(−α(x, z)t5) + exp(−100t5)

)
,

with

α(x, z) =
1

5
exp((x+ z + 20)/40).

Figure 4.2 (bottom) shows the incidence function in Model 2.

Remark: Similarly as in Section 4.6.1, we study different situations depending on

the type of X and Z. If both X and Z are continuous, the data are simulated from

Models 1 and 2. If X and/or Z are not continuous, the data follow only Model 1,

with functions p(·), S0(t|·) and G(·) defined there. For binary and qualitative co-

variates, the computation of the probability of cure deserves special attention, since

that probability can not be obtained directly evaluating p(·) in (4.10) in the values

ai (and/or bj) of X (and/or Z), because they are not numerical. Therefore, let a′i
(and b′j) be the numerical values associated to ai for X (and to bj for Z), in the

sense that the distributions of Y and C conditioned on ai (and/or bj) are the same as

the conditional distributions given a′i (and/or b′j). Under the alternative hypothesis,

the probability of cure derives from evaluating the function p(·) in (4.10) not in ai

and/or bj , but in the corresponding numerical values, a′i and/or b′j . Under the null
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Figure 4.2: Probability of cure for Case 2 in Model 1 (top) and Model 2 (bottom), under
the null (left) and under the alternative (right) hypothesis, for different values of z.

hypothesis, let x be the value of the covariate X, then p(x, b1) = p(x, b2) = p(x, b3)

is given by function p(·) in (4.10) evaluated in (x, b̄), with b̄ suitably selected to get

the desired constant probability of cure.

Furthermore, under H0, if the covariates are not continuous, we define the dis-

tribution function of the variable Y :

F (y|x = 0) = F 0
1 (y|x = a′1) and F (y|x = 1) = F 0

1 (y|x = a′2)
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and the distribution function of the censoring variable,

G(y|x = 0) = G0
1(y|x = a′1) and G(y|x = 1) = G0

1(y|x = a′2),

where F 0
1 and G0

1 are the conditional distribution functions for Model 1 under H0.

Analogously, under the alternative hypothesis:

F (y|x = 0, z = bi) = F 1
1 (y|x = a′1, z = bi), with i = 1, 2, 3

and

G(y|x = 1, z = bi) = G1
1(y|x = a′2, z = bi), with i = 1, 2, 3,

where F 1
1 and G1

1 are the conditional distribution functions for Model 1 under H1.

Note that the distribution function of the variable Y , F (y|x), and the distribu-

tion function of the censoring variable, G(y|x), are the corresponding distribution

functions of Model 1 considered in the simulation studies for Case 2.

X continuous, Z continuous

We consider two continuous covariates X, Z with distribution U(−20, 20) and Mo-

dels 1 and 2 (see Figure 4.2). Since we do not have a bandwidth selection method

for h in (4.6), we consider the grid of bandwidths h = Cn−1/3, where C = 10, 20, 40

and 60. Our numerical experience shows that g = 2h is a good choice for the

pilot bandwidth. Under H0, the results are very similar to the significance level,

α = 0.05, except for very large bandwidths (see Table 4.14). Furthermore, under

H1, the power of the test is considerably high (see Table 4.15).

X continuous, Z discrete

We consider a continuous covariate X with distribution U(−20, 20) and a discrete

covariate Z with values (b1, b2, b3) = (−5.2019,−3.6964,−1.3296). The cure proba-

bility under H0 is shown in Figure 4.3. Under the alternative hypothesis, we study

two different scenarios: values (b1, b2, b3) = (−3.6964,−1.3296, 1.0371) and values

(b1, b2, b3) = (−7.4671,−1.3296, 4.8079), with two probability mass functions for

each scenario, (1/3, 1/3, 1/3) and (3/5, 1/5, 1/5). Figure 4.4 shows the probability

of cure under H1, 1−p(x, z), for the first and the second situations with the different

values of bi. Note that higher power is expected in the second scenario, since the

incidence for these specific values of bi is more variable.

Table 4.16 shows the results under the null hypothesis, which are very similar

to the significance level, α = 0.05, except in the situations where the bandwidth is
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Model 1 Model 2
n h CvM KS CvM KS

50 2.71 0.0504 0.0524 0.0494 0.0500
5.43 0.0428 0.0436 0.0464 0.0444
10.86 0.0372 0.0486 0.0448 0.0438
16.28 0.0442 0.0782 0.0692 0.0734

100 2.15 0.0494 0.0514 0.0526 0.0520
4.31 0.0476 0.0556 0.0544 0.0542
8.62 0.0580 0.0708 0.0514 0.0490
12.93 0.0590 0.0988 0.0700 0.0782

200 1.71 0.0436 0.0412 0.0510 0.0496
3.42 0.0420 0.0448 0.0558 0.0542
6.84 0.0522 0.0606 0.0508 0.0494
10.26 0.0590 0.0948 0.0614 0.0708

Table 4.14: Size of the test for Case 2 with X and Z continuous with distribution
U(−20, 20), under the null hypothesis.

Model 1 Model 2
n h CvM KS CvM KS

50 2.71 0.2016 0.2182 0.2632 0.2466
5.43 0.2596 0.2698 0.3244 0.3074
10.86 0.2610 0.2696 0.3210 0.3150
16.28 0.2278 0.2442 0.3084 0.3152

100 2.15 0.3906 0.4736 0.6228 0.5662
4.31 0.5132 0.5556 0.6918 0.6128
8.62 0.5160 0.5564 0.6864 0.6320
12.93 0.4718 0.5206 0.6746 0.6438

200 1.71 0.7428 0.8554 0.9730 0.9364
3.42 0.8492 0.9156 0.9832 0.9486
6.84 0.8582 0.9114 0.9830 0.9568
10.26 0.8358 0.8914 0.9852 0.9576

Table 4.15: Power of the test for Case 2 with X and Z continuous with distribution
U(−20, 20), under the alternative hypothesis.

very large. On the contrary as in Case 2, when X and Z are continuous covariates,

the best choice of the bandwidth is h = 5.43 for n = 50, h = 4.31 for n = 100 and

h = 3.42 for n = 200, that is, h = Cn−1/3 with C = 20.

Regarding the alternative hypothesis, Table 4.17 contains the results for both

considered scenarios. As expected, the power of the test is higher in the second
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Figure 4.3: Probability of cure, 1 − p(x, b1) = 1 − p(x, b2) = 1 − p(x, b3), under the null
hypothesis, with X continuous and Z discrete, for Case 2 in Model 1.

Figure 4.4: Probability of cure, 1 − p(x, bi), under the alternative hypothesis, with X
continuous and Z discrete, for Case 2 in Model 1. On the left, we consider b1 = −3.6964 (thin
line), b2 = −1.3296 (medium line) and b3 = 1.0371 (thick line). On the right, b1 = −7.4671
(thin line), b2 = −1.3296 (medium line) and b3 = 4.8079 (thick line).

scenario, since the function p(x, bi) is more variable as a function of Z (see Figure

4.4). Note that in Scenario 1, the power is lower due to the similarity between the

functions p(x, bi), for i = 1, 2, 3. In addition, the best results are obtained with

bandwidth h = 10.86 for n = 50, h = 8.62 for n = 100 and h = 6.84 for n = 200,

that is, h = Cn−1/3 with C = 40.
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n h CvM KS

50 2.71 0.0588 0.0570
5.43 0.0468 0.0562
10.86 0.0466 0.0730
16.28 0.0618 0.1508

100 2.15 0.0482 0.0494
4.31 0.0478 0.0514
8.62 0.0638 0.0856
12.93 0.0672 0.1604

200 1.71 0.0426 0.0406
3.42 0.0406 0.0430
6.84 0.0566 0.0722
10.26 0.0708 0.1454

Table 4.16: Size of the test for Case 2 and Model 1, with X continuous with distri-
bution U(−20, 20), and Z discrete with values {b1, b2, b3} and probability mass function
(1/3, 1/3, 1/3), under the null hypothesis (see Figure 4.3). Note that under H0, the proba-
bility mass function does not have any influence on the results.

X continuous, Z binary

X is a continuous U(−20, 20) variable, and Z is binary with values {0, 1}. The

probabilities of uncure p(x, 0) and p(x, 1) have been computed as follows: under H0,

the function p(x, 0) = p(x, 1) is p(x) in (4.8), given in Model 1 in Section 4.6.1 (see

Figure 4.5). Under H1, p(x, 0) and p(x, 1) are given by p(x, z) in (4.10) evaluated at

b′1 = −5.2019 and b′2 = 1.0371, respectively, in Scenario 1, and in b′1 = −3.6964 and

b′2 = −1.3296 in Scenario 2 (see Figure 4.6). For each situation, 3 probability mass

functions, (Πz(0),Πz(1)) = (1/10, 9/10), (7/10, 3/10) and (1/2, 1/2), are considered.

In Table 4.18 we can see the results under the null hypothesis. For most of the

bandwidths, except for the largest ones, the size of the test is very similar to the

significance level, α = 0.05. Likewise in Case 2 when X is continuous and Z is dis-

crete, the best choice of the bandwidth is h = 5.43 for n = 50, h = 4.31 for n = 100

and h = 3.42 for n = 200. Note that these values of the bandwidth correspond to

h = Cn−1/3, with C = 20.

The results under H1 are shown in Table 4.19. As expected, in the second situa-

tion we obtained low power, since p(x, 0) and p(x, 1) are very similar functions (see

Figure 4.6). On the contrary, in the first situation the power is higher because the

functions p(x, 0) and p(x, 1) present more separate shapes.
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Scenario 1 Scenario 2
n h (Πz(b1),Πz(b2),Πz(b3)) CvM KS CvM KS

50 2.71 (1/3, 1/3, 1/3) 0.0496 0.0534 0.1686 0.2208
5.43 (1/3, 1/3, 1/3) 0.0708 0.0686 0.2348 0.2690
10.86 (1/3, 1/3, 1/3) 0.0726 0.0700 0.2390 0.2662
16.28 (1/3, 1/3, 1/3) 0.0592 0.0674 0.1984 0.2206
2.71 (3/5, 1/5, 1/5) 0.0590 0.0606 0.3118 0.3244
5.43 (3/5, 1/5, 1/5) 0.0842 0.0798 0.3746 0.3888
10.86 (3/5, 1/5, 1/5) 0.0820 0.0772 0.3820 0.4214
16.28 (3/5, 1/5, 1/5) 0.0674 0.0648 0.3744 0.4226

100 2.15 (1/3, 1/3, 1/3) 0.0540 0.0772 0.3298 0.4282
4.31 (1/3, 1/3, 1/3) 0.0970 0.1102 0.4422 0.5224
8.62 (1/3, 1/3, 1/3) 0.1100 0.1140 0.4628 0.5276
12.93 (1/3, 1/3, 1/3) 0.0878 0.0910 0.4118 0.4776
2.15 (3/5, 1/5, 1/5) 0.0964 0.1046 0.6026 0.6068
4.31 (3/5, 1/5, 1/5) 0.1372 0.1428 0.6630 0.6730
8.62 (3/5, 1/5, 1/5) 0.1378 0.1432 0.6640 0.6818
12.93 (3/5, 1/5, 1/5) 0.1130 0.1120 0.6572 0.6900

200 1.71 (1/3, 1/3, 1/3) 0.0884 0.1232 0.6638 0.8134
3.42 (1/3, 1/3, 1/3) 0.1566 0.1868 0.7934 0.8828
6.84 (1/3, 1/3, 1/3) 0.1866 0.1996 0.8116 0.8836
10.26 (1/3, 1/3, 1/3) 0.1638 0.1628 0.7798 0.8532
1.71 (3/5, 1/5, 1/5) 0.1632 0.1858 0.9104 0.9240
3.42 (3/5, 1/5, 1/5) 0.2284 0.2540 0.9406 0.9444
6.84 (3/5, 1/5, 1/5) 0.2310 0.2558 0.9380 0.9444
10.26 (3/5, 1/5, 1/5) 0.1968 0.2102 0.9360 0.9390

Table 4.17: Power of the test for Case 2 and Model 1, with X continuous with distribution
U(−20, 20), and Z discrete under the alternative hypothesis (see Figure 4.4).

Figure 4.5: Probability of cure, 1 − p(x, 0) = 1 − p(x, 1), under the null hypothesis, with
X continuous and Z binary, for Case 2 in Model 1.
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Figure 4.6: Probability of cure, 1 − p(x, 0) (thin line) and 1 − p(x, 1) (thick line), under
the alternative hypothesis, with X continuous and Z binary, for Case 2 in Model 1, with
p(x, 0) and p(x, 1) given by p(x, z) in (4.10) evaluated at (x, b′1) and (x, b′2), where (b′1, b

′
2) =

(−5.2019, 1.0371) (left) and (b′1, b
′
2) = (−3.6964,−1.3296) (right).

n h CvM KS

50 2.71 0.0626 0.0584
5.43 0.0544 0.0602
10.86 0.0540 0.0930
16.28 0.0796 0.1996

100 2.15 0.0534 0.0518
4.31 0.0510 0.0564
8.62 0.0664 0.0956
12.93 0.0782 0.1984

200 1.71 0.0410 0.0420
3.42 0.0404 0.0450
6.84 0.0554 0.0730
10.26 0.0720 0.1696

Table 4.18: Size of the test for Case 2, with X continuous with distribution U(−20, 20),
and Z binary with values {0, 1} and probability mass function (1/2, 1/2), under the null
hypothesis (see Figure 4.5).
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Scenario 1 Scenario 2
n h (Πz(0),Πz(1)) CvM KS CvM KS

50 2.71 (9/10, 1/10) 0.1382 0.1074 0.0294 0.0258
5.43 (9/10, 1/10) 0.1838 0.1470 0.0554 0.0456
10.86 (9/10, 1/10) 0.1916 0.1654 0.0622 0.0982
16.28 (9/10, 1/10) 0.1996 0.1850 0.0422 0.0514
2.71 (7/10, 3/10) 0.1910 0.1882 0.0540 0.0524
5.43 (7/10, 3/10) 0.2404 0.2378 0.0838 0.0830
10.86 (7/10, 3/10) 0.2378 0.2432 0.0454 0.0572
16.28 (7/10, 3/10) 0.2230 0.2354 0.0596 0.0656
2.71 (1/2, 1/2) 0.1778 0.2266 0.0484 0.0610
5.43 (1/2, 1/2) 0.2370 0.2724 0.0904 0.1068
10.86 (1/2, 1/2) 0.2472 0.2794 0.0534 0.0750
16.28 (1/2, 1/2) 0.2276 0.2482 0.0638 0.0742

100 2.15 (9/10, 1/10) 0.2270 0.1876 0.0334 0.0324
4.31 (9/10, 1/10) 0.2656 0.2310 0.0816 0.0746
8.62 (9/10, 1/10) 0.2744 0.2576 0.0430 0.0586
12.93 (9/10, 1/10) 0.2858 0.2760 0.0478 0.0536
2.15 (7/10, 3/10) 0.3712 0.3826 0.0746 0.0810
4.31 (7/10, 3/10) 0.4336 0.4368 0.1498 0.1594
8.62 (7/10, 3/10) 0.4254 0.4438 0.0450 0.0548
12.93 (7/10, 3/10) 0.4040 0.4284 0.0842 0.0822
2.15 (1/2, 1/2) 0.3496 0.4320 0.0630 0.0900
4.31 (1/2, 1/2) 0.4440 0.5068 0.1478 0.1920
8.62 (1/2, 1/2) 0.4454 0.5034 0.0534 0.0694
12.93 (1/2, 1/2) 0.4052 0.4624 0.0972 0.0998

200 1.71 (9/10, 1/10) 0.3784 0.3440 0.0644 0.0578
3.42 (9/10, 1/10) 0.4078 0.3778 0.1356 0.1394
6.84 (9/10, 1/10) 0.4112 0.3900 0.0458 0.0532
10.26 (9/10, 1/10) 0.4252 0.4036 0.0778 0.0728
1.71 (7/10, 3/10) 0.6498 0.6810 0.1144 0.1306
3.42 (7/10, 3/10) 0.6872 0.7192 0.1568 0.1792
6.84 (7/10, 3/10) 0.6764 0.7128 0.1574 0.1768
10.26 (7/10, 3/10) 0.6572 0.6944 0.1288 0.1430
1.71 (1/2, 1/2) 0.6546 0.7684 0.1136 0.1670
3.42 (1/2, 1/2) 0.7434 0.8184 0.2652 0.3582
6.84 (1/2, 1/2) 0.7432 0.8144 0.0592 0.0704
10.26 (1/2, 1/2) 0.7156 0.7870 0.1616 0.1896

Table 4.19: Power of the test for Case 2 and Model 1, with X continuous with distribution
U(−20, 20), and Z binary with values {0, 1}, under the alternative hypothesis (see Figure
4.6).
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X continuous, Z qualitative

As in the previous cases, X is U(−20, 20), and Z is a categorical variable with values

{b1, b2, b3}, with probability mass functions (1/3, 1/3, 1/3) and (3/5, 1/5, 1/5). The

probabilities of uncure, p(x, b1) = p(x, b2) = p(x, b3), under H0, are the function p(x)

in (4.8) in Model 1 of Section 4.6.1 (see Figure 4.7, left). Under H1, the incidence

functions, p(x, bi) with i = 1, 2, 3, are given by the function p(x, z) in (4.10), evalua-

ted at (x, b′1), (x, b′2) and (x, b′3), where (b′1, b
′
2, b
′
3) = (−5.2019,−1.3296, 1.0371) (see

Figure 4.7, right).

Figure 4.7: Probabilities of cure, 1−p(x, z), for Case 2 with X continuous U(−20, 20) and
Z qualitative with values {b1, b2, b3}. On the left, 1− p(x, z) under the null hypothesis. On
the right, 1 − p(x, b1) (thin), 1 − p(x, b2) (medium) and 1 − p(x, b3) (thick line), given by
p(x, z) in (4.10) evaluated at (x, b′1), (x, b′2) and (x, b′3), where b′1 = −5.2019, b′2 = −1.3296
and b′3 = 1.0371.

The results under the null (alternative) hypothesis are shown in Table 4.20 (Table

4.21). Under the null hypothesis, the best choice of the bandwidth is h = 5.43 for

n = 50, h = 2.15 for n = 100 and h = 1.71 for n = 200. Moreover, under H1 we

obtain higher power when using h = 16.28 for n = 50, h = 8.62 or 12.93 for n = 100

and h = 6.84 or 10.26 for n = 200, that is, h = Cn−1/3 with C = 60.

X discrete, Z continuous

The variable X is discrete with values {a1, a2, a3}, and Z is U(−20, 20). We consider

two scenarios depending on the values of X. In the first scenario, a1 = −3.6964,

a2 = −1.3296 and a3 = 1.0371; and in the second one, a1 = −7.4671, a2 = −1.3296

and a3 = 4.8079. Furthermore, the probability mass functions considered are
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n h CvM KS

50 2.71 0.0520 0.0600
5.43 0.0448 0.0554
10.86 0.0450 0.0832
16.28 0.0558 0.1546

100 2.15 0.0436 0.0530
4.31 0.0414 0.0560
8.62 0.0584 0.0886
12.93 0.0656 0.1538

200 1.71 0.0406 0.0480
3.42 0.0374 0.0480
6.84 0.0584 0.0800
10.26 0.0780 0.1462

Table 4.20: Size of the test for Case 2 with X continuous with distribution U(−20, 20), and
Z qualitative with values {b1, b2, b3}, with probability mass function (1/3, 1/3, 1/3), under
the null hypothesis (see Figure 4.7, left).

(1/3, 1/3, 1/3) and (3/5, 1/5, 1/5) for each scenario. The incidence, 1 − p(ai, z),

reduces, under H0, to 1− p(ai), with i = 1, 2, 3, given by the function p(x) in (4.8)

of Model 1 in Section 4.6.1, evaluated at the aforementioned values ai of X (see

Figure 4.8). Under H1, the incidence, 1 − p(ai, z), can be obtained from p(x, z) in

(4.10) of Model 1 in Section 4.6.2 (see Figure 4.9).

Figure 4.8: Probability of cure, 1 − p(ai, z), with i = 1, 2, 3, under H0 for Case 2, where
X is discrete with values {a1, a2, a3}, and Z is continuous with distribution U(−20, 20). On
the left, for Scenario 1, we consider a1 = −3.6964 (thin line), a2 = −1.3296 (medium line)
and a3 = 1.0371 (thick line). On the right, for Scenario 2, with a1 = −7.4671 (thin line),
a2 = −1.3296 (medium line) and a3 = 4.8079 (thick line).
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n h (Πz(b1),Πz(b2),Πz(b3)) CvM KS

50 2.71 (1/3, 1/3, 1/3) 0.0976 0.1270
5.43 (1/3, 1/3, 1/3) 0.1382 0.1598
10.86 (1/3, 1/3, 1/3) 0.1562 0.1990
16.28 (1/3, 1/3, 1/3) 0.1686 0.2448
2.71 (3/5, 1/5, 1/5) 0.1592 0.1536
5.43 (3/5, 1/5, 1/5) 0.2086 0.2018
10.86 (3/5, 1/5, 1/5) 0.2090 0.2176
16.28 (3/5, 1/5, 1/5) 0.1920 0.2200

100 2.15 (1/3, 1/3, 1/3) 0.1796 0.2524
4.31 (1/3, 1/3, 1/3) 0.2452 0.3160
8.62 (1/3, 1/3, 1/3) 0.2796 0.3730
12.93 (1/3, 1/3, 1/3) 0.2858 0.4276
2.15 (3/5, 1/5, 1/5) 0.3202 0.3336
4.31 (3/5, 1/5, 1/5) 0.3848 0.3876
8.62 (3/5, 1/5, 1/5) 0.3868 0.4038
12.93 (3/5, 1/5, 1/5) 0.3550 0.4060

200 1.71 (1/3, 1/3, 1/3) 0.3666 0.5278
3.42 (1/3, 1/3, 1/3) 0.4698 0.6044
6.84 (1/3, 1/3, 1/3) 0.5112 0.6566
10.26 (1/3, 1/3, 1/3) 0.5212 0.6988
1.71 (3/5, 1/5, 1/5) 0.6048 0.6342
3.42 (3/5, 1/5, 1/5) 0.6532 0.6804
6.84 (3/5, 1/5, 1/5) 0.6410 0.6850
10.26 (3/5, 1/5, 1/5) 0.6068 0.6772

Table 4.21: Power of the test for Case 2 with X continuous with distribution U(−20, 20),
and Z qualitative with values {b1, b2, b3} under H1 (see Figure 4.7, right).

The results under the null hypothesis are shown in Table 4.22. For the different

values of the probability mass functions of X, Πx(ai), with i = 1, 2, 3, the results

are very close to the significance level, α = 0.05. Table 4.23 shows the results under

the alternative hypothesis. Note that in Scenario 1, p(a1, b1) = 0.3, p(a2, b2) = 0.5

and p(a3, b3) = 0.7, whereas in Scenario 2, p(a1, b1) = 0.1, p(a2, b2) = 0.5 and

p(a3, b3) = 0.9. The highest power is obtained when we consider that the proba-

bility mass function of X is (Πx(a1),Πx(a2),Πx(a3)) = (3/5, 1/5, 1/5), that is, the

power of the test is higher when the extreme values are more frequent (i.e. when

p(a1) has more weight).
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Figure 4.9: Probability of cure, 1 − p(ai, z), with i = 1, 2, 3, under H1 for Case 2, where
X is discrete with values {a1, a2, a3}, and Z is continuous with distribution U(−20, 20). On
the left, p(ai, z) in (4.10) for Scenario 1, considering a1 = −5.2019 (thin line), a2 = −1.3296
(medium line) and a3 = 1.0371 (thick line). On the right, p(ai, z) in (4.10) for Scenario 2,
with a1 = −7.4671 (thin line), a2 = −1.3296 (medium line) and a3 = 4.8079 (thick line).

Scenario 1 Scenario 2
n (Πx(a1),Πx(a2),Πx(a3)) CvM KS CvM KS

50 (1/3, 1/3, 1/3) 0.0498 0.0602 0.0540 0.0570
(3/5, 1/5, 1/5) 0.0512 0.0612 0.0440 0.0558

100 (1/3, 1/3, 1/3) 0.0518 0.0584 0.0500 0.0560
(3/5, 1/5, 1/5) 0.0454 0.0494 0.0420 0.0498

200 (1/3, 1/3, 1/3) 0.0494 0.0534 0.0512 0.0576
(3/5, 1/5, 1/5) 0.0476 0.0504 0.0536 0.0578

Table 4.22: Size of the test for Case 2 with X discrete, with values {a1, a2, a3}, and Z
continuous with distribution U(−20, 20), under the null hypothesis (see Figure 4.8).

Scenario 1 Scenario 2
n (Πx(a1),Πx(a2),Πx(a3)) CvM KS CvM KS

50 (1/3, 1/3, 1/3) 0.4522 0.4150 0.4276 0.4372
(3/5, 1/5, 1/5) 0.7306 0.7314 0.7478 0.7786

100 (1/3, 1/3, 1/3) 0.7248 0.6818 0.7168 0.7426
(3/5, 1/5, 1/5) 0.9258 0.9260 0.9442 0.9548

200 (1/3, 1/3, 1/3) 0.9466 0.9262 0.9456 0.9540
(3/5, 1/5, 1/5) 0.9944 0.9940 0.9976 0.9986

Table 4.23: Power of the test for Case 2 with X discrete, with values {a1, a2, a3}, and Z
continuous with distribution U(−20, 20), under the alternative hypothesis (see Figure 4.9).
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X discrete, Z discrete

The covariates X and Z are discrete variables with values {a1, a2, a3} and {b1, b2, b3},
respectively. We work with two different situations depending on the corresponding

probability mass functions: in the first one, both for X and Z are (1/3, 1/3, 1/3),

whereas in the second one, both are (3/5, 1/5, 1/5).

Under H1, the values of Z are {b1, b2, b3} = {0.6157,−3.5434,−7.7026}, and

those of X, {a1, a2, a3}, are chosen so p(ai, bj) has high dependency on bj , with

j = 1, 2, 3, only for x = a1 (Scenario 1), for x ∈ {a1, a2} (Scenario 2), and for

x ∈ {a1, a2, a3} (Scenarios 3 and 4). The values {a1, a2, a3} in the four scenarios

are given in Table 4.25. Note that in these last two scenarios more power is expected.

Under H0, the values {a1, a2, a3} of X and {b1, b2, b3} of Z are the same as

those under H1. The probabilities p(ai, b1) = p(ai, b2) = p(ai, b3), with i = 1, 2, 3,

however, are given now by function p in (4.10) evaluated at (ai, b̄), with b̄ suitable

chosen. Two scenarios are considered, one when the probability mass functions of

X and Z are (1/3, 1/3, 1/3), and the other when the probability mass functions are

(3/5, 1/5, 1/5). See Table 4.24 for details.

Scenario 1 p(ai, b1) = p(ai, b2) = p(ai, b3) p(ai, b1) = p(ai, b2) = p(ai, b3)
a1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a2 = −1.1678 (b̄ = −3.4427) 0.5943 (b̄ = −1.7995) 0.5566
a3 = 0.9109 (b̄ = −3.6537) 0.6304 (b̄ = −2.0064) 0.6581

Scenario 2
a1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a2 = −4.5690 (b̄ = −3.4350) 0.5261 (b̄ = −2.0006) 0.3957
a3 = 0.9109 (b̄ = −3.6537) 0.6304 (b̄ = −1.9950) 0.6583

Scenario 3
a1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a2 = −4.5690 (b̄ = −3.4350) 0.5261 (b̄ = −2.0006) 0.3957
a3 = 4.2229 (b̄ = −4.0960) 0.6444 (b̄ = −2.6671) 0.7466

Scenario 4
a1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a2 = −4.5690 (b̄ = −3.4350) 0.5261 (b̄ = −2.0006) 0.3957
a3 = −3.2466 (b̄ = −3.3932) 0.5501 (b̄ = −1.8585) 0.4501

Table 4.24: Uncure probabilities considered underH0, for Case 2 whenX and Z are discrete
with values {a1, a2, a3} and {b1, b2, b3}, respectively. The probability mass functions for both
X and Z are (1/3, 1/3, 1/3) (first column), and (3/5, 1/5, 1/5) (second column). See Remark
in Section 4.6.2 for details.
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b1 = 0.6157 b2 = −3.5434 b3 = −7.7026

Scenario 1 (Least favorable situation)
a1 = −6.5585 0.1 0.5000 0.9000
a2 = −1.1678 0.5 0.5966 0.6862
a3 = 0.9109 0.7 0.6323 0.5590

Scenario 2 (Intermediate situation)
a1 = −6.5585 0.1 0.5000 0.9000
a2 = −4.5690 0.2 0.5360 0.8423
a3 = 0.9109 0.7 0.6323 0.5590

Scenario 3 (Favorable situation a)
a1 = −6.5585 0.1 0.5000 0.9000
a2 = −4.5690 0.2 0.5360 0.8422
a3 = 4.2229 0.9 0.6862 0.3470

Scenario 4 (Favorable situation b)
a1 = −6.5585 0.1 0.5000 0.9000
a2 = −4.5690 0.2 0.5360 0.8423
a3 = −3.2466 0.3 0.5598 0.7905

Table 4.25: Uncure probabilities under H1, for Case 2 when X and Z are discrete with
values {a1, a2, a3} and {b1, b2, b3}, respectively.

Table 4.26 shows the results under the null hypothesis, which are very close to

the significance level even for small sample sizes. The results under the alternative

hypothesis for the 4 scenarios are given in Table 4.27. As expected, the power of the

test is higher in Scenario 4. It is important to highlight that for large sample sizes

(n = 200) and for the probability mass function (3/5, 1/5, 1/5) for both X and Z,

the power is also very close to 1 for the 4 scenarios.

X discrete, Z binary

The variable X is discrete, with values {a1, a2, a3} and probability mass functions

(1/3, 1/3, 1/3) and (3/5, 1/5, 1/5), and Z is binary with values {0, 1} and probability

mass functions (1/2, 1/2) and (7/10, 3/10).

