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Abstract

Systemic sclerosis (SSc) is a multisystem autoimmune disease: characterised from the

clinical side by progressive vasculopathy and fibrosis of the skin and different organs

and from the biochemical side by fibroblast deregulation with excessive production

of collagen and increased expression of nicotinamide adenine dinucleotide phosphate

oxidase 4 (NOX4). The latter contributes to an overproduction of reactive oxygen

species that via an autocrine loop maintains NOX4 in a state of activation. Reactive

oxygen and nitrogen species are implicated in the origin and perpetuation of several

clinical manifestations of SSc having vascular damage in common; attempts to dampen

oxidative and nitrative stress via different agents with antioxidant properties have

not translated into sustained clinical benefit. Objective of this narrative review is to

describe the origin and clinical implications of oxidative and nitrative stress in SSc,

with particular focus on the central role of NOX4 and its interactions, to re-evaluate

the antioxidant approaches so far employed to limit disease progression, to appraise the

complexity of antioxidant treatment and to touch on novel pathways elements of which

may represent specific treatment targets in the not so distant future.

Key words: systemic sclerosis, NOX, Nfr2, oxidative stress, antioxidant

List of abbreviations
LA: alpha-lipoic acid
ABI: ankle brachial index 
Ang II: angiotensin II

JU
ST A

CCEPTED



ARE: antioxidant responsive elements 
ADMA: asymmetric dimethyl arginine: 
CFR: coronary flow reserve
CAT: catalase
DAMP: damage associated molecular pattern:
DcSSc: diffuse cutaneous systemic sclerosis:
DHLA: Dihydrolipoic acid
PEN: penicillamine 
Endothelial cells: EC
eNOS:endothelial nitric oxide synthase
ET-1: endothelin-1
FAD: flavin adenine dinucleotide
FPP: farnesyl-pyrophosphate
FMD: flow mediated dilation
GGPP: geranyl-geranyl-pyrophosphate
GSH: Glutathione: 
HR: Hazard ratio 
HMG-CoA: reductase Hydroxy-3-methylglutaryl-coenzyme A reductase 
HNN: hydroxynonenal
HO-1: haemo- oxygenase-1
iNOS: inducible nitric oxide synthase
IL: interleukin
LcSSc: Limited cutaneous systemic sclerosis 
L-NAME: N-Nitroarginine methyl ester
MDA: Malondialdehyde 
NAC: N-acetylcysteine
NOX: nicotinamide adenine dinucleotide phosphate oxidase 
NMD: nitroglycerine mediated dilatation
NPC: nitrosoperoxocarbonate
NT: nitrotyrosine
Nrf2: nuclear erythroid-derived factor-2
NFkB:nuclear factor kappa B
OR: odds ratio
PDGF: platelet-derived growth factor 
PDGFR:platelet-derived growth factor receptor:
PI3K: phosphoinositide-3 kinase
PKC: protein kinase C
RNS: reactive nitrogen species
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ROS: reactive oxygen species
RP: Raynaud’s phenomenon 
SOD: superoxide dismutase 
SSc: systemic sclerosis 
BH4: tetrahydrobiopterin: 
TLR: Toll-like receptor 
TGF-β:transforming growth factor beta
VEGF:vascular endothelial growth factor

Introduction

Systemic sclerosis (SSc) is a chronic autoimmune disorder characterized by a

progressive non inflammatory vasculopathy with intimal hyperplasia affecting small

and large arteries [1] and by excessive production of collagen, fibronectin and

other matrix proteins which accumulate in the skin and internal organs, resulting in

fibrosis[2]. Free radical production is enhanced in SSc in relation to some clinical

manifestations as indicated in the following paragraphs. [3] While the review focuses

on the interplay between reactive oxygen species (ROS) generated by NOX and TGF-

beta, inflammasome and Nrf2 in the pathogenesis of fibrosis, we must touch on how the

immune system is affected by ROS in SSc.

Notes on Oxidative/Nitrative Stress and Immunity in Systemic Sclerosis

Oxidative stress is a measure of the prevailing levels of reactive oxygen species (ROS) in

biological systems determined by the relative rates of their formation and their removal

by plasma and cellular repair mechanisms [3]. In given micro-environments excess ROS

produced by neutrophils, endothelial cells and monocytes contributes to free radical
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attack on membrane and/or lipoprotein lipids in a process called lipid peroxidation[4].

Nitric oxide (NO•) generated from arginine by the action of nitric oxide

synthases (NOS) regulates several biological processes including vasomotor tone.

Upon reaction with superoxide anion (O2•-), NO• forms peroxynitrite (ONOO-), which

interacts with CO2 to form nitrosoperoxocarbonate (ONOOCO2-). Aromatic amino

acyl (tryptophanyl, tyrosyl, phenylalanyl), cysteinyl and methionyl residues of proteins

are sensitive to modification by different forms of reactive nitrogen species (RNS),

depending upon the availability of CO2 and pH [3]. ONOO- is not only responsible for

the nitration of tyrosyl residues in proteins [5] but also for the formation of nitro-fatty

acids that may modulate metabolic- and anti-inflammatory pathways [6,7] 

 Oxidative stress may lead to cell/tissue damage by several mechanisms: by the oxidative modification of cell

macromolecules (DNA, proteins, lipids) that may occur by direct metal-catalyzed oxidation of amino acyl side chains and by

the formation of covalent adducts of the products of carbohydrate oxidation, advanced glycoxidation end products (AGE),

with DNA and proteins of crucial importance for cell viability. Auto-fluorescence of SSc skin reveals the presence of AGE

in relation to carotid radial pulse wave velocity and capillary flow percentage change during occlusion[8].

Moreover, the peroxidation of polyunsaturated fatty acids in phosphatidylcholine and

other phospholipids in cell membranes and in low density lipoprotein yield 1) γ-

hydroxy-alkenals generically called ALE that include acrolein, malonyldialdehyde and

2) an α,β-unsaturated hydroxyalkenal called and 4-hydroxy-2-nonenal (4-HNE) that

may form adducts with cysteine,lysine and histidine residues inducing post-translational

modifications in those proteins bearing such residues (5) and 2)a family of cyclic

molecules called isoprostanes, generated independently of cyclooxygenase, that are

sensitive and specific markers of oxidative stress and that have powerful vasoactive

properties [3]. 

 The engagement of oxidation-specific epitopes (OSE), including AGE/ALEs and

relevant adducts with DNA and proteins to scavenger receptors including RAGE induce

the activation of NF-#B [10] in endothelial cells, macrophages and dendritic cells

thereby promoting inflammatory and immune responses. The relevance of RAGE
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stimulation in SSc is highlighted by the report concerning the secretion of alarmins

(S100A8 and S100A9) from monocytes and neutrophils that bind to TLR4 and RAGE,

thereby recruiting and activating leukocytes into inflamed tissues[9].

