O EFEITO DAS ALTAS TEMPERATURAS NA RESISTÊNCIA À COMPRESSÃO DE UM BETÃO COM ADIÇÃO DE FIBRAS DE AÇO E TÊXTEIS RECICLADAS DE PNEU

Maria Eduarda **Mendes Daniel** Mestre IPCB – Castelo Branco

Cristina Calmeiro dos Santos Professora IPCB - Castelo Branco; ISISE

João Paulo Correia Rodrigues* Professor UC - Coimbra; ISISE

SUMÁRIO

O betão é um dos materiais responsáveis pelo aumento do consumo de cimento e agregados naturais na construção civil, levantando questões de sustentabilidade dos recursos naturais. Este facto conduz à necessidade de desenvolver tecnologias inovadoras e materiais alternativos para melhorar não só o nível de desempenho do betão mas, acima de tudo, apoiar a política de proteção ambiental. O objetivo deste trabalho é demonstrar, através de investigação experimental, que a adição de fibras de aço e têxteis provenientes da reciclagem de pneus é viável para produzir um betão com um comportamento satisfatório à temperatura ambiente e quando submetido a elevadas temperaturas.

PALAVRAS-CHAVE: betão; fibras de aço; fibras têxteis; reciclagem de pneus; altas temperaturas; resistência à compressão

1. INTRODUÇÃO

No estudo do comportamento do betão à compressão, alguns autores consideram que se podem delinear quatro estados de comportamento. Se num primeiro momento o betão apresenta um comportamento quase linear dado que nesta fase as microfissuras evoluem pouco, numa segunda fase o betão comporta-se de modo não-linear, apresentando microfissuras que atingem a pasta de cimento e a interface pasta de cimento/agregado. [1, 2, 3, 4].

Husem estudou a variação da resistência à compressão de betão normal e de betão alta resistência expostos a diferentes níveis de temperatura e seguidamente procedeu ao arrefecimento. A partir da análise dos resultados obtidos, Husem concluiu que o betão normal e o betão de alta resistência expostos a temperaturas elevadas apresentam uma diminuição da resistência à compressão com o aumento da temperatura. Deste modo, pode-se concluir que a resistência à compressão do betão (normal e de alta resistência), após exposição a temperaturas elevadas, diminui quando comparado com provetes de referência ensaiados à temperatura ambiente. Constata-se ainda que a diminuição da resistência à compressão do betão normal é maior que a do betão de alta resistência [5].

Os resultados obtidos por Husem estão em sincronia com os resultados de outros estudos de investigação, os quais mostram que o arrefecimento ao ar causa menor perda de resistência que o arrefecimento em água. Por exemplo, no betão de alta resistência quando a temperatura atinge os 400°C, a perda de resistência à compressão é de 23% para o arrefecimento ao ar enquanto para o arrefecimento em água é de 29% [6, 7, 8].

Os autores justificam esta diferença de comportamento pelo facto de a mistura mineral usada na produção do betão de alta resistência sofrer expansão quando o betão é exposto a altas temperaturas conduzindo à perda da sua resistência. Observaram que alguns provetes de betão de alta resistência sofreram spalling explosivo para temperaturas entre os 400 e os 500°C, devido à expansão da sílica fume (adição utilizada no fabrico de betão de alta resistência) utilizada na produção do betão. O spalling explosivo não foi observado nos provetes de betão normal.

Castillo e Durrani também realizaram um estudo com betão constituído por agregados calcários de resistência normal e de alta resistência. O betão normal foi testado a quente sem carregamento. Um dos conjuntos de provetes de betão de alta resistência foi submetido ao aquecimento sem pré-carga. Após atingir a temperatura de ensaio foi então aplicado o carregamento. Outro dos conjuntos de provetes foi submetido durante o processo de aquecimento a uma pré-carga de 40% da carga de rotura à temperatura ambiente. Após a temperatura de ensaio ser atingida, a carga foi aumentada até à rotura do provete.

Os resultados deste estudo mostram que o comportamento das curvas da resistência à compressão a quente, obtidas para o betão de alta resistência com pré-carga e para o betão normal, é semelhante. A resistência à compressão aumenta no intervalo de temperaturas de 200 a 400°C. No entanto, o tramo ascendente da curva do betão normal situa-se entre os 100 e 200°C, enquanto o do betão de alta resistência se situa em níveis de temperatura mais elevados. Para o betão de alta resistência sem pré-carga situa-se entre os 200 e 300°C e no betão de alta resistência com pré-carga situa-se entre os 300 e 400°C [9].