The probabilities p(ai, 0) and p(ai, 1), i = 1, 2, 3, are obtained evaluating p(x, z)

in (4.10). The scenarios under H0 are detailed in Table 4.28. Under H1, we consider

4 scenarios according to the values of X: {a1, a2, a3}, are chosen so there is a high

dependence on the values {0, 1} of Z in p(a1, ·), but not in p(ai, ·), i = 2, 3 (Scenario

1), in p(a1, ·) and p(a2, ·) but not in p(a3, ·) (Scenario 2). In Scenarios 3 and 4, there

is a high dependence on the values {0, 1} in p(ai, ·), i = 1, 2, 3 (see Table 4.29).
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n (Πx(a1),Πx(a2),Πx(a3)) CvM KS

Scenario 1
50 (1/3, 1/3, 1/3) 0.0490 0.0500

(3/5, 1/5, 1/5) 0.0574 0.0556

100 (1/3, 1/3, 1/3) 0.0480 0.0508
(3/5, 1/5, 1/5) 0.0530 0.0538

200 (1/3, 1/3, 1/3) 0.0506 0.0558
(3/5, 1/5, 1/5) 0.0484 0.0504

Scenario 2
50 (1/3, 1/3, 1/3) 0.0458 0.0522

(3/5, 1/5, 1/5) 0.0550 0.0546

100 (1/3, 1/3, 1/3) 0.0514 0.0530
(3/5, 1/5, 1/5) 0.0558 0.0552

200 (1/3, 1/3, 1/3) 0.0536 0.0506
(3/5, 1/5, 1/5) 0.0528 0.0544

Scenario 3
50 (1/3, 1/3, 1/3) 0.0556 0.0564

(3/5, 1/5, 1/5) 0.0540 0.0526

100 (1/3, 1/3, 1/3) 0.0512 0.0568
(3/5, 1/5, 1/5) 0.0544 0.0528

200 (1/3, 1/3, 1/3) 0.0514 0.0498
(3/5, 1/5, 1/5) 0.0560 0.0502

Scenario 4
50 (1/3, 1/3, 1/3) 0.0504 0.0526

(3/5, 1/5, 1/5) 0.0594 0.0538

100 (1/3, 1/3, 1/3) 0.0504 0.0492
(3/5, 1/5, 1/5) 0.0526 0.0512

200 (1/3, 1/3, 1/3) 0.0496 0.0526
(3/5, 1/5, 1/5) 0.0464 0.0490

Table 4.26: Size of the test under H0, for Case 2 with X and Z discrete, with values
{a1, a2, a3} and {b1, b2, b3} (see Table 4.24). The probability mass function of Z equals that
of X.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n (Πx(a1),Πx(a2),Πx(a3)) CvM KS CvM KS CvM KS CvM KS

50 (1/3, 1/3, 1/3) 0.2774 0.2172 0.4592 0.3868 0.3690 0.3286 0.6248 0.5830
(3/5, 1/5, 1/5) 0.5328 0.5060 0.5544 0.5444 0.5556 0.5418 0.5948 0.5998

100 (1/3, 1/3, 1/3) 0.4586 0.3408 0.7262 0.6364 0.6268 0.5902 0.8820 0.8476
(3/5, 1/5, 1/5) 0.7734 0.7580 0.7954 0.7924 0.7748 0.7766 0.8034 0.8284

200 (1/3, 1/3, 1/3) 0.7106 0.5674 0.9344 0.8874 0.8780 0.8696 0.9864 0.9764
(3/5, 1/5, 1/5) 0.9396 0.9336 0.9476 0.9484 0.9438 0.9506 0.9492 0.9642

Table 4.27: Power of the test under H1, for Case 2 with X and Z discrete, with values
{a1, a2, a3} and {b1, b2, b3} (see Table 4.25). The probability mass function of Z equals that
of X.
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Scenario 1
a1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −4.7990) 0.6600
a2 = −1.1678 (b̄ = −3.3900) 0.5931 (b̄ = −5.0579) 0.6303
a3 = 0.9109 (b̄ = −3.7087) 0.6295 (b̄ = −5.3335) 0.6013

Scenario 2
a1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −4.7990) 0.6600
a2 = −4.5690 (b̄ = −3.3809) 0.5211 (b̄ = −4.8281) 0.6496
a3 = 0.9109 (b̄ = −3.7087) 0.6295 (b̄ = −5.3335) 0.6013

Scenario 3
a1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −4.7990) 0.6600
a2 = −4.5690 (b̄ = −3.3809) 0.5211 (b̄ = −4.8281) 0.6496
a3 = 4.2229 (b̄ = −4.3609) 0.6295 (b̄ = −5.6922) 0.5129

Scenario 4
a1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −4.7990) 0.6600
a2 = −4.5690 (b̄ = −3.3809) 0.5211 (b̄ = −4.8281) 0.6496
a3 = −3.2466 (b̄ = −3.3184) 0.5453 (b̄ = −4.8803) 0.6434

Table 4.28: Uncure probabilities considered under H0, for Case 2 when X is discrete with
values {a1, a2, a3}, and Z is binary with values {0, 1}. The probability mass functions for
Z are (1/2, 1/2) (first column), and (7/10, 3/10) (second column). See Remark in Section
4.6.2 for details.

p(ai, 0) p(ai, 1)

Scenario 1 (Least favorable situation)
a1 = −6.5585 0.1 0.9000
a2 = −1.1678 0.5 0.6862
a3 = 0.9109 0.7 0.5590

Scenario 2 (Intermediate situation)
a1 = −6.5585 0.1 0.9000
a2 = −4.5690 0.2 0.8423
a3 = 0.9109 0.7 0.5590

Scenario 3 (Favorable situation a)
a1 = −6.5585 0.1 0.9000
a2 = −4.5690 0.2 0.8423
a3 = 4.2229 0.9 0.3470

Scenario 4 (Favorable situation b)
a1 = −6.5585 0.1 0.9000
a2 = −4.5690 0.2 0.8423
a3 = −3.2466 0.3 0.7905

Table 4.29: Uncure probabilities considered under H1, for Case 2 when X is discrete with
values {a1, a2, a3}, and Z is binary with values {0, 1}. See Remark in Section 4.6.2 for
details.
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n (Πx(a1),Πx(a2),Πx(a3)) (Πz(0),Πz(1)) CvM KS

Scenario 1
50 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0460 0.0566

(3/5, 1/5, 1/5) (7/10, 3/10) 0.0434 0.0488
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0574 0.0632
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0562 0.0578

100 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0468 0.0532
(3/5, 1/5, 1/5) (7/10, 3/10) 0.0486 0.0502
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0512 0.0526
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0502 0.0504

200 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0464 0.0490
(3/5, 1/5, 1/5) (7/10, 3/10) 0.0532 0.0548
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0578 0.0562
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0504 0.0500

Scenario 2
50 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0420 0.0514

(3/5, 1/5, 1/5) (7/10, 3/10) 0.0426 0.0496
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0584 0.0610
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0596 0.0616

100 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0482 0.0526
(3/5, 1/5, 1/5) (7/10, 3/10) 0.0484 0.0514
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0558 0.0522
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0538 0.0540

200 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0512 0.0544
(3/5, 1/5, 1/5) (7/10, 3/10) 0.0504 0.0544
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0462 0.0482
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0502 0.0502

Scenario 3
50 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0424 0.0468

(3/5, 1/5, 1/5) (7/10, 3/10) 0.0402 0.0466
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0568 0.0604
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0558 0.0566

100 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0492 0.0548
(3/5, 1/5, 1/5) (7/10, 3/10) 0.0436 0.0462
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0556 0.0534
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0512 0.0528

200 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0504 0.0530
(3/5, 1/5, 1/5) (7/10, 3/10) 0.0506 0.0512
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0498 0.0506
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0532 0.0516

Scenario 4
50 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0464 0.0524

(3/5, 1/5, 1/5) (7/10, 3/10) 0.0458 0.0510
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0512 0.0540
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0542 0.0544

100 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0464 0.0510
(3/5, 1/5, 1/5) (7/10, 3/10) 0.0422 0.0498
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0544 0.0550
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0508 0.0522

200 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0512 0.0552
(3/5, 1/5, 1/5) (7/10, 3/10) 0.0422 0.0452
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0500 0.0484
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0482 0.0466

Table 4.30: Size of the test under the null hypothesis for Case 2 with X discrete with
values {a1, a2, a3}, and Z binary with values {0, 1} (see Table 4.28).
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Scenario 1 Scenario 2
n (Πx(a1),Πx(a2),Πx(a3)) (Πz(0),Πz(1)) CvM KS CvM KS

50 (1/3, 1/3, 1/3) (7/10, 3/10) 0.3652 0.3396 0.5976 0.5828
(1/3, 1/3, 1/3) (1/2, 1/2) 0.3970 0.3446 0.6574 0.6370
(3/5, 1/5, 1/5) (7/10, 3/10) 0.7212 0.7344 0.7482 0.7744
(3/5, 1/5, 1/5) (1/2, 1/2) 0.7896 0.7862 0.8154 0.8336

100 (1/3, 1/3, 1/3) (7/10, 3/10) 0.5850 0.5244 0.8216 0.8068
(1/3, 1/3, 1/3) (1/2, 1/2) 0.6414 0.5732 0.9002 0.8886
(3/5, 1/5, 1/5) (7/10, 3/10) 0.9106 0.9106 0.9300 0.9408
(3/5, 1/5, 1/5) (1/2, 1/2) 0.9470 0.9458 0.9616 0.9668

200 (1/3, 1/3, 1/3) (7/10, 3/10) 0.8304 0.7732 0.9682 0.9644
(1/3, 1/3, 1/3) (1/2, 1/2) 0.8804 0.8370 0.9888 0.9874
(3/5, 1/5, 1/5) (7/10, 3/10) 0.9888 0.9892 0.9912 0.9924
(3/5, 1/5, 1/5) (1/2, 1/2) 0.9936 0.9938 0.9968 0.9978

Scenario 3 Scenario 4
n (Πx(a1),Πx(a2),Πx(a3)) (Πz(0),Πz(1)) CvM KS CvM KS

50 (1/3, 1/3, 1/3) (7/10, 3/10) 0.4922 0.5186 0.7780 0.7872
(1/3, 1/3, 1/3) (1/2, 1/2) 0.5538 0.5938 0.8232 0.8262
(3/5, 1/5, 1/5) (7/10, 3/10) 0.7308 0.7592 0.7818 0.8164
(3/5, 1/5, 1/5) (1/2, 1/2) 0.8074 0.8254 0.8290 0.8626

100 (1/3, 1/3, 1/3) (7/10, 3/10) 0.7472 0.7960 0.9488 0.9484
(1/3, 1/3, 1/3) (1/2, 1/2) 0.8206 0.8716 0.9722 0.9712
(3/5, 1/5, 1/5) (7/10, 3/10) 0.9200 0.9334 0.9328 0.9520
(3/5, 1/5, 1/5) (1/2, 1/2) 0.9564 0.9640 0.9622 0.9756

200 (1/3, 1/3, 1/3) (7/10, 3/10) 0.9426 0.9606 0.9972 0.9968
(1/3, 1/3, 1/3) (1/2, 1/2) 0.9788 0.9894 0.9988 0.9992
(3/5, 1/5, 1/5) (7/10, 3/10) 0.9866 0.9896 0.9916 0.9956
(3/5, 1/5, 1/5) (1/2, 1/2) 0.9970 0.9982 0.9976 0.9992

Table 4.31: Power of the test under H1, for Case 2 with X discrete with values {a1, a2, a3},
and Z binary with values {0, 1} (see Table 4.29).

The results under the null hypothesis (the alternative hypothesis) are shown in

Table 4.30 (4.31). For all the scenarios, determined by the probability mass func-

tions of X and Z, the size of the test is close to α = 0.05 for all the sample sizes.

The power is higher when Πx = (3/5, 1/5, 1/5) and Πz = (1/2, 1/2). In Scenario 4

it is very close to 1 even for small sample sizes.



4.6. Simulation studies 111

X discrete, Z qualitative

X is a discrete variable with values {a1, a2, a3}, and Z is qualitative with values

{b1, b2, b3}. The cure probabilities, 1 − p(ai, bj), with i, j = 1, 2, 3, are computed

from the function p(x, z) in (4.10), evaluated at the numerical values (ai, b̄), with

i = 1, 2, 3, given in Table 4.32 (under the null hypothesis), and at (ai, b
′
j), with

i, j = 1, 2, 3, given in Table 4.33 (under the alternative hypothesis).

Two different situations are considered within each scenario, one when the pro-

bability mass functions of X and Z are (1/3, 1/3, 1/3), and the other when the

probability mass functions are (3/5, 1/5, 1/5).

Scenario 1 p(ai, b1) = p(ai, b2) = p(ai, b3) p(ai, b1) = p(ai, b2) = p(ai, b3)
a1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a2 = −1.1678 (b̄ = −3.4427) 0.5943 (b̄ = −1.7995) 0.5566
a3 = 0.9109 (b̄ = −3.6537) 0.6304 (b̄ = −2.0064) 0.6581

Scenario 2
a1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a2 = −4.5690 (b̄ = −3.4350) 0.5261 (b̄ = −2.0006) 0.3957
a3 = 0.9109 (b̄ = −3.6537) 0.6304 (b̄ = −1.9950) 0.6583

Scenario 3
a1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a2 = −4.5690 (b̄ = −3.4350) 0.5261 (b̄ = −2.0006) 0.3957
a3 = 4.2229 (b̄ = −4.0960) 0.6444 (b̄ = −2.6671) 0.7466

Scenario 4
a1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a2 = −4.5690 (b̄ = −3.4350) 0.5261 (b̄ = −2.0006) 0.3957
a3 = −3.2466 (b̄ = −3.3932) 0.5501 (b̄ = −1.8585) 0.4501

Table 4.32: Uncure probabilities under H0, for Case 2 when X is discrete with values
{a1, a2, a3}, and Z is qualitative with values {b1, b2, b3}. The probability mass functions for
both X and Z are (1/3, 1/3, 1/3) (first column), and (3/5, 1/5, 1/5) (second column). See
Remark in Section 4.6.2 for details.

The results under H0 (H1) are shown in Table 4.34 (Table 4.35). In the 4

scenarios, the size of the test is very similar to the significance level, α = 0.05.

Similarly as it happened in Case 2 when X and Z are discrete, the highest powers

are obtained if the distribution mass functions of X and Z are (3/5, 1/5, 1/5).



4.6. Simulation studies 112

b′1 = 0.6157 b′2 = −3.5434 b′3 = −7.7026

Scenario 1 (Least favorable situation)
a1 = −6.5585 0.1 0.5000 0.9000
a2 = −1.1678 0.5 0.5966 0.6862
a3 = 0.9109 0.7 0.6323 0.5590

Scenario 2 (Intermediate situation)
a1 = −6.5585 0.1 0.5000 0.9000
a2 = −4.5690 0.2 0.5360 0.8423
a3 = 0.9109 0.7 0.6323 0.5590

Scenario 3 (Favorable situation a)
a1 = −6.5585 0.1 0.5000 0.9000
a2 = −4.5690 0.2 0.5360 0.8423
a3 = 4.2229 0.9 0.6862 0.3470

Scenario 4 (Favorable situation b)
a1 = −6.5585 0.1 0.5000 0.9000
a2 = −4.5690 0.2 0.5360 0.8423
a3 = −3.2466 0.3 0.5598 0.7905

Table 4.33: Uncure probabilities considered under H1, for Case 2 when X is discrete with
values {a1, a2, a3}, and Z is qualitative with values {b1, b2, b3}. See Remark in Section 4.6.2
for details.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n (Πx(a1),Πx(a2),Πx(a3)) CvM KS CvM KS CvM KS CvM KS

50 (1/3, 1/3, 1/3) 0.0424 0.0488 0.0476 0.0552 0.0516 0.0576 0.0442 0.0514
(3/5, 1/5, 1/5) 0.0508 0.0526 0.0494 0.0522 0.0516 0.0514 0.0524 0.0516

100 (1/3, 1/3, 1/3) 0.0470 0.0532 0.0508 0.0546 0.0484 0.0588 0.0494 0.0516
(3/5, 1/5, 1/5) 0.0536 0.0518 0.0508 0.0524 0.0508 0.0536 0.0530 0.0522

200 (1/3, 1/3, 1/3) 0.0488 0.0534 0.0494 0.0534 0.0452 0.0490 0.0504 0.0526
(3/5, 1/5, 1/5) 0.0466 0.0492 0.0540 0.0546 0.0526 0.0500 0.0486 0.0486

Table 4.34: Size of the test under H0 for Case 2 with X discrete with values {a1, a2, a3},
and Z qualitative with values {b1, b2, b3} (see Table 4.32). The probability mass function of
Z equals that of X.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n (Πx(a1),Πx(a2),Πx(a3)) CvM KS CvM KS CvM KS CvM KS

50 (1/3, 1/3, 1/3) 0.2096 0.1866 0.3592 0.3396 0.2882 0.2882 0.5150 0.5294
(3/5, 1/5, 1/5) 0.4952 0.4852 0.5100 0.5152 0.5106 0.5144 0.5384 0.5726

100 (1/3, 1/3, 1/3) 0.3626 0.2966 0.6242 0.5748 0.5144 0.5270 0.8142 0.8052
(3/5, 1/5, 1/5) 0.7394 0.7302 0.7582 0.7698 0.7458 0.7584 0.7728 0.8088

200 (1/3, 1/3, 1/3) 0.7582 0.7698 0.8820 0.8488 0.7894 0.8266 0.9714 0.9678
(3/5, 1/5, 1/5) 0.9262 0.9214 0.9364 0.9438 0.9378 0.9470 0.9400 0.9538

Table 4.35: Power of the test under H1 for Case 2 with X discrete with values {a1, a2, a3},
and Z qualitative with values {b1, b2, b3} (see Table 4.33). The probability mass function of
Z equals that of X.
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X binary, Z continuous

We consider X binary with values {0, 1} and probability mass functions (1/2, 1/2)

and (7/10, 3/10), and Z continuous with distribution U(−20, 20). Two scenarios

are simulated. The probabilities p(0, z) and p(1, z) are given by p(x, z) in (4.10)

evaluated at (a′1, z) and (a′2, z), respectively, in two scenarios: for the first one a′1 =

−3.6964 and a′2 = 1.0371, and for the second one a′1 = −7.4671 and a′2 = 4.8079.

Figures 4.10 and 4.11 show the corresponding cure probabilities under the null and

the alternative hypothesis, respectively.

Figure 4.10: Probability of cure, 1 − p(0, z) (thin line) and 1 − p(1, z) (thick line), under
H0 for Case 2, where X is binary with values {0, 1}, and Z is continuous with distribution
U(−20, 20), for Scenario 1 (left) and Scenario 2 (right).

The results under the null hypothesis are shown in Table 4.36. Note that in Sce-

nario 1, we obtain results very close to the significance level even for small sample

sizes.

In Table 4.37 we can see the results under the alternative hypothesis. On the

contrary as it happened under H0, the best results are obtained in Scenario 2: the

power is almost equal to 1 for n = 200 and when the probability mass function of

X is (7/10, 3/10).
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Figure 4.11: Probability of cure, 1 − p(0, z) (thin line) and 1 − p(1, z) (thick line), under
H1 for Case 2, where X is binary with values {0, 1}, and Z is continuous with distribution
U(−20, 20), for Scenario 1 (left) and Scenario 2 (right).

Scenario 1 Scenario 2
n (Πx(0),Πx(1)) CvM KS CvM KS

50 (1/2, 1/2) 0.0502 0.0548 0.0480 0.0488
(7/10, 3/10) 0.0422 0.0518 0.0298 0.0308

100 (1/2, 1/2) 0.0492 0.0538 0.0492 0.0494
(7/10, 3/10) 0.0428 0.0602 0.0368 0.0380

200 (1/2, 1/2) 0.0526 0.0536 0.0474 0.0524
(7/10, 3/10) 0.0496 0.0588 0.0416 0.0452

Table 4.36: Size of the test for Case 2 with X binary with values {0, 1}, and Z continuous
with distribution U(−20, 20), under the null hypothesis (see Figure 4.10).

Scenario 1 Scenario 2
n (Πx(0),Πx(1)) CvM KS CvM KS

50 (1/2, 1/2) 0.3482 0.3414 0.3590 0.4476
(7/10, 3/10) 0.1620 0.1694 0.7422 0.7420

100 (1/2, 1/2) 0.5724 0.5698 0.6282 0.7156
(7/10, 3/10) 0.2690 0.2514 0.9354 0.9126

200 (1/2, 1/2) 0.8606 0.8674 0.9228 0.9600
(7/10, 3/10) 0.4460 0.3802 0.9970 0.9908

Table 4.37: Power of the test for Case 2 with X binary with values {0, 1} and Z continuous
with distribution U(−20, 20), under the alternative hypothesis (see Figure 4.11).
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X binary, Z discrete

We consider a binary covariate X with values {0, 1} and probability mass functions

(7/10, 3/10) and (1/2, 1/2); and a discrete covariate Z with values {b1, b2, b3} and

probability mass functions (3/5, 1/5, 1/5) and (1/3, 1/3, 1/3). The probabilities of

uncure, p(0, bj) and p(1, bj), with j = 1, 2, 3, are computed from p(x, z) in (4.10)

evaluated at (a′i, b̄), with i = 1, 2, given in Table 4.38 under H0, and at (a′1, bj) and

(a′2, bj), given in Table 4.39 under H1.

Scenario 1 p(ai, b1) = p(ai, b2) = p(ai, b3) p(ai, b1) = p(ai, b2) = p(ai, b3)
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a′2 = 0.9109 (b̄ = −3.6537) 0.6304 (b̄ = −2.0064) 0.6581

Scenario 2
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a′2 = 4.2229 (b̄ = −4.0960) 0.6444 (b̄ = −2.6671) 0.7466

Scenario 3
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a′2 = −3.2466 (b̄ = −3.3932) 0.5501 (b̄ = −1.8585) 0.4501

Table 4.38: Uncure probabilities under H0, for Case 2 when X is binary with values
{0, 1} and Z is discrete with values {b1, b2, b3}. The probability mass functions of Z are
(1/3, 1/3, 1/3) (first column), and (3/5, 1/5, 1/5) (second column). See Remark in Section
4.6.2 for details.

Under the alternative hypothesis, we consider 3 situations (see Table 4.39). In

the first one, p(x, z) has high dependency on z only for x = 0. In the second and

third situations, in which more power is expected, p(x, z) has strong dependency on

z for both x = 0 and x = 1.

b1 = 0.6157 b2 = −3.5434 b3 = −7.7026

Scenario 1 (Least favorable situation)
a′1 = −6.5585 0.1 0.5000 0.9000
a′2 = 0.9109 0.7 0.6323 0.5590

Scenario 2 (Favorable situation a)
a′1 = −6.5585 0.1 0.5000 0.9000
a′2 = 4.2229 0.9 0.6862 0.3470

Scenario 3 (Favorable situation b)
a′1 = −6.5585 0.1 0.5000 0.9000
a′2 = −3.2466 0.3 0.5598 0.7905

Table 4.39: Uncure probabilities considered under H1, for Case 2 when X is binary with
values {0, 1}, and Z is discrete with values {b1, b2, b3}. See Remark in Section 4.6.2 for
details.
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In Table 4.40 we can see the results under H0. Note that even with small sample

size (n = 50), the results are very close to the significance level, α = 0.05.

Scenario 1 Scenario 2 Scenario 3
n (Πx(0),Πx(1)) (Πz(b1),Πz(b2),Πz(b3)) CvM KS CvM KS CvM KS

50 (1/2, 1/2) (1/3, 1/3, 1/3) 0.0554 0.0580 0.0476 0.0516 0.0486 0.0512
(7/10, 3/10) (1/3, 1/3, 1/3) 0.0472 0.0490 0.0442 0.0460 0.0432 0.0492
(1/2, 1/2) (3/5, 1/5, 1/5) 0.0552 0.0540 0.0550 0.0532 0.0562 0.0568

(7/10, 3/10) (3/5, 1/5, 1/5) 0.0530 0.0490 0.0520 0.0510 0.0566 0.0538

100 (1/2, 1/2) (1/3, 1/3, 1/3) 0.0510 0.0534 0.0536 0.0528 0.0530 0.0542
(7/10, 3/10) (1/3, 1/3, 1/3) 0.0478 0.0496 0.0478 0.0462 0.0530 0.0538
(1/2, 1/2) (3/5, 1/5, 1/5) 0.0518 0.0490 0.0614 0.0580 0.0564 0.0516

(7/10, 3/10) (3/5, 1/5, 1/5) 0.0552 0.0544 0.0488 0.0464 0.0470 0.0484

200 (1/2, 1/2) (1/3, 1/3, 1/3) 0.0566 0.0510 0.0502 0.0508 0.0508 0.0532
(7/10, 3/10) (1/3, 1/3, 1/3) 0.0488 0.0490 0.0502 0.0502 0.0452 0.0480
(1/2, 1/2) (3/5, 1/5, 1/5) 0.0490 0.0490 0.0490 0.0462 0.0534 0.0496

(7/10, 3/10) (3/5, 1/5, 1/5) 0.0552 0.0510 0.0474 0.0480 0.0510 0.0474

Table 4.40: Size of the test under H0 for Case 2 with X binary with values {0, 1}, and Z
discrete with values {b1, b2, b3} (see Table 4.38).

The results under H1 are shown in Table 4.41. In the least favorable situation,

the power is only high when we consider Πx(a1) = Πx(a2) = 1/2, regardless of the

distribution of Z. In the second and third situations, the results are much better.

For example, in Scenario 3 we can see that the power is very close to 1 for n = 200,

and it is also high if the probability mass function of X is (1/2, 1/2).

Scenario 1 Scenario 2 Scenario 3
n (Πx(0),Πx(1)) (Πz(b1),Πz(b2),Πz(b3)) CvM KS CvM KS CvM KS

50 (1/2, 1/2) (1/3, 1/3, 1/3) 0.3244 0.2572 0.2288 0.2100 0.6302 0.5846
(7/10, 3/10) (1/3, 1/3, 1/3) 0.0652 0.0582 0.2734 0.2544 0.4466 0.4052
(1/2, 1/2) (3/5, 1/5, 1/5) 0.3212 0.2656 0.2374 0.2490 0.5918 0.5542

(7/10, 3/10) (3/5, 1/5, 1/5) 0.0716 0.0614 0.2918 0.2946 0.4366 0.4036

100 (1/2, 1/2) (1/3, 1/3, 1/3) 0.5530 0.4414 0.4054 0.4002 0.8686 0.8202
(7/10, 3/10) (1/3, 1/3, 1/3) 0.0730 0.0596 0.4464 0.3970 0.6826 0.6254
(1/2, 1/2) (3/5, 1/5, 1/5) 0.5126 0.4420 0.3878 0.4336 0.8226 0.7896

(7/10, 3/10) (3/5, 1/5, 1/5) 0.0740 0.0664 0.4516 0.4488 0.6404 0.6020

200 (1/2, 1/2) (1/3, 1/3, 1/3) 0.8074 0.7172 0.6680 0.6920 0.9812 0.9680
(7/10, 3/10) (1/3, 1/3, 1/3) 0.0678 0.0558 0.6922 0.6126 0.8972 0.8584
(1/2, 1/2) (3/5, 1/5, 1/5) 0.7670 0.7140 0.6286 0.7210 0.9688 0.9632

(7/10, 3/10) (3/5, 1/5, 1/5) 0.0762 0.0612 0.6822 0.6606 0.8598 0.8366

Table 4.41: Power of the test under H1 for Case 2 with X binary with values {0, 1} and Z
discrete with values {b1, b2, b3} (see Table 4.39).
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X binary, Z binary

The covariates X and Z are binary variables, with values {0, 1} both of them. We

work with two different situations depending on the corresponding probability mass

functions: in the first one, both for X and Z are (1/2, 1/2), whereas in the second

one, both are (7/10, 3/10).

The four probabilities, p(0, 0), p(0, 1), p(1, 0) and p(1, 1), are computed evalua-

ting the function p(x, z) in (4.10) as follows: under H1, at the points (a′1, b
′
1), (a′1, b

′
2),

(a′2, b
′
1) and (a′2, b

′
2) respectively, given in Table 4.43; under H0, p(0, 0) = p(0, 1) is

given by point (a′1, b̄1) and p(1, 0) = p(1, 1) by point (a′2, b̄2) (see Table 4.42).

Under H1, we consider 3 situations: in the first one, p(x, z) has high dependency

on z only for x = 0, whereas in the second and third situations (in which more power

is expected), p(x, z) has high dependency on z for both x = 0 and x = 1. Under

the null hypothesis, the {a′1, a′2} associated to the values {0, 1} of X are the same

as those in the scenarios under H1.

Scenario 1 p(0, 0) = p(0, 1) p(1, 0) = p(1, 1)
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −4.7990) 0.6600
a′2 = 0.9109 (b̄ = −3.7087) 0.6295 (b̄ = −5.3335) 0.6013

Scenario 2
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −4.7990) 0.6600
a′2 = 4.2229 (b̄ = −4.3609) 0.6295 (b̄ = −5.6922) 0.5129

Scenario 3
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −4.7990) 0.6600
a′2 = −3.2466 (b̄ = −3.3184) 0.5452 (b̄ = −4.8803) 0.6434

Table 4.42: Uncure probabilities under H0, for Case 2 when X and Z are binary with values
{0, 1} both of them, when the probability mass functions for both X and Z are (1/2, 1/2)
(first column), and (7/10, 3/10) (second column). See Remark in Section 4.6.2 for details.

Table 4.44 shows the results under H0, which are very close to the significance

level, α = 0.05, in the 3 situations and for the different sample sizes. The results

under the alternative hypothesis are shown in Table 4.45. The highest powers are

obtained when the values {0, 1} are equiprobable for both X and Z.
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b′1 = 0.6157 b′2 = −7.7027

Scenario 1 (Least favorable situation)
a′1 = −6.5585 0.1 0.9000
a′2 = 0.9109 0.7 0.5590

Scenario 2 (Favorable situation a)
a′1 = −6.5585 0.1 0.9000
a′2 = 4.2229 0.9 0.3470

Scenario 3 (Favorable situation b)
a′1 = −6.5585 0.1 0.9000
a′2 = −3.2466 0.3 0.7905

Table 4.43: Uncure probabilities considered under H1, for Case 2 when X and Z are binary
with values {0, 1} both of them. See Remark in Section 4.6.2 for details.

Scenario 1 Scenario 2 Scenario 3
n (Πx(0),Πx(1)) CvM KS CvM KS CvM KS

50 (1/2, 1/2) 0.0616 0.0626 0.0546 0.0562 0.0544 0.0602
(7/10, 3/10) 0.0394 0.0450 0.0486 0.0544 0.0434 0.0484

100 (1/2, 1/2) 0.0518 0.0502 0.0542 0.0544 0.0514 0.0530
(7/10, 3/10) 0.0486 0.0510 0.0520 0.0542 0.0446 0.0476

200 (1/2, 1/2) 0.0544 0.0536 0.0496 0.0508 0.0540 0.0552
(7/10, 3/10) 0.0458 0.0470 0.0472 0.0502 0.0506 0.0504

Table 4.44: Size of the test under H0 for Case 2 with X and Z binary with values {0, 1}
both of them (see Table 4.42). The probability mass function of Z equals that of X.

Scenario 1 Scenario 2 Scenario 3
n (Πx(0),Πx(1)) CvM KS CvM KS CvM KS

50 (1/2, 1/2) 0.4896 0.4558 0.3480 0.4178 0.8330 0.8208
(7/10, 3/10) 0.0682 0.0650 0.2726 0.2918 0.5704 0.5840

100 (1/2, 1/2) 0.7480 0.7342 0.5922 0.7130 0.9724 0.9658
(7/10, 3/10) 0.066 0.0604 0.4754 0.4812 0.8046 0.8064

200 (1/2, 1/2) 0.9362 0.9416 0.8982 0.9520 0.9976 0.9978
(7/10, 3/10) 0.0744 0.0706 0.7626 0.7334 0.9494 0.9458

Table 4.45: Power of the test under H1 for Case 2 with X and Z binary with values {0, 1}
both of them (see Table 4.43). The probability mass function of Z equals that of X.
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X binary, Z qualitative

X is a binary variable with values {0, 1}, and Z is qualitative with values {b1, b2, b3}.
The uncure probabilities, p(0, bj) and p(1, bj), with j = 1, 2, 3, are computed from

the function p(x, z) in (4.10), replacing x by a′1 and a′2 respectively, and z by the

values b̄ in Table 4.46 (under H0) and b′j in Table 4.47 (under H1).

Scenario 1 p(0, b1) = p(0, b2) = p(0, b3) p(1, b1) = p(1, b2) = p(1, b3)
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a′2 = 0.9109 (b̄ = −3.6537) 0.6304 (b̄ = −2.0064) 0.6581

Scenario 2
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a′2 = 4.2229 (b̄ = −4.0960) 0.6444 (b̄ = −2.6671) 0.7466

Scenario 3
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a′2 = −3.2466 (b̄ = −3.3932) 0.5501 (b̄ = −1.8585) 0.4501

Table 4.46: Uncure probabilities under H0, for Case 2 when X is binary with values
{0, 1}, and Z is qualitative with values {b1, b2, b3}. The probability mass functions of Z are
(1/3, 1/3, 1/3) (first column), and (3/5, 1/5, 1/5) (second column). See Remark in Section
4.6.2 for details.

b′1 = 0.6157 b′2 = −3.5434 b′3 = −7.7027

Scenario 1 (Least favorable situation)
a′1 = −6.5585 0.1 0.5000 0.9000
a′2 = 0.9109 0.7 0.6323 0.5590

Scenario 2 (Favorable situation a)
a′1 = −6.5585 0.1 0.5000 0.9000
a′2 = 4.2229 0.9 0.6862 0.3470

Scenario 3 (Favorable situation b)
a′1 = −6.5585 0.1 0.5000 0.9000
a′2 = −3.2466 0.3 0.5598 0.7905

Table 4.47: Uncure probabilities under H1, for Case 2 when X is binary with values {0, 1},
and Z is qualitative with values {b1, b2, b3}. See Remark in Section 4.6.2 for details.

The results under H0 are shown in Table 4.48. For the 3 situations, the size of

the test is very close to the significance level, α = 0.05. The results under H1 are

shown in Table 4.49. In the least favorable and in the most favorable situations,

the best results are obtained when we consider that the probability mass function

of X is (1/2, 1/2). Regarding the second situation, the powers are slightly higher

for (7/10, 3/10).
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Scenario 1 Scenario 2 Scenario 3
n (Πx(0),Πx(1)) Πz(b1),Πz(b2),Πz(b3) CvM KS CvM KS CvM KS

50 (1/2, 1/2) (1/3, 1/3, 1/3) 0.0494 0.0530 0.0450 0.0528 0.0468 0.0544
(7/10, 3/10) (1/3, 1/3, 1/3) 0.0472 0.0516 0.0412 0.0484 0.0440 0.0476
(1/2, 1/2) (3/5, 1/5, 1/5) 0.0528 0.0528 0.0526 0.0504 0.0522 0.0530

(7/10, 3/10) (3/5, 1/5, 1/5) 0.0444 0.0452 0.0494 0.0508 0.0548 0.0524

100 (1/2, 1/2) (1/3, 1/3, 1/3) 0.0508 0.0552 0.0484 0.0528 0.0510 0.0534
(7/10, 3/10) (1/3, 1/3, 1/3) 0.0458 0.0478 0.0418 0.0484 0.0520 0.0550
(1/2, 1/2) (3/5, 1/5, 1/5) 0.0490 0.0504 0.0558 0.0542 0.0550 0.0502

(7/10, 3/10) (3/5, 1/5, 1/5) 0.0526 0.0514 0.0464 0.0436 0.0470 0.0456

200 (1/2, 1/2) (1/3, 1/3, 1/3) 0.0472 0.0510 0.0482 0.0496 0.0460 0.0522
(7/10, 3/10) (1/3, 1/3, 1/3) 0.0472 0.0474 0.0492 0.0520 0.0476 0.0476
(1/2, 1/2) (3/5, 1/5, 1/5) 0.0478 0.0470 0.0478 0.0452 0.0512 0.0500

(7/10, 3/10) (3/5, 1/5, 1/5) 0.0526 0.0518 0.0468 0.0474 0.0482 0.0472

Table 4.48: Size of the test under H0, for Case 2 with X binary with values {0, 1}, and Z
qualitative with values {b1, b2, b3} (see Table 4.46).