The oxidative modification of self-epitopes with the consequent sensitization to

mixed self/non-self neoepitopes and the breaking of immunological tolerance to

their native counterparts, leads to immuno-mediated cell and tissue damage and the

appearance of autoantibodies. Various pro-oxidative agents (bleomicin, superoxide

anions, hydroxyl radicals, hypochlorous acid and peroxynitrite) injected in immune

deficient mice induced the development of serum anti-centromeric protein-B and anti-

DNA topoisomerase 1 autoantibodies. On the other hand, sera of oxidatively treated

mice (hypochlorite or hydroxyl radical) and of patients with diffuse SSc contained

high levels of ALE that triggered endothelial production of H2O2 and fibroblast

hyperproliferation[9].

Nicotinamide Adenine Dinucleotide Phosphate Oxidase in Systemic Sclerosis

The main source of ROS in the organism is the NOX family, composed of five different

NOX isoforms. NOX enzymes are characterized by six transmembrane domains and

two cytosolic domains respectively for NADPH and for flavin adenine dinucleotide[10].

NOX reduces molecular oxygen, forming superoxide anion O2•- and hydrogen peroxide

(H202), using NADPH as an electron donor that is transferred first to the FAD and then

to a heme group. Of the different NOX isoforms, NOX4 is particularly relevant to SSc:

1) though present on the surface of fibroblasts, vascular smooth muscles cells (VSMC)

 and endothelial cells (EC)[11]NOX4 is constitutively expressed on dermal fibroblast

[12] as it lacks cytosolic regulatory subunits, and therefore depends almost exclusively

on the amount of p22phox expressed on the cellular membrane[13]; 2) NOX4 does

not generate O2•- but almost exclusively H2O2; the latter does not react with NO• to

yield ONOO-[14]. Other cell types produce enhanced of ROS in SSc such as circulating

neutrophils, monocytes [15] and T lymphocytes [16].
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Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Toll Like Receptors

Toll-like receptors (TLR) are a family of pattern recognition receptors (PRR) that sense

invading pathogens or endogenous damage signals and once stimulated initiate the

innate and adaptive immune response. Damage associated molecular patterns (DAMP)

appearing during the course of oxidation and nitration including post-translational

modification of certain connective tissue proteins and heat shock proteins also stimulate

TLR[17,18]. The intracellular signalling triggered by TLR activation is mediated by

the cytoplasmic adaptor molecule, MyD88 and by the serine/threonine kinases of the

IL-1R–associated kinase family, resulting in translocation of NF-κB to the nucleus and

synthesis of type I interferons and inflammatory cytokines[19]. TLR4 is a better sensor

for oxidative stress than other TLRs[20]. Interestingly, TLR4 and its co-receptors, MD2

and CD14, are over-expressed in affected skin from patients with diffuse cutaneous

SSc; the same study demonstrated in a mouse model that chronic TLR4 stimulation

is associated with increased expression of the TGF-β gene[21]. Others have also

demonstrated overexpression of TLR9 (an endosomal TLR) in the skin of SSc patients

of SSc mice in parallel with overexpression of TGF-β[22]. Conversely in vitro studies

show that TGF-β stimulated the expression of NOX4 both in normal dermal and in

SSc dermal fibroblasts via the PKC-δ and the Smad2/3 pathways[23] and that TGF-

β increases the expression of NOX4 in normal human lung fibroblasts[24].

Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Inflammasomes

The inflammasome is a multiprotein oligomer that promotes the maturation and

secretion of pro-inflammatory cytokines involved in the inflammatory response; the

phagocyte inflammasome NLRP3 requires a two step signal for its activation: a priming

transcriptional step that involves NF-κB pre-activation by TLR2, TLR3, TLR4, and

TLR7 and a post-translational step that allows the oligomerization of the inflammasome

components followed by the maturation and secretion of IL-1β[25]. ROS participates

indirectly through the activation of TRL involved in the priming step and directly at the
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post-translational step[26]. ROS of NOX origin are critical for NLRP3 inflammasome

activation though mitochondrial ROS are also relevant[27].

The inflammasome is involved in the pathogenesis of SSc: a clinical study reported

over-expression of NLRP3 in affected skin of SSc patients compared to healthy

individuals: NLRP3, caspase-1, IL-1β, IL-18 and (endothelin-1) ET-1 were over-

expressed in affected skin of limited and diffuse SSc whereas limited SSc patients

showed a significant increase in eNOS, iNOS and TGF-β. The expression of NLRP3,

IL-1β, IL-18 and ET-1 correlated with dermal fibrosis in limited SSc[28]. In vitro studies

on SSc fibroblasts show that inflammasome activation favoured the expression of 40

genes involved in the synthesis of signalling. Moreover inhibition of caspase-1 in dermal

and lung SSc fibroblasts abrogated the secretion of collagens, IL-1β, and IL-18[29]. A

definitive proof for inflammasome involvement in fibrosis comes from the mouse model

of bleomycin-induced skin fibrosis where NLRP (-/-) mice failed to develop fibrosis

after bleomicin exposure[30]

Nicotinamide Adenine Dinucleotide Phosphate Oxidase & Antioxidant Responsive

Elements

The activity of NOX4 is also closely related to that of nuclear erythroid-derived factor-2

(Nrf2), the most important nuclear transcriptional factor involved in the expression of

genes coding for the synthesis of antioxidant enzymes[31]. In fact, Nrf2, interacting

with the Maf protein, binds the antioxidant responsive elements (AREs) in proximity of

the promoters of the genes coding for glutathione (GSH) biosynthesis and regeneration

(glutamate-cysteine ligase), for the thioredoxin system (eg thioredoxin reductase), for

the detoxification of ROS (eg NADPH quinone oxidoreductase-1) and for heme and

iron metabolism (eg heme oxygenase-1)[32]. This cross-talk is fundamental to restore

the oxidative-redox balance upset by excessive NOX4 generated ROS: the protective

role of NOX4 on the cardiovascular system[33] is due to the ability to promote growth,

proliferation and migration of endothelial cells[34]. In this scenario, NOX4 producing

H2O2 induces p38MAPK; this in turn activates eNOS with consequent production of
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NO• that restores endothelial and vascular function[35]. Moreover, thanks to its ability

to react with cysteine residues forming disulfide bridges, H2O2 is an important mediator

for many transcription factors and enzymes involved in the regulation of oxidative

stress[14].

Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Fibrogenesis

Several fibrogenic cytokines such as TGF-β, platelet-derived growth factor (PDGF) and

angiotensin II (Ang II) induce the expression of NOX4 in various cell lines enhancing

thus the production of ROS. 