Os autores concluíram que, para temperaturas superiores a 400°C, o betão tem um comportamento similar independentemente do nível de carregamento. Porém, para temperaturas entre 200 e os 400°C o comportamento altera-se, apresentando os provetes com carregamento maior degradação da resistência à compressão. Constataram ainda que quanto maior for a resistência do betão maior será o seu grau de degradação em função das altas temperaturas.

Castillo e Durrani atribuem estas diferenças de comportamento à diferente capacidade de retenção da água dos betões analisados. No betão normal a evaporação da água absorvida acontece a temperaturas ligeiramente superiores aos 100°C. Esta evaporação da água traduzse num aumento da resistência. No betão de alta resistência a evaporação da água é dificultada devido à maior compacidade deste betão, pelo que o aumento da resistência verifica-se para níveis de temperatura mais elevados. Esta diferença é mais pronunciada no betão de alta resistência e acentua-se sob o efeito da pré-carga aplicada [9].

Os estudos de Khoury também mostram que a aplicação de uma pré-carga pode conduzir ao aumento da resistência do betão submetido a altas temperaturas, porque a pré-carga aplicada durante a fase de aquecimento compacta o betão, limitando o surgimento da fissuração [6].

Phan e Carino estudaram igualmente a relação entre a resistência à compressão e a temperatura para o betão normal e de alta resistência. Para o efeito, realizaram três tipos de ensaios: ensaio sem pré-carga; ensaio com pré-carga e ensaio residual sem pré-carga. O tipo de agregado utilizado foi calcário e silicioso. Algumas composições continham apenas cimento Portland, enquanto outras continham ainda aditivos como sílica fume, cinzas volantes e fibras de aço.

A análise dos resultados permite extrair as seguintes conclusões: nos ensaios com e sem précarga verifica-se que a resistência à compressão do betão de alta resistência varia com a temperatura de modo mais desfavorável que a do betão normal; as diferenças são mais pronunciadas no intervalo de temperatura entre os 25 e os 400°C, apresentando o betão de alta resistência maior perda de resistência que o betão normal. Note-se que essas diferenças tornam-se menos significativas para temperaturas acima dos 400°C.

A variação da resistência à compressão com a temperatura pode ser descrita, segundo Phan e Carino, por uma fase inicial de perda de resistência (dos 25 aos 100°C), seguida de um período de estabilização e recuperação de resistência (dos 100 aos 400°C) e uma fase final caraterizada por uma diminuição constante da resistência à medida que a temperatura aumenta (para temperaturas superiores a 400°C). A recuperação da resistência do betão de alta resistência ocorre a temperaturas mais elevadas que a do betão normal. Para o betão de alta resistência verifica-se um menor número de resultados para todos os tipos de ensaios efetuados porque ocorreu spalling explosivo nos provetes para níveis de temperatura entre os 300 e os 650°C [10].

Deste modo, ainda que ambos os betões sofram uma diminuição da sua capacidade resistente quando sujeitos a temperaturas elevadas, o betão de alta resistência apresenta uma maior sensibilidade para o surgimento de spalling, mesmo do tipo explosivo, quando submetido ao aumento brusco da temperatura como acontece em situação de incêndio [9, 11].

Bayramov et al (2004) realizaram estudos com o objetivo de otimizar os betões de alta resistência reforçando-os com fibras de aço de modo a obter ductilidade superior aos betões normais e aumentar a capacidade de absorção de energia. Os resultados obtidos permitiram verificar que o diâmetro e a orientação das fibras de aço desempenham um papel importante na resistência à compressão do betão [12].

Lau e Anson (2006) estudaram as propriedades mecânicas de betões normais e betões de alta resistência quando submetidos a diferentes níveis de temperatura. Estudaram ainda o efeito da inserção de 1% de fibras de aço como reforço nos dois tipos de betão. Neste estudo os autores constataram que quanto maior for a taxa de aumento de temperatura menor é a permeabilidade do betão e maior o risco do betão sofrer spalling. A adição de fibras de aço melhora o desempenho do betão, independentemente da mistura e da temperatura máxima atingida e melhora a sua resistência à compressão [13].