Scenario 1 Scenario 2 Scenario 3
n (Πx(0),Πx(1)) Πz(b1),Πz(b2),Πz(b3) CvM KS CvM KS CvM KS

50 (1/2, 1/2) (1/3, 1/3, 1/3) 0.2488 0.2212 0.1700 0.1790 0.5156 0.5248
(7/10, 3/10) (1/3, 1/3, 1/3) 0.0570 0.0544 0.2066 0.2186 0.3566 0.3510
(1/2, 1/2) (3/5, 1/5, 1/5) 0.2882 0.2426 0.2122 0.2266 0.5456 0.5222

(7/10, 3/10) (3/5, 1/5, 1/5) 0.0636 0.0582 0.2810 0.2780 0.3932 0.3772

100 (1/2, 1/2) (1/3, 1/3, 1/3) 0.4432 0.3770 0.2864 0.3292 0.8024 0.7768
(7/10, 3/10) (1/3, 1/3, 1/3) 0.0592 0.0566 0.3350 0.3394 0.5820 0.5692
(1/2, 1/2) (3/5, 1/5, 1/5) 0.4644 0.4078 0.3372 0.4042 0.8020 0.7828

(7/10, 3/10) (3/5, 1/5, 1/5) 0.0730 0.0640 0.4434 0.4368 0.6070 0.5848

200 (1/2, 1/2) (1/3, 1/3, 1/3) 0.7066 0.6472 0.5244 0.6182 0.9602 0.9526
(7/10, 3/10) (1/3, 1/3, 1/3) 0.0604 0.0556 0.5800 0.5626 0.8346 0.8212
(1/2, 1/2) (3/5, 1/5, 1/5) 0.7360 0.6962 0.5640 0.6952 0.9622 0.9576

(7/10, 3/10) (3/5, 1/5, 1/5) 0.0676 0.0578 0.6564 0.6304 0.8368 0.8232

Table 4.49: Power of the test under H1, for Case 2 with X binary with values {0, 1}, and
Z qualitative with values {b1, b2, b3} (see Table 4.47).

X qualitative, Z continuous

The variable X is qualitative with values {a1, a2, a3}, and Z is U(−20, 20). Let a′i be

the numerical value x at which p(x, z) in (4.10) is evaluated to get p(ai, z). We consi-

dered two scenarios depending on the values (a′1, a
′
2, a
′
3): (−3.6964,−1.3296, 1.0371)

in the first scenario, and (−7.4671,−1.3296, 4.8079) in the second one, with the fol-

lowing probability mass functions for each scenario: (1/3, 1/3, 1/3) and (3/5, 1/5, 1/5)

(see Figure 4.9 for the probabilities of cure under H1). The incidence, 1−p(ai, z), i =

1, 2, 3, reduces, under H0, to 1− p(a′i), with i = 1, 2, 3, with p(x) in (4.8), evaluated

at the aforementioned values (a′1, a
′
2, a
′
3) (see Figure 4.8).
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Table 4.50 shows the results under the null hypothesis, which are close to the

significance level, α = 0.05, for both scenarios. The results under the alternative

hypothesis are given in Table 4.51. The power is higher if we consider that the

probability mass function of X is (3/5, 1/5, 1/5).

Scenario 1 Scenario 2
n (Πx(a1),Πx(a2),Πx(a3)) CvM KS CvM KS

50 (1/3, 1/3, 1/3) 0.0502 0.0658 0.0498 0.0624
(3/5, 1/5, 1/5) 0.0524 0.0696 0.0458 0.0616

100 (1/3, 1/3, 1/3) 0.0494 0.0632 0.0446 0.0574
(3/5, 1/5, 1/5) 0.0468 0.0558 0.0392 0.0560

200 (1/3, 1/3, 1/3) 0.0496 0.0572 0.0486 0.0614
(3/5, 1/5, 1/5) 0.0512 0.0550 0.0538 0.0612

Table 4.50: Size of the test for Case 2 with X qualitative with values {a1, a2, a3}, and Z
continuous with distribution U(−20, 20), under the null hypothesis (see Figure 4.8).

Scenario 1 Scenario 2
n (Πx(a1),Πx(a2),Πx(a3)) CvM KS CvM KS

50 (1/3, 1/3, 1/3) 0.3888 0.4148 0.4136 0.4866
(3/5, 1/5, 1/5) 0.7196 0.7418 0.7436 0.7906

100 (1/3, 1/3, 1/3) 0.6552 0.6834 0.7058 0.7958
(3/5, 1/5, 1/5) 0.9290 0.9348 0.9380 0.9554

200 (1/3, 1/3, 1/3) 0.9126 0.9280 0.9460 0.9742
(3/5, 1/5, 1/5) 0.9938 0.9940 0.9984 0.9992

Table 4.51: Power of the test for Case 2 with X qualitative with values {a1, a2, a3}, and Z
continuous with distribution U(−20, 20), under the alternative hypothesis (see Figure 4.9).

X qualitative, Z discrete

X is a qualitative variable with values {a1, a2, a3}, and Z is discrete with values

{b1, b2, b3}. The cure probabilities, 1 − p(ai, bj), with i, j = 1, 2, 3, are computed

from the function p(x, z) in (4.10), replacing (ai, bj) with the numerical values (a′i, b̄)

given in Table 4.52 (under H0), and with (a′i, bj) given in Table 4.53 (under H1).

We work with two different situations depending on the corresponding probability

mass functions: in the first one, both for X and Z are (1/3, 1/3, 1/3), whereas in

the second one, both are (3/5, 1/5, 1/5).

Under H1, the values of Z are {b1, b2, b3} = {0.6157,−3.5434,−7.7026}, and

{a′1, a′2, a′3} are chosen so p(ai, bj), with i, j = 1, 2, 3, in (4.10), has high dependency
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on bj , with j = 1, 2, 3 only for x = a1 (Scenario 1), for x ∈ {a1, a2} (Scenario 2),

and for x ∈ {a1, a2, a3} (Scenarios 3 and 4). The specific values of {a′1, a′2, a′3} in the

four scenarios are given in Table 4.53. Note that in these last two scenarios more

power is expected.

Under H0, the values {a′1, a′2, a′3} in the four scenarios are the same as those

under H1. The probabilities of cure, 1 − p(ai, b1) = 1 − p(ai, b2) = 1 − p(ai, b3)

are now given by p(a′i, b̄), i = 1, 2, 3 with p in (4.10) (see Table 4.52 for details).

Two situations are considered within each scenario, one when the probability mass

functions of X and Z are (1/3, 1/3, 1/3), and the other when the probability mass

functions are (3/5, 1/5, 1/5).

Scenario 1 p(ai, b1) = p(ai, b2) = p(ai, b3) p(ai, b1) = p(ai, b2) = p(ai, b3)
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a′2 = −1.1678 (b̄ = −3.4427) 0.5943 (b̄ = −1.7995) 0.5566
a′3 = 0.9109 (b̄ = −3.6537) 0.6304 (b̄ = −2.0064) 0.6581

Scenario 2
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a′2 = −4.5690 (b̄ = −3.4350) 0.5261 (b̄ = −2.0006) 0.3957
a′3 = 0.9109 (b̄ = −3.6537) 0.6304 (b̄ = −1.9950) 0.6583

Scenario 3
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a′2 = −4.5690 (b̄ = −3.4350) 0.5261 (b̄ = −2.0006) 0.3957
a′3 = 4.2229 (b̄ = −4.0960) 0.6444 (b̄ = −2.6671) 0.7466

Scenario 4
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a′2 = −4.5690 (b̄ = −3.4350) 0.5261 (b̄ = −2.0006) 0.3957
a′3 = −3.2466 (b̄ = −3.3932) 0.5501 (b̄ = −1.8585) 0.4501

Table 4.52: Uncure probabilities considered under H0, for Case 2 when X is qualitative
with values {a1, a2, a3}, and Z is discrete with values {b1, b2, b3}. The probability mass
functions for both X and Z are (1/3, 1/3, 1/3) (first column) and (3/5, 1/5, 1/5) (second
column). See Remark in Section 4.6.2 for details.

The results under the null hypothesis are shown in Table 4.54. In the 4 scenarios,

the size of the test is very close to the significance level, α = 0.05. The results under

the alternative hypothesis are shown in Table 4.55. Note that even when the pro-

bability mass function of X and Z is (3/5, 1/5, 1/5) (the least favorable situation),

the power of the test is considerably high. In the rest of the situations, the sample

size has much influence, since the results are significantly higher when we work with

large sample sizes.



4.6. Simulation studies 123

b1 = 0.6157 b2 = −3.5434 b3 = −7.7026

Scenario 1 (Least favorable situation)
a′1 = −6.5585 0.1 0.5000 0.9000
a′2 = −1.1678 0.5 0.5966 0.6862
a′3 = 0.9109 0.7 0.6323 0.5590

Scenario 2 (Intermediate situation)
a′1 = −6.5585 0.1 0.5000 0.9000
a′2 = −4.5690 0.2 0.5360 0.8423
a′3 = 0.9109 0.7 0.6323 0.5590

Scenario 3 (Favorable situation a)
a′1 = −6.5585 0.1 0.5000 0.9000
a′2 = −4.5690 0.2 0.5360 0.8423
a′3 = 4.2229 0.9 0.6862 0.3470

Scenario 4 (Favorable situation b)
a′1 = −6.5585 0.1 0.5000 0.9000
a′2 = −4.5690 0.2 0.5360 0.8423
a′3 = −3.2466 0.3 0.5598 0.7905

Table 4.53: Uncure probabilities considered under H1, for Case 2 when X is qualitative
with values {a1, a2, a3}, and Z is discrete with values {b1, b2, b3}. See Remark in Section
4.6.2 for details.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n (Πx(a1),Πx(a2),Πx(a3)) CvM KS CvM KS CvM KS CvM KS

50 (1/3, 1/3, 1/3) 0.0468 0.0494 0.0454 0.0512 0.0544 0.0544 0.0486 0.0508
(3/5, 1/5, 1/5) 0.0558 0.0554 0.0550 0.0552 0.0548 0.0536 0.0598 0.0526

100 (1/3, 1/3, 1/3) 0.0440 0.0504 0.0508 0.0536 0.0528 0.0564 0.0498 0.0510
(3/5, 1/5, 1/5) 0.0514 0.0528 0.0520 0.0510 0.0530 0.0540 0.0530 0.0510

200 (1/3, 1/3, 1/3) 0.0570 0.0588 0.0534 0.0536 0.0528 0.0502 0.0488 0.0550
(3/5, 1/5, 1/5) 0.0504 0.0528 0.0540 0.0542 0.0572 0.0518 0.0490 0.0504

Table 4.54: Size of the test under H0 for Case 2 with X qualitative with values {a1, a2, a3},
and Z discrete with values {b1, b2, b3} (see Table 4.52). The probability mass function of Z
equals that of X.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n (Πx(a1),Πx(a2),Πx(a3)) CvM KS CvM KS CvM KS CvM KS

50 (1/3, 1/3, 1/3) 0.2258 0.2072 0.3818 0.3694 0.3220 0.3250 0.5812 0.5668
(3/5, 1/5, 1/5) 0.5280 0.5062 0.5524 0.5394 0.5504 0.5362 0.6026 0.6024

100 (1/3, 1/3, 1/3) 0.3836 0.3314 0.6462 0.6090 0.5650 0.5818 0.8458 0.8322
(3/5, 1/5, 1/5) 0.7690 0.7490 0.7916 0.7844 0.7820 0.7824 0.8070 0.8218

200 (1/3, 1/3, 1/3) 0.6236 0.5474 0.8926 0.8740 0.8378 0.8646 0.9804 0.9746
(3/5, 1/5, 1/5) 0.9348 0.9252 0.9450 0.9466 0.9446 0.9484 0.9502 0.9636

Table 4.55: Power of the test underH1 for Case 2 withX qualitative with values {a1, a2, a3}
and Z discrete with values {b1, b2, b3} (see Table 4.53). The probability mass function of Z
equals that of X.
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X qualitative, Z binary

X is a qualitative variable with values {a1, a2, a3}, and Z is binary with values {0, 1}.
The uncure probabilities, p(ai, 0) and p(ai, 1), with i = 1, 2, 3, are computed from

the function p(x, z) in (4.10) evaluated at the numerical values (a′i, b̄i), i = 1, 2, 3 un-

der H0 (see Table 4.56) and (a′i, b
′
1) and (a′i, b

′
2), i = 1, 2, 3 under H1 (see Table 4.57).

Scenario 1 p(ai, 0) = p(ai, 1) p(ai, 0) = p(ai, 1)
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −4.7990) 0.6600
a′2 = −1.1678 (b̄ = −3.3900) 0.5931 (b̄ = −5.0579) 0.6303
a′3 = 0.9109 (b̄ = −3.7087) 0.6295 (b̄ = −5.3335) 0.6013

Scenario 2
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −4.7990) 0.6600
a′2 = −4.5690 (b̄ = −3.3809) 0.5211 (b̄ = −4.8281) 0.6496
a′3 = 0.9109 (b̄ = −3.7087) 0.6295 (b̄ = −5.3335) 0.6013

Scenario 3
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −4.7990) 0.6600
a′2 = −4.5690 (b̄ = −3.3809) 0.5211 (b̄ = −4.8281) 0.6496
a′3 = 4.2229 (b̄ = −4.3609) 0.6295 (b̄ = −5.6922) 0.5129

Scenario 4
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −4.7990) 0.6600
a′2 = −4.5690 (b̄ = −3.3809) 0.5211 (b̄ = −4.8281) 0.6496
a′3 = −3.2466 (b̄ = −3.3184) 0.5452 (b̄ = −4.8803) 0.6434

Table 4.56: Uncure probabilities considered under H0, for Case 2 when X is qualitative
with values {a1, a2, a3}, and Z is binary with values {0, 1}. The probability mass functions
for Z are (1/2, 1/2) (first column) and (7/10, 3/10) (second column). See Remark in Section
4.6.2 for details.

The results under the null hypothesis are shown in Table 4.58. Regardless the

sample size and the different values of p(ai, 0) = p(ai, 1), with i = 1, 2, 3, the results

are very close to the significance level, α = 0.05.

Table 4.59 shows the results under the alternative hypothesis. In all situations

except in the most favorable one (Scenario 4), the highest power is obtained when

the probability mass fuction of X is (3/5, 1/5, 1/5). Furthermore, with sample sizes

n = 100 and n = 200, the power of the test is very close to 1 in the 4 scenarios and

regardless the probability mass function of Z.
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b′1 = 0.6157 b′2 = −7.7027

Scenario 1 (Least favorable situation)
a′1 = −6.5585 0.1 0.9000
a′2 = −1.1678 0.5 0.6862
a′3 = 0.9109 0.7 0.5590

Scenario 2 (Intermediate situation)
a′1 = −6.5585 0.1 0.9000
a′2 = −4.5690 0.2 0.8423
a′3 = 0.9109 0.7 0.5590

Scenario 3 (Favorable situation a)
a′1 = −6.5585 0.1 0.9000
a′2 = −4.5690 0.2 0.8423
a′3 = 4.2229 0.9 0.3470

Scenario 4 (Favorable situation b)
a′1 = −6.5585 0.1 0.9000
a′2 = −4.5690 0.2 0.8423
a′3 = −3.2466 0.3 0.7905

Table 4.57: Uncure probabilities considered under H1, for Case 2 when X is qualitative
with values {a1, a2, a3} and Z is binary with values {0, 1}. See Remark in Section 4.6.2 for
details.

X qualitative, Z qualitative

Let both X and Z be qualitative variables with values {a1, a2, a3} and {b1, b2, b3},
respectively. The cure probabilities, 1 − p(ai, bj), with i, j = 1, 2, 3, are com-

puted from the function p(x, z) in (4.10) evaluated at the numerical values (a′i, b̄i),

i = 1, 2, 3, given in Table 4.60 (under H0), and (a′i, b
′
j), i, j = 1, 2, 3, given in

Table 4.61 (under H1). We work with two different situations depending on the

corresponding probability mass functions: in the first one, both for X and Z are

(1/3, 1/3, 1/3), whereas in the second one, both are (3/5, 1/5, 1/5).

Table 4.62 shows the results under the null hypothesis. In Scenario 1, the re-

sults are close to the significance level (α = 0.05), except for the CvM test, with

n = 50, 100 and when the probability mass function of X is (1/3, 1/3, 1/3). In the

other 3 scenarios, the results are very competent regardless the probability mass

function of X.

The results under the alternative hypothesis are shown in Table 4.63. Note that

in the 4 scenarios, the power is higher if we consider that the probability mass func-

tion of X is (3/5, 1/5, 1/5).
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Scenario 1 Scenario 2
n (Πx(a1),Πx(a2),Πx(a3)) (Πz(0),Πz(1)) CvM KS CvM KS

50 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0444 0.0556 0.0410 0.0510
(3/5, 1/5, 1/5) (7/10, 3/10) 0.0420 0.0492 0.0424 0.0494
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0574 0.0632 0.0522 0.0598
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0572 0.0588 0.0588 0.0606

100 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0428 0.0520 0.0446 0.0528
(3/5, 1/5, 1/5) (7/10, 3/10) 0.0472 0.0498 0.0464 0.0504
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0502 0.0512 0.0522 0.0528
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0496 0.0522 0.0540 0.0552

200 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0450 0.0490 0.0464 0.0524
(3/5, 1/5, 1/5) (7/10, 3/10) 0.0560 0.0576 0.0514 0.0548
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0578 0.0570 0.0468 0.0462
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0508 0.0492 0.0490 0.0520

Scenario 3 Scenario 4
n (Πx(a1),Πx(a2),Πx(a3)) (Πz(0),Πz(1)) CvM KS CvM KS

50 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0382 0.0480 0.0424 0.0518
(3/5, 1/5, 1/5) (7/10, 3/10) 0.0406 0.0474 0.0462 0.0512
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0534 0.0598 0.0498 0.0544
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0568 0.0576 0.0540 0.0542

100 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0446 0.0536 0.0428 0.0510
(3/5, 1/5, 1/5) (7/10, 3/10) 0.0452 0.0472 0.0424 0.0494
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0498 0.0514 0.0546 0.0560
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0522 0.0540 0.0530 0.0540

200 (1/3, 1/3, 1/3) (7/10, 3/10) 0.0490 0.0530 0.0486 0.0528
(3/5, 1/5, 1/5) (7/10, 3/10) 0.0512 0.0532 0.0414 0.0456
(1/3, 1/3, 1/3) (1/2, 1/2) 0.0498 0.0506 0.0484 0.0494
(3/5, 1/5, 1/5) (1/2, 1/2) 0.0526 0.0510 0.0484 0.0466

Table 4.58: Size of the test under H0, for Case 2 with X qualitative with values {a1, a2, a3},
and Z binary with values {0, 1} (see Table 4.56).
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Scenario 1 Scenario 2
n (Πx(a1),Πx(a2),Πx(a3)) (Πz(0),Πz(1)) CvM KS CvM KS

50 (1/3, 1/3, 1/3) (7/10, 3/10) 0.2944 0.3290 0.5144 0.5604
(1/3, 1/3, 1/3) (1/2, 1/2) 0.3236 0.3318 0.5814 0.6144
(3/5, 1/5, 1/5) (7/10, 3/10) 0.7180 0.7340 0.7440 0.7694
(3/5, 1/5, 1/5) (1/2, 1/2) 0.7838 0.7836 0.8176 0.8336

100 (1/3, 1/3, 1/3) (7/10, 3/10) 0.4954 0.5136 0.7582 0.7942
(1/3, 1/3, 1/3) (1/2, 1/2) 0.5574 0.5506 0.8430 0.8694
(3/5, 1/5, 1/5) (7/10, 3/10) 0.9024 0.9058 0.9270 0.9382
(3/5, 1/5, 1/5) (1/2, 1/2) 0.9488 0.9474 0.9608 0.9652

200 (1/3, 1/3, 1/3) (7/10, 3/10) 0.7450 0.7560 0.9466 0.9608
(1/3, 1/3, 1/3) (1/2, 1/2) 0.8216 0.8212 0.9764 0.9834
(3/5, 1/5, 1/5) (7/10, 3/10) 0.9886 0.9884 0.9900 0.9910
(3/5, 1/5, 1/5) (1/2, 1/2) 0.9936 0.9944 0.9966 0.9974

Scenario 3 Scenario 4
n (Πx(a1),Πx(a2),Πx(a3)) (Πz(0),Πz(1)) CvM KS CvM KS

50 (1/3, 1/3, 1/3) (7/10, 3/10) 0.4272 0.5228 0.7416 0.7774
(1/3, 1/3, 1/3) (1/2, 1/2) 0.5088 0.5976 0.7914 0.8134
(3/5, 1/5, 1/5) (7/10, 3/10) 0.7320 0.7644 0.7828 0.8112
(3/5, 1/5, 1/5) (1/2, 1/2) 0.8036 0.8206 0.8340 0.8564

100 (1/3, 1/3, 1/3) (7/10, 3/10) 0.6760 0.7922 0.9340 0.9440
(1/3, 1/3, 1/3) (1/2, 1/2) 0.7644 0.8744 0.9646 0.9704
(3/5, 1/5, 1/5) (7/10, 3/10) 0.9164 0.9288 0.9360 0.9524
(3/5, 1/5, 1/5) (1/2, 1/2) 0.9520 0.9604 0.9640 0.9750

200 (1/3, 1/3, 1/3) (7/10, 3/10) 0.9202 0.9672 0.9944 0.9968
(1/3, 1/3, 1/3) (1/2, 1/2) 0.9654 0.9922 0.9988 0.9990
(3/5, 1/5, 1/5) (7/10, 3/10) 0.9920 0.9936 0.9932 0.9962
(3/5, 1/5, 1/5) (1/2, 1/2) 0.9974 0.9982 0.9982 0.9992

Table 4.59: Power of the test underH1 for Case 2 withX qualitative with values {a1, a2, a3}
and Z binary with values {0, 1} (see Table 4.57).
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Scenario 1 p(ai, b1) = p(ai, b2) = p(ai, b3) p(ai, b1) = p(ai, b2) = p(ai, b3)
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a′2 = −1.1678 (b̄ = −3.4427) 0.5943 (b̄ = −1.7995) 0.5566
a′3 = 0.9109 (b̄ = −3.6537) 0.6304 (b̄ = −2.0064) 0.6581

Scenario 2
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a′2 = −4.5690 (b̄ = −3.4350) 0.5261 (b̄ = −2.0006) 0.3957
a′3 = 0.9109 (b̄ = −3.6537) 0.6304 (b̄ = −1.995) 0.6583

Scenario 3
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a′2 = −4.5690 (b̄ = −3.4350) 0.5261 (b̄ = −2.0006) 0.3957
a′3 = 4.2229 (b̄ = −4.0960) 0.6444 (b̄ = −2.6671) 0.7466

Scenario 4
a′1 = −6.5585 (b̄ = −3.5434) 0.5000 (b̄ = −2.2879) 0.3400
a′2 = −4.5690 (b̄ = −3.4350) 0.5261 (b̄ = −2.0006) 0.3957
a′3 = −3.2466 (b̄ = −3.3932) 0.5501 (b̄ = −1.8585) 0.4501

Table 4.60: Uncure probabilities considered under H0, for Case 2 when X and Z are quali-
tative with values {a1, a2, a3} and {b1, b2, b3}, respectively. The probability mass functions
for both X and Z are (1/3, 1/3, 1/3) (first column), and (3/5, 1/5, 1/5) (second column).
See Remark in Section 4.6.2 for details.

b′1 = 0.6157 b′2 = −3.5434 b′3 = −7.7026

Scenario 1 (Least favorable situation)
a′1 = −6.5585 0.1 0.5000 0.9000
a′2 = −1.1678 0.5 0.5966 0.6862
a′3 = 0.9109 0.7 0.6323 0.5590

Scenario 2 (Intermediate situation)
a′1 = −6.5585 0.1 0.5000 0.9000
a′2 = −4.5690 0.2 0.5360 0.8423
a′3 = 0.9109 0.7 0.6323 0.5590

Scenario 3 (Favorable situation a)
a′1 = −6.5585 0.1 0.5000 0.9000
a′2 = −4.5690 0.2 0.5360 0.8423
a′3 = 4.2229 0.9 0.6862 0.3470

Scenario 4 (Favorable situation b)
a′1 = −6.5585 0.1 0.5000 0.9000
a′2 = −4.5690 0.2 0.5360 0.8423
a′3 = −3.2466 0.3 0.5598 0.7905

Table 4.61: Uncure probabilities considered under H1, for Case 2 when X and Z are
qualitative with values {a1, a2, a3} and {b1, b2, b3}, respectively. See Remark in Section
4.6.2 for details.
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Scenario 1 Scenario 2 Scenario 3 Scenario 4
n (Πx(a1),Πx(a2),Πx(a3)) CvM KS CvM KS CvM KS CvM KS

50 (1/3, 1/3, 1/3) 0.0392 0.0490 0.0452 0.0548 0.0480 0.0558 0.0432 0.0526
(3/5, 1/5, 1/5) 0.0496 0.0528 0.0490 0.0510 0.0524 0.0524 0.0530 0.0512

100 (1/3, 1/3, 1/3) 0.0392 0.0512 0.0500 0.0552 0.0472 0.0562 0.0452 0.0546
(3/5, 1/5, 1/5) 0.0524 0.0502 0.0454 0.0496 0.0520 0.0546 0.0514 0.0512

200 (1/3, 1/3, 1/3) 0.0478 0.0552 0.0496 0.0588 0.0470 0.0496 0.0486 0.0526
(3/5, 1/5, 1/5) 0.0496 0.0520 0.0540 0.0544 0.0532 0.0514 0.0506 0.0490

Table 4.62: Size of the test under H0 for Case 2 with X and Z qualitative with values
{a1, a2, a3} and {b1, b2, b3}, respectively (see Table 4.60). The probability mass function of
Z equals that of X.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n (Πx(a1),Πx(a2),Πx(a3)) CvM KS CvM KS CvM KS CvM KS

50 (1/3, 1/3, 1/3) 0.1658 0.1802 0.2968 0.3224 0.2410 0.2780 0.4586 0.5164
(3/5, 1/5, 1/5) 0.4874 0.4818 0.5054 0.5104 0.5056 0.5126 0.5482 0.5740

100 (1/3, 1/3, 1/3) 0.2932 0.2888 0.5358 0.5478 0.4556 0.5206 0.7584 0.7896
(3/5, 1/5, 1/5) 0.7324 0.7220 0.7536 0.7612 0.7500 0.7616 0.7774 0.8060

200 (1/3, 1/3, 1/3) 0.5128 0.4854 0.8232 0.8324 0.7350 0.8266 0.9578 0.9640
(3/5, 1/5, 1/5) 0.9218 0.9142 0.9340 0.9382 0.9354 0.9408 0.9412 0.9516

Table 4.63: Power of the test under H1 for Case 2 with X and Z qualitative with values
{a1, a2, a3} and {b1, b2, b3}, respectively (see Table 4.61). The probability mass function of
Z equals that of X.
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Computational summary in Case 2

Table 4.64 shows a complete summary of the simulation studies, together with the

computational times, considered for Case 2. Note that the computational times nei-

ther vary with the distributions of X and Z, nor with the different scenarios. All the

procedures were coded in R language and run in the computers of the Department

of Mathematics, at UDC.

X Z Scenario Computational time

Continuous Continuous Model 1 597463 sec (165.96 h)
Model 2 605182 sec (168.11 h)

Discrete Scenario 1 471430 sec (130.95 h)
Scenario 2 465230 sec (129.23 h)

Binary Scenario 1 459990 sec (127.78 h)
Scenario 2 466280 sec (129.52 h)

Qualitative 425990 sec (118.33 h)

Discrete Continuous Scenario 1 18040 sec (5.01 h)
Scenario 2 18230 sec (5.06 h)

Discrete Scenario 1, 2, 3, 4 11300 sec (3.14 h)
Binary Scenario 1, 2, 3, 4 9096 sec (2.53 h)
Qualitative Scenario 1, 2, 3, 4 43696 sec (12.14 h)

Binary Continuous Scenario 1 13661 sec (3.80 h)
Scenario 2 13489 sec (3.75 h)

Discrete Scenario 1, 2, 3 7496 sec (2.08 h)
Binary Scenario 1, 2, 3 4945 sec (1.37 h)
qualitative Scenario 1, 2, 3 26633 (7.40 h)

Qualitative Continuous Scenario 1 156413 sec (43.45 h)
Scenario 2 154693 sec (42.97 h)

Discrete Scenario 1, 2, 3, 4 11694 sec (3.25 h)
Binary Scenario 1, 2, 3, 4 9786 sec (2.72 h)
Qualitative Scenario 1, 2, 3, 4 30780 sec (8.55 h)

Table 4.64: Computational times for simulations in Case 2, considering sample size n = 100,
κ = 5000 trials and B = 2000 bootstrap resamples. Note that in cases where a continuous
covariate is involved, the times are given for only one bandwidth.

4.6.3 Case 1 with high dimensional covariate vector Z

In the case of an m-dimensional set of covariates W = Z, we test each of them

separately to obtain m p-values associated to each H1
0 , . . . ,H

m
0 in (4.3). For the

sake of simplicity, all the covariates are binary with two specific values between −20

and 20, given in columns z1 and z2 in Tables 4.65-4.68. The censoring variable fol-

lows an exponential distribution with mean 1/0.3. Moreover, we work with different
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sample sizes: n = 50, n = 100 and n = 200, considering κ = 1000 trials, B = 1000

bootstrap resamples and significance level α = 0.05.

Two different mixture cure models are considered, both with the form:

S(t|w1, . . . , wm) = 1− p(w1, . . . , wm) + p(w1, . . . , wm) · S0(t|w1, . . . , wm).

In Model 1, under the alternative hypothesis, only the covariates Ws1 , . . . ,Wsj ,

with s1, . . . , sj ∈ {1, . . . ,m} are influencing the cure rate. We also assume that the

uncure probability is of multiplicative form:

p(w1, . . . , wm) = p(ws1)× · · · × p(wsj ),

where

p(wsi) =
exp (0.476 + 0.358wsi)

1 + exp (0.476 + 0.358wsi)
.

Furthermore,

S0(t|w1, . . . , wm) =


exp(−λ(ws1 ,...,wsj )t)−exp(−λ(ws1 ,...,wsj )4.605)

1−exp(−λ(ws1 ,...,wsj )4.605) , if t ≤ 4.605

0, if t > 4.605
,

where λ
(
ws1 , . . . , wsj

)
= exp

(
ws1+20

40 × · · · × wsj +20

40

)
.

In Model 2, the uncure probability is defined under H1 by:

p(w1, . . . , wm) =
exp(β0 + β1ws1 + β2ws2 + β12ws1ws2)

1 + exp(β0 + β1ws1 + β2ws2 + β12ws1ws2)
,

where β0 = 0.476, β1 = 0.358, β2 = 0.225, β12 = 0.195. Furthermore,

S0(t|w1, . . . , wm) =


exp(−λ(ws1 ,ws2 )t)−exp(−λ(ws1 ,ws2 )4.605)

1−exp(−λ(ws1 ,ws2 )4.605) , if t ≤ 4.605

0, if t > 4.605
,

with λ (ws1 , ws2) = exp
(
ws1+20

40 × ws2+20
40

)
.

We consider 4 simulation studies and in each one of them, we work with diffe-

rent scenarios. In simulation studies 1, 2 and 3, we consider a covariate vector W

with dimension 10 and we work with Model 1. In simulation study 4, we consider

that W has dimension 100 and we use Model 2. Note that all the covariates are

equally distributed, binary with values z1 and z2 and corresponding p(z1) and p(z2)
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given in Tables 4.65-4.68 for the different scenarios. For the scenario with influen-

tial variables Zs1 , . . . , Zsj , the probability of cure associated to each scenario can

be computed as 1 − p(zs1 , . . . , zsj ) = 1 − p(zs1) × · · · × p(zsj ) (not reported in the

Tables 4.65-4.67). For example, in Scenario a we should consider the probabilities:

p(−1.3,−1.3,−1.3) = 0.5027×0.5027×0.5027 = 0.1270, p(20,−1.3,−1.3) = 0.9995×
0.5027× 0.5027 = 0.2525, . . . , p(20, 20, 20) = 0.9995× 0.9995× 0.9995 = 0.9986.

Influential % %
Scenario variables z1 z2 (Πz(z1),Πz(z2)) p(z1) p(z2) cens. cure

a Z1, Z3, Z5 −1.3 20 (1/2, 1/2) 0.5027 0.9995 63.8 57.6
b Z5, . . . , Z9 −1.3 20 (1/2, 1/2) 0.5027 0.9995 80.3 76.2
c Z1, Z3, Z5 −7.4 20 (1/2, 1/2) 0.1022 0.9995 85.5 83.5
d Z5, . . . , Z9 −7.4 20 (1/2, 1/2) 0.1022 0.9995 95.5 94.9

Table 4.65: Scenarios a-d, considering Model 1, for simulation study 1.