The TGF-β induced NOX4 expression through the Smad 2/3 and the phosphoinositide3-

kinase (PI3K) pathways[36] is particularly relevant at the pulmonary level: hypoxia

stimulates the release of TGF β from epithelial cells that, fibrosis aside, stimulates

threefold the expression of NOX4 on EC and VSMC favoring thus the transformation

of VSMC into myofibroblasts[37]; this causes a severe structural remodeling the intima

of the pulmonary vessels[38] that leads to pulmonary hypertension, one of the lethal

complications of SSc. 

Platelet, macrophage and fibroblast derived PDGF[39] synergizes with TGF-β: in fact

PDGF increases the production and mediates some of the effects of TGF-β, whereas

TGF-β stimulates PGDF in a positive feedback loop[40]. The intimal hyperplasia

characteristic of the early stages of SSc is associated with an over expression of

PDGF receptor (PDGFR) in EC and VSMC[41] that behaves as an autoantigen against

which activating autoantibodies can be formed[42]. Upon activation, PDGFRs trigger

a Ras, ERK1/2 and PI3K dependent intracellular pathway that stimulates NOX4 to

produce H2O2 which in turn activates fibroblasts resulting in further extracellular

matrix deposition[12,43]. 

AngII is a peptide that regulates vasomotor tone: its precursor angiotensinogen is

produced by the liver and is subsequently transformed into AngII through cleavage

first by the renin and subsequently by the angiotensin converting enzyme. Increased

expression of Ang II is detected within the skin lesions of SSc[44]. By binding to its type
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1 receptor Ang II activates NOX4 which produces H2O2 and induces the decoupling of

the eNOS, stimulates the production of TGF-β and activates PKC which by means of

ERK1/2 induces the deposition of proteins of the extracellular matrix with consequent

fibrosis[45]. 

Oxidative and Nitrative Stress markers in Systemic Sclerosis

A recent meta-analysis including 47 articles and 12 oxidative stress markers confirmed

an oxidant/antioxidant imbalance in SSc:oxidative markers such as NO•, asymmetric

dimethyl arginine (ADMA), malondialdehyde (MDA), carbonyls and ROOH were

higher in SSc than in control groups whereas the antioxidant vitamins E and C, and

thiols were lower alongside a decreased enzymatic activity of superoxide dismutase

(SOD) and catalase (CAT)[46]. Another meta-analysis confirmed overproduction of

isoprostanes in SSc[47]. 

More recently an imbalance of the vanin/pantetheinase system emerged as a contributor

to oxidative stress in SSc; the hydrolysis of vasculoprotective pantethine generates

pantothenic acid that has profibrotic effects and cysteamine (then cystamine) that

has pro-oxidant effects[48]. In turn cystamine directly[49] and indirectly via the

Nfr2 pathway[50] inhibits directly γ-glutamyl synthetase, the rate-limiting enzyme of

glutathione (GSH) synthesis that has strong free radical scavenging effects. Diffuse

cutaneous (dcSSc) patients overexpress vanin-1 in the skin and the circulatory system,

and display elevated levels of serum pantothenic acid in relation to disease severity [51].

Micro/macrovascular Disease in Systemic Sclerosis: Functional Studies

The initial functional and structural hallmarks of microvasculature changes in SSc

are Raynaud’s phenomenon (RP) and the morphological abnormalities seen at

capillaroscopy [52]. Endothelial dysfunctionmay be present at this early stage, whereby

the loss of NO● bioavailability determines an impairment of endothelium-dependent
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arterial vasodilation alongside a pro-inflammatory and pro-thrombotic state[53]. A

systematic review and meta-analysis on 7 studies and 283 SSc patients dealing with

functional vascular measurements revealed impaired flow mediated dilation (FMD)

with wide heterogeneity[54] though one study did not favour the impairment. A later

meta-analysis including 35 studies and 1292 patients came to similar conclusions though

4 studies did not favour the association. On the other hand nitroglycerine mediated

vasodilatation was not affected[55]. Microvascular involvement underlies subclinical

cardiac disease: a study on 19 asymptomatic SSc patients revealed decreased coronary

flow reserve (CFR) compared to controls (p<0.001); CRF was lower in dcSSc than in

the limited cutaneous SSc patients (lcSSc) (p=0.05); interestingly CRF was inversely

correlated with the time of onset of RP[56]. Functional microvascular impairment may

be simultaneously present with functional macrovascular impairment[57] but the recent

meta-analysis onfive studies concluded that ankle brachial index did not discriminate

SSc from healthy controls [55].

Micro/macrovascular Disease in Systemic Sclerosis: Morphological Studies

According to different methodologies the prevalence of macrovascular involvement

can be as high as 58% [58]. A systematic review and meta-analysis on atherosclerosis

measured as intima media thickness of carotid arteries on 14 studies including 666 SSc

patients revealed greater intima media thickness with wide heterogeneity [54]. The same

systematic review concluded that sub-clinical atherosclerosis was present in specific

districts such as the renal, radial and ulnar arteries [54] with the latter two leading to

ischaemia, ulceration or amputation of fingers [59-61]. 

A population based study calculated the hazard ratio (HR) for developing acute

myocardial infarction at 3.49, the HR being higher at 8.95 within the first year of SSc

diagnosis [62] whereas a later study identified SSc as an independent risk factor for acute

myocardial infarction (HR 2.45) [63]. An early case control autopsy study revealed a
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predilection for small coronary arteries or arterioles present in 17% of SSc against 2%

of controls (P<0.01)[64]; this matches the data of a very recent study in which SSc

patients had lower myocardial perfusion during adenosine stress compared to controls

(p=0.008) implying microvascular myocardial disease[65].

Oxidative Stress and Vascular Manifestations in Systemic Sclerosis

As mentioned previously ROS and more specifically isoprostanes are overproduced

in SSc and bear major clinical relevance [66]: 1) isoprostanes inversely correlated

with post-occlusion hyperemia, expressed either as raw data (p = 0.007) or as

an increase compared to baseline (p = 0.04) whereas endothelium-independent

response did not change [67]; 2) urinary isoprostane strongly correlated with nail

fold morphological capillaroscopic pattern (p=0.002) and lung involvement (p=0.003),

showing increasing levels with the progression of pulmonary severity [68]; 3) similarly

serum isoprostanes correlated negatively with pulmonary function (percentage vital

capacity and diffusion capacity for carbon monoxide) and positively with renal vascular

damage assessed by colour flow Doppler ultrasonography [69]. Among other less

specific oxidative stress markers,plasma hydroperoxides correlated with the semi-

quantitative capillaroscopy rating score (p < 0.05) [70].