Çavdar (2012) estudou o efeito da adição no betão de quatro tipo de fibras com o objetivo de determinar a contribuição das referidas adições no comportamento mecânico do betão quando sujeito a elevadas temperaturas. As fibras utilizadas foram de polipropileno (PP), de carbono (CF), de vidro (GF) e de álcool polivinílico (PVA). As proporções aplicadas foram 0,0%, 0,5%, 1,0%, 1,5% e 2,0% em volume, e as temperaturas testadas foram 20°C, 100°C, 450°C e 650°C. O autor concluiu que a resistência à compressão diminui à medida que a temperatura aumenta, perdendo as misturas com fibras de PP e GF cerca de 40-50% aos 450°C e 55-70% aos 650°C. As misturas com CF e as misturas com PVA perderam cerca de 3-8% aos 450°C e 50-60% aos 650°C. A diminuição da resistência à compressão é menor quando a proporção de fibras de CF adicionadas à mistura está compreendida entre os 0,5 a 1,5% para qualquer nível de temperatura em estudo [14].

Bangi e Horiguchi (2012) estudaram a influência do comprimento, do diâmetro e do tipo de fibra a utilizar de modo a diminuir a pressão interna dos betões de alta resistência quando estão sujeitos a elevadas temperaturas. Neste estudo testaram fibras de polipropileno (PP), fibras de álcool polivinílico (PVA) e fibras de aço (FA). Os autores observaram uma redução significativa da pressão nos poros das misturas, independentemente do tipo de fibra aplicada e da sua geometria. Os autores verificaram também que as adições de fibras de aço atenuam o aparecimento de fissuração e as fibras de polipropileno o spalling, uma vez que estas últimas vão sublimar para temperaturas na ordem dos 170°C, criando canais por onde o vapor se pode escapar do interior para o exterior do elemento, reduzindo assim a pressão interna nos poros da mistura [15].

Deste modo, os diversos estudos realizados para estudar os efeitos das altas temperaturas nas propriedades térmicas e mecânicas do betão conduziram a conclusões semelhantes: sob o efeito de altas temperaturas a resistência do betão diminui e desenvolvem-se condições propícias para o surgimento do spalling – nomeadamente no betão de alta resistência.

Na construção civil o aproveitamento de materiais reciclados é uma alternativa cada vez mais viável e aplicada. As propriedades mecânicas de betão com fibras de aço e têxteis de pneu usado quando são sujeitos a temperaturas elevadas têm-se tornado um tema importante, uma vez que o conhecimento nesta matéria é escasso. Neste sentido, pretende-se com esta investigação avaliar experimentalmente a resistência à compressão do betão com fibras de aço e têxteis provenientes de pneus usados, à temperatura ambiente e a temperaturas elevadas. Em Portugal a RECIPNEU é uma das empresas que desde o ano 2000 se dedica à reciclagem de pneus, utilizando um processo de trituração criogénica na conceção dos agregados para aplicações como matéria-prima e como produto final. Com o apoio/parceria da RECIPNEU foi possível desenvolver o trabalho de investigação apresentado.

2. ESTUDO EXPERIMENTAL

O estudo experimental apresentado pretendeu avaliar a resistência à compressão, a altas temperaturas, de betão com adição de fibras de aço e fibras têxteis provenientes da reciclagem de pneu em fim de vida útil.

2.1 Composição do betão

Para a caraterização do betão quanto à sua resistência, durabilidade e economia, é decisivo a dosagem dos componentes do betão, como o cimento, os agregados e a água.

No presente estudo consideraram-se quatro composições de betão com a mesma relação água/cimento (A/C=0,43), diferindo apenas no tipo de fibras incorporadas nas misturas em substituição da brita calcária. Estudou-se uma composição de referência (BR) sem adição de fibras; uma composição com 50kg/m³ de fibras de aço recicladas de pneu (BFA); uma composição com 3kg/m³ de fibras têxteis recicladas de pneu (BFT); e por fim uma composição com uma mistura de 50kg/m³ de fibras de aço mais 3kg/m³ de fibras têxteis recicladas de pneu (BM). Para as quatro composições de betão foi usado um cimento (CEM) do tipo II/A-L 42,5R, dois tipos de agregados: areia fina (<4mm) (AF) e brita calcária (BC) (6,3 – 16 mm). Na Tabela 1 pode-se observar as caraterísticas físicas das fibras.