Influential % %
Scenario variables z1 z2 (Πz(z1),Πz(z2)) p(z1) p(z2) cens. cure

e Z1, Z3, Z5 −1.3 20 (1/4, 3/4) 0.5027 0.9995 41.2 32.9
f Z5, . . . , Z9 −1.3 20 (1/4, 3/4) 0.5027 0.9995 55.4 48.4
g Z1, Z3, Z5 −7.4 20 (1/4, 3/4) 0.1022 0.9995 58.4 53.4
h Z5, . . . , Z9 −7.4 20 (1/4, 3/4) 0.1022 0.9995 75.1 72.0

Table 4.66: Scenarios e-h, considering Model 1, for simulation study 2.

Influential % %
Scenario variables z1 z2 (Πz(z1),Πz(z2)) p(z1) p(z2) cens. cure

i Z1 −1.3 20 (1/4, 3/4) 0.5027 0.9995 22.0 12.5
j Z1, Z3 −1.3 20 (1/4, 3/4) 0.5027 0.9995 32.2 23.3
k Z1 −7.4 20 (1/4, 3/4) 0.1022 0.9995 30.4 22.5
l Z1, Z3 −7.4 20 (1/4, 3/4) 0.1022 0.9995 46.2 39.8

Table 4.67: Scenarios i-l, considering Model 1, for simulation study 3.

Influential % %
Scenario variables z1 z2 (Πz(z1),Πz(z2)) p(z1) p(z2) cens. cure

m Z1, Z2 −7 −3 (1/4, 3/4) 0.1161 0.3548 42.3 27.7
n Z1, Z2 −7 −3 (1/2, 1/2) 0.1161 0.3548 34.4 17.7

Table 4.68: Scenarios m and n, considering Model 2, for simulation study 4.
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Simulation study 1:

In Scenarios a and c, there are 3 influential covariates: Z1, Z3 and Z5; whereas in

Scenarios b and d, there are 5 influential covariates: Z5, Z6, Z7, Z8 and Z9. Table

4.65 shows the values of z1 and z2 and the probability mass function for each scenario.

Tables 4.69, 4.70, 4.71 and 4.72 show the results obtained in Scenarios a, b, c and

d, respectively. The behavior of the tests is satisfactory in Scenarios a (Table 4.69)

and c (Table 4.71). For example, for sample size n = 200, the rejection percentage

of the influential covariates is around 25% and 35%, respectively. On the contrary,

in Scenarios b and d lower power is obtained.
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% % mean mean
n Variable rejections CvM rejections KS p-value CvM p-value KS

50 Z1 5.5 6.1 0.2946 0.2951
50 Z2 0.8 1.0 0.4848 0.4863
50 Z3 6.9 7.2 0.3089 0.3098
50 Z4 0.8 1.0 0.5047 0.5065
50 Z5 5.5 5.7 0.3043 0.3052
50 Z6 0.7 0.6 0.4879 0.4893
50 Z7 0.4 0.5 0.5066 0.5079
50 Z8 0.2 0.2 0.4982 0.4997
50 Z9 0.6 0.6 0.4975 0.4989
50 Z10 0.6 0.9 0.4899 0.4913

100 Z1 13.3 13.3 0.2149 0.2153
100 Z2 0.4 0.5 0.4852 0.4861
100 Z3 12.9 13.2 0.2273 0.2279
100 Z4 0.2 0.2 0.5077 0.5086
100 Z5 13.1 13.0 0.2336 0.2340
100 Z6 0.8 1.0 0.4808 0.4815
100 Z7 0.7 0.6 0.4942 0.4950
100 Z8 0.2 0.1 0.4992 0.5000
100 Z9 0.5 0.4 0.5084 0.5092
100 Z10 0.6 0.7 0.5030 0.5039

200 Z1 25.6 26.1 0.1364 0.1364
200 Z2 0.3 0.4 0.5124 0.5127
200 Z3 28.3 28.9 0.1399 0.1398
200 Z4 0.4 0.4 0.5074 0.5079
200 Z5 25.2 24.8 0.1254 0.1256
200 Z6 0.2 0.2 0.4973 0.4978
200 Z7 0.3 0.3 0.4983 0.4987
200 Z8 0.7 0.7 0.5049 0.5052
200 Z9 0.3 0.4 0.5091 0.5095
200 Z10 0.5 0.5 0.4848 0.4853

Table 4.69: Results obtained in Scenario a, where Z1, Z3 and Z5 are influential.
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% % mean mean
n Variable rejections CvM rejections KS p-value CvM p-value KS

50 Z1 0.3 0.7 0.4881 0.4892
50 Z2 0.7 0.7 0.5014 0.5030
50 Z3 0.6 0.6 0.5010 0.5025
50 Z4 0.6 0.6 0.4921 0.4932
50 Z5 2.7 2.7 0.4255 0.4268
50 Z6 2.2 2.5 0.4364 0.4376
50 Z7 1.5 1.7 0.4169 0.4181
50 Z8 2.3 2.6 0.4324 0.4336
50 Z9 1.9 2.2 0.4191 0.4208
50 Z10 1.0 1.1 0.4952 0.4966

100 Z1 1.3 1.2 0.4815 0.4825
100 Z2 0.5 0.6 0.4957 0.4965
100 Z3 0.6 0.8 0.4892 0.4897
100 Z4 0.5 0.6 0.5071 0.5078
100 Z5 2.5 2.8 0.3829 0.3838
100 Z6 3.0 3.0 0.3972 0.3981
100 Z7 3.3 3.0 0.3868 0.3876
100 Z8 2.7 2.6 0.4011 0.4019
100 Z9 4.2 4.1 0.3890 0.3897
100 Z10 0.7 0.9 0.4932 0.4940

200 Z1 0.4 0.4 0.4917 0.4922
200 Z2 0.2 0.2 0.4930 0.4934
200 Z3 0.6 0.6 0.4857 0.4860
200 Z4 0.2 0.2 0.5001 0.5005
200 Z5 6.3 6.5 0.3444 0.3447
200 Z6 5.5 5.4 0.3314 0.3316
200 Z7 5.1 5.0 0.3516 0.3518
200 Z8 4.1 4.5 0.3422 0.3425
200 Z9 4.5 5.0 0.3302 0.3303
200 Z10 0.5 0.5 0.5052 0.5055

Table 4.70: Results obtained in Scenario b, where Z5, Z6, Z7, Z8 and Z9 are influential.
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% % mean mean
n Variable rejections CvM rejections KS p-value CvM p-value KS

50 Z1 10.5 10.8 0.2462 0.2468
50 Z2 0.5 0.6 0.4737 0.4753
50 Z3 9.0 9.4 0.2603 0.2615
50 Z4 0.8 0.8 0.4959 0.4974
50 Z5 10.3 11.2 0.2390 0.2397
50 Z6 0.6 0.8 0.4771 0.4786
50 Z7 0.8 0.9 0.4790 0.4804
50 Z8 0.8 0.8 0.5017 0.5037
50 Z9 0.7 0.8 0.4861 0.4877
50 Z10 1.0 1.0 0.4928 0.4943

100 Z1 21.3 21.3 0.1713 0.1717
100 Z2 0.2 0.3 0.4964 0.4971
100 Z3 17.2 18.3 0.1852 0.1857
100 Z4 0.4 0.4 0.5061 0.5069
100 Z5 19.7 19.9 0.1710 0.1716
100 Z6 0.3 0.4 0.5019 0.5028
100 Z7 0.9 0.9 0.4975 0.4984
100 Z8 0.7 0.8 0.5085 0.5094
100 Z9 1.0 0.9 0.5045 0.5053
100 Z10 0.7 0.7 0.4698 0.4708

200 Z1 35.4 35.0 0.1025 0.1025
200 Z2 0.7 0.7 0.5111 0.5116
200 Z3 34.6 35.4 0.0959 0.0960
200 Z4 0.6 0.7 0.5064 0.5067
200 Z5 37.4 37.3 0.0903 0.0903
200 Z6 0.8 0.9 0.5002 0.5005
200 Z7 0.2 0.1 0.4806 0.4807
200 Z8 0.9 1.2 0.4997 0.5000
200 Z9 0.6 0.4 0.5003 0.5005
200 Z10 0.7 0.7 0.5072 0.5078

Table 4.71: Results obtained in Scenario c, where Z1, Z3 and Z5 are influential.
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% % mean mean
n Variable rejections CvM rejections KS p-value CvM p-value KS

50 Z1 0.5 0.9 0.4799 0.4812
50 Z2 0.5 0.7 0.4837 0.4854
50 Z3 0.1 0.0 0.4769 0.4783
50 Z4 0.4 0.5 0.4635 0.4649
50 Z5 1.1 1.3 0.4269 0.4283
50 Z6 1.1 1.3 0.4264 0.4282
50 Z7 1.1 1.3 0.4175 0.4185
50 Z8 0.8 0.9 0.4235 0.4248
50 Z9 1.1 1.3 0.4192 0.4208
50 Z10 0.6 0.8 0.4593 0.4613

100 Z1 0.6 0.6 0.4922 0.4928
100 Z2 0.3 0.4 0.4884 0.4890
100 Z3 0.7 0.7 0.4976 0.4982
100 Z4 0.9 0.7 0.4811 0.4818
100 Z5 1.5 1.6 0.4166 0.4174
100 Z6 2.7 2.8 0.4120 0.4128
100 Z7 1.7 1.9 0.4187 0.4197
100 Z8 1.9 1.9 0.4149 0.4156
100 Z9 1.7 2.0 0.4165 0.4171
100 Z10 0.7 0.9 0.4909 0.4915

200 Z1 0.9 1.0 0.4860 0.4865
200 Z2 0.2 0.2 0.5034 0.5038
200 Z3 0.7 0.7 0.4955 0.4958
200 Z4 0.9 1.0 0.4865 0.4868
200 Z5 4.2 4.2 0.3764 0.3768
200 Z6 2.9 2.9 0.3910 0.3912
200 Z7 2.8 2.6 0.4095 0.4100
200 Z8 2.5 2.6 0.3767 0.3770
200 Z9 3.5 3.7 0.3984 0.3988
200 Z10 0.6 0.6 0.5070 0.5073

Table 4.72: Results obtained in Scenario d, where Z5, Z6, Z7, Z8 and Z9 are influential.
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Simulation study 2:

Similarly as in simulation study 1, in Scenarios e and g, there are 3 influential cova-

riates: Z1, Z3 and Z5; whereas in Scenarios f and h, there are 5 influential covariates:

Z5, Z6, Z7, Z8 and Z9. Table 4.66 shows the values of z1 and z2, and the probability

mass function for each scenario. Note that in this case, since the probability mass

function of Z is (1/4, 3/4), there are fewer censored data than in simulation study

1, where (Πz(z1),Πz(z2)) = (1/2, 1/2).

Tables 4.73, 4.74, 4.75 and 4.76 show the results obtained in Scenarios e, f, g

and h, respectively. Note that the percentages in Scenarios f (Table 4.74) and h

(Table 4.76) are very similar to the ones in Scenarios a and c, where there are two

less influential covariates.
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% % mean mean
n Variable rejections CvM rejections KS p-value CvM p-value KS

50 Z1 14.2 19.7 0.1974 0.1961
50 Z2 0.3 0.6 0.4855 0.4894
50 Z3 13.7 18.8 0.1995 0.1978
50 Z4 0.2 0.5 0.4948 0.4989
50 Z5 14.0 17.9 0.2024 0.2012
50 Z6 0.0 0.2 0.4773 0.4808
50 Z7 0.5 1.0 0.4761 0.4798
50 Z8 0.2 0.6 0.4786 0.4822
50 Z9 0.2 0.2 0.4971 0.5007
50 Z10 0.3 0.7 0.4834 0.4872

100 Z1 31.6 36.2 0.1075 0.1063
100 Z2 0.1 0.4 0.4823 0.4844
100 Z3 31.7 35.4 0.1174 0.1164
100 Z4 0.1 0.2 0.4860 0.4882
100 Z5 31.2 35.6 0.1305 0.1295
100 Z6 0.7 0.8 0.4990 0.5014
100 Z7 0.4 0.7 0.5006 0.5026
100 Z8 0.5 0.5 0.5004 0.5030
100 Z9 0.5 0.6 0.4873 0.4895
100 Z10 0.3 0.6 0.4968 0.4990

200 Z1 59.4 61.8 0.0420 0.0413
200 Z2 0.4 0.5 0.4995 0.5006
200 Z3 59.7 61.4 0.0418 0.0413
200 Z4 0.6 0.5 0.4766 0.4778
200 Z5 58.7 61.0 0.0432 0.0427
200 Z6 0.3 0.4 0.5112 0.5124
200 Z7 0.5 0.8 0.4998 0.5009
200 Z8 0.5 0.5 0.5016 0.5029
200 Z9 0.8 1.0 0.4981 0.4994
200 Z10 0.4 0.4 0.5180 0.5193

Table 4.73: Results obtained in Scenario e, where Z1, Z3 and Z5 are influential.
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% % mean mean
n Variable rejections CvM rejections KS p-value CvM p-value KS

50 Z1 0.3 0.4 0.4852 0.4897
50 Z2 0.2 0.8 0.4883 0.4921
50 Z3 0.3 0.6 0.4831 0.4870
50 Z4 0.4 0.5 0.4887 0.4923
50 Z5 3.8 5.6 0.3273 0.3279
50 Z6 4.3 7.0 0.3198 0.3210
50 Z7 5.5 8.5 0.3066 0.3074
50 Z8 5.2 7.9 0.3222 0.3235
50 Z9 4.1 6.2 0.3165 0.3172
50 Z10 0.5 0.6 0.4708 0.4745

100 Z1 0.7 1.2 0.5015 0.5036
100 Z2 0.3 0.5 0.5102 0.5127
100 Z3 0.5 0.6 0.4820 0.4842
100 Z4 0.2 0.4 0.4872 0.4895
100 Z5 11.0 13.0 0.2395 0.2396
100 Z6 11.6 14.3 0.2364 0.2369
100 Z7 11.1 14.1 0.2561 0.2564
100 Z8 10.9 12.7 0.2361 0.2364
100 Z9 11.7 13.2 0.2340 0.2341
100 Z10 0.3 0.4 0.4863 0.4884

200 Z1 0.3 0.3 0.4996 0.5007
200 Z2 0.1 0.3 0.4919 0.4931
200 Z3 0.4 0.6 0.4975 0.4986
200 Z4 0.5 0.7 0.4946 0.4957
200 Z5 24.7 27.0 0.1664 0.1660
200 Z6 25.7 28.2 0.1627 0.1624
200 Z7 21.7 24.4 0.1540 0.1537
200 Z8 24.7 25.9 0.1470 0.1465
200 Z9 24.6 25.5 0.1454 0.1449
200 Z10 0.5 0.7 0.4856 0.4869

Table 4.74: Results obtained in Scenario f, where Z5, Z6, Z7, Z8 and Z9 are influential.
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% % mean mean
n Variable rejections CvM rejections KS p-value CvM p-value KS

50 Z1 26.9 35.9 0.1035 0.1004
50 Z2 0.1 0.3 0.4880 0.4929
50 Z3 26.8 35.4 0.1029 0.0999
50 Z4 0.2 0.7 0.4926 0.4972
50 Z5 27.6 35.5 0.1043 0.1012
50 Z6 0.2 0.4 0.4849 0.4893
50 Z7 0.4 0.8 0.4857 0.4908
50 Z8 0.2 0.6 0.4702 0.4746
50 Z9 0.3 0.8 0.4825 0.4870
50 Z10 0.1 0.7 0.4833 0.4877

100 Z1 58.8 64.8 0.0386 0.0373
100 Z2 0.4 0.6 0.4935 0.4957
100 Z3 56.8 60.6 0.0470 0.0457
100 Z4 0.6 1.0 0.4839 0.4864
100 Z5 57.7 60.7 0.0404 0.0392
100 Z6 0.6 1.0 0.5018 0.5041
100 Z7 0.6 1.0 0.4802 0.4824
100 Z8 0.4 0.6 0.4897 0.4921
100 Z9 0.3 0.3 0.5174 0.5198
100 Z10 0.6 0.9 0.5040 0.5063

200 Z1 88.7 90.1 0.0062 0.0059
200 Z2 0.8 1.0 0.4976 0.4990
200 Z3 86.0 87.3 0.0090 0.0087
200 Z4 0.5 0.5 0.5043 0.5056
200 Z5 88.7 89.8 0.0084 0.0081
200 Z6 0.5 0.7 0.5031 0.5043
200 Z7 0.8 0.8 0.4981 0.4996
200 Z8 0.6 0.6 0.4879 0.4889
200 Z9 0.6 0.6 0.4813 0.4823
200 Z10 0.9 1.0 0.4967 0.4977

Table 4.75: Results obtained in Scenario g, where Z1, Z3 and Z5 are influential.
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% % mean mean
n Variable rejections CvM rejections KS p-value CvM p-value KS

50 Z1 0.4 0.6 0.4762 0.4806
50 Z2 0.0 0.2 0.4803 0.4843
50 Z3 0.0 0.4 0.4889 0.4938
50 Z4 0.3 0.5 0.4858 0.4900
50 Z5 4.3 7.9 0.2575 0.2569
50 Z6 5.1 7.9 0.2470 0.2462
50 Z7 6.1 10.1 0.2426 0.2424
50 Z8 3.9 6.2 0.2534 0.2534
50 Z9 4.8 7.2 0.2618 0.2621
50 Z10 0.6 0.9 0.4851 0.4899

100 Z1 0.8 0.9 0.5028 0.5054
100 Z2 0.4 0.7 0.4911 0.4932
100 Z3 0.5 0.6 0.4856 0.4877
100 Z4 0.9 1.0 0.4814 0.4836
100 Z5 15.8 18.5 0.1759 0.1754
100 Z6 16.6 19.5 0.1802 0.1799
100 Z7 16.3 19.3 0.1799 0.1793
100 Z8 14.3 17.7 0.1712 0.1703
100 Z9 13.8 17.6 0.1838 0.1833
100 Z10 0.8 0.8 0.4825 0.4847

200 Z1 0.3 0.4 0.5050 0.5061
200 Z2 0.4 0.4 0.4962 0.4973
200 Z3 0.4 0.4 0.4908 0.4921
200 Z4 0.8 1.0 0.4892 0.4901
200 Z5 35.6 37.5 0.0940 0.0935
200 Z6 35.7 37.9 0.1084 0.1078
200 Z7 34.8 38.3 0.1029 0.1023
200 Z8 35.0 37.6 0.0942 0.0936
200 Z9 35.7 38.5 0.0999 0.0994
200 Z10 0.6 0.6 0.5029 0.5041

Table 4.76: Results obtained in Scenario h, where Z5, Z6, Z7, Z8 and Z9 are influential.
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Simulation study 3:

In Scenarios i and k, there is only 1 influential covariate, Z1, whereas in Scenarios

j and l, there are 2 influential covariates, Z1 and Z3. Table 4.67 shows the values

z1 and z2 of those variables, and the probability mass for each scenario. Note that,

since the probability mass function of Z is (1/4, 3/4), there is a lower censoring

percentage than in simulation study 1, where (Πz(z1),Πz(z2)) = (1/2, 1/2).

Tables 4.77, 4.78, 4.79 and 4.80 show the results obtained in Scenarios i, j, k

and l, respectively. In general, the behavior of the tests is satisfactory, increasing

the power when the sample size becomes larger and the distance with H0 increases.

It is important to highlight that, for the four Scenarios, i, j, k, l, the rejection

percentage for influential covariates is very close (or even equal) to 100% for large

sample sizes.
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% % mean mean
n Variable rejections CvM rejections KS p-value CvM p-value KS

50 Z1 59.6 66.5 0.0139 0.0111
50 Z2 2.2 2.2 0.4301 0.4332
50 Z3 2.2 2.2 0.4409 0.4437
50 Z4 2.1 2.3 0.4324 0.4350
50 Z5 2.3 2.4 0.4451 0.4483
50 Z6 2.1 2.1 0.4362 0.4393
50 Z7 2.2 2.5 0.4469 0.4499
50 Z8 2.2 2.4 0.4461 0.4497
50 Z9 2.0 2.1 0.4509 0.4543
50 Z10 2.2 2.3 0.4417 0.4449

100 Z1 93.8 94.5 0.0020 0.0016
100 Z2 0.3 0.4 0.4768 0.4792
100 Z3 0.2 0.4 0.4751 0.4772
100 Z4 0.1 0.1 0.4672 0.4695
100 Z5 0.6 0.7 0.4837 0.4853
100 Z6 0.7 0.7 0.4760 0.4782
100 Z7 0.4 0.4 0.4906 0.4929
100 Z8 0.6 0.7 0.4828 0.4852
100 Z9 0.4 0.4 0.4934 0.4963
100 Z10 0.3 0.5 0.4888 0.4908

200 Z1 99.7 99.7 0.0001 0.0001
200 Z2 0.2 0.4 0.4972 0.4984
200 Z3 0.5 0.7 0.4945 0.4956
200 Z4 0.4 0.6 0.4845 0.4854
200 Z5 0.3 0.3 0.4993 0.5004
200 Z6 0.3 0.3 0.4984 0.4995
200 Z7 0.5 0.5 0.4856 0.4868
200 Z8 0.2 0.4 0.5031 0.5043
200 Z9 0.7 0.7 0.5028 0.5042
200 Z10 0.6 0.6 0.5007 0.5024

Table 4.77: Results obtained in Scenario i, where Z1 is influential.
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% % mean mean
n Variable rejections CvM rejections KS p-value CvM p-value KS

50 Z1 27.7 34.0 0.1216 0.1191
50 Z2 0.7 0.9 0.4706 0.4737
50 Z3 25.2 31.6 0.1155 0.1128
50 Z4 0.2 0.4 0.4804 0.4839
50 Z5 0.3 0.6 0.4644 0.4677
50 Z6 0.2 0.3 0.4792 0.4818
50 Z7 0.2 0.4 0.4806 0.4843
50 Z8 0.2 0.3 0.4850 0.4879
50 Z9 0.4 0.7 0.4794 0.4826
50 Z10 0.5 0.9 0.4814 0.4854

100 Z1 56.3 60.1 0.0508 0.0497
100 Z2 0.2 0.3 0.4749 0.4771
100 Z3 55.7 59.9 0.0424 0.0414
100 Z4 0.3 0.7 0.4893 0.4912
100 Z5 0.3 0.4 0.5044 0.5065
100 Z6 0.5 0.8 0.4818 0.4839
100 Z7 0.5 0.6 0.5022 0.5046
100 Z8 0.2 0.2 0.4937 0.4959
100 Z9 0.3 0.4 0.4918 0.4943
100 Z10 0.3 0.5 0.4903 0.4926

200 Z1 82.2 83.1 0.0124 0.0120
200 Z2 0.3 0.4 0.4910 0.4921
200 Z3 84.0 85.6 0.0099 0.0095
200 Z4 0.4 0.8 0.4964 0.4974
200 Z5 0.6 0.7 0.4886 0.4897
200 Z6 0.4 0.8 0.5044 0.5057
200 Z7 0.2 0.2 0.4963 0.4975
200 Z8 0.5 0.6 0.4885 0.4899
200 Z9 0.4 0.7 0.4916 0.4929
200 Z10 0.5 0.7 0.4923 0.4935

Table 4.78: Results obtained in Scenario j, where Z1 and Z3 are influential.
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% % mean mean
n Variable rejections CvM rejections KS p-value CvM p-value KS

50 Z1 96.1 97.2 0.0012 0.0009
50 Z2 0.4 0.9 0.4671 0.4705
50 Z3 0.6 1.0 0.4782 0.4816
50 Z4 0.4 0.7 0.4779 0.4811
50 Z5 0.3 0.6 0.4805 0.4836
50 Z6 0.6 0.9 0.4800 0.4829
50 Z7 0.5 0.7 0.4703 0.4737
50 Z8 0.5 0.7 0.4846 0.4878
50 Z9 0.3 0.7 0.4812 0.4842
50 Z10 0.4 0.7 0.4619 0.4653

100 Z1 100.0 100.0 0.0000 0.0000
100 Z2 0.5 0.6 0.4856 0.4880
100 Z3 0.3 0.4 0.4845 0.4869
100 Z4 0.1 0.1 0.5065 0.5089
100 Z5 0.0 0.0 0.5038 0.5057
100 Z6 0.5 0.5 0.4858 0.4881
100 Z7 0.3 0.5 0.4948 0.4973
100 Z8 0.2 0.3 0.4940 0.4963
100 Z9 0.1 0.5 0.5081 0.5105
100 Z10 0.3 0.4 0.4745 0.4766

200 Z1 100.0 100.0 0.0000 0.0000
200 Z2 0.3 0.4 0.5017 0.5030
200 Z3 0.6 0.6 0.4869 0.4883
200 Z4 0.1 0.1 0.5179 0.5191
200 Z5 0.5 0.4 0.5003 0.5014
200 Z6 0.5 0.7 0.4891 0.4904
200 Z7 0.2 0.3 0.4940 0.4949
200 Z8 0.3 0.3 0.4960 0.4972
200 Z9 0.2 0.4 0.5057 0.5068
200 Z10 0.0 0.0 0.4882 0.4890

Table 4.79: Results obtained in Scenario k, where Z1 is influential.
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% % mean mean
n Variable rejections CvM rejections KS p-value CvM p-value KS

50 Z1 58.7 66.4 0.0349 0.0324
50 Z2 0.2 0.4 0.4916 0.4957
50 Z3 57.5 66.9 0.0356 0.0329
50 Z4 0.5 0.8 0.4761 0.4806
50 Z5 0.1 0.2 0.4923 0.4969
50 Z6 0.5 0.8 0.4778 0.4822
50 Z7 0.0 0.2 0.4927 0.4971
50 Z8 0.3 0.7 0.4735 0.4775
50 Z9 0.4 1.0 0.4858 0.4900
50 Z10 0.2 0.3 0.4995 0.5041

100 Z1 89.2 90.8 0.0054 0.0050
100 Z2 0.6 0.7 0.5030 0.5056
100 Z3 88.2 90.5 0.0061 0.0056
100 Z4 0.7 0.8 0.4978 0.5000
100 Z5 0.5 0.6 0.4977 0.4999
100 Z6 0.5 0.7 0.4990 0.5013
100 Z7 0.1 0.2 0.4978 0.5005
100 Z8 0.5 1.0 0.5086 0.5108
100 Z9 0.4 0.9 0.4954 0.4973
100 Z10 0.2 0.4 0.4721 0.4740

200 Z1 98.6 98.8 0.0005 0.0004
200 Z2 0.6 0.9 0.4934 0.4947
200 Z3 99.3 99.3 0.0004 0.0003
200 Z4 0.6 0.8 0.5164 0.5176
200 Z5 0.5 0.4 0.4921 0.4934
200 Z6 0.5 0.6 0.4860 0.4871
200 Z7 0.4 0.5 0.4991 0.5003
200 Z8 0.6 0.6 0.5064 0.5076
200 Z9 0.6 0.7 0.4963 0.4976
200 Z10 0.4 0.4 0.4964 0.4976

Table 4.80: Results obtained in Scenario l, where Z1 and Z3 are influential.
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Simulation study 4:

In both Scenarios m and n, there are 2 influential covariates: Z1 and Z2. Table 4.68

shows the values z1 and z2 of both variables, and the probability mass function for

each scenario. Note that in Scenario m there will be more censored data.

Tables 4.81 and 4.82 show the results obtained in Scenarios m and n, respec-

tively. In both scenarios, low power is obtained due to the large number of covariates

involved.



4.6. Simulation studies 149

% % mean mean
n Variable rejections CvM rejections KS p-value CvM p-value KS

50 Z1 0.2 0.2 0.4030 0.4044
50 Z2 0.2 0.2 0.3406 0.3409
50 Z3 0.2 0.2 0.4565 0.4600
50 Z4 0.2 0.2 0.4637 0.4673
50 Z5 0.3 0.3 0.4708 0.4750
50 Z6 0.2 0.2 0.4738 0.4772
...

...
...

...
...

...
50 Z98 0.2 0.2 0.4759 0.4789
50 Z99 0.2 0.3 0.4763 0.4798
50 Z100 0.2 0.2 0.4705 0.4740

100 Z1 0.0 0.0 0.3680 0.3688
100 Z2 0.2 0.2 0.2657 0.2657
100 Z3 0.1 0.1 0.4921 0.4943
100 Z4 0.0 0.1 0.4905 0.4926
100 Z5 0.0 0.1 0.4731 0.4750
100 Z6 0.0 0.0 0.4815 0.4839

...
...

...
...

...
...

100 Z98 0.0 0.0 0.5003 0.5025
100 Z99 0.0 0.0 0.5014 0.5036
100 Z100 0.1 0.1 0.4926 0.4952

200 Z1 0.3 0.2 0.2816 0.2816
200 Z2 0.3 0.3 0.1516 0.1509
200 Z3 0.0 0.0 0.5051 0.5067
200 Z4 0.2 0.2 0.4906 0.4919
200 Z5 0.0 0.0 0.4983 0.4997
200 Z6 0.1 0.1 0.5017 0.5028

...
...

...
...

...
...

200 Z98 0.0 0.1 0.5030 0.5042
200 Z99 0.0 0.1 0.5025 0.5038
200 Z100 0.0 0.0 0.4942 0.4955

Table 4.81: Results considering Scenario m, where (Πz(z1),Πz(z2)) = (1/4, 3/4) (least
favorable).
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% % mean mean
n Variable rejections CvM rejections KS p-value CvM p-value KS

50 Z1 2.1 2.1 0.3460 0.3467
50 Z2 2.3 2.3 0.2765 0.2770
50 Z3 2.1 2.1 0.4439 0.4448
50 Z4 2.1 2.1 0.4567 0.4580
50 Z5 2.1 2.1 0.4627 0.4636
50 Z6 2.1 2.1 0.4468 0.4481
...

...
...

...
...

...
50 Z98 2.1 2.1 0.4623 0.4634
50 Z99 2.1 2.1 0.4535 0.4542
50 Z100 2.1 2.1 0.4705 0.4716

100 Z1 0.4 0.8 0.3208 0.3211
100 Z2 2.3 2.3 0.1758 0.1759
100 Z3 0.1 0.1 0.4944 0.4950
100 Z4 0.3 0.3 0.4791 0.4796
100 Z5 0.1 0.1 0.4870 0.4876
100 Z6 0.1 0.1 0.4973 0.4981

...
...

...
...

...
...

100 Z98 0.1 0.1 0.4933 0.4939
100 Z99 0.1 0.1 0.4887 0.4894
100 Z100 0.1 0.1 0.4924 0.4934

200 Z1 1.8 2.0 0.2180 0.2180
200 Z2 8.1 8.4 0.0889 0.0889
200 Z3 0.0 0.0 0.5132 0.5137
200 Z4 0.0 0.0 0.5194 0.5197
200 Z5 0.1 0.1 0.4869 0.4873
200 Z6 0.0 0.0 0.4955 0.4957

...
...

...
...

...
...

200 Z98 0.1 0.1 0.4991 0.4995
200 Z99 0.0 0.0 0.4759 0.4764
200 Z100 0.0 0.0 0.4948 0.4952

Table 4.82: Results considering Scenario n, where (Πz(z1),Πz(z2)) = (1/2, 3/2) (fa-
vorable).
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Computational summary in Case 1 with FDR

The computational times taken for each study are shown in Table 4.83.

Type of Z Scenario Computational time

Z binary with FDR Scenario a∗ 2910 sec (48.5 min)
Scenario m∗∗ 26080 sec (7.24 h)

Table 4.83: Computational times for simulations with FDR in Case 1 considering Z binary.
Sample sizes n = 100, κ = 1000 trials and B = 1000 bootstrap resamples are considered.
(∗Similar computational times for Scenarios b, c, d, e, f , g, h, i, j, k and l. ∗∗Similar
computational times for Scenario n).

4.7 Application to real data

We applied the proposed methodology to the dataset used in Sections 2.6 and 3.6.

Table 2.1 shows a summary of the data.

4.7.1 Colorectal cancer data (Case 1)

We consider three studies: in the first one, we split the data into four groups accor-

ding to the categorical covariate stage. Then, we study if the covariate age (conti-

nuous and denoted by Z) has a significant effect on the cure rate, that is:

H0 : E (ν|Z) = 1− p constant vs H1 : E (ν|Z) = 1− p(Z),

where p(Z) is not a constant value under the alternative hypothesis. In the second

(third) study, we test if the covariate age (stage) has some influence on the cure

rate, regardless of the covariate stage (age). Note that in studies 1 and 2, Z is a

continuous covariate, whereas in study 3, we work with Z ordinal. In the three

studies we consider B = 1000 bootstrap resamples.

We start with study 1. Figure 4.12 shows the estimated values of τ(z), defined

in Section 4.1, for Stages 1-4. We can see that the time beyond which a subject

is considered cured varies with the stage, but in general it increases with the age.