Nitrative Stress and Vascular Manifestations in Systemic Sclerosis

SSc patients also show overproduction of nitrate [71,72] in relation to markers of

endothelial damage and disease activity [72]; dcSSc patients display higher plasma

concentration of crude plasma NT than patients with lcSSc, in relation to the severity and

the duration of the disease; moreover NT staining is increased in skin biopsy sections

from dcSSc compared to lcSSc [73]. At variance another study did not detect NT

differences between dcSSc and lcSSc disease, though in the whole SSc population NT

levels correlated inversely with the carbon monoxide diffusion capacity (p < 0.02) [74].

To gain further insight in on the nitrative stress pathway, histologically graded skin

biopsies from 33 patients with SSc (ten grade 0, ten grade 1, eight grade 2, and five grade
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3) and eight healthy controls were reacted with antibodies against eNOS and inducible

NOS (iNOS) and NT. The degree of staining was assessed using a semi-quantitative

system and a staining score was developed for the endothelial cells (EC) of different

vessel types in different areas of dermis at all grades. In biopsies from patients with

SSc, superficial microvessel ECs showed a peak of eNOS expression in grade 1 skin

which fell as the grade increased. By contrast, iNOS staining increased with the grade

of skin lesion, a pattern paralleled by endothelial NT detection. These findings suggest

that at some point during the progression of the skin lesions, dermal ECs undergo a

metabolic switch from constitutional expression of eNOS to cytokine activation of iNOS

that, in the presence of adequate substrate availability (arginine) releases up to 1000

fold more NO• than eNOS; this excess NO• reacts with O2•- forming more ONOO- that

my nitrate skin proteins as well as contributing to EC malfunction [75]. This has to be

reconciled with the notion whereby several stimuli failed to activate iNOS in human

EC[76] whereas iNOS is truly inducible in murine ECs [77]

Human interventional Studies with Agents bearing Antioxidant Properties

With the knowledge that SSc patients overproduce ROS in relation to specific clinical

features, several authors undertook interventional trials with different agents bearing

antioxidant properties as indicated below. 

Vitamin E and A: mechanisms of action

Vitamin E (α-tocopherol) is a lipid soluble membrane antioxidant that protects against

lipid peroxidation by scavenging free radicals and superoxide[78] though it may also

increase intracellular superoxide dismutase and catalase via NF-κB modulation[79]. Its

efficacy in SSc has been tested in isolation or in combination with various agents. 

Vitamin A (retinol) derives from -carotene, a polyunsaturated hydrocarbon present in

the hydrophobic domains of LDL, member of the large carotenoid family that includes

also abscisic acid and crocetin. As an antioxidant Vitamin A quenches NO2• and the
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peroxyl radicals: this effect strongly depends on the O2 partial pressure and it is possibly

overcome by pro-oxidant toxic effects at the high O2 partial pressure in the lungs. As

a transcriptional modulator, Vitamin A (as all-trans-RA) regulates in a dose-dependent

manner collagen gene expression in fibroblasts from normal subjects and from SSc

patients[80].

Vitamin E and A in systemic sclerosis

A randomized, double-blind, placebo-controlled trial compared the efficacy of 500

or 1000 mg of vitamin E once daily versus placebo in SSc: after three weeks of

treatment neither dose of vitamin E had any effect on the clinical (blood flow variation

in response to cold) or the biochemical outcomes [81]. Vitamin E has been used

in combination with vitamin C (a water soluble and chain breaking antioxidant that

promotes the regeneration of vitamin E), beta-carotene (two molecules of dietary

vitamin A joined together), selenium (cofactor to several intracellular enzymes with

antioxidant activity: glutathione peroxidase, thioredoxin reductase and iodothyronine

deiodinases), and methionine in a placebo-controlled double-blind crossover study.

The efficacy of the above mentioned concoction, “BioAntox”, was evaluated on

the frequency and the duration of RP attacks, on the thermographic response to a

standard cold challenge and on free radical markers in lcSSc; after the 20-week study

period there was no effect on clinical outcomes despite an increase of the levels

of antioxidant molecules on active treatment[82]. In a further study vitamin E (800

UI/day) was paired with pentoxyphylline (800 mg/day) in a 24 week open-label

trial to examine their effect on a possible decrement of the modified Rodnan skin

score (from a baseline of at least 15 points), an improvement of ischemic ulcers and

laboratory parameters; after 16 weeks the average skin score had decreased from 25.7

to 18.7 and remained such at 24 weeks; however the intervention with two agents

limits our understanding of the effect of Vitamin E [83]. Finally, a randomized trial

compared intravenous cyclophosphamide (500mg/m2 of body surface area monthly)

combined with vitamin E (400IU/day) and vitamin C (1g/day) versus antioxidant
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vitamins without cyclophosphamide: after six months the skin thickening of SSc

patients receiving antioxidants with cyclophosphamide was significantly inferior than

that of SSc receiving cyclophosphamide alone but it is not clear how much of the benefit

can be ascribed to either vitamin [84]. The topical administration of vitamin E twice

weekly, in addition to a standard medication protocol, induced faster pain resolution and

healing of digital ulcers in 15 treated SSc patients compared to 12 untreated controls (n

= 12)[85]. 

With regards to carotenoids, protracted topical tretinoin resulted in considerable

improvement in mouth and facial skin tightening in few patients[86]; etretinate, a

lipophilic, aromatic retinoid induced a 75% skin score decrement in SSc patients at

0.5 mg/kg per day, in isolation (7 cases) or in combination with other drugs (systemic

corticosteroids, immunosuppressants, d-penicillamine, methotrexate, bucillamine and/

or UVA irradiation) (5 cases) compared to 19 SSc patients not receiving etretinate,

but only ointments and vasodilators (6 cases) or other drugs (corticosteroids,

immunosuppressant) (13 cases)[87]. 

N-Acetylcysteine: mechanism of action

Acetylation of the aminoacid L-cysteine yields N-Acetylcysteine (NAC), the direct

antioxidant activity of which resides within the thiol group; however, the scavenging

effect in vivo depends on the reaction rate of NAC towards the oxidants formed at any

given intracellular or extracellular site and on the relative concentrations of antioxidant

and oxidant present at any given moment. With this in mind NAC has reasonable direct

antioxidant activity against NO2, hypohalous acids deriving from peroxidases and HOX

but negligible activity against H2O2, O2•-, and ONOO-,[88]. On the other hand NAC

behaves as an indirect antioxidant by boosting the intracellular content and consequently

the natural antioxidant defence of GSH that has been depleted for any reason. GSH

is a tripeptide (c-L-glutamyl-L-cysteinylglycine, GSH) synthesised and maintained at
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elevated (mM) intracellular concentrations[89]. NAC achieves this as a precursor of

cystein, the rate-limiting factor in cellular GSH[90]. The latter is as a substrate or

cofactor for a large number of cellular antioxidant enzymes: glutathione reductase,

glutaredoxin, glutathione peroxidase, peroxiredoxin, glyoxalases 1 and 2, glutathione

transferase[91]. Given in acute or chronic regimens NAC significantly replenished the

GSH pool in certain organs such as liver, skin, lung, and brain, preventing the damaging

effects of GSH impoverishment on these organs. NAC has the ability to restore the

intracellular thiol pool that in turn regulates the redox state[92].