Tabela 1: Características das fibras de aço e das fibras têxteis

	Comprimento [mm]	Diâmetro [mm]
Fibras de aço	11,9 - 30	1
Fibras têxteis	7 - 55	0,2-2,1

Na Tabela 2 apresentam-se as massas volúmicas dos agregados, do cimento e da água usados nas composições dos diferentes betões em estudo.

Tabela 2: Massas volúmicas dos agregados

	8 8
Tipo de agregado	Massa volúmica $\rho [kg/m^3]$
Brita calcária (BC)	2700
Areia fina (AF)	2600
Cimento (CEM)	3100
Água (A)	1000
Fibras têxteis (FT)	1091
Fibras de aço (FA)	6787

As diferentes composições do betão são apresentadas na Tabela 3. Para cada composição de betão foram realizados ensaios de resistência à compressão em provetes cúbicos (150x150x150mm), determinando a resistência à compressão do betão à temperatura ambiente, aos 28 dias. Estes ensaios foram realizados seguindo a NP EN 206-1 (2007) [16] e os seus resultados são apresentados na Tabela 4. Os provetes foram curados, durante 28 dias, numa

sala com um ambiente de vapor saturado (humidade relativa > 98%) e temperatura de 20°C. Após o período de cura, foram removidos e colocados em ambiente de laboratório (temperatura entre 18 e 20°C) e humidade (entre 40 e 50%). Os provetes foram ensaiados com pelo menos três meses de idade.

Tabela 3: Composição do betão por m³

	CEM	AF	ВС	Α	A/C	FA	FT
	(Kg/m ³)	(Kg/m ³)	(Kg/m ³)	(l/m ³)		(Kg/m ³)	(Kg/m ³)
BR	400	698	1097	173	0,43	-	-
BFA	400	698	1047	173	0,43	50	-
BFT	400	698	1094	173	0,43	-	3
BM	400	698	1044	173	0,43	50	3

Tabela 4: Classe de resistência à compressão

Tipo de betão	f _{cm} (MPa)	f _{ck} (MPa)	Classe de Resistência
BR	64,65	63,65	C 50/60
BFA	67,30	66,30	C 50/60
BFT	66,69	65,69	C 50/60
BM	67,11	66,11	C 50/60

2.2 Provetes

Os ensaios foram realizados em provetes cilíndricos com 75mm de diâmetro e 225mm de altura, com uma relação de altura/diâmetro de 3:1. Os provetes foram providos com cinco termopares tipo K com a finalidade de controlar a evolução da temperatura no seu interior. A localização dos termopares nos provetes foi definida tendo por base as recomendações do RILEM TC – 200 HTC (2005) [17] (Figura 1).

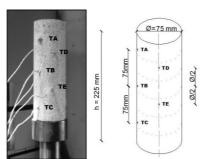


Figura 1: Provetes e localização dos termopares

2.3 Plano de ensaios

O trabalho experimental realizou-se em três fases: na primeira fase procedeu-se à preparação de todo o material necessário para a realização dos ensaios, obtenção de agregados a serem

incorporados, bem como areia e cimento. A segunda fase experimental teve por objetivo avaliar os diferentes tipos de betão fabricados sob o ponto de vista do desempenho mecânico e da deformabilidade à temperatura ambiente. A última fase do trabalho experimental foi reservada à avaliação do comportamento do betão quando exposto a diferentes níveis de temperatura máxima (20, 300, 500, 700°C) e ao nível de carregamento de $0,5f_{cd}$ (sendo f_{cd} o valor de cálculo da resistência à compressão do betão à temperatura ambiente). Para cada combinação de parâmetros foram realizados três ensaios. Na Tabela 5 apresenta-se resumidamente o plano de ensaios para cada composição de betão.