Furthermore, in Figure 2.9 of Section 2.6, we can appreciate how the age influences

on the incidence for each stage. Considering only this figure, it seems reasonable

to suppose that in Stages 1 and 4 the cure rate could be a constant value, as a

function of the age, whereas in Stages 2 and 3 the age may have some influence.

The corresponding p-values for each stage are shown in Table 4.84.
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Figure 4.12: Values of τ(z) for Stages 1, 2, 3 and 4.

Stage CvM KS

1 0.396 0.257

2 0.082 0.067

3 0.002 0

4 0.587 0.551

Table 4.84: p-values when testing the effect of the age (continuous) on the probability of
cure in stages 1, 2, 3 and 4.
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Therefore, after applying the test and considering a significance level α = 0.05,

the test is only significant in Stage 3 (see Table 4.84). In Stages 1, 2 and 4 there is

not enough evidence to reject the null hypothesis, so it is possible that the covariate

age in colorectal cancer patients in these stages does not have any influence on the

cure rate. Note that if we work with α = 0.10, then the test would be significant in

both Stages 2 and 3.

Regarding the second and third studies, Tables 4.85 and 4.86 show the p-values

for Case 1 considering the covariate age and stage, respectively. In these cases, there

is not enough evidence to reject the null hypothesis and therefore, similarly as in

the first study, the covariate Z does not have any influence on the cure rate.

CvM KS

0.142 0.146

Table 4.85: p-values when testing the effect of the age (continuous) on the probability of
cure.

CvM KS

0.581 0.483

Table 4.86: p-values when testing the effect of the stage (discrete) on the probability of
cure.

4.7.2 Colorectal cancer data (Case 2)

We consider that W = (X,Z) is the vector of the covariate age (continuous) and

Stage (discrete). The covariate significance test is the following:

H0 : E (ν|X,Z) = 1− p(X), vs H1 : E (ν|X,Z) = 1− p(X,Z),

where p(X,Z) depends on Z under the alternative hypothesis. We show the results

of two studies, one considering X = Age and Z = Stage, for a wide range of

bandwidths: h = Cn−1/3, with C = 10, 20, 40, 60, 120, 240, 300 and 375; and the

other with X = Stage and Z = Age. A total of B = 1000 bootstrap resamples are

drawn. The results in both studies show that there is not enough evidence to reject

H0 (see Tables 4.87 and 4.88). In other terms, the cure rate can be explained with

just any of the two covariates: age or stage.
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h CvM KS

1.342 0.721 0.815

2.683 0.655 0.720

5.367 0.611 0.647

8.050 0.597 0.647

16.101 0.537 0.517

32.202 0.233 0.218

40.252 0.168 0.189

50.315 0.137 0.153

Table 4.87: p-values considering that X is the covariate age and Z is the covariate stage,
using different bandwidths.

CvM KS

0.370 0.267

Table 4.88: p-values considering that X is the covariate stage and Z is the covariate age.

4.7.3 Sarcomas data (Case 1 with FDR)

We study a dataset related to patients with sarcomas, provided by Angel Dı́az-

Lagares, postdoc researcher in Cancer Epigenomics from Translational Medical On-

cology (OMT) group, Health Research Institute of Santiago (IDIS) and the Univer-

sity Hospital of Santiago (CHUS).

Sarcomas are an uncommon and histologically heterogeneous group of neoplasias,

which stand for 1% of the diagnosed tumors in adults and around 20% in children

and teens (Burningham et al., 2012). Sarcomas proceed from embryonal cells with

mesodermal origin, except the peripheral nerve sheath tumors, which are ectodermal.

Since these cells can be differentiated from adipose, muscular, fribous, cartilaginous

and bone tissues, they can be generally classified in two tumor locations: soft tissue

and hard tissue. Nevertheless, the wide range of histologic entities which form the

sarcomas can also be found in the different systems or viscus, such as the digestive

system.

The universality of locations in the human body and the large number of dif-

ferent histologies have complicated the epidemiological analysis of sarcomas. The

population-based cancer registries (RCBP) analize and describe the epidemiology in

all the tumor locations. The purpose is to register all the cases of neoplasias from

a specific population in a precise and systematic way, obtaining data from different

sources which vary depending on the health system of each country. Specifically,
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in Spain, the most of the RCBP are compilled, essentially, from the information

provided by the pathology services and the hospital centers in each area, and by the

mortality registers in each community (see Muir & Percy, 1991).

The epidemiological analysis is based on the tumor location. The characteristics

of the tumor, the average age of diagnosis and the distribution by stages or subloca-

tions are analized, together with some parameters such as the number of new cases

in a population group from a specific time, the mortality (deaths caused by this

pathology in a population group from a specific time), the prevalence (proportion of

current, previous and new cases in a population group from a specific time) and the

survival, which reflects the time until a new vital event (usually, the reappearance of

the tumor or the death of the patient). In epidemiological studies, the observed and

the relative survival are considered. The latter one is obtained as a ratio between

the observed and the expected survival as a function of the variables age and sex, in

the absence of cancer. Therefore, the mortality originated by different causes other

than cancer in each group of age can be fit. The acquisition of genetic changes is es-

sential in the development of neoplasias. Such alterations are modifications in DNA

sequence, like mutations, translocations, delections (mutations in which a part of a

chromosome or a sequence of DNA is lost during DNA replication), and amplifica-

tions (production of multiple copies of a sequence of DNA). The epigenetic changes

that represent reversible modifications which affect the gene expression but not the

DNA sequence, are also a milestone in the origin of cancer (Esteller, 2008).

Epigenetics is the study of heritable changes in gene expression (active versus

inactive genes) that do not involve changes to the underlying DNA sequence - a

change in the phenotype without a change in the genotype - which in turn affects

how cells read the genes. The epigenetic regulation allows the plasticity of the

genome for the adaptation to the environment. A CpG island is a region of DNA

with high concentration of cytosine and guanine nucleotides. The hypermethyla-

tion (an increase in the epigenetic methylation of cytosine and adenosine residues

in DNA) of the CpG islands and other epigenetic mechanisms constitute alterations

of the gene expression associated to the human cancer (Kang, 2012). Therefore, the

hypermethylation can be associated to the age and the development of cancer. A

high grade methylation is related to gene silencing. Usually, the methylation ap-

pears with more frequency in the CpG islands.

Cancer cells are less methylated than the normal ones, and their promoters are
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hypermethylated. This is considered for the tumor diagnosis and the identification

of therapeutic alternatives. The abnormal DNA methylation is known as an early

event of the tumorigenesis (see Suzuki et al., 2004; Ushijima, 2005, between others),

and therefore, variations in DNA methylation patterns identified between the nor-

mal and the tumor cells can help doctors detect tumor cells in biopsy samples or in

body fluids (Tsuchiya et al., 2000).

In some tumor subtypes it is possible to identify epigenetic profiles which are

used to determine the aggressiveness of the tumor, and to determine if they will

react to a specific treatment. For example, in brain tumors, the gene MGMT is

analized. Its effect is repressed when it is hypermethylated. Therefore, chemothera-

pies which work methylating will only be effective when the gene is not methylated

(Bennani-Baiti, 2011; Esteller et al., 2000). Furthermore, there are some epigene-

tically alterated oncogenes and tumor suppressor genes in sarcomas, such as APC,

CDKN1A, CDKN2A, CDKN2B, Ezrin, FGFR1, GADD45A, MGMT, STK3, STK4,

PTEN, RASSF1A, WIF1; and some epigenetic deregulated indicators in bone sarco-

mas, as PCR1, BMI1 and LSD1. The objective consists of analizying if the epigenetic

expression is correlated with the probability of death in a group of soft part sarcomas.

The database consists of 261 observations with 372452 covariates. Specifically,

there are 372420 covariates with information about DNA methylations and 32 co-

variates with clinical data. The methylation covariates are continuous, with values

between 0 and 1. The covariates with clinical data are introduced in Table 4.89.

The event of interest is the death due to the appearance of sarcomas in different

parts of the body. A total of 195 observations are censored, which corresponds to

74.71% of the data.

Test by Maller & Zhou (1992)

Similarly as in Section 2.6.1, we apply the test by Maller & Zhou (1992) to the sar-

comas dataset. In this case, the largest uncensored failure time is T 1
max = 2575; and

the largest time (censored or uncensored), is T(n) = 5324. Therefore, the difference

is given by ς = T(n)−T 1
max = 2749, and the interval to study is (2575−2749, 2575] =

(−174, 2575]. Note that since it includes the value 0, then the interval to consider is

(0, 2575], which has 76 uncensored observations. Finally, we obtain the value of αn:

αn =

(
1− 76

261

)261

= 9.742013 · 10−40.

Since αn < α = 0.05, we reject the null hypothesis and then condition (2.8) holds.
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Name Type Values n without NA

Days to birth Continuous Between 7530 (20.6 years) and 260
32873 (90.1 years)

Gender Binary male (n = 119), female (n = 142) 261
Race Qualitative asian (n = 6), black or african american (n = 18), 252

white (n = 228)
Ethnicity Binary hispanic or latino (n = 5), 228

not hispanic or latino (n = 223)
Other diagnosis Binary yes (n = 42), no (n = 219) 261
Radiation therapy Binary yes (n = 73), no (n = 142) 215
Pharmaceutical adjuvant postop. Binary yes (n = 37), no (n = 178) 215
Histological type Qualitative dedifferentiated liposarcoma (n = 59), 261

leiomyosarcoma (LMS) (n = 105),
undifferentiated pleomorphic sarcoma (UPS) (n = 51),
synovial sarcoma (n = 10), malignant peripheral
nerve sheath tumors (MPNST) (n = 9),
myxofibrosarcoma (n = 25), desmoid tumor (n = 2)

Leiomyosarcoma histologic subtype Qualitative poorly differentiated (n = 34), conventional (n = 66), 104
well-differentiated (n = 4)

Mpnst neurofibromatosis heredity Binary familial (n = 4), sporadic (n = 2) 6
Tumor depth Binary deep (n = 187), superficial (n = 21) 208
Year of initial pathologic diagnosis Continuous Between 1994 and 2013 257
Age at initial pathologic diagnosis Continuous Between 20 and 90 261
Margin status Binary negative (n = 137), positive (n = 74) 211
Residual tumor Qualitative R0 (n = 155), R1 (n = 70), R2 (n = 9), RX (n = 26) 260
Tumor total necrosis percent Qualitative no necrosis (n = 70), focal (n = 39), 182

extensive (n = 12), moderate (n = 61)
Mitotic count Continuous Between 0 and 102 90
Tumor multifocal Binary yes (n = 40), no (n = 199) 239
Discontiguous lesion count Discrete 0 (n = 8), 1 (n = 16), 2 (n = 10), 3 (n = 8), 48

4 (n = 3), 6 (n = 1), 7 (n = 1), 9 (n = 1)
Radiologic tumor burden Continuous Between 2 and 800 48
Pathologic tumor burden Continuous Between 1.6 and 800 75
Local disease recurrence Binary yes (n = 29), no (n = 144) 173
Metastatic diagnosis Binary yes (n = 56), no (n = 121) 177
Metastatic site at diagnosis Qualitative bone (n = 2), liver (n = 2), lung (n = 40), 55

lung and liver (n = 1), other (n = 10)
New tumor after initial treatment Binary yes (n = 89), no (n = 129) 218
Radiologic tumor length Continuous Between 1.8 and 30 108
Radiologic tumor width Continuous Between 1.1 and 27.8 103
Radiologic tumor depth Continuous Between 0.9 and 25 76
Pathologic tumor length Continuous Between 1.2 and 39.5 227
Pathologic tumor width Continuous Between 0 and 30 188
Pathologic tumor depth Continuous Between 0 and 18 184
Location Qualitative viscera (n = 6), retroperitoneum (n = 101), 259

gynecological (n = 32), upper extremity (n = 9),
lower extremity (n = 68), head and neck (n = 6)
trunck (n = 37)

Table 4.89: Covariates with clinical information in the sarcomas dataset.
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Significance tests

In order to perform significant tests for the 372452 covariates, we use the FDR

approach by Benjamini & Hochberg (1995), and the conservative alternative by

Benjamini & Yekutieli (2001), both together with the bootstrap method. Since

the p-values estimated by the bootstrap need to be compared to eventually small

numbers:

α

m− i+ 1
=

0.05

372452
= 1.3 · 10−7, for i = 1 and α = 0.05,

the number of bootstrap replications are required to be large when the estimated

p-values are close (or equal) to zero. But performing tens or hundreds of millions

bootstrap replications for nearly 400000 covariates is a very time consuming process.

Consequently, we designed an incremental mechanism in order to use a small num-

ber of bootstrap replications and only when the estimated p-value is not conclusive,

we increase B by multiplying it by 10 at every step.

First, we consider B = 10 bootstrap resamples, we draw the test and we sort

the 372452 p-values obtained. We define q′ = iα
m for the non-conservative approach,

and q′ = α
m−i+1 for the conservative alternative. Since p is estimated by Monte

Carlo (using the bootstrap) classical hypothesis tests for proportions can be used to

accept, reject or keep increasing the value B when testing if the theoretical p-value

is larger, smaller or equal to q′. For each p-value:

a) If p > q′ +

√
q′(1−q′)

B 2.32, then the covariate is not significant.

b) If p < q′ −
√

q′(1−q′)
B 2.32, then the covariate is significant.

c) If p ∈
(
q′ −

√
q′(1−q′)

B 2.32, q′ +

√
q′(1−q′)

B 2.32

)
, then the results are not conclu-

sive.

Note that for covariates in cases a) and b), it is not necessary to continue with

the procedure. For the non-conclusive covariates (case c)), we consider B = 102

bootstrap resamples and we draw the test again. We continue with this algorithm,

multiplying B by 10 in each step, until one of the following conditions is fulfilled:

either all of the covariates are conclusive or the number of bootstrap resamples is

larger than B = 109.

Regarding the conservative alternative, after 5 days of CPU time, the results

show that only one covariate is significant for the cure rate: “Year of initial patho-

logic diagnosis”. The p-value is equal to 0 with the CvM statistic, and equal to 10−5
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with the KS statistic. The histogram of the p-values (obtained with CvM and KS)

for the 372452 covariates is shown in Figure 4.13.

Figure 4.13: p-values obtained with CvM (left) and KS (right) statistics.

In Figure 4.14 we can appreciate the estimated probability of cure obtained with

the nonparametric incidence estimator using the bootstrap bandwidth for the co-

variate “Year of initial pathologic diagnosis”. The density of the covariate is also

shown (green line). Similarly as in Section 2.6, alongside the bootstrap bandwidth,

we have also used a smoothed bootstrap bandwidth for the incidence estimator, fol-

lowing Cao et al. (2001). The bootstrap, the smoothed and the pilot bandwidths

are shown in Figure 4.15.

With respect to the non-conservative method, after 10 days of CPU time, the

results for B = 1000 bootstrap resamples show that for the CvM statistic, there

are 4179 significant covariates and 6924 non conclusive covariates, which need to be

considered again in the next iteration of the process. For the KS statistic, there

are 3457 significant covariates, and 6263 non conclusive covariates. At the moment

of the deposit of this thesis, the program is still running for B = 10000 bootstrap

resamples.
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Figure 4.14: Incidence estimator computed with the bootstrap bandwidth (solid blue line)
and a smoothed version (dashed blue line), for the covariate “Year of initial pathologic
diagnosis”. The density of the covariate is also shown (green line).

Figure 4.15: Bootstrap bandwidth h∗x (solid line), smoothed bootstrap bandwidth
h∗smoothedx (dashed line) and local pilot bandwidth gx (dotted line) used for the nonpara-
metric incidence estimator for the covariate “Year of initial pathologic diagnosis”.
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Chapter 5

Future work

Interesting challenges remain as open problems to be dealt in the future:

• The proposed methodology will be applied to high dimensional datasets, in-

cluding analysis of images, related to cancer for medical diagnosis. The idea

is to extract a numeric vector from these images and applying covariate sig-

nificance tests.

• A bandwidth selection method will be proposed for the significance tests in

Case 2 when the covariate X is continuous. There are two approaches for se-

lecting the bandwidths that differ with respect to the optimality measure used.

The first approach focuses on power maximization under the alternative hy-

pothesis, proposed by Kulasekera & Wang (1997) and subsequently developed

in Cao & Van Keilegom (2006), Gao & Gijbels (2008) and Mart́ınez-Camblor &

de Uña-Álvarez (2013). On the other hand, the second procedure considers the

idea of minimizing p-values (see Mart́ınez-Camblor, 2010; Mart́ınez-Camblor &

de Uña-Álvarez, 2013). As Mart́ınez-Camblor & de Uña-Álvarez (2013) point

out, the two approaches are strongly related.

These procedures are computationally expensive, since for each value of the

bandwidth in a grid of bandwidths, a double bootstrap is needed: one to ap-

proximate the power (or the p-value); and another to approximate the critical

value of the test distribution, for each one of the resamples.

We therefore propose that the bandwidth can be selected by means of the fol-

lowing procedure, which estimates the bandwidth that maximizes the power

(or minimizes the p-value) by means of a double-bootstrap procedure:

1. For each bandwidth in the grid of bandwidths, generate the following re-

sample: (X∗, T ∗, δ∗), and compute the bootstrap version of test statistic,
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Tn, in (4.6).

2. For each resample, determine the critical value by generating (second

level) bootstrap resamples under the null hypothesis.

3. Finally, for each bandwidth, compute the power (or the p-value), and

select the optimal bandwidth.

• Covariate significance tests for the latency function will be proposed, based on

the same ideas in which the covariate significance tests for the incidence are

based (see Delgado & González-Manteiga, 2001).

• The estimators of p(x) and S0(t|x) will be redefined, so that they only depend

on (xI ,xC) and (xL,xC), respectively, with x = (xI ,xL,xC) and where:

– xI are the covariates that influence the incidence but not the latency.

– xL are the covariates that influence the latency but not the incidence.

– xC are the common covariates, that influence both the incidence and the

latency.

Therefore, the mixture cure model will be written as:

S(t|x) = 1− p(xI ,xC) + p(xI ,xC) · S0(t|xL,xC).

• An R package will be developed with all the techniques studied, including the

implementation of the nonparametric incidence and latency estimators, as well

as the covariate significance tests for the different types of data: continuous,

discrete, binary and qualitative. This R package will be uploaded in CRAN

and any R user will be able to use the methodology developed in this thesis.

• The presmoothed estimator of the incidence will be considered. The purpose

is to estimate properly the tail of the survival function, so that the estimation

of the cure probability is more efficient. Presmoothing (see Jácome & Cao,

2004) consists of the nonparametric estimation of the conditional probability

of no censoring, which is a regression function. The name of the presmoothed

estimation stems from the fact that the smoothing is used only for obtaining

a smoothed version of the Kaplan-Meier weigths, but the resulting estimator

of the distribution function is not smoothed.

• The proposed methods will be extended to cases with truncated and interval

censored data.
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• Single-index models have been recently used in survival analysis for censored

data (see Strzalkowska-Kominiak & Cao, 2013). Extensions for the incidence

and the latency in cure models will be considered to handle large number of

covariates.

• The consistency of the bootstrap methods in Chapters 2 and 3 will be proven,

since the bootstrap mean squared error is a plug-in estimation of the original

mean squared error.

• The limit behavior of the bootstrap version of the test statistic in Chapter 4

will be considered.

• For the covariate significance testing a new bootstrap approach will be pro-

posed, disturbing the main terms of the process similarly to a wild bootstrap.

This would make the whole computational process much less time consuming.
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Appendix A

Appendix

We need to consider the following assumptions, to be used in the asymptotic results

for the incidence and the latency estimators:

(A1) X, Y and C are absolutely continuous random variables.

(A2) Condition (2.8) holds.

(A3) (a) Let I = [x1, x2] be an interval contained in the support of m, and Iδ =

[x1 − δ, x2 + δ] for some δ > 0 such that

0 < γ = inf{m (x) : x ∈ Iδ} < sup{m (x) : x ∈ Iδ} = Γ <∞

and 0 < δΓ < 1. For all x ∈ Iδ the random variables Y and C are

conditionally independent given X = x.

(b) There exist a, b ∈ R, with a < b satisfying 1−H(t|x) ≥ θ > 0 for (t, x) ∈
[a, b]× Iδ.

(A4) The first derivative of the function m(x) exists and is continuous in x ∈ Iδ

and the first derivatives with respect to x of the functions H(t|x) and H1(t|x)

exist and are continuous and bounded in (t, x) ∈ [0,∞)× Iδ.

(A5) The second derivative of the function m(x) exists and is continuous in x ∈
Iδ and the second derivatives with respect to x of the functions H(t|x) and

H1(t|x) exist and are continuous and bounded in (t, x) ∈ [0,∞)× Iδ.

(A6) The first derivatives with respect to t of the functions G(t|x), H(t|x), H1(t|x)

and S0(t|x) exist and are continuous in (t, x) ∈ [a, b]×D.

(A7) The second derivatives with respect to t of the functions H(t|x) and H1(t|x)

exist and are continuous in (t, x) ∈ [a, b]×D.
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(A8) The second partial derivatives with respect to t and x of the functions H(t|x)

and H1(t|x) exist and are continuous and bounded for (t, x) ∈ [0,∞)×D.

(A9) Let us define Hc,1(t) = P (T < t|δ = 1). The first and second derivatives of

the distribution and subdistribution functions H(t) and Hc,1(t) are bounded

and bounded away from zero in [a, b]. Moreover, H ′c,1(τ0) > 0.

(A10) The functions H(t|x), S0(t|x) and G(t|x) have bounded second-order deriva-

tives with respect to x for any given value of t.

(A11) The kernel function, K, is a symmetric density vanishing outside (−1, 1) and

the total variation of K is less than some λ < ∞.

(A12) The density function of T , fT , is bounded away from 0 in [a, b].

(A13)

∫ ∞
0

dH1(t|x)

(1−H(t|x))2
<∞ ∀x ∈ I.

(A14) bi → 0, lnn
nbi
→ 0,

nb5i
lnn = O(1), (ln lnn)4

(lnn)3
bi
nb2j

= O(1) and (ln lnn)2

(lnn)3
nb11i
b2j

= O(1), for

i, j = 1, 2, i 6= j.

(A15) The distribution of (C|X, ν = 0) equals that of (C|X, ν = 1).
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A.1 Proofs of the results in Chapter 2

Lemma 2.2.1. Let D be the support of X. Model (2.1), with p (x) and S0 (t|x)

unspecified, is identifiable if S0 (t|x) is a proper survival function for x ∈ D.

Proof of Lemma 2.2.1. Suppose we have two formulations of model (2.1):

S(t|x) = 1− p(x) + p(x)S0(t|x) and S∗(t|x) = 1− p∗(x) + p∗(x)S∗0(t|x).

We need to show that S(t|x) = S∗(t|x) if and only if p(x) = p∗(x) and S0(t|x) =

S∗0(t|x), for all x ∈ D. The “if”part is clearly true in all cases, so we concentrate on

“only if”: suppose that S(t|x) = S∗(t|x), then, rearranging Equation (2.1) gives the

ratio:
p (x)

p∗ (x)
=

1− S∗0(t|x)

1− S0(t|x)
= c (x) for all x ∈ D. (A.1)

In particular,

S∗0(t|x) = 1− c (x) (1− S0(t|x)) for all x ∈ D.

Since S0(t|x) and S∗0(t|x) are proper survival functions, that is, S0(+∞|x) = 0

and S∗0(+∞|x) = 0, then

0 = S∗0(+∞|x) = 1− c (x) (1− S0(+∞|x)) = 1− c (x) for all x ∈ D.

Hence, c(x) is constant and equal to one for all x and thus, from (A.1), p(x) = p∗(x)

and S0(t|x) = S∗0(t|x), so S(t|x) is uniquely represented by 1− p (x) + p (x)S0(t|x).

Theorem 2.3.1. The estimator 1 − p̂h (x) given in (2.4) is the local maximum

likelihood estimator of 1− p (x) for the mixture cure model (2.1), for any x ∈ D.

Theorem 3.3.1. The estimator Ŝ0,b(t|x), given in (3.2) is the local maximum like-

lihood estimator of S0(t|x) for the mixture cure model (2.1), for any x ∈ D and

t ≥ 0.

Proof of Theorems 2.3.1 and 3.3.1. The idea is to estimate p (x) locally, maxi-

mizing the observed local likelihood function around x. It can be proven that the

maximum likelihood estimator of the survival function S0(t|x) = 1 − F0(t|x) has

jumps only at the observations (Xi, Ti, δi) , i = 1, . . . , n with jumps

qi (x) = S0(T−(i)|x)− S0(T(i)|x).
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Maximizing the likelihood of the observations for the cure model is equivalent to

maximizing L given by

L (p (x) , S0 (·|x)) =
n∏
i=1

{
[p (x) qi (x)]Bh(i)(x)δ(i) [1− p (x) + p (x)

×
(

1−
∑i−1

j=1 qj (x)
)](1−δ(i))Bh(i)(x)

}
.

Let Di (x) = Bh(i) (x) δ(i) and Pi (x) = p (x) qi (x), then

L (p (x) , S0 (·|x)) =
n∏
i=1

Pi (x)Di(x)

1−
i−1∑
j=1

Pj (x)

Bh(i)(x)−Di(x)
 .

Consider now the functions λi (x) = Pi (x) /

(
1−

i−1∑
j=1

Pj (x)

)
satisfying

1−
k∑
j=1

Pj (x) =
k∏
j=1

(1− λj (x)). (A.2)

Since λ1(x) = P1(x)/(1 −
∑0

j=1 Pj(x)) = P1(x), then Equation (A.2) holds for

k = 1. To prove (A.2) for a general k we proceed by induction. Let us assume that

(A.2) holds for k and let us prove it for k + 1:

1−
k+1∑
j=1

Pj (x) = 1−
k∑
j=1

Pj (x)− Pk+1(x) = 1−
k∑
j=1

Pj (x)− λk+1(x)

1−
k∑
j=1

Pj(x)


=

1−
k∑
j=1

Pj (x)

 (1− λk+1(x)) =

 k∏
j=1

(1− λj(x))

 (1− λk+1(x)) =

k+1∏
j=1

(1− λj(x)).

Now straightforward calculations yield

L (λ1(x), . . . , λn(x)) =
n∏
i=1

λi (x)Di(x)

i−1∏
j=1

(1− λj (x))

Bh(i)(x)

=

(
n∏
i=1

λi (x)Di(x)

) n∏
i=1

i−1∏
j=1

(1− λj (x))Bh(i)(x)



=

(
n∏
i=1

λi (x)Di(x)

) n∏
i,j=1
j<i

(1− λj (x))Bh(i)(x)
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=

(
n∏
i=1

λi (x)Di(x)

) n∏
j=1

(1− λj (x))
∑n

r=j+1Bh(r)(x)


=

n∏
i=1

λi (x)Di(x) (1− λi (x))
∑n

r=i+1Bh(r)(x) .

Maximizing the likelihood of the observations for the cure model is equivalent to

maximizing

max
λi≥0;i=1,...,n

Ψ(λ1, . . . , λn),

where Ψ is the local loglikelihood:

Ψ(λ1 (x) , . . . , λn (x)) =

n∑
i=1

[
Di (x) lnλi (x) +

(
n∑

r=i+1

Bh(r) (x)

)
ln (1− λi (x))

]
,

subject to

n∏
i=1

(1− λi (x)) = 1−
n∑
j=1

Pj (x) = 1−
n∑
j=1

p(x)qj(x) = 1− p (x) . (A.3)

Using standard maximization techniques, we have

∂Ψ(λ1 (x) , . . . , λn (x))

∂λi(x)
=
Di(x)

λi(x)
−
∑n

r=i+1Bh(r)(x)

1− λi(x)
= 0, ∀i = 1, 2, . . . , n,

so Di(x)(1− λ̂i(x)) = λ̂i(x)
∑n

r=i+1Bh(r)(x) and thus

λ̂i (x) =
Di (x)

n∑
r=i+1

Bh(r) (x) +Di (x)

=
δ(i)Bh(i) (x)

n∑
r=i+1

Bh(r) (x) + δ(i)Bh(i) (x)

.

Replacing λi in (A.3) by λ̂i(x), we obtain the estimator of 1− p (x) given in (2.4).

With respect to the distribution of the uncured subjects, note that

F0

(
T(i)|x

)
=

i∑
j=1

qj (x) .

Since the jumps satisfy Pi (x) = p (x) qi (x) and using (A.2), we find that the local

maximum likelihood estimator is given by

F̂0

(
T(i)|x

)
=

1

p̂h (x)

1−
i∏

j=1

(
1− λ̂j (x)

) =
F̂h
(
T(i)|x

)
p̂h (x)

,

with F̂h
(
T(i)|x

)
the Beran estimator of F = 1− S computed at time T(i).
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The following auxiliary results are necessary to prove Theorem 2.3.2.

Lemma A.1.1. (Xu & Peng (2014)) Under assumption (A10),

T 1
max = max

i:δi=1
(Ti)→ τ0 in probability as n→∞.

Lemma A.1.2. Under assumption (A9), we have that

nα(τ0 − T 1
max)→ 0 a.s.

for any α ∈ (0, 1). In particular, for a sequence of bandwidths satisfying nh5(lnn)−1 =

O(1), we have

τ0 − T 1
max = o

((
lnn

nh

)3/4
)
a.s. (A.4)

Proof of Lemma A.1.2. Using the Borel-Cantelli lemma, it is sufficient to prove

that
∞∑
n=1

P
(
|an(τ0 − T 1

max)| > ε
)
<∞, for all ε > 0, (A.5)

where an = nα. Let us fix ε > 0 and consider:

P (|an(τ0 − T 1
max)| > ε)

=P

(
T 1

max < τ0 −
ε

an

)
=P

(
Ti < τ0 −

ε

an
, for all i = 1, 2, . . . n where δi = 1

)
=E

[
P

(
Ti < τ0 −

ε

an
, for all i = 1, 2, . . . n where δi = 1

∣∣δ1, δ2, . . . , δn

)]
=E

[
n∏
i=1

P

(
Ti < τ0 −

ε

an

∣∣δi = 1

)δi]
= E

[
P

(
T1 < τ0 −

ε

an

∣∣δ1 = 1

)∑n
i=1 δi

]

=E

[(
Hc,1

(
τ0 −

ε

an

))∑n
i=1 δi

]
,

where

Hc,1(t) = P
(
T < t

∣∣δ = 1
)

=
P (T < t, δ = 1)

P (δ = 1)
=
H1(t)

ρ
,

with ρ = P (δ = 1) = E(δ) and H1(t) = P (T < t, δ = 1). Consequently, since
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∑n
i=1 δi

d
= B(n, ρ), we get:

P (|an(τ0 − T 1
max)| > ε) (A.6)

= E

[
Hc,1

(
τ0 −

ε

an

)∑n
i=1 δi

]
=

n∑
j=0

(
n

j

)
ρj(1− ρ)n−jHc,1

(
τ0 −

ε

an

)j
=

n∑
j=0

(
n

j

)[
ρHc,1

(
τ0 −

ε

an

)]j
(1− ρ)n−j =

[
ρHc,1

(
τ0 −

ε

an

)
+ 1− ρ

]n
=

[
ρ

(
Hc,1(τ0)− ε

an
H
′
c,1(τ0) +

ε2

2a2
n

H
′′
c,1(ξn)

)
+ 1− ρ

]n
=

[
ρ− ρ ε

an
H
′
c,1(τ0) + ρ

ε2

2a2
n

H
′′
c,1(ξn) + 1− ρ

]n
=

(
1− ρ ε

an
H
′
c,1(τ0) + ρ

ε2

2a2
n

H
′′
c,1(ξn)

)n
,

for some ξn ∈
[
τ0 − ε

an
, τ0

]
, since Hc,1(τ0) = 1.

Using assumption (A9), supt≥0 |H
′′
c,1(t)| = C < ∞. As a consequence, since

ε/an → 0 as n→∞, then there exists some n0 ∈ N such that for all n ≥ n0:∣∣∣∣ρ ε2

2a2
n

H
′′
c,1(ξn)

∣∣∣∣ ≤ ρε2

2a2
n

C ≤ ρ ε

2an
H
′
c,1(τ0). (A.7)

From (A.6) and (A.7), we have that:

P (|an(τ0 − T 1
max)| > ε) ≤

(
1− ρ ε

2an
H
′
c,1(τ0)

)n
=

(
1− ε

2an
H
′
1(τ0)

)n
= bn/ann ,

(A.8)

where

bn =

(
1− ε

2an
H
′
1(τ0)

)an
−−−→
n→∞

r, (A.9)

with r = exp

(
− εH

′
1(τ0)
2

)
< 1.

Using (A.8) and (A.9), to prove (A.5) it suffices to show that
∑∞

n=1 r
n/an <∞.

For that purpose, we will prove that

rn/an < n−2, for n large enough (A.10)

and, since the hyperharmonic series
∑∞

n=1 n
−2 is convergent, the series

∑∞
n=1 r

n/an

will also be convergent.