N-Acetylcysteine in systemic sclerosis

A parallel, double-blind, placebo-controlled, prospective study carried out on 22 SSc

failed to show any clinical response after 1-year of oral NAC (up to 10g/day) [93]; the

inefficacy of NAC via the oral route (1.8 g daily) on digital blood flow and RP was

confirmed in a short tem double-blind, placebo-controlled trial on 42 SSc patients [94].

Converselyone group has consistently shown the benefits of intravenous NAC (15 mg/

Kg/h for 5 consecutive hours every 14 days) in the medium term management of SSc:

in one open label study carried over 3 years they documented a reduction of attacks

and severity of RP and of digital ulcers [95], a reduction of the resistance index of the

renal arteries alongside an improvement of the diffusion capacity for carbon monoxide

[96,97]. 

Penicillamine: mechanism of action

Of the effects that PEN has on collagen metabolism [98] few were exploited in the

management of SSc: PEN interferes with collagen biosynthesis, with the formation

of intra and inter molecular cross links and accelerates collagen turnover [99-101].

Moreover, PEN seems to have also antioxidant proprieties: it is structurally similar to

the α-amino acid cysteine but with two methyl groups attached to the same α carbon as

the thiol group that can act as an electron donor scavenge free radicals in a way similar

to GSH[102]. Elevated ROS beyond that required for the normal biochemical processes
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would deplete the reduced form of PEN as the first line of antioxidant defence against

ROS. In turn PEN would lessen the reduced form of glutathione (GSH) because of its

lower redox potential and be converted to a GSSG adduct. Under normal circumstances,

the GSSG adduct is reduced back to GSH by the action of cellular anti-oxidative

enzymes including glutathione reductase and glutathione peroxidase[103].

Penicillaminein systemic sclerosis

Between 1966 and 1988 several uncontrolled studies, using different dosages and

duration of treatment, concluded that PEN decreased skin thickness in patients with

systemic sclerosis[104-107] These evidences led other authors to design studies with

with more representative samples and more reliable endpoints. The ambiguous results

obtained aroused a fervent debate at the beginning of the 2000s, causing various

controversies on this topic [108,109]. In fact the only one double blind, randomized,

prospective study, investigating the effect of low dose (125 mg every other day) and

high dose (822 mg daily) of PEN, failed to show any clinical improvement in systemic

sclerosis[110] whereas many other observational and retrospective studies [111-113]

demonstrated that PEN reduces skin sclerosis, slows new visceral organ involvement

and improves 5 years survival. In fact, at a median dose of 750 mg per day, PEN is

associated with a statistically significant reduction in skin, renal, cardiac and pulmonary

involvement and overall mortality [111-113]. Unfortunately 20% of patients on PEN

developed membranous glomerulopathy with proteinuria with a 40% mortality [114]

and many others developed several autoimmune disorders[115].

Probucol: mechanism of action

Probucol is a bis-phenol lipophilic lipid-lowering agent that inhibits oxidation of low-

density lipoproteins from which its antioxidant activity that was initially attributed

to its phenol moieties[116]; the latter however do not protect against 2-electron
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oxidation that is instead achieved by the two sulphur moieties of probucol[117].

Probucol increases the expression of HO1 gene and activity in balloon-injured

rabbit aorta and rabbit aortic smooth muscle cells[118]: the promoter region of

the HO1 gene contains multiple copies of ARE controlled by the redox-sensitive

transcription factor Nfr2[119]: the phenol moieties of probucol are involved in this

effect[120]. Moreover probucol inhibited lipopolysaccharide-induced nuclear NF-

кB activation in paw tissue as well as NF-кB activity in cultured macrophages

indicating that probucol may block the NF-кB transcriptional pathway[121].

Furthermore, probucol inhibits protein argininemethyltransferase I expression, increase

dimethylarginine dimethylaminohydrolase activity, reduce the asymmetric dymethil

arginine concentration and restore the activity of eNOS in cultured EC[122]whereas in

animal models it enhances catalase and glutathione peroxidase activities[123].

Probucol in systemic sclerosis

One trial compared the efficacy of probucol (500 mg/day) or nifedipine (20 mg/day) on

the frequency or severity of RP attacks in primary or SSc related RP over a 12 week

period: patients on probucol experienced less frequent and less severe attacks of RP

than those on nifedipine [124]. 

Statins: mechanism of action

Statins are cholesterol lowering drugs that inhibit the enzyme 3-hydroxy-3-

methylglutaryl-CoA (HMG-CoA) reductase, fundamental step in the synthesis of

endogenous cholesterol. Statins are pleiotropic drugs in that apart from lowering

cholesterol they have also anti-inflammatory, antioxidant, anti-fibrotic and anti-platelet

properties. These pleiotropic effects are due to their ability to suppress pro-oxidant

enzymes such as NOX, to induce the nitric endothelial oxide synthase (eNOS) and

enhance levels and activity of endogenous antioxidant systems.

Endothelial NOS generates NO• by converting L-arginine into L-citrulline in the

presence of nicotinamide adenine dinucleotide phosphate (NADPH) and other

cofactors such as calmodulin, flavin adenine dinucleotide, flavin mononucleotide

and tetrahydrobiopterin (BH4)[125]; it maintains arterial vasodilation and exerts
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anti-inflammatory, anti-proliferative and antithrombotic activities. Statins regulate

eNOS expression through several mechanisms. One is the inhibition of mavelonate

formation, the precursor of isoprenoids such as geranyl-geranyl-pyrophosphate (GGPP)

and Farnesyl-pyrophosphate (FPP). The GGPP activates the Rho A pathway that

destabilizes the eNOS mRNA[126], and inhibits the PI3K/Akt pathway, preventing thus

the phosphorylation of eNOS[127]. FPP, through the sterol regulatory building protein

reduces the transcription of caveolin-1 and activates eNOS[128].