Tabela 5: Plano de ensaios

Composição do betão	Temperatura (°C)	Nível de carregamento
BR		
BAB1	20, 300, 500, 700	0,5f _{cd}
BAB2		

2.4 Sistema de ensaio

Do sistema de ensaio fizeram parte uma máquina universal de tração/compressão Servosis com capacidade de carga até 600kN (a), um forno cilíndrico com uma câmara de aquecimento de 90mm de diâmetro e 300mm de altura (temperatura máxima de 1200°C) (b), um sistema de aquisição de dados TML TDS-601 (c) e um controlador da máquina de ensaios tração/compressão (d). Nos ensaios foram registadas as forças, os deslocamentos e as temperaturas nos provetes e no forno (Figura 2).

Figura 2: Sistema de ensaio

O procedimento de ensaio adotado respeitou as recomendações do RILEM TC – 200 HTC (2005) [17]. O provete foi submetido ao nível de carregamento de $0.5f_{cd}$, o qual foi mantido constante durante o processo de aquecimento. Após se ter atingido o nível de carregamento, o provete foi aquecido a uma taxa de 3° C/min, até ao nível de temperatura desejado. Vários níveis de

temperatura máxima foram testados (300, 500 e 700°C). Para controlo do betão foram também ensaiados provetes à temperatura ambiente. O nível de temperatura era considerado atingido quando a temperatura média nos três termopares superficiais do provete em estudo igualava a temperatura ambiente interna do forno. A máxima diferença da temperatura axial entre cada uma das três leituras da temperatura superficial não podia exceder 1°C a 20°C, 5°C a 100°C e 20°C a 700°C. O provete era mantido a esta temperatura durante uma hora para estabilização. Após a estabilização da temperatura era realizado o ensaio de compressão. A carga foi incrementada a uma taxa de 0,25kN/s até se atingir a rotura do provete.

3. RESULTADOS

3.1 Resistência à compressão

Os resultados obtidos nos ensaios experimentais para a resistência à compressão são visíveis na Figura 3. Da análise da figura constata-se que, aos 300°C, houve um aumento da resistência à compressão de cerca de 3% para o BR, 7% para o BFA e 5% para o BFT. No entanto, esta situação não se verificou aos 500°C, em que todas as composições de betão em estudo perderam resistência à compressão. Para o nível de temperatura de 700°C não são apresentados resultados, uma vez que todos os provetes sofreram rotura antes de atingir este nível de temperatura, impossibilitando que os mesmos fossem ensaiados à compressão. O betão BM apresenta, para todos os níveis de temperatura em estudo, valores da resistência à compressão inferiores ao betão de referência (BR).

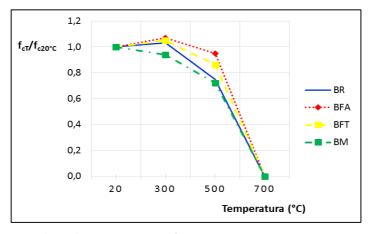


Figura 3: Resistência à compressão em função da temperatura – BR, BFA, BFT e BM

Os resultados analisados anteriormente revelaram uma boa correlação com alguns estudos já efetuados por vários autores. Segundo Çavdar (2012) [14] a resistência à compressão diminui com o aumento de percentagem de fibras têxteis (polipropileno e vidro) introduzida na composição, o mesmo se verifica nos resultados obtidos para a composição BFT. Relativamente à composição com fibras de aço, verifica-se um aumento na resistência à compressão, como Lau e Anson (2006) [13] concluíram na sua investigação.

3.2 Provetes após ensaio

A Figura 4 mostra o registo fotográfico da rotura sofrida pelos provetes após a realização dos ensaios de resistência à compressão para a série de 500°C. Foi observada uma rotura menos explosiva nos provetes constituídos por fibras de aço, garantindo a eficiência das fibras de aço na obtenção de um betão mais dúctil e no controlo da fendilhação. Note-se que a percentagem de vazios nos provetes com fibras têxteis aumenta com o acréscimo de temperatura. Este facto ocorre devido ao aumento de carbonização nas fibras têxteis ao longo da evolução da temperatura.