Note that inequality (A.10) can be written as

2 logR n <
n

an
, (A.11)
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with R = r−1 ∈ (1,∞). Recall that an = nα for some α ∈ (0, 1). Now condition

(A.11) becomes

2 logR n < n1−α,

which is true for n large enough, since n−(1−α)2 logR n → 0. As a consequence,

nα(τ0 − T 1
max)→ 0 a.s. for any α ∈ (0, 1). On the other hand, note that:

n−α(
lnn
nh

)3/4 =

[
nh5

lnn

n4−20α/3

(lnn)4

]3/20

−−−→
n→∞

0,

for α ≥ 3/5 and a sequence of bandwidths satisfying (lnn)−1nh5 = O(1). Therefore,

the result in (A.4) holds. This completes the proof.

In the next three lemmas, we use existing results in the literature for a fixed t

such that 1 −H(t|x) ≥ θ > 0 in (t, x) ∈ [a, b] × Iδ, and apply them to the random

value t = T 1
max. Note that if τ0 < τG(x) = τH(x) for all x ∈ Iδ, then from Lemma

A.1.1, under assumption (A10), we have that:

T 1
max = max

i:δi=1
(Ti)→ τ0 < τH(x) in probability as n→∞.

Therefore, for n large enough, T 1
max ≤ τ0 < τH(x) for all x ∈ Iδ and taking b = τ0

we can apply the results considering t = T 1
max.

Lemma A.1.3. Under assumptions (A1)-(A5), (A10) and (A12), and if nh5/ lnn =

O(1) and lnn/(nh)→ 0, then the incidence estimator satisfies:

1− p̂h(x) = exp
(
−Λ̂h(T 1

max|x)
)

+Rn (x) , for all x ∈ I,

where Λ̂h(t|x) is the estimator of the conditional cumulative hazard function:

Λ̂h(t|x) =

n∑
i=1

δ(i)Bh(i)(x)∑n
r=iBh(r)(x)

I(T(i) ≤ t) =

∫ t

0

dĤ1
h(v|x)

1− Ĥh(v−|x)
,

with Ĥh(t|x) in (2.5), Ĥ1
h(t|x) in (2.6), and

sup
x∈I
|Rn (x)| = O

(
(nh)−1

)
a.s.

Proof of Lemma A.1.3. The incidence estimator is equal to:

1− p̂h(x) = 1− F̂h(T 1
max|x),

where F̂h(t|x) = 1 − Ŝh(t|x) is the Beran estimator in (2.2). The result derives

directly for F̂h(t|x) from the so-called property 3) in the proof of part c) of Theorem 2



A.1. Proofs of the results in Chapter 2 172

in Iglesias-Pérez & González-Manteiga (1999), when the data are subject to random

left truncation and right censorship, for which assumptions (A1),(A3)-(A5) and

(A12) are required. Assumptions (A2) and (A10) allow to use the aforementioned

property when t = T 1
max. González-Manteiga & Cadarso-Suárez (1994) proved a

similar result under right random censoring with fixed design on the covariate.

Lemma A.1.4. Under assumptions (A1)-(A11) and (A13) for x ∈ I and if nh5/ lnn =

O(1), lnn/(nh)→ 0, then

Λ̂h(T 1
max|x)− Λ(T 1

max|x) =
n∑
i=1

B̃hi(x)ξ (Ti, δi,∞, x) + R̃n (x) ,

with B̃hi in (2.9), ξ in (2.11) and

sup
x∈I

∣∣∣R̃n (x)
∣∣∣ = O

((
lnn

nh

)3/4
)
a.s.

Proof of Lemma A.1.4. Under assumptions (A1)-(A8), (A10) and (A11), we ap-

ply Theorem 2(b) of Iglesias-Pérez & González-Manteiga (1999) (similarly Theorem

2.2 of González-Manteiga & Cadarso-Suárez (1994) with fixed design using GM

weights) to t = T 1
max:

Λ̂h(T 1
max|x)− Λ(T 1

max|x) (A.12)

=

n∑
i=1

B̃hi(x)ξ (Ti, δi,∞, x) +

n∑
i=1

(Bhi(x)− B̃hi(x))ξ (Ti, δi,∞, x)

+

n∑
i=1

Bhi(x)
(
ξ̃ (Ti, δi,∞, x)− ξ (Ti, δi,∞, x)

)
+ ˜̃Rn (x) ,

with ξ in (2.11),

ξ̃ (Ti, δi,∞, x) =
δi

1−H(Ti|x)
−
∫ T 1

max

0

I(t < Ti)

(1−H(t|x))2
dH1(t|x)

and

sup
x∈I

∣∣∣ ˜̃Rn (x)
∣∣∣ = O

((
lnn

nh

)3/4
)
a.s.

Note that∣∣∣ξ̃ (Ti, δi,∞, x)− ξ (Ti, δi,∞, x)
∣∣∣ ≤ ∫ τ0

T 1
max

dH1(t|x)

(1−H(t−|x))2
for all i = 1, . . . , n.

Then, under assumption (A9) we apply Lemma A.1.2, and assuming (A13), it is

easy to prove that for a sequence of bandwidths satisfying nh5(lnn)−1 = O(1), the
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third term in (A.12) is,

sup
x∈I

∣∣∣∣∣
n∑
i=1

Bhi(x)
(
ξ̃ (Ti, δi,∞, x)− ξ (Ti, δi,∞, x)

)∣∣∣∣∣ = o

((
lnn

nh

)3/4
)
a.s.

For the second term in (A.12), it is important to note that:

n∑
i=1

(Bhi(x)− B̃hi(x))ξ(Ti, δi,∞, x)

=
1

nh

n∑
i=1

K

(
x−Xi

h

)
ξ(Ti, δi,∞, x)

m(x)− m̂h(x)

m̂h(x)m(x)
,

with m̂h(x) the Parzen-Rosenblatt estimator of m(x). Using Theorem 3.3 of Arcones

(1997), standard bias and variance calculations and Taylor expansions lead to

sup
x∈I

∣∣∣∣∣ 1

nh

n∑
i=1

K

(
x−Xi

h

)
ξ(Ti, δi,∞, x)

∣∣∣∣∣ = O

(
h2 +

√
ln lnn

nh

)
a.s.

Using again Theorem 3.3 of Arcones (1997), it is easy to prove that:

sup
x∈I

∣∣∣∣m(x)− m̂h(x)

m̂h(x)m(x)

∣∣∣∣ = O

(
h2 +

√
ln lnn

nh

)
a.s.

Therefore,

sup
x∈I

∣∣∣∣∣
n∑
i=1

(Bhi(x)− B̃hi(x))ξ(Ti, δi,∞, x)

∣∣∣∣∣ = O

(h2 +

√
ln lnn

nh

)2
 a.s.

For a sequence of bandwidths satisfying nh5(lnn)−1 = O(1) and lnn
nh → 0, it is

immediate to prove that

sup
x∈I

∣∣∣∣∣
n∑
i=1

(Bhi(x)− B̃hi(x))ξ(Ti, δi,∞, x)

∣∣∣∣∣ = O

((
lnn

nh

)3/4
)
a.s.

This completes the proof.

Lemma A.1.5. Under assumptions (A1)-(A8) and (A10)-(A12), and if nh5/ lnn =

O(1), lnn/(nh)→ 0, then

sup
x∈I

∣∣∣Λ̂h (T 1
max|x

)
− Λ

(
T 1

max|x
)∣∣∣ = O

((
lnn

nh

)1/2
)
a.s.
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Proof of Lemma A.1.5. The equivalent result for a fixed t ∈ [a, b] is within pro-

perty 2 in the proof of part c) of Theorem 2 in Iglesias-Pérez & González-Manteiga

(1999), for which assumptions (A1), (A3)-(A8), (A11) and (A12) are required. As-

sumptions (A2) and (A10) are needed to apply that result to t = T 1
max. For the

uniform strong consistency of the Beran estimator F̂h(t|x), see also Dabrowska

(1989).

Theorem 2.3.2. Under assumptions (A1)-(A13), for any sequence of bandwidths

satisfying nh5(lnn)−1 = O(1) and lnn/(nh)→ 0, then

(1− p̂h(x))− (1− p(x)) = (1− p (x))
n∑
i=1

B̃hi(x)ξ (Ti, δi,∞, x) +Rn (x) ,

where

B̃hi(x) =

1
nhK

(
x−Xi
h

)
m(x)

, (2.9)

ξ (Ti, δi, t, x) =
I(Ti ≤ t, δi = 1)

1−H(Ti|x)
−
∫ t

0

I(u ≤ Ti)dH1(u|x)

(1−H(u|x))2 (2.10)

and

sup
x∈I
|Rn(x)| = O

((
lnn

nh

)3/4
)
a.s.

Proof of Theorem 2.3.2. The incidence estimator can be split into the following

terms:

(1− p̂h(x))− (1− p(x))

= Ŝh(T 1
max|x)− (1− p(x))

= exp
[
−Λ̂h(T 1

max|x)
]
− exp

[
−Λ(T 1

max|x)
]

+R2(x) +R3(x), (A.13)

with

R2(x) = Ŝh(T 1
max|x)− exp

[
−Λ̂h(T 1

max|x)
]

and

R3(x) = S(T 1
max|x)− (1− p(x)) .

For the first term of (A.13) we apply a Taylor expansion of the function exp(y)

around the value y = −Λ(T 1
max|x):

exp
[
−Λ̂h(T 1

max|x)
]
− exp

[
−Λ(T 1

max|x)
]

(A.14)

= − exp
[
−Λ(T 1

max|x)
] (

Λ̂h(T 1
max|x)− Λ(T 1

max|x)
)

+R1(x),
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with

R1(x) =
1

2
exp

[
−Λ∗(T 1

max|x)
] (

Λ̂h(T 1
max|x)− Λ(T 1

max|x)
)2

and Λ∗(T 1
max|x) = ηn (x) a value between Λ̂h(T 1

max|x) and Λ(T 1
max|x). Now, adding

and substracting 1− p(x), and bearing in mind that S(T 1
max|x) = exp[−Λ(T 1

max)|x],

exp
[
−Λ̂h(T 1

maxx)
]
− exp

[
−Λ(T 1

max|x)
]

= − (1− p (x))
(

Λ̂h(T 1
max|x)− Λ(T 1

max|x)
)

+R1(x)−R4(x),

where

R4(x) =
[
S
(
T 1

max|x
)
− (1− p (x))

] (
Λ̂h(T 1

max|x)− Λ(T 1
max|x)

)
.

Now, inserting (A.14) in (A.13), we have:

(1− p̂h(x))− (1− p (x)) (A.15)

= − (1− p (x))
(

Λ̂h(T 1
max|x)− Λ(T 1

max|x)
)

+R1(x) +R2(x) +R3(x)−R4(x).

The i.i.d. representation of 1 − p̂h(x) now follows, assuming (A1)-(A11) and

(A13), from Lemma A.1.4.

Let us study the remainder terms in (A.15), starting with R1(x). Taking into

account that exp
[
−Λ∗(T 1

max|x)
]

is bounded for all x ∈ I, and applying Lemma

A.1.5, under the assumptions (A1)-(A8) and (A10)-(A12), we have

sup
x∈I
|R1(x)| = O

(
lnn

nh

)
a.s.

Regarding R2(x), under the assumptions (A1), (A3)-(A5), (A10) and (A12),

directly from Lemma A.1.3 and using lnn/(nh)→ 0 we obtain:

sup
x∈I
|R2(x)| = O

(
(nh)−1

)
= o

((
lnn

nh

)3/4
)
a.s.

Focusing on R3(x), note that it can be bounded as follows:

sup
x∈I

∣∣R3(x)
∣∣ = sup

x∈I

∣∣S(T 1
max|x)− (1− p(x))

∣∣
= sup

x∈I

∣∣∣∣ [(1− p(x)) + p(x)S0(T 1
max|x)

]
− (1− p(x))

∣∣∣∣
= sup

x∈I

∣∣p(x)S0(T 1
max|x)

∣∣ ≤ sup
x∈I

∣∣S0(T 1
max|x)

∣∣
= sup

x∈I

∣∣S0(T 1
max|x)− S0(τ0|x)

∣∣
≤ sup

x∈I
|(T 1

max − τ0)S′0(τn|x)|, (A.16)
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with τn ∈ [T 1
max, τ0]. From condition (A6), that implies that there exists some λ > 0

such that sup(t,x)∈[a,b]×I |S′0(t|x)| ≤ λ, and using (A.4) and (A.16) for a sequence of

bandwidths satisfying nh5(lnn)−1 = O(1), we have that:

sup
x∈I
|R3(x)| = o

((
lnn

nh

)3/4
)
a.s.

Finally, from Lemma A.1.5, the term R4 is negligible with respect to R3, and there-

fore:

sup
x∈I
|R4(x)| = o

((
lnn

nh

)3/4
)
a.s.

This completes the proof.

The following Lemmas A.1.6, A.1.7 and A.1.8 are necessary to prove Corollary

2.3.1.

Lemma A.1.6. Recall m(x), the density function of X, and let us define Φ(y, t, x)

as:

Φ(y, t, x) = E[ξ(T, δ, t, x)|X = y], (A.17)

with ξ (T, δ, t, x) in (2.10). If the kernel K is a symmetric density function, and

assuming that the second derivative with respect to y of the function Φ(y, t, x) exists,

then:

E

[
K

(
x−X
b

)
ξ(T, δ, t, x)

]
= Φ(x, t, x)m(x)b+

1

2
b3dK

∂2

∂y2
[Φ(y, t, x)m(y)] |y=x + o(b3),

where dK was defined in (1.9).

Proof of Lemma A.1.6. Note that

E

[
K

(
x−X
b

)
ξ(T, δ, t, x)

]
= E

[
E

(
K

(
x−X
b

)
ξ(T, δ, t, x)|X

)]
= E

[
K

(
x−X
b

)
E (ξ(T, δ, t, x)|X)

]
=

∫ ∞
−∞

K

(
x− y
b

)
Φ(y, t, x)m(y)dy.
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Applying a change of variable and a Taylor expansion,∫ ∞
−∞

K(u)Φ(x− bu, t, x)m(x− bu)bdu

=

∫ ∞
−∞

K(u)

[
Φ(x, t, x)m(x)− bu ∂

∂y
[Φ(y, t, x)m(y)] |y=x

+
1

2
b2u2 ∂

2

∂y2
[Φ(y, t, x)m(y)] |y=x

]
bdu+ o(b3)

=Φ(x, t, x)m(x)b+
1

2
b3dK

∂2

∂y2
[Φ(y, t, x)m(y)] |y=x + o(b3).

This concludes the proof.

Lemma A.1.7. Let Φ(y, t, x) = E[ξ(T, δ, t, x)|X = y], with ξ(T, δ, t, x) in (2.10).

The following equality holds:

Φ (y, t, x) =

∫ t

0

dH1 (v|y)

1−H(v|x)
−
∫ t

0
(1−H(v|y))

dH1(v|x)

(1−H(v|x))2

and then

Φ(x, t, x) = 0 ∀t ≥ ∞. (A.18)

Proof of Lemma A.1.7. Considering

Φ (y, t, x) = E

[
I(T ≤ t, δ = 1)

1−H(T |x)

∣∣∣∣X = y

]
− E

[∫ t

0

I(v ≤ T )dH1(v|x)

(1−H(v|x))2

∣∣∣∣X = y

]
= A′ −A′′.

We start with A′:

A′ = E

[
I(T ≤ t, δ = 1)

1−H(T |x)

∣∣∣∣X = y

]
= E

[
E

(
I(T ≤ t, δ = 1)

1−H(T |x)

∣∣∣∣T,X = y

)]
= E

[
I(T ≤ t)

1−H(T |x)
E (δ|T,X = y)

∣∣∣∣X = y

]
= E

[
I(T ≤ t)

1−H(T |x)
q(T, y)

∣∣∣∣X = y

]

=

t∫
0

q(v, y)dH(v|y)

1−H(v|x)
=

∫ t

0

dH1 (v|y)

1−H(v|x)
,

where

q (t, y) = E (δ|T = t,X = y) and H1 (t|y) = P (T ≤ t, δ = 1|X = y) .

We continue with A′′:

A′′ = E

[∫ t

0

I(v ≤ T )dH1(v|x)

(1−H(v|x))2

∣∣∣∣X = y

]
=

∫ t

0
E [I(v ≤ T )|X = y]

dH1(v|x)

(1−H(v|x))2

=

∫ t

0
(1−H(v|y))

dH1(v|x)

(1−H(v|x))2 .
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Therefore,

Φ (y, t, x) =

∫ t

0

dH1 (v|y)

1−H(v|x)
−
∫ t

0
(1−H(v|y))

dH1(v|x)

(1−H(v|x))2

and then Φ(x, t, x) = 0.

Lemma A.1.8. Let g(x, y) and m(y) be two functions such that both g′′(x, y) =

∂2g(x, y)/∂y2 and the second derivative of m(y) exist, and considering that the kernel

function K is a symmetric density, then:∫
K2

(
x− y
b

)
g(x, y)m(y)dy = bg(x, x)m(x)cK

+b3eK

(
g(x, x)m′′(x)

2
+
m(x)

2
g′′(x, x) +m′(x)g′(x, x)

)
+ o(b3),

where cK was defined in (1.10) and eK =
∫
v2K2(v)dv.

Proof of Lemma A.1.8. We apply a change of variable:∫
K2

(
x− y
b

)
g(x, y)m(y)dy = b

∫
K2(u) g(x, x− bu) m(x− bu) du.

Now using a Taylor expansion, the result is directly derived.

Corollary 2.3.1. An asymptotic expression of the mean squared error of the inci-

dence estimator is given by:

AMSEx(h) =
1

nh
(1− p(x))2cKσ

2(x) +

[
h2 1

2
dK(1− p(x))µ(x)

]2

, (2.13)

where the first term corresponds to the asymptotic variance and the second one to

the asymptotic squared bias, with dK in (1.9) and cK in (1.10) and, following a

notation similar to that in Dabrowska (1992):

σ2(x) =
1

m(x)

∫ ∞
0

dH1(t|x)

(1−H(t|x))2

and

µ(x) =
2Φ′(x,∞, x)m′(x) + Φ′′(x,∞, x)m(x)

m(x)
, (2.14)

where

Φ (y, t, x) =

∫ t

0

dH1 (v|y)

1−H(v|x)
−
∫ t

0
(1−H(v|y))

dH1(v|x)

(1−H(v|x))2 , (2.15)

with Φ′(y, t, x) = ∂Φ(y, t, x)/∂y and Φ′′(y, t, x) = ∂2Φ(y, t, x)/∂y2. Note that the

AMSE denotes the MSE of the dominant part of the almost sure representation
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of the incidence estimator. If the censoring distribution does not depend on the

covariate, then µ(x) can also be written as follows:

µ (x) =
1

m (x)

(
[p (x)m (x)]′′ − p (x)m′′ (x)

)(
1−

∫ ∞
0

S (dv|x)

S (v|x)2

)
. (2.16)

Proof of Corollary 2.3.1. The dominant part of the bias and the variance of

p̂h(x)− p(x) is the same as that of the i.i.d. representation given in Theorem 2.3.2:

(1− p (x))

n∑
i=1

B̃hi(x)ξ (Ti, δi,∞, x) = −1− p (x)

m(x)

n∑
i=1

1

nh
K

(
x−Xi

h

)
ξ (Ti, δi,∞, x) .

Let us define

I =

n∑
i=1

1

nh

[
K

(
x−Xi

h

)
ξ (Ti, δi,∞, x)− E

(
K

(
x−Xi

h

)
ξ (Ti, δi,∞, x)

)]
and

II =

n∑
i=1

1

nh
E

(
K

(
x−Xi

h

)
ξ (Ti, δi,∞, x)

)
.

Then,

p̂h(x)− p(x) =
1− p(x)

m(x)
(I + II) +O

((
lnn

nh

)3/4
)
a.s.

The expected value of the estimator of p(x) is asymptotically equal to that of

p (x) +
1− p (x)

m (x)
(I + II) .

Note that the expected value of I is E(I) = 0. We continue with the term II:

II =

n∑
i=1

1

nh
E

[
K

(
x−Xi

h

)
ξ (Ti, δi,∞, x)

]
=

1

h
E

[
K

(
x−X1

h

)
ξ (T1, δ1,∞, x)

]
.

It follows directly from Lemma A.1.6 that[
E

(
K

(
x−X1

h

)
ξ(T1, δ1, t, x)

)]2

=
[
Φ(x, t, x)m(x)h+O(b32)

]2
.

Lemma A.1.7 implies that E [ξ(T, δ, t, x)|X = x] = Φ (x, t, x) = 0 and, as a

consequence, [
E

(
K

(
x−X1

h

)
ξ(T1, δ1,∞, x)

)]
= O(b32). (A.19)
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If the censoring distribution does not depend on the covariate, Φ (y, t, x) can be

expressed as:

Φ (y, t, x) =

∫ t

0

F (dv|y)

S (v|x)
−
∫ t

0
S (v|y)

F (dv|x)

S (v|x)2

= −
∫ t

0

p (y)S0 (dv|y)

S (v|x)
+

∫ t

0
[(1− p (y)) + p (y)S0 (v|y)]

S (dv|x)

S (v|x)2 . (A.20)

We obtain the first and second derivatives of Φ (y, t, x) in (2.15). Let us con-

sider the notation S′0(t|x) for the corresponding derivative with respect to x. Fur-

thermore, note that F (v|x) = p (x) (1− S0 (v|x)) and F (dv|x) = −S (dv|x) =

−p (x)S0 (dv|x). The derivative of Φ (y, t, x) in (A.20) is:

∂

∂y
Φ (y, t, x) |y=x,t=∞

= −
∫ ∞

0

∂
∂y [p (y)S0 (dv|y)] |y=x

S (v|x)

+

∫ ∞
0

∂

∂y
[(1− p (y)) + p (y)S0 (v|y)] |y=x

S (dv|x)

S (v|x)2

= −
∫ ∞

0

p′ (x)S0 (dv|x)

S (v|x)
−
∫ ∞

0

p (x)S′0 (dv|x)

S (v|x)
− p′ (x)

∫ ∞
0

p (x)S0 (dv|x)

S (v|x)2

+

∫ ∞
0

p′ (x)S0 (v|x)
p (x)S0 (dv|x)

S (v|x)2 +

∫ ∞
0

p (x)S′0 (v|x)
p (x)S0 (dv|x)

S (v|x)2 .

Adding and substracting the same terms, suitably chosen, the derivative of

Φ (y, t, x) equals:

∂

∂y
Φ (y, t, x) |y=x,t=∞

= −p′ (x)

∫ ∞
0

S0 (dv|x)

S (v|x)
− p′ (x)

∫ ∞
0

p (x) (1− S0 (v|x))
S0 (dv|x)

S (v|x)2

− p (x)

∫ ∞
0

S′0 (dv|x)

S (v|x)
± p′ (x)

∫ ∞
0

S0 (dv|x)

S (v|x)

+ p2 (x)

∫ ∞
0

S′0 (v|x)
S0 (dv|x)

S (v|x)2 ± p (x)

∫ ∞
0

p′ (x)S0 (v|x)
S0 (dv|x)

S (v|x)2

= −p′ (x)

∫ ∞
0

S0 (dv|x)

S (v|x)
− p′ (x)

∫ ∞
0

(1− S (v|x))
S0 (dv|x)

S (v|x)2

−
∫ ∞

0
[p (x)S0 (dv|x)]′

1

S (v|x)
+ p′ (x)

∫ ∞
0

S0 (dv|x)

S (v|x)

+ p (x)

∫ ∞
0

[p (x)S0 (v|x)]′
S0 (dv|x)

S (v|x)2 − p (x)

∫ ∞
0

p′ (x)S0 (v|x)
S0 (dv|x)

S (v|x)2 .
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Therefore,

∂

∂y
Φ (y, t, x) |y=x,t=∞

= −p′ (x)

∫ ∞
0

S0 (dv|x)

S2 (v|x)
+ p′ (x)

∫ ∞
0

S0 (dv|x)

S (v|x)

− p′ (x)

∫ ∞
0

p (x)S0 (v|x)
S0 (dv|x)

S (v|x)2 −
∫ ∞

0
[p (x)S0 (dv|x)]′

1

S (v|x)

+ p (x)

∫ ∞
0

[p (x)S0 (v|x)]′
S0 (dv|x)

S (v|x)2 .

Thus, considering that S0 (∞|x) = 0, S (∞|x) = 1 − p (x) and S0 (0|x) =

S (0|x) = 1, then

∂

∂y
Φ (y, t, x) |y=x,t=∞ = −p′ (x) p (x)

∫ ∞
0

S0 (dv|x)

S (v|x)2 + p′ (x)

= p′ (x)

(
1−

∫ ∞
0

p (x)S0 (dv|x)

S (v|x)2

)
= p′ (x)

(
1−

∫ ∞
0

S (dv|x)

S (v|x)2

)
. (A.21)

Regarding the second derivative of Φ (y, t, x) in (2.15), we follow the same ideas:

∂2

∂y2
Φ (y, t, x) |y=x,t=∞

=

∫ ∞
0

∂2

∂y2
F (dv|y) |y=x

S (v|x)
−
∫ ∞

0

∂2

∂y2
S (v|y) |y=x

F (dv|x)

S (v|x)2

= −
∫ ∞

0

∂2

∂y2
[p (y)S0 (dv|y)]

S (v|x)

+

∫ ∞
0

∂2

∂y2
[(1− p (y)) + p (y)S0 (v|y)] |y=x

p (x)S0 (dv|x)

S (v|x)2 .

Choosing a suitable term and then adding and substracting it, the second deriva-

tive of Φ (y, t, x) can be expressed as:

∂2

∂y2
Φ (y, t, x) |y=x,t=∞

= −p′′ (x)

∫ ∞
0

S0 (dv|x)

S (v|x)2

− 2p′ (x)

∫ ∞
0

S′0 (dv|x)

S (v|x)
− p (x)

∫ ∞
0

S′′0 (dv|x)

S (v|x)
± p′′ (x)

∫ ∞
0

S0 (dv|x)

S (v|x)

+ p (x)

∫ ∞
0

(
2p′ (x)S′0 (v|x) + p (x)S′′0 (v|x)± p′′ (x)S0 (v|x)

) S0 (dv|x)

S (v|x)2 .
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Then,

∂2

∂y2
Φ (y, t, x) |y=x,t=∞

= −p′′ (x)

∫ ∞
0

S0 (dv|x)

S (v|x)2 + p′′ (x)

∫ ∞
0

S0 (dv|x)

S (v|x)

− p (x) p′′ (x)

∫ ∞
0

S0 (v|x)
S0 (dv|x)

S (v|x)2

+ p (x)

∫ ∞
0

[p (x)S0 (v|x)]′′
S0 (dv|x)

S (v|x)2 −
∫ ∞

0

1

S (v|x)
[p (x)S0 (dv|x)]′′ .(A.22)

Note that the first three terms in (A.22) are equal to

p′′ (x)

∫ ∞
0

(
− 1

S (v|x)2 +
1

S (v|x)
− p (x)S0 (v|x)

1

S (v|x)2

)
S0 (dv|x)

= p′′ (x)

∫ ∞
0

(−1 + S (v|x)− p (x)S0 (v|x))
1

S (v|x)2S0 (dv|x)

= −p′′ (x) p (x)

∫ ∞
0

S0 (dv|x)

S (v|x)2 . (A.23)

Regarding the last two terms in (A.22),

p (x)

∫ ∞
0

[p (x)S0 (v|x)]′′
S0 (dv|x)

S (v|x)2 −
∫ ∞

0

1

S (v|x)
[p (x)S0 (dv|x)]′′

= −
∫ ∞

0

1

S2 (v|x)

(
[p (x)S0 (dv|x)]′′ S (v|x)− [p (x)S0 (v|x)]′′ S (dv|x)

)
= −

∫ ∞
0

∂

∂v

[
[p (x)S0 (v|x)]′′

S (v|x)

]
dv

= −
(

[p (x)S0 (∞|x)]′′

S (∞|x)
− [p (x)S0 (0|x)]′′

S (0|x)

)
= p′′ (x) . (A.24)

Considering that S0 (∞|x) = 0, S (∞|x) = 1− p (x) and S0 (0|x) = S (0|x) = 1,

thus, using (A.23) and (A.24) in (A.22), and taking into account that F (dv|x) =

−S(dv|x) = −p(x)S0(dv|x), the second derivative of Φ (y, t, x) reduces to

∂2

∂y2
Φ (y, t, x) |y=x,t=∞

= −p′′ (x) p (x)

∫ ∞
0

S0 (dv|x)

S (v|x)2 + p′′ (x) = p′′ (x)

(
1− p (x)

∫ ∞
0

S0 (dv|x)

S (v|x)2

)
= p′′ (x)

(
1−

∫ ∞
0

S (dv|x)

S (v|x)2

)
. (A.25)
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Finally, let us recall Φ′ (x,∞, x) in (A.21) and Φ′′ (x,∞, x) in (A.25). Therefore,

the function µ (x) can be expressed as:

µ (x) =
2Φ′ (x,∞, x)m′ (x) + Φ′′ (x,∞, x)m (x)

m (x)

=
1

m (x)

[
2p′ (x)

(
1−

∫ ∞
0

S (dv|x)

S (v|x)2

)
m′ (x)

+ p′′ (x)

(
1−

∫ ∞
0

S (dv|x)

S (v|x)2

)
m (x)

]
=

1

m (x)

(
[p (x)m (x)]′′ − p (x)m′′ (x)

)(
1−

∫ ∞
0

S (dv|x)

S (v|x)2

)
.

The variance of p̂h is asymptotically equal to

(1− p(x))2

m2(x)
V ar(I),

since II is not a random term and therefore, its variance is zero. The variance of I

is given by:

V ar(I)

=

n∑
i=1

V ar

(
1

nh

[
K

(
x−Xi

h

)
ξ (Ti, δi,∞, x)− E

(
K

(
x−Xi

h

)
ξ (Ti, δi,∞, x)

)])
=

1

n
V ar

(
1

h
K

(
x−X1

h

)
ξ (T1, δ1,∞, x)

)
.

Note that

V ar

(
K

(
x−X1

h

)
ξ(T1, δ1, t, x)

)
(A.26)

= E

(
K2

(
x−X1

h

)
ξ2(T1, δ1, t, x)

)
−
[
E

(
K

(
x−X1

h

)
ξ(T1, δ1, t, x)

)]2

and we start with the first term in (A.26):

E

[
K2

(
x−X1

h

)
ξ2(T1, δ1, t, x)

]
= E

[
K2

(
x−X1

h

)
E
(
ξ2(T1, δ1, t, x)|X1

)]
=

∫
K2

(
x− y
h

)
E
(
ξ2(T1, δ1, t, x)|X1 = y

)
m(y)dy.

Let us define

Φ1(y, t, x) = E(ξ2(T, δ, t, x)|X = y), (A.27)

with ξ in (2.10). From Lemma A.1.8, considering g(x, y) = Φ1(y, t, x) for a fixed t,

then the first term in (A.26) is

E

[
K2

(
x−X1

b2

)
ξ2(T1, δ1, t, x)

]
= b2Φ1(x, t, x)m(x)cK +O(b32). (A.28)
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Then, the variance is given by

V ar(p̂h(x)) =
1

n

(1− p(x))2

m(x)

(
1

h
Φ1(x,∞, x)cK +O(h)

)
=

1

nh

(1− p(x))2

m(x)
cK

∫ ∞
0

dH1(t|x)

(1−H(t−|x))2
+ o(nh−1),

with Φ1(x,∞, x) =
∫∞

0
dH1(t|x)

(1−H(t−|x))2
.
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A.2 Proofs of the results in Chapter 3

Lemma A.2.1. Let g(x, y) and m(y) be two functions such that both g′′(x, y) =

∂2g(x, y)/∂y2 and the second derivative of the function m(y) exist, and considering

that the kernel function K is a symmetric density, then:∫
K

(
x− y
b1

)
K

(
x− y
b2

)
g(x, y)m(y)dy

= b1g(x, x)m(x)

∫
K(u)K

(
b1
b2
u

)
du+O(b21).

Proof of Lemma A.2.1. We apply a change of variable and a Taylor expansion:∫
K

(
x− y
b1

)
K

(
x− y
b2

)
g(x, y)m(y)dy

= b1

∫
K (u)K

(
b1
b2
u

)
[g(x, x)m(x)

+b1ug
′(x, x)m(x) + b1um

′(x)g(x, x) +O(b21)
]
du

= b1g(x, x)m(x)

∫
K (u)K

(
b1
b2
u

)
du+O(b21),

where g′(x, y) is the derivative with respect to y. This concludes the proof.

Theorem 3.2.1. Under assumptions (A1)-(A13), and for two sequences of band-

widths satisfying (A14), then the i.i.d. representation of the nonparametric latency

estimator in (3.1) is:

Ŝ0,b1,b2(t|x)−S0(t|x) =
n∑
i=1

ηb1,b2(Ti, δi, Xi, t, x) +O

((
lnn

nb1

)3/4

+

(
lnn

nb2

)3/4
)
a.s.,

where

ηb1,b2(Ti, δi, Xi, t, x) = −S(t|x)

p(x)
B̃b2i(x)ξ(Ti, δi, t, x) (3.3)

− (1− p(x))(1− S(t|x))

p(x)2
B̃b1i(x)ξ(Ti, δi,∞, x),

with ξ(Ti, δi, t, x) defined in (2.10) and B̃bji(x), j = 1, 2 in (2.9).