Statins have a dual antioxidants capacity: they can suppress pro-oxidant enzymes

and activate antioxidant ones. With regards to the former capacity, atorvastatin down

regulated NOX1 expression and Rac1 membrane translocation in VSMCs resulting in

reduced ROS generation[125,129]. In a reverse fashion, withdrawal of cerivastatin from

VSMCs in culture induced the translocation of Rac1 to the membrane, with a subsequent

activation of NOX complexes and increase in ROS production[130]. Moreover, porcine

coronary arteries exposed to high glucose levels generated increased ROS that may was

suppressed by statins through reduction of p22phox mRNA levels[131]. In the cellular

membrane, NOX oxidase co-localizes with ceramide and acid sphingomyelinase to

form membrane rafts; statin treatment prevents the oxidised low density lipoprotein

induced formation of membrane rafts consequently reducing ROS generation from

human coronary artery endothelial cells[132]. In a rat model, statin suppressed NOX

activity through a mevalonate-dependent prevention of Rac activation, favouring

increased NO bio-availability and improved endothelial function[133]. In humans,

short-term treatment with atorvastatin rapidly inhibits NOX activity hence ROS

generation in saphenous venous grafts from patients undergoing coronary artery bypass

independently of the lipid lowering effect of the drug[134].

With regards to stimulating anti-oxidant enzymes, simvastatin partially restored renal

levels of the three major cellular antioxidant defence systems (SOD, GSH-Px, and

catalase) in diabetic animals[135,136] whereas in rats chronically treated with the eNOS

inhibitor L-NAME statins improve endothelial function by increasing SOD levels[137].

Rosuvastatin antagonizes the deleterious effects of Ang II on the vascular system by
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down regulating the expression of NOX4 and increasing the expression of SOD[138].

Atorvastatin increase the gene expression and activity of catalase in aortic VSMCs from

rats and in senescent HUVECs[125].

Furthermore, by inhibiting pro-oxidant enzymes and restoring eNOS coupling, statins

act also at transcriptional level: in fact, reduction of ROS generation prevents ROS

induction of NFkB; in addition statins increase the levels of the inhibitor IkBα and

decrease those of IKK, reducing the binding capacity of NFkB that does not engage in

the transcription of genes coding for pro-inflammatory cytokines[139].

Statins in systemic sclerosis

Stemming from this evidence, several studies investigated the protective role of

statins in SSc and a recent meta-analysis determined that statins treatment is associated

with significant biochemical and clinical improvements[140]. All studies included in

the final analysis showed a significant reduction of Interleukin-6 (IL-6), E-selectin,

vascular endothelial growth factor (VEGF), endothelin 1, and basic fibroblast growth

factor[140-147] Only one study measured NO that significantly increased following

treatment with simvastatin at a dose of 20 mg daily for 12 weeks[140]. Four of the

studies in the meta-analysis evaluated flow mediated vasodilation. Of these, three

cohort studies showed a significant improvement in endothelium dependent dilatation

though the only randomized control trial present in the meta-analysis not revealed any

improvement in endothelium dependent and independent vasodilatation after 8 weeks of

treatment with 20 mg of Simvastatin. In all the studies considered in the meta-analysis,

no significant improvements was shown in regard of other vascular parameters, such

as endothelium independent vasodilatation, arterial stiffness, ankle/brachial index or

carotid intimal medial thickness.

Animal and in vitro Studies with Agents bearing Antioxidant Properties

Vitamin E
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Conditioned media from SSc patients and isoprostanes inhibited endothelial cell tube

formation in vitro, the equivalent of angiogenesis in vivo, via activation of the

thromboxane A2 receptor and the Rho-associated kinase pathways that suppresses

vascular endothelial growth factor (VEGF) activity. The addition of vitamin E increased

cell tube formation [148].

Edaravone

Edaravone is a phenolic compound used in neurology to limit hydroxyl radical-

dependent and radical-independent peroxidation of brain lipids [149]; it quenches ROS

generated from neutrophil NOX and by mitochondria[150]rather than by inhibiting

neutrophil function[151]. In animal models of ischemia-reperfusion edaravone

suppresses the oxidative/inflammatory response secondary to ROS [152]. In the tight

skin mouse and in the bleomycin-induced SSc mouse edavarone reduced skin and lung

fibrosis alongside the reduction of fibrogenic cytokines and ONOO [153].

Lipoic acid

Alpha-lipoic acid (LA) is a naturally occurring dithiol compound enzymatically

synthesized in mitochondria from octanoic acid[154]. From the free radical perspective,

in cells containing mitochondria, LA is reduced to dihydrolipoic acid (DHLA) via an

NADPH-dependent reaction with lipoamide dehydrogenase whereas in cells lacking

mitochondria LA is reduced to DHLA via thioredoxin reductase [155]. Two relevant

aspects of LA are that both its oxidized and reduced forms are powerful antioxidants and

being amphiphilic ad that LA exerts its antioxidant effects in the cytosol as well as in the

plasma membrane[156]. In particular LA scavenges hydroxyl radicals and hypochlorous

acid and prevents protein carbonyl formation but most importantly it neutralizes free

radicals without becoming one itself [157,158].
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Another relevant aspect of LA is its ability to reduce the oxidized forms of other

antioxidants such as GSH, vitamin C and E. As an intracellular antioxidant, GSH buffers

the thiol redox state: this requires a steady intracellular level of GSH either by substrate

availability or by the transcriptional regulation of the GSH gene[159]. Accordingly LA

increases cysteine uptake[160] reducing thus the ratio of cystine to cysteine (as cysteine

is the rate-limiting substrate for this reaction) [161] and activates Nrf-2 that mediates

the gene expression and synthesis of GSH[159].

Moreover LA regenerates vitamin E either directly by reacting with

tocopheroxyl radical or indirectly by reducing dehydroascorbate, which in turn reduces

alpha tocopherol. LA also reduces ubiquinone to ubiquinol, an essential component of

the mitochondrial electron transport chain[158]. A stable availability of intracellular

GSH prevents the age related oxidation of the sulphur amino acids cysteine and

methionine, maintaining them in a reduced form[162] LA has regulatory effects on

gene transcription: apart its effect of Nrf-2, LA inhibits IκB degradation and NF-κB-

dependent gene expression independently of its antioxidant function[157,163]. Finally

because of its two thiol groups, LA chelates several divalent metal ions in vitro and

can form stable complexes with Fe2++ [164] minimising thus iron induced oxidative

stress[165]. We know thattotal plasma and dermal fibroblast thiols are reduced in SSc

[148]. 

In vitro experiments have shown that LA and its metabolite dihydrolipoic acid (DHLA)

behave as antioxidants in dermal fibroblasts in that they quench the production of

ONOO- that in turn is accompanied by a reduction of PDGFR phosophorilation and

consequently lower expression of Col I; the authors suggest that LA and DHLA may

act on redox-sensitive transcription factors that control the expression of phosphatases

though their data cannot be extrapolated to the in vivo scenario [166].

Pantethine

As mentioned earlier pantethine is a vasculoprotective compound made up of two

pantetheines joined by a disulphide bridge produced from vitamin B5 (pantothenic acid)
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by the addition of cysteamine; the vanin/pantetheinase pathway [48] may hydrolyse

pantethine into pantothenic acid that is profibrotic and cysteamine that is pro-oxidant.