Figura 4: Provetes após ensaio: (a) – BR; (b) – BFA; (c) – BFT; (d) – BM

4. CONCLUSÕES

O trabalho experimental desenvolvido permitiu extrair as seguintes conclusões:

- A resistência à compressão para o betão BR, BFA e BFT, e para temperaturas da ordem dos 300°C, apresentou um acréscimo. Para temperaturas da ordem dos 500°C, as composições de betão em estudo, revelaram resistências à compressão inferiores às registadas para a temperatura ambiente, 20°C.
- Todas as composições de betão, para níveis de temperatura de 700°C, não apresentaram valores de resistência à compressão, uma vez que sofreram rotura antes de atingir o nível de temperatura.
- A composição que apresenta maior aumento de resistência á compressão é a composição BFA para os 300°C, pois para os 500°C a sua resistência à compressão é inferior à resistência a 20°C.
- Apesar da composição BFT apresentar uma maior resistência à compressão para a temperatura a 300°C e para a temperatura de 500°C quando comparada com a resistência à compressão aos 20°C, esta composição apresenta valores inferiores aos da composição BFA.
- A composição BM, quer para a temperatura de 300°C quer para a temperatura de 500°C, apresenta valores de resistência à compressão sempre inferiores à da temperatura de 20°C, o que indica que esta composição não apresenta qualquer vantagem na sua utilização.
- Após a realização dos ensaios foi observado uma rotura menos explosiva na composição com adição de fibras de aço provenientes de pneu reciclado.

REFERÊNCIAS

- [1] Shah, P.; Sankar, R. Internal cracking and strain softening response of concrete under uniaxial compression. ACI Structural Journal, v. 84, n.3, 1987, p. 200-212.
- [2] Torrenti, M.; Benaija, H.; Boulay, C. *Influence of boundary conditions on strain softening in concrete compression test.* Journal of Engineering Mechanics (ASCE), v. 119, n.12, 1993, p. 2369-2384.
- [3] Acker, P. Comportement mécanique des bétons: apports de l'approche physico-chimique. Rapport de Recherche des laboratoires des Ponts et Chaussées n.152. Paris, 1988, 121 p.
- [4] Picandet, V.; Khelidj, A.; Bastian, G. Effect of axial compressive damage on gas permeability of ordinary and high performance concrete. Cement and Concrete Research, v. 31, n.11, 2001, p. 1525-1532.
- [5] Husem, M. The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete. Fire Safety Journal, v. 41, n.2, 2006, p. 155-163.
- [6] Khoury, G. A. Compressive strength of concrete at high temperatures: a reassessment. Magazine of Concrete Research, v. 44, n.161, 1992, p. 291-309.
- [7] Saad, M.; Abo-El-Enein, S.A.; Hanna, G.B.; Kotkata, M.F. Effect of Temperature on physical and mechanical properties of concrete containing silica fume. Cement and Concrete Composites, v. 26, n.5, 1996, p. 669-675.
- [8] Janotka, I.; Nurnbergerova, T. Thermo-mechanical properties of penly reactor envelope at temperature up to 200°C. Materials and Structures, v. 32, n.224, 1999, p.719-726.
- [9] Castillo, C.; Durrani, A.J. Effect of transient high temperature on high-strength concrete. ACI Materials Journal, v. 87, n.1, 1990, p. 47-53.
- [10] Phan, L.T.; Carino, N.J. Fire performance of high strength concrete. ASCE/SEI structures congress, Philadelphia, 2000, 9 p.
- [11] Jahren, P.A. Fire resistance of high strength/dense concrete with particular references to the use of condensed silica fume a review. In Proceedings of the Third International Conference, Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, AC1 SP-114, Detroit, USA, 1989, p. 1013-1049.
- [12] Bayramov, F., Tasdemir, C., Tasdemir, M.A. Optimisation of steel fibre reinforced concretes by means of statistical response surface method. Cement and Concrete Composites, v. 26, 2004, p. 665-675.
- [13] Lau A.; Anson M. Effect of high temperatures on high performance steel fibre reinforced concrete. Cement and Concrete Research, v.36, n.9, 2006, p. 1698-1707.
- [14] Çavdar, A. A study on the effects of high temperature on mechanical properties of fiber reinforced cementitious composites. Composites, Part B, v. 43, 2012, p. 2452-2563.
- [15] Bangi, M.R., Horiguchi, T. Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures. Cement and Concrete Research, v. 42, 2012, 2012, p. 459-466.
- [16] NP EN 206-1 Betão. Parte 1: Especificação, desempenho, produção e conformidade. Norma portuguesa, Instituto Português da Qualidade, 2007, 84 p.
- [17] RILEM TC 200 HTC Mechanical concrete properties at high temperature Modelling and applications. Materials and Structures, v. 38, 2005, p. 913-919.