Proof of Theorem 3.2.1. Departing from (3.1), then:

Ŝ0,b1,b2(t|x)− S0(t|x) = A11 +A21 +A31 +A12 +A22 +A32,
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where

A11 =
Ŝb2(t|x)− S(t|x)

p(x)
,

A21 =
p̂b1(x)− p(x)

p(x)
,

A31 = −(S(t|x)− (1− p(x)))(p̂b1(x)− p(x))

p(x)2
,

A12 =
(Ŝb2(t|x)− S(t|x))(p(x)− p̂b1(x))

p̂b1(x)p(x)
,

A22 = −(p̂b1(x)− p(x))2

p̂b1(x)p(x)

and

A32 =
(S(t|x)− (1− p(x)))(p(x)− p̂b1(x))2

p̂b1(x)p(x)2
.

Note that

A21 +A31 =
1− S(t|x)

p(x)2
(p̂b1(x)− p(x))

and

A22 +A32 =
S(t|x)− 1

p(x)2

(p̂b1(x)− p(x))2

p̂b1(x)
.

The i.i.d. representation derives from the terms A11 and A21 + A31. From

Theorem 2 in Iglesias-Pérez & González-Manteiga (1999), we obtain the i.i.d. repre-

sentation of the term A11:

A11 =
1

p(x)

(
−S(t|x)

n∑
i=1

B̃b2i(x)ξ(Ti, δi, t, x) +O

((
lnn

nb2

)3/4
))

a.s.

We continue studying the terms A21 + A31. From Theorem 2.3.2 in Chapter 2

we obtain the following i.i.d. representation:

A21 +A31

=
(1− S(t|x))

p(x)2

(
−(1− p(x))

n∑
i=1

B̃b1i(x)ξ(Ti, δi,∞, x) +O

((
lnn

nb1

)3/4
))

a.s.

The remainder terms A12, A22 and A32 are negligible. We will study them sepa-

rately: on the one hand, A12 and on the other hand, A22 +A32.

We start proving the negligibility of A12. We depart from Lemma 5 in Iglesias-

Pérez & González-Manteiga (1999),

Ŝb2(t|x)− S(t|x) = O

(√
ln lnn

nb2
+ b22

)
a.s. (A.29)
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and from Theorem 3.3 in Arcones (1997) and the Strong Law of Large Numbers

(SLLN), then

p(x)− p̂b1(x) = O

(√
ln lnn

nb1
+ b21

)
a.s. (A.30)

To prove the negligibility of A12, from (A.29) and (A.30), we have that:

(Ŝb2(t|x)− S(t|x))(p(x)− p̂b1(x)) = O

((√
ln lnn

nb1
+ b21

)(√
ln lnn

nb2
+ b22

))
a.s.

Note that: (√
ln lnn

nb1
+ b21

)(√
ln lnn

nb2
+ b22

)

=
ln lnn

n
√
b1
√
b2

+ b22

√
ln lnn

nb1
+ b21

√
ln lnn

nb2
+ b21b

2
2. (A.31)

To prove that (A.31) is O
(

lnn
nb1

)3/4
, it suffices to prove the following equalities:

ln lnn
n
√
b1
√
b2(

lnn
nb1

)3/4
= O(1),

b22

√
ln lnn
nb1(

lnn
nb1

)3/4
= O(1),

b21

√
ln lnn
nb2(

lnn
nb1

)3/4
= O(1) and

b21b
2
2(

lnn
nb1

)3/4
= O(1),

which, respectively, lead to the resulting conditions:

(ln lnn)4b1
nb22(lnn)3

= O(1),
(ln lnn)2 nb1b

8
2

(lnn)3 = O(1),
(ln lnn)2 nb11

1

(lnn)3 b22
= O(1) and

n3b11
1 b

8
2

(lnn)3 = O(1).

To prove that (A.31) is O
(

lnn
nb2

)3/4
, a similar argument just changing b1 by b2

leads to the following conditions:

(ln lnn)4b2
nb21(lnn)3

= O(1),
(ln lnn)2 nb11

2

(lnn)3 b21
= O(1),

(ln lnn)2 nb81b2

(lnn)3 = O(1) and
n3b81b

11
2

(lnn)3 = O(1).

It is straightforward to check that if the bandwidths satisfy nb5i /(lnn) = O(1),

with i = 1, 2, then (ln lnn)2nbib
8
j/(lnn)3 = O(1) and n3b11

i b
8
j/(lnn)3 = O(1), for

i, j = 1, 2, with i 6= j. Then, under assumption (A14) for the bandwidths,

(Ŝb2(t|x)− S(t|x))(p(x)− p̂b1(x)) = O

((
lnn

nb1

)3/4

+

(
lnn

nb2

)3/4
)
a.s.

For a sequence b1 satisfying b1 → 0 and nb1 →∞, from (A.30), the convergence

p̂b1(x)→ p(x) a.s. is proven. It follows that

A12 = O

((
lnn

nb1

)3/4

+

(
lnn

nb2

)3/4
)
a.s.
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With respect to A22 +A32, we will prove that

A22 +A32 = O

(√ ln lnn

nb1
+ b21

)2
 a.s.

Note that from (A.30)

p̂b1(x)→ p(x) a.s. and (p̂b1(x)− p(x))2 = O

((√
ln lnn
nb1

+ b21

)2
)
a.s.

As a consequence, (p̂b1(x)− p(x))2 = O((lnn/nb1)3/4) a.s. if

ln lnn
nb1

+ b41 + b21

√
ln lnn
nb1(

lnn
nb1

)3/4
= O(1). (A.32)

In order to show (A.32), it suffices to prove that

ln lnn
nb1(

lnn
nb1

)3/4
= O(1),

b41(
lnn
nb1

)3/4
= O(1) and

b21

√
ln lnn
nb1(

lnn
nb1

)3/4
= O(1),

which lead to the resulting conditions, respectively:

(ln lnn)4

nb1(lnn)3
= O(1),

n3b19
1

(lnn)3
= O(1) and

nb91(ln lnn)2

(lnn)3
= O(1). (A.33)

Since nb51/(lnn) = O(1) implies the second condition in (A.33), and this leads

to the third condition in (A.33), then assumption (A14) on the bandwidths implies

(A.32), and therefore

(p̂b1(x)− p(x))2 = O

((
lnn

nb1

)3/4
)
a.s.

Finally, using that p̂b1(x)→ p(x) a.s.

A22 +A32 = O

((
lnn

nb1

)3/4

+

(
lnn

nb2

)3/4
)
a.s.

This concludes the proof.

The following Lemmas A.2.2 and A.2.3 are necessary to prove Theorem 3.2.2.

Lemma A.2.2. Let us denote:

Φ1(y, t, x) = E(ξ2(T1, δ1, t, x)|X = y), (A.34)

with ξ in (2.10). The term Φ1(y, t, x) satisfies, for any t ∈ [a, b],

Φ1 (x, t, x) =

∫ t

0

dH1 (v|x)

(1−H(v|x))2 . (A.35)
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Proof of Lemma A.2.2. From Φ1 (y, t, x) in (A.34), with ξ in (2.10), then:

Φ1 (y, t, x) = E

[
I (T ≤ t, δ = 1)

(1−H(T |x))2

∣∣∣∣X = y

]
+ E

[∫ t

0

∫ t

0

I(u ≤ T )I (v ≤ T )

(1−H(u|x))2 (1−H(v|x))2dH
1(u|x)dH1(v|x)

∣∣∣∣X = y

]
− 2E

[
I (T ≤ t, δ = 1)

1−H(T |x)

∫ t

0

I (u ≤ T ) dH1(u|x)

(1−H(u|x))2

∣∣∣∣X = y

]
= A+B − 2C.

The first term in the decomposition of Φ1 (y, t, x) is

A =

∫ t

0

q (v, y)

(1−H(v|x))2dH(v|y) =

∫ t

0

dH1 (v|y)

(1−H(v|x))2 ,

where q(t, y) = E(δ|T = t,X = y).

The second term is

B =

∫ t

0

∫ t

0

1−H (max (w, v) |y)

(1−H(v|x))2 (1−H(w|x))2dH
1(v|x)dH1(w|x).

Integrating in the supports {(v, w) ∈ [0, t]× [0, t] /v ≤ w} and {(v, w) ∈
[0, t]× [0, t] /w < v}, the term B is

B = 2

∫ t

0

1

(1−H(v|x))2

(∫ t

v

1−H (w|y)

(1−H(w|x))2dH
1(w|x)

)
dH1(v|x).

Finally, the third term in the decomposition of Φ1 (y, t, x) is

C =

∫ t

0

1

(1−H(u|x))2

(∫ t

u

dH1 (v|y)

1−H(v|x)

)
dH1(u|x).

Note that, for y = x, we have that B = 2C. This completes the proof.

Lemma A.2.3. Let us denote:

Φ2(y, t, x) = E(ξ(T, δ, t, x)ξ(T, δ,∞, x)|X = y), (A.36)

with ξ in (2.10). The expression for the term Φ2(x, t, x), for any t ∈ [a, b], is the

following:

Φ2(x, t, x) =

∫ t

0

dH1 (v|x)

(1−H(v|x))2 .
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Proof of Lemma A.2.3. Recall Φ2(y, t, x) in (A.36) with ξ(T, δ, t, x) in (2.10).

Then:

Φ2(y, t, x)

= E

[
I (T ≤ t, δ = 1)

(1−H(T |x))2

∣∣∣∣X = y

]
− E

[
I (δ = 1)

1−H(T |x)

∫ ∞
0

I (u ≤ T ≤ t)
(1−H(u|x))2dH

1(u|x)

∣∣∣∣X = y

]
− E

[
I (δ = 1)

1−H(T |x)

∫ t

0

I (v ≤ T )

(1−H(v|x))2dH
1(v|x)

∣∣∣∣X = y

]
+ E

[∫ t

0

I (v ≤ T ) dH1(v|x)

(1−H(v|x))2

∫ ∞
0

I (u ≤ T ) dH1(u|x)

(1−H(u|x))2

∣∣∣∣X = y

]
= A−B − C +D.

Straightforward calculations yield:

A =

∫ t

0

dH1 (v|y)

(1−H(v|x))2 ,

B =

∫ ∞
0

(∫ t

u

dH1 (v|y)

1−H(v|x)

)
dH1(u|x)

(1−H(u|x))2 ,

C =

∫ t

0

(∫ ∞
v

dH1 (u|y)

1−H(u|x)

)
dH1(v|x)

(1−H(v|x))2 and

D =

∫ t

0

1

(1−H(v|x))2

(∫ ∞
0

1−H (max (u, v) |y)

(1−H(u|x))2 dH1(u|x)

)
dH1(v|x).

Integrating in the supports {(u, v) ∈ [0,∞)× [0, t] /v ≤ u} and {(u, v) ∈
[0,∞)× [0, t] /u < v} = {(u, v) ∈ [0, t]× [0, t] /u < v}, the term D is

D =

∫ t

0

(∫ ∞
v

1−H (u|y)

(1−H(u|x))2dH
1(u|x)

)
dH1(v|x)

(1−H(v|x))2

+

∫ ∞
0

(∫ t

u

1−H (v|y)

(1−H(v|x))2dH
1(v|x)

)
dH1(u|x)

(1−H(u|x))2 .

When y = x, then D = C +B, which concludes the proof.

Theorem 3.2.2. Under assumptions (A1)-(A13), and for two sequences of band-

widths satisfying (A14), then the mean squared error of the latency estimator satisfies

MSE(Ŝ0,b1,b2(t|x)) = AMSE(Ŝ0,b1,b2(t|x))

+ o(b42) + o(b41) + o
(
b21b

2
2

)
+O

(
b2
n

)
+O

(
b1
nb2

)
,
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where

AMSE(Ŝ0,b1,b2(t|x)) =

(
b22
2
dKB1 (t, x) +

b21
2
dKB2 (t, x)

)2

+
1

nb2
V1 (t, x) cK

+
1

nb1
V2 (t, x) cK + 2

1

nb1
V3 (t, x)

∫
K (u)K

(
b2
b1
u

)
du,

and

B1 (t, x) =
S(t|x)

p(x)m(x)

(
Φ′′ (x, t, x)m(x) + 2Φ′ (x, t, x)m′(x)

)
, (3.4)

B2 (t, x) =
(1− p(x))(1− S(t|x))

p2(x)m(x)

×
(
Φ′′ (x,∞, x)m(x) + 2Φ′ (x,∞, x)m′(x)

)
, (3.5)

Φ (y, t, x) =

∫ t

0

dH1 (v|y)

1−H(v|x)
−
∫ t

0
(1−H(v|y))

dH1(v|x)

(1−H(v|x))2 ,

where Φ′ and Φ′′ are the partial derivatives of Φ(y, t, x) with respect to y. Further-

more,

V1 (t, x) =

(
S(t|x)

p(x)

)2 1

m(x)

∫ t

0

dH1 (v|x)

(1−H(v|x))2 , (3.6)

V2 (t, x) =

(
(1− p(x))(1− S(t|x))

p2(x)

)2 1

m(x)

∫ ∞
0

dH1 (v|x)

(1−H(v|x))2 and (3.7)

V3 (t, x) =
(1− p(x))S(t|x)(1− S(t|x))

p3(x)m (x)

∫ t

0

dH1 (v|x)

(1−H(v|x))2 , (3.8)

with dK in (1.9) and cK in (1.10).

Proof of Theorem 3.2.2. We define

C1 = −S(t|x)

p(x)

n∑
i=1

B̃b2i(x)ξ(Ti, δi, t, x)

and

C2 = −(1− p(x))(1− S(t|x))

p(x)2

n∑
i=1

B̃b1i(x)ξ(Ti, δi,∞, x),

with B̃b1i(x) and B̃b2i(x) in (2.9). Then, from Theorem 3.2.1, the i.i.d. representa-

tion of the nonparametric latency estimator is

Ŝ0,b1,b2(t|x)− S0(t|x) = C1 + C2 +O

((
lnn

nb1

)3/4

+

(
lnn

nb2

)3/4
)
a.s.
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and the AMSE is

AMSE(Ŝ0,b1,b2(t|x)) = E
[
(C1 + C2)2

]
= E(C2

1 ) + E(C2
2 ) + 2E(C1C2). (A.37)

We start with the first term in (A.37). Note that

E(C2
1 ) = V ar(C1) + E(C1)2, (A.38)

where

V ar(C1) =

(
S(t|x)

p(x)

)2

nV ar
(
B̃b21(x)ξ(T1, δ1, t, x)

)
=

1

nb22

(
S(t|x)

p(x)

)2 1

m2(x)
V ar

(
K

(
x−X1

b2

)
ξ(T1, δ1, t, x)

)
.(A.39)

From (A.39), (A.26), (A.28) and (A.19), then

V ar(C1) =
1

nb22

(
S(t|x)

p(x)

)2 1

m2(x)

(
b2Φ1(x, t, x)m(x)cK +O(b32)

)
=

1

nb2

(
S(t|x)

p(x)

)2 1

m(x)
Φ1 (x, t, x) cK +O

(
b2
n

)
,

with Φ1(x, t, x) in (A.35).

Continuing with the second term in the right hand side of (A.38):

E(C1) = −S(t|x)

p(x)
nE
[
B̃b21(x)ξ(T1, δ1, t, x)

]
= −S(t|x)

p(x)

1

b2

1

m(x)
E

[
K

(
x−X1

b2

)
ξ(T1, δ1, t, x)

]
.

From Lemma A.1.6, then

E(C1) = −1

2
b22
S(t|x)

p(x)

1

m(x)
dK

∂2

∂y2
[Φ(y, t, x)m(y)]

∣∣∣∣
y=x

+ o(b22),

and using (A.18)

[E(C1)]2 =

[
−1

2
b22
S(t|x)

p(x)

1

m(x)

(
Φ′′(x, t, x)m(x) + Φ′(x, t, x)m′(x)

)
dK + o(b22)

]2

.

So the first term in (A.37) is

E(C2
1 ) =

1

nb2

(
S(t|x)

p(x)

)2 1

m(x)
Φ1 (x, t, x) cK (A.40)

+

[
−1

2
b22
S(t|x)

p(x)

1

m(x)

(
Φ′′(x, t, x)m(x) + Φ′(x, t, x)m′(x)

)
dK + o(b22)

]2

+ O

(
b2
n

)
.
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Following the same ideas as those for C1, we obtain that

E(C2
2 ) =

1

nb1

(
(1− S(t|x))(1− p(x))

p(x)2

)2 1

m(x)
Φ1 (x,∞, x) cK (A.41)

+

[
−1

2
b21

(1− S(t|x))(1− p(x))

p(x)2

1

m(x)

(
Φ′′(x,∞, x)m(x)

+ Φ′(x,∞, x)m′(x)
)
dK + o(b21)

]2
+O

(
b1
n

)
.

We continue studying the third term in (A.37):

E (C1C2) =
(1− p(x))S(t|x)(1− S(t|x))

p(x)3

× E

( n∑
i=1

B̃b2i(x)ξ(Ti, δi, t, x)

) n∑
j=1

B̃b1j(x)ξ(Tj , δj ,∞, x)


=

(1− p(x))S(t|x)(1− S(t|x))

p(x)3

×
n∑

i,j=1

E
[
B̃b2i(x)B̃b1j(x)ξ(Ti, δi, t, x)ξ(Tj , δj ,∞, x)

]
=

(1− p(x))S(t|x)(1− S(t|x))

p(x)3
[n(n− 1)αβ + nγ] ,

where

α = E
[
B̃b21(x)ξ(T1, δ1, t, x)

]
,

β = E
[
B̃b12(x)ξ(T2, δ2,∞, x)

]
and

γ = E
[
B̃b11(x)B̃b21(x)ξ(T1, δ1, t, x)ξ(T1, δ1,∞, x)

]
.

We start with

α =
1

nb2

1

m(x)
E

[
K

(
x−X1

b2

)
ξ(T1, δ1, t, x)

]
.

From Lemma A.1.6 and using (A.18), then:

α =
b22
n

1

m(x)

1

2

(
Φ′′(x, t, x)m(x) + Φ′(x, t, x)m′(x)

)
dK + o

(
b22
n

)
. (A.42)

The term β can be analyzed in a similar way. From Lemma A.1.6 and from

(A.18), then:

β =
1

nb1

1

m(x)
E

[
K

(
x−X2

b1

)
ξ(T2, δ2,∞, x)

]
(A.43)

=
b21
n

1

m(x)

1

2

(
Φ′′(x,∞, x)m(x) + Φ′(x,∞, x)m′(x)

)
dK + o

(
b21
n

)
.
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We continue with the third term, γ. Recall Φ2(y, t, x) from (A.36). Then,

γ =
1

nb1

1

m(x)

1

nb2

1

m(x)

× E

[
K

(
x−X1

b1

)
K

(
x−X1

b2

)
ξ(T1, δ1, t, x)ξ(T1, δ1,∞, x)

]
=

1

n2b1b2

1

m(x)2
E

[
K

(
x−X1

b1

)
K

(
x−X1

b2

)
× E (ξ(T1, δ1, t, x)ξ(T1, δ1,∞, x)|X1)]

=
1

n2b1b2

1

m(x)2

∫
K

(
x− y
b1

)
K

(
x− y
b2

)
Φ2(y, t, x)m(y)dy.

Applying Lemma A.2.1 it follows that

γ =
1

n2b1b2

1

m(x)2

(
b2Φ2(x, t, x)m(x)

∫
K(u)K

(
b2
b1
udu

)
+O(b22)

)
=

1

n2b2

1

m(x)
Φ2(x, t, x)

∫
K(u)K

(
b1
b2
udu

)
+O

(
b1
n2b2

)
, (A.44)

where Φ2(y, t, x) was defined in (A.36).

From (A.42), (A.43) and (A.44),

E (C1C2) =
(1− p(x))S(t|x)(1− S(t|x))

p(x)3
[n(n− 1)αβ + nγ] (A.45)

=
(1− p(x))S(t|x)(1− S(t|x))

p(x)3

[
b21b

2
2

1

m(x)2

1

4
d2
KΦ1(x, t, x)Φ1(x,∞, x)

+
1

nb1

1

m(x)
Φ2(x, t, x)

∫
K(u)K

(
b2
b1
u

)
du+ o

(
b21b

2
2

)
+O

(
b2
nb1

)]
.

Finally, plugging the expression of E(C2
1 ) in (A.40), E(C2

2 ) in (A.41) and E(C1C2)

in (A.45) into the Equation (A.37), the asymptotic expression for the MSE is derived.

This concludes the proof.

Theorem 3.2.3. The bandwidths which minimize the asymptotic expression of

MSE(Ŝ0,b1,b2(t|x)) are

b̂1(t, x) =

( cK
Ln(t,x)V1 (t, x) + cKV2 (t, x) + 2V3 (t, x)

∫
K(u)K(Ln(t, x)u)du

d2
K (L2

n(t, x)B1 (t, x) +B2 (t, x))2

)1/5

n−1/5

and

b̂2(t, x) = Ln(t, x)̂b1(t, x),

where

Ln(t, x) = arg min
L>0

ψ (t, x, L)
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and

ψ (t, x, L) =
(
L2B1 (t, x) +B2 (t, x)

)
(3.9)

×
(
cK
L
V1 (t, x) + cKV2 (t, x) + 2V3 (t, x)

∫
K(u)K(Lu)du

)2

,

with B1(t, x) in (3.4), B2(t, x) in (3.5), V1 (t, x) in (3.6), V2 (t, x) in (3.7) and

V3 (t, x) in (3.8).

Proof of Theorem 3.2.3. We first prove that both bandwidths must be of the

same order. If b2/b1 → 0 (that is, b2 = Lnb1 with Ln = Ln(t, x) → 0), then

the expression of b1 which minimizes the dominant part of MSE(Ŝ0,b1,b2(t|x)) ≡
MSEt,x(b1, b2) is:

b̂1(t, x) =

( cK
Ln(t,x)V1 (t, x) + cKV2 (t, x) + 2V3(t, x)

∫
K(u)K(Ln(t, x)u)du

d2
K (L2

n(t, x)B1 (t, x) +B2 (t, x))2

)1/5

n−1/5.

We evaluate MSEt,x(b1, b2) in b̂1 and b̂2 = Lnb̂1:

MSEt,x(̂b1, Lnb̂1) = n−4/5 5

4
d

2/5
K

(
L2
n(t, x)B1 (t, x) +B2 (t, x)

)2/5
×

(
cK

Ln(t, x)
V1 (t, x) + cKV2 (t, x) + 2V3(t, x)

∫
K(u)K(Ln(t, x)u)du

)4/5

+ o(n−4/5).

Then, the optimal bandwidths are

b̂1(t, x) =

( cK
Ln(t,x)V1 (t, x) + cKV2 (t, x) + 2V3(t, x)

∫
K(u)K(Ln(t, x)u)du

d2
K (L2

n(t, x)B1 (t, x) +B2 (t, x))2

)1/5

n−1/5

and

b̂2(t, x) = Ln(t, x)̂b1(t, x),

where

Ln(t, x) = arg min
L>0

(
L2B1 (t, x) +B2 (t, x)

)2/5
×

(
cK
L
V1 (t, x) + cKV2 (t, x) + 2V3(t, x)

∫
K(u)K(Ln(t, x)u)du

)4/5

,

which contradicts the initial assumption b2/b1 → 0.

The same argument applies in the opposite case, if b2/b1 →∞. Therefore, both

optimal bandwidths are necessarily of the same order.
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Since both b1 and b2 have the same order, then b2 is asymptotically equal to Lb1

for some L > 0. Let us rewrite b2 = Lnb1 for Ln → L. Then the expression of b1

which minimizes the dominant part of MSEt,x(b1, Lnb1) is:

b̂1(t, x) =

(
cK
Ln
V1 (t, x) + cKV2 (t, x) + 2V3 (t, x) Υ (Ln)

d2
K (L2

nB1 (t, x) +B2 (t, x))2

)1/5

n−1/5,

with

Υ (Ln) =

∫
K (u)K (Lnu) du.

Therefore, MSEt,x(b1, Lnb1) evaluated in b̂1(t, x) is:

MSEt,x(̂b1, Lnb̂1) = n−4/5 5

4
d

2/5
K

(
L2
nB1 (t, x) +B2 (t, x)

)2/5
×

(
cK
Ln

V1 (t, x) + cKV2 (t, x) + 2V3 (t, x) Υ (Ln)

)4/5

+ o(n−4/5).

Then, the optimal bandwidths are

b̂1(t, x) =

( cK
Ln(t,x)V1 (t, x) + cKV2 (t, x) + 2V3 (t, x) Υ (Ln(t, x))

d2
K (L2

n(t, x)B1 (t, x) +B2 (t, x))2

)1/5

n−1/5

and

b̂2(t, x) = Ln(t, x)̂b1(t, x),

where Ln(t, x) = arg minL>0 ψ (t, x, L) with ψ (t, x, L) defined in (3.9). This con-

cludes the proof.

Theorem 3.2.4. Under assumptions (A1)-(A13), if bi → 0 for i = 1, 2 and

((lnn)3 /nbi)× (bj/(b1 + b2))2 → 0 for i, j = 1, 2 with i 6= j, it follows that

a) If nb5i
bj

b1+b2
→ 0 for i, j = 1, 2 and i 6= j, then√

nb1
b2

b1 + b2

(
Ŝ0,b1,b2(t|x)− S0(t|x)

)
d−→ N

(
0, σ2

a (t, x)
)
,

where

σ2
a (t, x) =


V2 (t, x) cK , if b1/b2 → 0

V1 (t, x) cK , if b2/b1 → 0
C1

C1+C2

(
V1 (t, x) cK + 2V3 (t, x)

∫
K(u)K

(
C1

C2
u
)
du
)

+ C2

C1+C2
V2 (t, x) cK ,

if b1 = C1n
−α + o(n−α), b2 = C2n

−α + o(n−α), with α > 1
5

with V1(t, x) in (3.6), V2(t, x) in (3.7) and V3(t, x) in (3.8).
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b) If nb51 → 0 and nb52 → C5
2 > 0, then√

nb1
b2

b1 + b2

(
Ŝ0,b1,b2(t|x)− S0(t|x)

)
d−→ N

(
0, σ2

b (t, x)
)
,

with σ2
b (t, x) = V2 (t, x) cK .

c) If nb51 → C5
1 > 0 and nb52 → 0, then√
nb1

b2
b1 + b2

(
Ŝ0,b1,b2(t|x)− S0(t|x)

)
d−→ N

(
0, σ2

c (t, x)
)
,

with σ2
c (t, x) = V1 (t, x) cK .

d) If nb51 → C5
1 > 0 and nb52 → C5

2 > 0, then√
nb1

b2
b1 + b2

(
Ŝ0,b1,b2(t|x)− S0(t|x)

)
d−→ N

(
b (t, x) , σ2

d (t, x)
)
,

where

b (t, x) =
1

2
dK

(
C1C2

C1 + C2

)1/2 (
C2

2B1(t, x) + C2
1B2(t, x)

)
and

σ2
d (t, x) =

C1

C1 + C2

(
V1 (t, x) cK + 2V3 (t, x)

∫
K(u)K

(
C1

C2
u

)
du

)
+

C2

C1 + C2
V2 (t, x) cK .

Proof of Theorem 3.2.4. The asymptotic normality is proven by following Theo-

rem 2.3 in Iglesias-Pérez & González-Manteiga (1999). Under the assumptions (A1)-

(A13), we can apply Theorem 3.2.1, and then

Ŝ0,b1,b2(t|x)− S0(t|x) =

n∑
i=1

ηb1,b2(Ti, δi, Xi, t, x) +Rn (t, x) ,

with

sup
x∈I,t≥0

Rn (t, x) = O

((
lnn

nb1

)3/4

+

(
lnn

nb2

)3/4
)
a.s.,

where ηb1,b2 is defined in (3.3).
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The asymptotic distribution of
√

nb1b2
b1+b2

(
Ŝ0,b1,b2(t|x)− S0(t|x)

)
is the same as

that of √
nb1b2
b1 + b2

n∑
i=1

ηb1,b2(Ti, δi, Xi, t, x)

= −
√
nb1

b2
b1 + b2

1

nb2

S(t|x)

p(x)m(x)

n∑
i=1

K

(
x−Xi

b2

)
ξ(Ti, δi, t, x)

−
√
nb1

b2
b1 + b2

1

nb1

(1− p(x))(1− S(t|x))

p(x)2m (x)

n∑
i=1

K

(
x−Xi

b1

)
ξ(Ti, δi,∞, x),

since the conditions
[
(lnn)3 /nbi

]
·
[
(bj/(b1 + b2))2

]
→ 0, i, j = 1, 2 and i 6= j implies

that √
nb1b2
b1 + b2

O

((
lnn

nb1

)3/4

+

(
lnn

nb2

)3/4
)
→ 0. (A.46)

If we focus on the first part in (A.46) then,√
nb1b2
b1 + b2

(
lnn

nb1

)3/4

=

(
(lnn)3

nb1

(
b2

b1 + b2

)2
)1/4

→ 0 if
(lnn)3

nb1

(
b2

b1 + b2

)2

→ 0.

The same argument applies for the second condition in (A.46).

We have to study the limiting distribution of√
nb1b2
b1 + b2

1

nb2

S(t|x)

p(x)m(x)

n∑
i=1

K

(
x−Xi

b2

)
ξ(Ti, δi, t, x)

+

√
nb1b2
b1 + b2

1

nb1

(1− p(x))(1− S(t|x))

p(x)2m (x)

n∑
i=1

K

(
x−Xi

b1

)
ξ(Ti, δi,∞, x)

= I + II + III + IV,

where

I =

√
nb1b2
b1 + b2

1

nb2

S(t|x)

p(x)m(x)

×
n∑
i=1

[
K

(
x−Xi

b2

)
ξ(Ti, δi, t, x)− E

(
K

(
x−Xi

b2

)
ξ(Ti, δi, t, x)

)]
,

II =

√
nb1b2
b1 + b2

1

nb1

(1− p(x))(1− S(t|x))

p(x)2m (x)

×
n∑
i=1

[
K

(
x−Xi

b1

)
ξ(Ti, δi,∞, x)− E

(
K

(
x−Xi

b1

)
ξ(Ti, δi,∞, x)

)]
,
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III =

√
nb1b2
b1 + b2

1

nb2

S(t|x)

p(x)m(x)

n∑
i=1

E

(
K

(
x−Xi

b2

)
ξ(Ti, δi, t, x)

)
and

IV =

√
nb1b2
b1 + b2

1

nb1

(1− p(x))(1− S(t|x))

p(x)2m (x)

n∑
i=1

E

(
K

(
x−Xi

b1

)
ξ(Ti, δi,∞, x)

)
.

The deterministic part b(t, x) comes from III + IV . Recall the definition of

Φ(y, t, x) in (A.17). Using (A.18), and from Lemma A.1.6, then

E

(
K

(
x−X
b2

)
ξ(T, δ, t, x)

)
=

1

2
b32dK

(
Φ′′(x, t, x)m(x) + 2Φ′(x, t, x)m′(x)

)
+o(b32).

Therefore,

III =

√
nb52

b1
b1 + b2

S(t|x)

p(x)m(x)

1

2
dK
(
Φ′′(x, t, x)m(x) + 2Φ′(x, t, x)m′(x)

)
(1 + o (1))

and

IV =

√
nb51

b2
b1 + b2

(1− p(x))(1− S(t|x))

p(x)2m (x)

1

2
dK

×
(
Φ′′(x,∞, x)m(x) + 2Φ′(x,∞, x)m′(x)

)
(1 + o(1)) .

Focusing on III, then√
nb52

b1
b1 + b2

=

(
nb52

b1
b1 + b2

)1/2

→ 0 if nb52
b1

b1 + b2
.

A similar argument can be applied for IV . Therefore, under the hypothesis

a) nb5i
bj

b1+b2
→ 0, i, j = 1, 2, i 6= j, then III + IV = o (1) and b (t, x) = 0.

b) If nb51 → 0 and nb52 → C5
2 > 0, then b2/b1 →∞ and thus

III =

√
nb52

1

1 + b2
b1

S(t|x)

p(x)m(x)

1

2
dK
(
Φ′′(x, t, x)m(x) + 2Φ′(x, t, x)m′(x)

)
× (1 + o (1)) = o (1)

and

IV =

√
nb51

1
b1
b2

+ 1

(1− p(x))(1− S(t|x))

p(x)2m (x)

1

2
dK
(
Φ′′(x,∞, x)m(x)

+2Φ′(x,∞, x)m′(x)
)

(1 + o(1)) = o (1) .

Thus, III + IV = o (1) and b (t, x) = 0.
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c) If nb51 = C5
1 and nb52 → 0 then b2/b1 → 0 and

III =

√
nb52

1

1 + b2
b1

S(t|x)

p(x)m(x)

1

2
dK
(
Φ′′(x, t, x)m(x) + 2Φ′(x, t, x)m′(x)

)
× (1 + o (1)) = o (1)

and

IV =

√
nb51

1
b1
b2

+ 1

(1− p(x))(1− S(t|x))

p(x)2m (x)

1

2
dK
(
Φ′′(x,∞, x)m(x)

+2Φ′(x,∞, x)m′(x)
)

(1 + o(1)) = o (1) .