Over activation of the vanin-1/pantetheinase pathway occurs in wild-type BALB/c mice

with hypochlorous acid (HOCl)-induced SSc [167]. Pantethine administration restored

the production of gluthatione and decreased the generation of ONOO- in fibroblasts and

EC alongside a decrease in skin and lung fibrosis [167]. 

Asiatic acid

Asiatic acid is a pentacyclic triterpenoid extracted from Centella asiatica, a herbaceous

perennial plant from the family of Apiaceae: it inhibits TGF-1-induced collagen

expression in human keloid fibroblasts, via PPAR-gamma activation [168]. In the

hypochlorous acid-induced murine model of systemic sclerosis, asiatic acid alleviated

pulmonary fibrosis and slowed disease progression compared to untreated mice.

Moreover, trans-differentiation of fibroblasts into myofibroblasts was significantly

reduced in the lungs of SSc mice treated with asiatic acid[169]. 

Tanshinone IIA

Tanshinone IIA is a natural diterpene quinone with antioxidant and anti-inflammatory

properties, isolated from the root of Salvia miltiorrhiza. It exerted inhibitory effects on

IL-17-induced ERK phosphorylation and functional activation (proliferation, collagen

type I and III synthesis, and migration) of dermal vascular smooth muscle cells isolated

from SSc patients[170].

Crocetin

Crocetin is an apocarotenoid dicarboxylic acid extracted from Crocus flowers and

Gardenia jasminoides fruits. Crocetin inhibited the proliferation of normal and SSc

fibroblasts and the trans-differentiation of SSc fibroblasts into myofibroblasts; in the

bleomicin mouse model of SSc repeated intraperitoneal injection of crocetin alleviated
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skin and lung fibrosis in association with decreased levels of mRNAs for type 1 collagen

and endothelin-1 in skin and lung[171]. 

Epigallocatechin-3-gallate

Epigallocatechin-3-gallate (EGCG) is the ester of epigallocatechin and gallic acid

(trihydroxybenzoic acid), a type of phenolic acid. EGCG is a polyphenol found in

high content in the leaves of green tea and white tea. Orally administered EGCG is

poorly absorbed. EGCG down-regulates, in a dose-dependent manner, basal levels of

type I collagen and TGF--stimulated production of type I collagen, fibronectin and

connective tissue growth factor (CTGF) in fibroblasts isolated from normal subjects and

patients affected by SSc. More interestingly EGCG suppressed TGF--induced ROS

production in all fibroblasts and inhibited NF-B activation in response to TGF- or

PDGF-BB[172,173]. 

Curcumin

Curcumin is a phenolic diarylheptanoid deriving the spice turmeric (Curcuma longa).

Curcumin protected rats against lung fibrosis induced by bleomycin[174] and induced

apoptosis in scleroderma lung fibroblasts, but not in normal lung fibroblasts[175].

Curcumin acted via induction of the Nrf2/ARE pathway, increasing the expression of

intracellular detoxifying enzymes in fibroblasts[176]. Furthermore, curcumin exerted

a marked inhibitory activity on TGF- signaling in SSc fibroblasts, by counteracting

TGF--induced phosphorylation of Smad2, but not Smad3[177]. Unfortunately the

potential utility of curcumin as a therapeutic agent is limited by its chemical instability,

insolubility in water,[178] and poor bioavailability after oral administration[179].
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Appraising the Complexity of Antioxidant Treatment

Before considering treatment with antioxidant agents it must be appreciated that ROS

and RNS develop in different intracellular compartments within different cell types and

in different organs before occurring systemically [180]. From the previous paragraphs it

appears that intracellular NOX and extracellular TGF-β have reciprocal effects: NOX4

mediates TGF-β induced pro-fibrotic responses [181] whereas TGF-β specifically

increases NOX4 gene expression [182]. In keeping with the first pathway treatment with

small interfering RNA against NOX4 prevented the expression of TGF-β target genes

such as fibronectin, collagen I and connective tissue growth factor [142]; with regards to

the second pathway TGF-β upregulates NOX4 expression hence ROS via the classical

Smad2/3 and the PI3K intracellular pathways[183]. Moreover, intracellular ROS may

increase JNK and p38 activation aiding further the effect of TGF-β-induced signalling

[184] whereas extracellular ROS may directly convert inactive TGF-β to its active form,

a crucial step in TGF-β signalling [185]: in fact HNN, the major reactive aldehyde

formed during lipid peroxidation, when added to cultured macrophages up-regulates

the expression and release of TGF-β[186]. Finally TLR4 may be sense ROS[20] and

mediate NFkB activation via non-receptor tyrosine kinases[19] and via inflammasomes

[29]; ROS/RNS generated in the course of oxidation and inflammation may also induce

post-translational modifications in connective tissue proteins that in turn may act as

danger signals for TLR4 and further perpetuate the production of TGFβ hence of

fibrosis[18]. It remains to be ascertained whether these in vitro pathways are also active

in vivo. Apart from this complex interplay, antioxidant agents, including vitamins, react

with O2•- almost one billion times slower than NO•; this means that the reaction of O2•-

with NO• is energetically favoured leading to a constant loss of bioavailable NO•. 
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Targeting Nfr2e

To restore or to increase the intracellular antioxidant environment seems an attractive

goal: unfortunately only a limited number of agents able to induce the transcription of

Nfr2 and enhance the synthesis of detoxifying enzymes. Amongst these curcumin [176]

probucol [118] and LA[159]seem suitable candidates. Curcumin however has limited

pharmaco dynamic and pharmaco kinetic properties [178,179], probucol has the added

benefit of suppressing NF-кB activation [121], whereas LA not only activates Nrf-2

[159], but increases cysteine uptake [160], maintains in reduced form other intracellular

antioxidants including vitamin E [159] and inhibits NF-κB-dependent gene expression

[144,150] making it an all-round and desirable antioxidant agent.

Targeting NAPDH oxidase

Silencing NOX4 with small inhibitory RNA improved bleomycin induced lung

fibrosis in the specific mouse model[187]; GKT-137831, a specific NOX1 and NOX4

inhibitor under clinical development[188] decreases CCN2 and α-SMA expression and

collagen gel interaction in SSc fibroblasts[189]. Azithromycin (AZM), apart from its

antibiotic activity, exerts antioxidant and antifibrotic properties in the bleomycin mouse

model of lung fibrosis[190]; in particular AZM degrades the proteasome activating

NOX4, preventing the TGFβ-induced myofibroblast differentiation and limiting lung

fibrosis[191]. Diphenyleneiodonium, a pan-Nox inhibitor, inhibited gene expression of

collagen type and fibronectin in human dermal fibroblasts and limited skin fibrosis and

myofibroblast activation in the bleomycin mouse model [192]. 