Consequently, III + IV = o (1) and b (t, x) = 0.

d) If nb51 → C5
1 and nb52 → C5

2 , then b2/b1 → C2/C1 and then

b (t, x)

= C
5/2
2

(
C1

C1 + C2

)1/2 S(t|x)

p(x)m(x)

1

2
dK
(
Φ′′(x, t, x)m(x) + 2Φ′(x, t, x)m′(x)

)
+ C

5/2
1

(
C2

C1 + C2

)1/2 (1− p(x))(1− S(t|x))

p(x)2m (x)

1

2
dK
(
Φ′′(x,∞, x)m(x)

+ 2Φ′(x,∞, x)m′(x)
)

= C
5/2
2

(
C1

C1 + C2

)1/2 1

2
dKB1(t, x) + C

5/2
1

(
C2

C1 + C2

)1/2 1

2
dKB2(t, x)

=
1

2
dK

(
C1C2

C1 + C2

)1/2
[

1

C
1/2
2

C
5/2
2 B1(t, x) +

1

C
1/2
1

C
5/2
1 B2(t, x)

]

=
1

2
dK

(
C1C2

C1 + C2

)1/2 [
C2

2B1(t, x) + C2
1B2(t, x)

]
.

Now, we focus on the asymptotic distribution of I + II. It is immediate that:

I + II =

n∑
i=1

(γi,n(x, t) + Γi,n(x, t)) ,

where

γi,n(x, t) =

√
1

nb2

b1
b1 + b2

S(t|x)

p(x)m(x)

×
[
K

(
x−Xi

b2

)
ξ(Ti, δi, t, x)− E

(
K

(
x−Xi

b2

)
ξ(Ti, δi, t, x)

)]
,

Γi,n(x, t) =

√
1

nb1

b2
b1 + b2

(1− p(x))(1− S(t|x))

p(x)2m (x)

×
[
K

(
x−Xi

b1

)
ξ(Ti, δi,∞, x)− E

(
K

(
x−Xi

b1

)
ξ(Ti, δi,∞, x)

)]
,
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are n independent variables with mean 0. We only have to prove the asymptotic

normality of I + II. Therefore, if σ2
i,n (x, t) = V ar (γi,n(x, t) + Γi,n(x, t)) < ∞,

σ2
n (x, t) =

∑n
i=1 σ

2
i,n (x, t) is positive and if the Lindeberg condition is satisfied,

we can apply Lindeberg’s theorem for triangular arrays (Theorem 7.2 in Billingsley

(1968), p.42) to obtain∑n
i=1 (γi,n(x, t) + Γi,n(x, t))

σn (x, t)
→ N (0, 1)

and, consequently,√
nb1

b2
b1+b2

∑n
i=1 (ηb1,b2(Ti, δi, Xi, t, x)− E (ηb1,b2(Ti, δi, Xi, t, x)))

σn (x, t)
→ N (0, 1) .

We will start proving that the variance is finite:

σ2
i,n (x, t) = V ar (γi,n(x, t)) + V ar (Γi,n(x, t)) + 2Cov (γi,n(x, t),Γi,n(x, t))

=
1

nb2

b1
b1 + b2

(
S(t|x)

p(x)m(x)

)2

V ar

(
K

(
x−Xi

b2

)
ξ(Ti, δi, t, x)

)
+

1

nb1

b2
b1 + b2

(
(1− p(x))(1− S(t|x))

p(x)2m (x)

)2

V ar

(
K

(
x−Xi

b1

)
ξ(Ti, δi,∞, x)

)
+

√
1

n2

1

(b1 + b2)2

(1− p(x))S(t|x)(1− S(t|x))

p(x)3m (x)2

×
[
E

(
K

(
x−Xi

b2

)
K

(
x−Xi

b1

)
ξ(Ti, δi,∞, x)ξ(Ti, δi, t, x)

)
− E

[
K

(
x−Xi

b2

)
ξ(Ti, δi, t, x)

]
E

[
K

(
x−Xi

b1

)
ξ(Ti, δi,∞, x)

]]
.

(A.47)

We first focus on V ar
(
K
(
x−Xi
b2

)
ξ(Ti, δi, t, x)

)
. The first term in (A.47) is

V ar (γi,n(x, t)) =
1

n

b1
b1 + b2

(
S(t|x)

p(x)

)2 Φ1 (x, t, x)

m (x)
cK +O

(
1

n

b1b
2
2

b1 + b2

)
. (A.48)

In a similar way, the second term in (A.47) is

V ar (Γi,n(x, t)) =
1

n

b2
b1 + b2

(
(1− p(x))(1− S(t|x))

p(x)2

)2 Φ1 (x,∞, x)

m (x)
cK+O

(
1

n

b21b2
b1 + b2

)
.

(A.49)

Finally, for the third term in (A.47), recall Φ2(y, t, x) in (A.36). Applying Lemma
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A.2.1, then

E

(
K

(
x−Xi

b2

)
K

(
x−Xi

b1

)
ξ(Ti, δi,∞, x)ξ(Ti, δi, t, x)

)
=

∫
K

(
x− y
b2

)
K

(
x− y
b1

)
Φ2(y, t, x)m (y) dy

= b1Φ2(x, t, x)m(x)

∫
K(u)K

(
b1
b2
udu

)
+O(b21).

On the other hand, using Lemmas A.1.6 and A.1.7, we get:

E

[
K

(
x−Xi

b2

)
ξ(Ti, δi, t, x)

]
E

[
K

(
x−Xi

b1

)
ξ(Ti, δi,∞, x)

]
= O(b31b

3
2).

Therefore, the third term in (A.47) is

Cov (γi,n(x, t),Γi,n(x, t)) (A.50)

=
1

n

b1
b1 + b2

(1− p(x))S(t|x)(1− S(t|x))

p(x)3m (x)
Φ2(y, t, x)

∫
K(u)K

(
b1
b2
udu

)
+ O

(
1

n

b21
b1 + b2

)
.

The results (A.48), (A.49) and (A.50) lead to

σ2
i,n (x, t) =

1

n

(
b1

b1 + b2
V1 (t, x) cK +

b2
b1 + b2

V2 (t, x) cK + 2
b1

b1 + b2
V3 (t, x)

×
∫
K(u)K

(
b1
b2
u

)
du+O

(
b1b

2
2

b1 + b2

)
+O

(
b21

b1 + b2

))
,

where V1 (t, x), V2 (t, x) and V3 (t, x), defined in (3.6)-(3.8), are finite, and as a

consequence, σ2
i,n (x, t) < ∞. The finiteness of the variance σ2

n (x, t) is also proven,

since

σ2
n (x, t) =

n∑
i=1

σ2
i,n (x, t)

=
b1

b1 + b2
V1 (t, x) cK +

b2
b1 + b2

V2 (t, x) cK + 2
b1

b1 + b2
V3 (t, x)

×
∫
K(u)K

(
b1
b2
udu

)
+O

(
b1b

2
2

b1 + b2

)
+O

(
b21

b1 + b2

)
< V1 (t, x) cK + V2 (t, x) cK + 2V3 (t, x)

∫
K(u)K

(
b1
b2
u

)
du+ o (1) < +∞,

for b1 > 0 and b2 > 0, since bi/ (b1 + b2) < 1, i = 1, 2.
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a) Under the hypothesis nb5i
bj

b1+b2
→ 0, i, j = 1, 2, i 6= j, if b1/b2 → 0 then

σ2
n (x, t) =

b1/b2
b1/b2 + 1

V1 (t, x) cK +
1

b1/b2 + 1
V2 (t, x) cK

+ 2
b1/b2

b1/b2 + 1
V3 (t, x)

∫
K(u)K

(
b1
b2
u

)
du→ V2 (t, x) cK .

If b2/b1 → 0 then

σ2
n (x, t) =

1

1 + b2/b1
V1 (t, x) cK +

b2/b1
1 + b2/b1

V2 (t, x) cK

+ 2
1

1 + b2/b1
V3 (t, x)

∫
K(u)K

(
b1
b2
u

)
du→ V1 (t, x) cK ,

since K is a compact support kernel (using (A11)) and then K(v) → 0 when

u→ ±∞.

If b1
b2
→ C1

C2
> 0, then

σ2
n(x, t) → C1

C1 + C2

(
V1(t, x)cK + 2V3(t, x)

∫
K(u)K

(
C1

C2
u

)
du

)
+

C2

C1 + C2
V2(t, x)cK . (A.51)

b) If nb51 → 0 and nb52 → C5
2 > 0 then σ2

n (x, t)→ V2 (t, x) cK .

c) If nb51 → C5
1 and nb52 → 0, then σ2

n (x, t)→ V1 (t, x) cK .

d) Finally, if nb51 → C5
1 and nb52 → C5

2 , then we consider (A.51).

We continue studying the Lindeberg’s condition:

1

σ2
n (x, t)

n∑
i=1

∫
{|γi,n(x,t)+Γi,n(x,t)|>εσn(x,t)}

(γi,n(x, t) + Γi,n(x, t))2dP → 0, ∀ε > 0.

(A.52)

Let us define the indicator function:

Ii,n (x, t) = I (|γi,n(x, t) + Γi,n(x, t)| > εσn (x, t))

= I
(

(γi,n(x, t) + Γi,n(x, t))2 > ε2σ2
n (x, t)

)
.

Then (A.52) can be expressed as

1

σ2
n (x, t)

E

[
n∑
i=1

(γi,n(x, t) + Γi,n(x, t))2Ii,n (x, t)

]
=

1

σ2
n (x, t)

E (ηn (x, t)) ,

with

ηn (x, t) =

n∑
i=1

(γi,n(x, t) + Γi,n(x, t))2Ii,n (x, t) .
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Since 1
nb2

b1
b1+b2

→ 0, 1
nb1

b2
b1+b2

→ 0 and the functions K and ξ are bounded, then:

∃n0 ∈ N/n ≥ n0 ⇒ Ii,n(w) = 0,∀w ∈ Ω and ∀i ∈ {1, 2, . . . , n}

⇔ ∃n0 ∈ N/n ≥ n0 ⇒ ηn(w) = 0,∀w ∈ Ω.

Since ηn(x, t) is bounded, then the previous condition implies:

∃n0 ∈ N/n ≥ n0 ⇒ E(ηn(x, t)) = 0

and then

lim
n→∞

1

σ2
n

E(ηn(x, t)) = 0.

Therefore, Lindeberg’s condition is proven and all these previous arguments lead

to the proof of Theorem 3.2.4.

Theorem 3.3.2. Suppose that conditions (A1)-(A13) hold. If lnn
nb → 0 and b =

O
((

lnn
n

)1/5)
, then we have an i.i.d. representation for the nonparametric latency

estimator for any t ∈ [a, b]:

Ŝ0,b(t|x)− S0(t|x) =
n∑
i=1

ηb(Ti, δi, Xi, t, x) +O

((
lnn

nb

)3/4
)
a.s.,

with

ηb(Ti, δi, Xi, t, x) = −S(t|x)

p(x)
B̃bi(x)ξ(Ti, δi, t, x)

− (1− p(x))(1− S(t|x))

p2(x)
B̃bi(x)ξ(Ti, δi,∞, x),

where ξ(Ti, δi, t, x) has been defined (2.10) and B̃bi(x) in (2.9).

Proof of Theorem 3.3.2. Taking b1 = b2 = b with lnn
nb → 0 and b = O

((
lnn
n

)1/5)
it is straightforward to prove that the conditions required for the bandwidths in

Theorem 3.2.1 are fulfilled. So Theorem 3.2.1 can be applied and Theorem 3.3.2 is

proven.

Theorem 3.3.3. Suppose that conditions (A1)-(A13) hold. If lnn
nb → 0 and b =

O
((

lnn
n

)1/5)
, then the mean squared error of the latency estimator is

MSE(Ŝ0,b(t|x)) =
b4

4
d2
KB

2 (t, x) +
cK
nb
V (t, x) + o(b4) +O

(
1

n

)
,

where dK and cK have been defined in (1.9) and (1.10), respectively, and

B (t, x) = B1 (t, x) +B2 (t, x) , (3.10)

V (t, x) = V1 (t, x) + V2 (t, x) + 2V3 (t, x) , (3.11)

with t ∈ [a, b], B1(t, x), B2(t, x), V1(t, x), V2(t, x) and V3(t, x) in (3.4)-(3.8).
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Proof of Theorem 3.3.3. Choosing again b1 = b2 = b, conditions lnn
nb → 0 and

b = O
((

lnn
n

)1/5)
imply the conditions for the bandwidths in Theorem 3.2.2. As a

consequence, Theorem 3.3.3 is proven.

Theorem 3.3.4. Suppose that conditions (A1)-(A13) hold. If b→ 0 and (lnn)3

nb → 0,

it follows that, for any t ∈ [a, b]:

a) If nb5 → 0, then

√
nb
(
Ŝ0,b(t|x)− S0(t|x)

)
d−→ N (0, V (t, x) cK) .

b) If nb5 → C5 > 0, then

√
nb
(
Ŝ0,b(t|x)− S0(t|x)

)
d−→ N

(
B (t, x)C5/2dK , V (t, x) cK

)
.

Proof of Theorem 3.3.4. Taking b1 = b2 = b, together with lnn
nb → 0 and b =

O
((

lnn
n

)1/5)
imply the conditions for the bandwidths in Theorem 3.2.4. Thus,

Theorem 3.3.4 is proven.
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Appendix B

Resumo en galego

Este traballo pretende resumir os estudos desenvolvidos ao longo do proceso de

doutoramento. Principalmente, está centrado na estimación e nos contrastes de sig-

nificación de covariables para modelos de curación de tipo mixtura non paramétricos.

Especificamente, a metodolox́ıa é aplicada a dúas bases de datos médicas: unha re-

lacionada con doentes de cancro colorrectal do Complexo Hospitalario Universitario

da Coruña (CHUAC), e outra relacionada con doentes de sarcomas do Complexo

Hospitalario Universitario de Santiago (CHUS).

Caṕıtulo 1: Estado da arte

O primeiro caṕıtulo da tese está dedicado a introducir ao lector ao contex-

to no que foi desenvolvido o traballo: os modelos de curación. A Sección 1.1

comeza cunha presentación da análise de supervivencia e dos diferentes tipos

de censura. Como o traballo é levado a cabo nun contexto non paramétrico,

na Sección 1.2 inclúese unha pequena introdución á estimación non paramétri-

ca de curvas, incorporando algunhas definicións e unha pequena revisión dos

conceptos básicos, consistente nunha reseña da estimación da función de dis-

tribución (inclúındo o estudo dos estimadores de Kaplan-Meier e de Beran,

aśı como algunhas propiedades asintóticas de ambos), da función de densidade

e da función de regresión. Na Sección 1.3 preséntase unha descrición detallada

do método bootstrap, considerando tamén o caso con datos censurados e unha

explicación do método de selección da ventá.

Os modelos de curación preséntanse na Sección 1.4. Nas dúas últimas déca-

das houbo un importante progreso nos tratamentos de cancro, que deu lugar
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a unha supervivencia mais longa e á mellora da calidade de vida dos doentes

desta enfermidade. Desta forma, os datos pertencentes a estudos de cancro

tipicamente presentan unha forte censura pola dereita (debido á supervivencia

tan longa) ao final do periodo de seguemento, polo que un modelo de supervi-

vencia estándar non é adecuado. Esa proporción de individuos curados ou non

susceptibles pódese incorporar explicitamente nos modelos de supervivencia, e

como consecuencia, xorden os modelos de curación. Estes modelos son unha

ferramenta moi útil para analizar e describir datos de supervivencia de cancro,

xa que expresan e pred́ın a prognose dun doente considerando, como novidade,

a posibilidade real de que o suxeito nunca experimente o evento de interese.

Dentro dos modelos de curación dist́ınguense dous grandes tipos: os modelos de

mixtura e os modelos de non mixtura. Os modelos de curación de tipo mixtura,

sobre os que se centra esta tese, consideran a función de supervivencia como

unha mixtura de dous tipos de doentes: os susceptibles e os non susceptibles ou

curados. Mais especificamente, estes modelos permiten estimar a probabilida-

de de cura, tamén coñecida como incidencia, e a función de supervivencia dos

individuos non curados, denominada latencia. Unha vantaxe dos modelos de

curación de tipo mixtura é que permiten ás covariables ter diferente influencia

nos doentes curados e non curados. A Sección 1.4 tamén inclúe unha revisión

bibliográfica sobre métodos paramétricos e non paramétricos de estimación en

modelos de curación, tanto de tipo mixtura como noutros modelos de curación,

e presenta a necesidade de técnicas non paramétricas neste contexto.

Caṕıtulo 2: Estimador non paramétrico da incidencia

Neste caṕıtulo introdúcense os principais resultados para o estimador non

paramétrico da probabilidade de cura (2.4), proposto por Xu & Peng (2014),

que se corresponde co estimador de Beran avaliado no maior tempo de fallo

non censurado. Xu & Peng (2014) probaron a consistencia e a normalidade

asintótica de dito estimador. A Sección 2.2 presenta a notación que será usada

ao longo da tese, e aborda o problema da identificabilidade, necesaria para

obter estimacións únicas das funcións do modelo. Nun modelo de curación,

todos os tempos de vida observados non censurados corresponden necesaria-

mente con suxeitos non curados; pero é imposible distinguir se un suxeito cun

tempo censurado pertence ao grupo de susceptibles ou ao grupo de non suscep-

tibles, xa que algúns individuos censurados poden experimentar fallos despois
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do periodo de estudo. Isto da lugar a dificultades en distinguir entre mode-

los con incidencia alta e colas largas na función de distribución da latencia,

e modelos con incidencia baixa e colas curtas na función de distribución da

latencia. Para afrontar este problema da identificabilidade, próbase que se a

función da latencia dun modelo é unha función de supervivencia propia, entón

dito modelo é identificable. Na Sección 2.3 estúdase con maior profundidade

o estimador non paramétrico da incidencia proposto por Xu & Peng (2014).

Especificamente, demóstrase que é o máximo verośımil local, e obtense a repre-

sentación i.i.d., aśı como a expresión do erro cadrático medio asintótico para

dito estimador. Na Sección 2.4 introdúcese o problema de selección da ventá.

En estudos preliminares traballouse cun selector plug-in, que presenta termos

moi complicados de estimar, o que non da lugar á obtención de bos resultados.

Por outra parte, para a selección da ventá tamén se considerou un método de

validación cruzada, pero os resultados obtidos non son competentes, xa que a

ventá resultante é moi variable e presenta tendencia a subestimar. Polo tanto,

para a selección da ventá decidiuse utilizar o método bootstrap, detallado na

Sección 2.4.1.

Na Sección 2.5 lévase a cabo un estudo de simulación para poder avaliar o

comportamento do estimador non paramétrico, aśı como o método de selección

da ventá. O estimador proposto compárase co estimador semiparamétrico da

incidencia de Peng & Dear (2000), que asume unha función lox́ıstica, e está im-

plementado no paquete smcure de R. Este estudo de simulación ten dous ob-

xectivos: primeiro, avaliar o grao de dependencia que ten o estimador non

paramétrico do parámetro de suavización, considerando unha reixa de ventás,

e comparar os resultados cos obtidos utilizando o estimador semiparamétrico;

e segundo, avaliar o comportamento do selector bootstrap do parámetro de

suavizado. Para ambos casos, considéranse dous modelos para xerar os datos:

por motivos de comparación, co primeiro modelo dase vantaxe ao estimador

semiparamétrico, xa que os datos son xerados a partir dunha función lox́ıstica,

e co segundo modelo, trátase de mostrar a ganancia obtida ao traballar co esti-

mador non paramétrico proposto, que non require de condicións paramétricas

ou semiparamétricas. Os resultados obtidos respecto á eficiencia do estimador

non paramétrico mostran que este é moi competente no primeiro modelo, e

supera con moita diferenza ao estimador semiparamétrico no segundo modelo.

Nos resultados dos estudos relativos á eficiencia do selector bootstrap da ventá,
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podemos apreciar que a ventá bootstrap aprox́ımase á ventá óptima teórica,

adaptándose adecuadamente á forma para os diferentes tamaños muestrais es-

tudados.

A continuación, na Sección 2.6, a metodolox́ıa é aplicada a unha base de

datos de doentes de cancro colorrectal do CHUAC. Este conxunto de datos

consiste en oito variables tomadas en 414 individuos: o indicador de censura, o

tempo de vida observado, a localización (colon ou recto), a idade (de 23 a 102

anos), e o estadio TNM, que é o principal determinante na prognose dos doen-

tes. Dito estadio ten tres compoñentes: T, que describe o tamaño do tumor e

indica se invadiu algún tecido cercano; N, que mide os nódulos linfáticos involu-

crados; e M, que avaĺıa a presenza (ou non) de metástase. A información destes

tres aspectos pode ser combinada, o que nos permite clasificar a cada doente

nun único estadio numérico, dando lugar a unha nova variable, denominada

estadio, que toma valores do 1 ao 4. Nesta base de datos, ao redor dun 50 % das

observacións son censuradas, cunha porcentaxe de censura variando desde o

30 % ata o 70 %, dependendo do estadio. Para aplicar a metodolox́ıa proposta,

os datos foron divididos en 4 grupos de acordo coa variable categórica estadio.

Os resultados mostran que o efecto da covariable idade na probabilidade de

cura cambia co estadio. Ademais, a incidencia é maior nos estadios 1 e 2 que

nos estadios 3 e 4. O motivo é que, nos estadios iniciais, a maioŕıa das cirux́ıas

teñen finalidades de curación, mentres que en estadios avanzados, as cirux́ıas

son, normalmente, tratamentos paliativos e, polo tanto, a supervivencia dos

doentes é mais baixa. Por exemplo, co estimador non paramétrico da inciden-

cia no estadio 1, os doentes teñen unha probabilidade de cura de entre un 25 %

e un 65 %, dependendo da idade; mentres que no estadio 3, para individuos

maiores de 60 anos, nun peŕıodo de 10 anos dita probabilidade decrece consi-

derablemente dende un 40 % ata case un 0 %. Respecto ao estadio 4, un total

de 11 dos 12 maiores tempos de vida, inclúındo o maior tempo de vida, son

non censurados, e polo tanto, non curados. Isto da lugar a que o estimador non

paramétrico da probabilidade de cura sexa igual a 0. Aı́nda que non se pode

afirmar que para un doente de cancro colorrectal en estadio 4 sexa imposible

sobrevivir, esta estimación ratifica a afirmación de que a supervivencia a longo

prazo de doentes en estadio 4 de cancro colorrectal non é común. Este feito,

lonxe de ser unha debilidade do modelo non paramétrico, é unha vantaxe im-

portante, xa que permite detectar situacións nas que introducir a posibilidade
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de cura non contribúe a mellorar o modelo. Por outra parte, é importante des-

tacar a diferencia entre as curvas semiparamétricas e non paramétricas, o que

parece indicar que o modelo lox́ıstico non é válido para os datos. Os resultados

correspondentes a este caṕıtulo da tese están publicados en López-Cheda et

al. (2017a).

Caṕıtulo 3: Estimador non paramétrico da latencia

O estimador non paramétrico da latencia estúdase detalladamente neste

caṕıtulo. Na Sección 3.1 comézase presentando o estimador xenérico (3.1), que

utiliza dúas ventás diferentes (unha para o estimador da incidencia, e outra

para o estimador de Beran da función de supervivencia), xa que a ventá óptima

para a probabilidade de cura non ten por que ser a mesma que a ventá óptima

para o estimador de Beran. Agora ben, o estimador da latencia en (3.1) non

da lugar necesariamente a unha función de distribución propia e de feito, non

está garantido que sexa non negativo. Ademais, na Sección 3.5.1 móstrase que

os valores óptimos de ambas ventás no estimador (3.1) son moi similares. Polo

tanto, o traballo presentado na tese céntrase, principalmente, no estimador

non paramétrico da latencia que utiliza unha ventá (3.2).

Na Sección 3.2 inclúense os resultados asintóticos para o estimador non

paramétrico da latencia considerando dúas ventás diferentes (3.1). Obtense

a representación i.i.d. e a expresión asintótica do erro cadrático medio. Ade-

mais, próbase a normalidade asintótica. Na Sección 3.3 móstranse os mesmos

resultados relativos ao estimador non paramétrico da latencia utilizando unha

ventá (3.2), que se obteñen directamente dos correspondentes do estimador

(3.1), considerando que ambas ventás son iguais. De forma similar que para

o estimador da incidencia, para o estimador da latencia proposto (3.2), in-

trodúcese un método de selección da ventá tipo bootstrap na Sección 3.4.

Os resultados do estudo de simulación preséntanse na Sección 3.5. Estes

consisten en tres partes: na primeira, móstrase que se perde pouca eficiencia

cando se considera unha soa ventá no estimador non paramétrico da laten-

cia; na segunda, avaĺıase o bo comportamento do estimador non paramétrico

proposto; e na terceira, compróbase o bo comportamento do selector da ventá.

Para este estudo completo de simulación considéranse os mesmos dous modelos
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de xeración de datos que para o caso da incidencia. Con respecto ao primeiro

estudo, os resultados mostran que para a maioŕıa de valores da covariable,

ambas ventás óptimas do estimador non paramétrico da latencia (3.1) son moi

similares ou incluso iguais. Nos resultados do segundo estudo compárase o es-

timador non paramétrico da latencia proposto co estimador semiparamétrico

da latencia de Peng & Dear (2000), implementado no paquete smcure de R,

cuxa expresión está moi cerca de satisfacer o modelo de riscos proporcionais e

foi truncada. Pódese ver que o estimador non paramétrico da latencia propos-

to é comparable ao estimador semiparamétrico en situacións onde se espera

que este último obteña mellores resultados, como é o caso do primeiro mode-

lo, e supera ao estimador semiparamétrico cando non se cumplen condicións

paramétricas. Na terceira parte deste estudo de simulación, relativa ao com-

portamento do selector da ventá, móstrase que existe moi pouca diferenza en

termos do erro cadrático medio integrado entre as estimacións da latencia uti-

lizando a ventá bootstrap e a ventá óptima.

De forma similar que para o estimador da incidencia, na Sección 3.6 apĺıcan-

se os métodos propostos a unha base de datos de doentes de cancro colorrectal

do CHUAC. Debido ao tamaño pequeno de mostras en cada estadio, os re-

sultados están presentados en dous grupos: por unha parte, os estadios 1-2

e, por outra parte, os estadios 3-4. Pódese observar que nos estadios 1-2, a

covariable idade non parece determinante para o estimador da latencia, xa

que as diferentes funcións da latencia estimadas son moi similares para todo

o rango de idades. Polo contrario, nos estadios 3-4, a estimación da latencia

vaŕıa considerablemente dependendo da idade: a supervivencia a curto prazo

é maior en doentes xoves, mentres que a supervivencia a longo prazo é mais

alta en doentes con maior idade. Por exemplo, a probabilidade de que o tempo

de seguemento desde a diagnose ata a morte sexa maior que 4.5 anos está ao

redor do 0.2 para doentes con 35 e 50 anos, mentres que para individuos de

80 anos, dita probabilidade é maior que 0.4. O motivo é que cando o cancro

colorrectal é diagnosticado nun doente xove, normalmente está nun estadio

avanzado e con peor prognose, xa que as células de cancro son mais activas en

individuos de corta idade. Os principais resultados deste caṕıtulo están publi-

cados en López-Cheda et al. (2017b).
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Caṕıtulo 4: Contrastes de significación de covariables

Os contrastes de significación de covariables teñen moita importancia en

análise de regresión, debido a que o número de covariables potenciais que po-

den ser inclúıdas no modelo pode ser grande. En particular, en modelos de

curación de tipo mixtura, a selección de variables ten especial importancia

porque as covariables que teñen un efecto significativo na supervivencia dos

individuos susceptibles non son necesariamente as mesmas que aquelas que

inflúen na probabilidade de cura.

Neste caṕıtulo preséntase un contraste de significación de covariables para a

incidencia, baseado no método de Delgado & González-Manteiga (2001), quen

introduciron un contraste para seleccionar covariables explicativas en contextos

de regresión non paramétricos sen censura. A principal vantaxe sobre outros

métodos de suavización é que este só require un parámetro de suavizado para

o estimador non paramétrico da función de regresión que depende das covaria-

bles significativas baixo a hipótese nula. Esta caracteŕıstica resolve, en parte, o

problema da “maldición da dimensionalidade”en contextos non paramétricos

e da lugar a que o estat́ıstico non dependa de ningún parámetro ventá se non

se asume, baixo a hipótese nula, a dependencia da probabilidade de cura de

ningunha covariable. Ademais, o método é estendido a casos de covariables non

continuas: binarias, discretas e cualitativas. Na Sección 4.3 introdúcese o caso

cunha soa covariable (isto é, cando se comproba se a probabilidade de cura, co-

mo unha función da covariable, pode ser considerada constante), denominado

caso 1. A Sección 4.4 presenta o caso 2 onde, baixo a hipótese nula, a proba-

bilidade de cura depende dunha covariable unidimensional. Baixo a hipótese

alternativa, a mesma probabilidade depende dunha covariable m-dimensional,

con m < 1.

Na Sección 4.5 esta proposta esténdese a contextos cun grande número de

covariables. Nestes casos, como en xenómica ou en outros campos relacionados

coa biolox́ıa, a probabilidade de obter un resultado significativo simplemente

debido á sorte é moi alta. Para tratar este problema, utiĺızase un algoritmo

que controla a proporción esperada de rexeitar hipóteses falsas, isto é, o deno-

minado False Discovery Rate (FDR). Esta taxa de erro é equivalente á Family-

wise Error Rate (FWER) cando todas as hipóteses son verdadeiras, pero mais
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pequena noutro caso. Cabe destacar que, cando usamos o FDR na práctica

utilizamos dous métodos: un que controla o FDR e outro método mais conser-

vador, que ademais do FDR controla o FWER.

Un extenso estudo de simulación inclúese na Sección 4.6. Para o caso 1,

onde se estuda se a covariable Z ten un efecto estat́ısticamente significativo na

incidencia (H1) ou non (H0), considéranse catro situacións dependendo do tipo

da covariable Z: continua, discreta, binaria ou cualitativa. No caso 2, onde se

contrasta se a incidencia depende únicamente da covariable X (H0) ou tanto

de X coma de Z (H1), estúdanse os dezaseis escenarios resultantes da combi-

nación de tipos de ambas covariables X e Z: ambas continuas, unha continua e

outra discreta, etc. A simulación para o caso cun grande número de covariables

levouse a cabo únicamente no caso 1, onde se consideran Z1, ... , Zm covariables

e se estuda, para cada unha de forma independente, se a probabilidade de cura

depende significativamente dela ou non.

Para conclúır este caṕıtulo, na Sección 4.7, apĺıcase a metodolox́ıa pro-

posta a dúas bases de datos: a relacionada con doentes de cancro colorrectal

do CHUAC, e outra relativa a doentes de sarcomas do CHUS. Esta última

consiste en 261 observacións con 372452 covariables. Especificamente, inclúe

372420 covariables con información de metilacións de ADN e 32 covariables

de datos cĺınicos. As covariables de metilacións son continuas, con valores en-

tre 0 e 1. Un total de 195 observacións son censuradas, o que se corresponde

cun 74.71 % dos datos. Para levar a cabo o algoritmo proposto dos contrastes

de significación, utiĺızase o método de Benjamini & Hochberg (1995) e a súa

alternativa conservadora, de Benjamini & Yekutieli (2001). Co método non

conservador, para B = 1000 remostras bootstrap, obtense que co estat́ıstico

de Cramér-von Mises, 4179 covariables son significativas e 6924 non son con-

clúıntes (polo que precisan volver a ser analizadas na seguinte iteración do

proceso); mentres que co estat́ıstico de Kolmogorov-Smirnov, 3457 covariables

son significativas e 6263 son non conclúıntes. No momento de depósito da tese,

o programa está lanzado na seguinte fase do algoritmo con B = 10000 remos-

tras boostrap. Respeto á alternativa conservadora, os resultados mostran que

só unha covariable é significativa para a probabilidade de cura: Year of initial

pathologic diagnosis. Utilizando o estimador non paramétrico da incidencia pa-

ra esa covariable pódese ver que a probabilidade de cura está ao redor de 0.35
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para datas anteriores ao ano 2010, mentres que entre ese ano e o ano 2013,

dita probabilidade dupĺıcase.

Caṕıtulo 5: Traballo futuro

Considérase a posibilidade de aplicar a metodolox́ıa proposta a casos de alta

dimensión que inclúan análise de imaxes, relacionadas con diagnose de cancro.

Ademais, como o software utilizado en todos os estudos de simulación nesta

tese é R, un entorno libre para gráficos e computación estat́ıstica, desenvolve-

rase un paquete de R con todas as técnicas estudadas. As mesmo, introdúcense

outros problemas de traballo futuro: estudar o estimador presuavizado da pro-

babilidade de cura, estender os métodos a casos con truncamento ou datos

censurados en intervalos, usar single-index models en análise de supervivencia

para datos censurados e probar a consistencia dos métodos bootstrap, estu-

dando os ĺımites de converxencia.
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