Outside SSc, atorvastatin and rosuvastatin have the capacity to inhibit the NOX

system [193,194]; in a mouse model of diabetes probucol downregulated NOX

expression[195] and in human renal proximal tubular epithelial cells it prevented

epithelial-mesenchymal transition [196] though the latter is debated[197]; it is

envisaged that probucol might have similar effect of SSc fibroblasts. LA may dampen

NOX activity either when being reduced [198] or via inhibition of the signalling

pathways leading to NOXactivation [199]. 
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Concluding Remarks

According to their lipophilic/hydrophilic nature, their dose and their route of

administration, antioxidants or agents with antioxidant properties may achieve in vivo

different plasma, tissue or intracellular level, and for each compartment the therapeutic

level may vary. On the other hand, one issue is to quench extracellular or intracellular

ROS/RNS, another is to target and switch off the genes and/or the enzymatic systems

producing them. In this respect statins, probucol and LA may have something new to

offer in the management of SSc. Knowledge of the cellular/sub-cellular localisation

of potential target enzymes, of the equilibrium constant of the biochemical reactions

involved and of the pharmacokinetics and pharmacodynamics of different antioxidants

are necessary pre-requisites for the planning of randomised clinical trials. These

might explore different doses and/or combinations of new and old antioxidants with

adequate follow-up, taking into account the timing of the intervention with regards

to disease duration, disease activity and organ involvement. The heterogeneity of the

SSc populations to be enrolled ought to be overcome by joining forces in multicenter

trials, possibly free from the influence of the pharmaceutical industry. It is envisaged

that an expert in free radical chemistry and biology should be included amongst the

team members to advice less savvy clinicians on the intricacies of redox biology in

vivo. The new information accrued over the last decade on ROS/RNS and their possible

manipulation at gene level makes this an interesting time for antioxidant intervention in

a disease such as SSc that still defies conventional treatments. 
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Table. 1. Interventional study with antioxidant

JU
ST A

CCEPTED



Patients (df/lc) drugs Duration
(weeks)

resultsStudy
(year)

type

controlintervention type dosage administration
Cracowski

JL
(2005)

Randomized
double-blind,

placebo-
controlled

trial

13
(3/10)

placebo

20 (6/14) Vitamin E 500 mg
1000 mg

daily os 3 X: body cooling
Test;
urinary F2-
isoprostane

Herrick
AL

(2000)

Placebo-
controlled

double-blind
crossovertrial

- 33 (33/0) methionine
selenium
vitamin A
vitamin C
vitamin E
allopurinol

vs
placebo

100 mg
600 ug

9000 UI
540 mg
220 mg
300 mg

daily os 20 X: body cooling
Test;
frequency and
duration of
RP attack;
vWF levels

de
Souza

RB
(2009)

Open-
label trial

9 (0/9)
Cyp
500
mg/

m2 e.v.
monthly

12 (9/3) vitamin E
pentoxyphylline

800 UI
800 mg

daily os 24 ↓: MRSS
X: ischemic ulcers;
ERS

Ostojic
P (2010) Randomized

open-label trial

9 (0/9)
Cyp
500
mg/

m2 e.v.
monthly

13 (0/13) Vitamin E
Vitamin C

+
CyP

400 UI
1000 mg

500
mg/m2

daily
monthly

os
e.v.

24 ↓: STPR
X: MRSS; DLCO;
FVC

Furst
(1979)

Randomized
double-blind,

placebo-
controlled

trial

11
(9/2)

placebo

11 (8/3) NAC 10 gr daily os 48 X:MSDSS

Correa
MJ

(2014)
Randomized
double-blind,

placebo-
controlled trial

21
(12/9)

placebo

21 (9/12) NAC 1800 mg daily os 4 X: frequency and
duration of RP;
digital blood flow;

Rosato
E (2009)

Open-
label trial

- 50
(35/15)

NAC 15 mg/
kg/h for
5 hours

biweeklye.v. 144 ↓: ischemic ulcers;
frequency
and duration of RP
attack;

Rosato
E (2011)

Retrospective - 41
(23/18)

NAC 15 mg/
kg/h for
5 hours

biweeklye.v. 96 ↑: DLCO; VC; TLC
X: FEV1; HRTC
score

Rosato
E (2009)

Open-
label trial

- 40
(21/19)

NAC 15 mg/
kg/h for
5 hours

once e.v. - ↓: renal artery RI *

Denton
CP

(1999)

Randomized

open-label
crossovertrial

- 20
(5/15)*

probucol
vs

nifedipine

500 mg
10 mg

daily os 12 ↓: frequency and
duration
of RP attack;
LDL oxidation
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Sadik
HY

(2010)
Randomized
double-blind,

placebo-
controlled trial

18
(3/15)

placebo

36
(19/17)

atorvastatin 20 mg daily os 8 X: frequency and
duration
of RP attack;
digital blood flow;
NVC alteration;
vWf; hsPCR

Jimenez
SA

(1991)

Prospective
observational

- 69 (69/0) PEN 750 mg daily os 180 ↓: MRSS

Clements
PJ

(1999)

Randomized
double-
blind-

controlled
trial

68
(68/0)
D-PEN
125 mg
alternate

days^

66 (66/0) PEN 822 mg daily os 24 X:MRSS; renal
crisis;
overall mortality

Steen
VD

(2001)

Prospective
observational

- 278
(278/0)

PEN 750 mg daily os 24 ↓:MRSS: overall
mortality

Derk CT
(2008)

Retrospective - 84 (84/0) PEN 750 mg daily os 96 ↓: cardiac, renal
and pulmonary
involvement
(MSDSS);
MRSS,TBS

Abbreviations: df: diffuse; lc: limited; X: No effect; ↓: reduced; ↑increased; vWF: von Willebrand factor; RP: Raynaud phenomena;
MRSS: Modified Rodnan Skin Score; Cyp :cyclophosphamide; ESR: erythrocyte sedimentation rate; STPR: skin thickening
progression rate; MSDSS: Medsger Scleroderma Disease Severity Scale; DLCO: diffusing coeffcient for carbon monoxide ;FVC:
forced vital capacity; VC: vital capacity; TLC: total lung capacity; NAC:N-Acetylcysteine; HRTC: high resolution computed
tomography; RI: resistance index; NVC: Nailfoldvideocapillaroscopy; hsPCR: high sensitive protein C reactive, TBS:total body
surface. PEN: penicillamine. *This results was significant only for patients with early/active NVC pattern or MRSS<14. And not for
patients with more advanced disease. ^This dosage was considered ineffective and the authors used this group as a “placebo group”
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