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A B S T R A C T

Knowledge on the diffuse horizontal irradiance (DHI), and direct normal irradiance (DNI) is crucial for the
estimation of the irradiance on tilted surfaces, which in turn is critical for photovoltaic (PV) applications and for
designing and simulating concentrated solar power (CSP) plants. Since global horizontal irradiance (GHI) is the
most commonly measured solar radiation variable, it is advantageous for establishing a suitable method that
uses it to compute DHI and DNI. In this way, a new model for predicting the diffuse fraction (Kd) based on the
climate zone is proposed, using only the clearness index (Kt) as the predictor and 1-min resolution GHI data. A
review of the literature on models that use hourly and sub-hourly Kt values to compute Kd was also carried out,
and an extensive performance assessment of both the proposed model and the models from the literature was
conducted using ten statistical indicators and a global performance index (GPI). A set of model parameters was
determined for each climate zone considered in this study (arid, high albedo, temperate and tropical) using 48
worldwide radiometric stations. It was found that the best overall performing model was the model proposed in
this work.

1. Introduction

Global horizontal irradiance (GHI) is the most commonly measured
solar radiation variable in the ground-based meteorological stations
around the world, both in historical datasets and in geographical dis-
tribution. Therefore, it is the best dataset available to quantify solar
energy resource and assess undergoing or future solar energy projects.
On the other hand, information on both diffuse horizontal irradiance
(DHI) and direct normal irradiance (DNI) is also crucial to properly
design and optimise solar energy systems. In this way, it is advanta-
geous to find a suitable and accurate method based on the GHI mea-
surements to estimate both DHI and DNI, thus enabling the recon-
stitution of temporal series of these two components in locations where
only GHI measurements are available, mainly due to budget limitations
and higher requirements for maintenance and calibration procedures.
In fact, whereas pyranometer installations are relatively cheap (USD 5-
10 K with a data logger), full stations equipped with a sun tracker,
pyranometers and a pyrheliometer are quite expensive (around USD
30 K) [1]. DHI and DNI data are essential to accurately determine the
global solar irradiance on tilted surfaces, for example in sizing and
operation of photovoltaic (PV) systems [2]. The models for the diffuse
fraction allow to estimate those components based on the GHI and then
determine the irradiance on a tilted surface, by opposition to the one-

step methods of converting GHI, as for example the isotropic sky model
[3], the Klucher model [4], the Hay-Davies model [5] and the Reindl
model [6]. Concentrated Solar Power (CSP) systems mainly use DNI in
its energy capturing and conversion processes due to its directional
nature and field of view (aperture angle) that depends on the con-
centration factor [7]. Therefore, the accurate computation of DHI is of
vital importance to design, assess the performance and operate such
systems [8].

The response of the scientific community for the need of obtaining
DHI and DNI data at low cost was given by developing separation
models in which the work of Liu and Jordan [9] was the pioneer. That
work reported the relation between the clearness index (the ratio be-
tween GHI that reaches the surface of the earth and the extraterrestrial
irradiance on a horizontal surface, Kt) and the diffuse fraction (the ratio
of DHI to GHI, Kd) using measurements from 98 stations in Canada and
United States. The good results obtained by Liu and Jordan lead to the
development of several other separation models for different locations.
Page [10] developed a model based on monthly mean values for lati-
tudes between 40 ° N and 40° S. Tuller [11] analysed daily and monthly
data to establish models for four locations in Canada. Klein [12] used
experimental measurements to assess and validate the model proposed
by Liu and Jordan [9] and extended it to allow calculation of monthly
average solar irradiation on surfaces with multiple orientations.
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Although several other daily and monthly basis models were presented
and are available in the literature, they are not the focus of this work.
The work of Khorasanizadeh and Mohammadi [13] reports a compre-
hensive review of such models. Separation models for high-frequency
GHI data are needed until high-resolution DNI measurements are
available in a global scale, since required temporal resolution of
nowadays reported solar radiation data increased, due to the require-
ments of high-frequency measurements in the simulation of CSP pro-
jects [14]. Therefore, because sub-hourly models are relatively rare in
the literature, this work focuses on the available hourly and sub-hourly
separation models whose solo predictor is the Kt and on their ability in
representing high-frequency data in a global scale and for different
climates. The main reason for using only Kt as the predictor is due to
the greater availability of GHI data worldwide, thus allowing a
straightforward evaluation of the model for the higher number of lo-
cations as possible. Regarding this type of models that use only Kt as the
predictor, Orgill and Hollands [15] presented a separation model using
hourly measurements covering the period from September 1967 to
August 1971 for Toronto Airport, Canada. This was the first model
found in the literature that met the features mentioned above. In Sec-
tion 2 are presented all the other models reviewed in this work.

The assessment of new separation models is usually carried out
through the comparison of that new model against ground measure-
ments and other models [1] using statistical indicators. Beside some
researchers have already presented performance analysis using only
models available in the literature [14,16,17], the majority of the vali-
dation studies were reported when new models were derived, as is the
case of this work. The first hourly models presented [15,18] were
compared against the Liu and Jordan monthly model [9]. As time went
by, more hourly models became available for test, and therefore models
such as the Orgill and Hollands [15] and the Erbs et al. [19] were used
in numerous validation studies (e.g. Refs. [6,20,21]). Liu and Jordan's
model is still occasionally used with the purpose of presenting a his-
torical comparison of the separation models evolution [22]. Regarding
the validation using ground-based measurements, the most used sta-
tistical indicators to assess the performance of separation models are
the mean bias error (MBE), the root mean square error (RMSE) and the
correlation coefficient (R).

One-minute data resolution models are very scarce in the literature.
One of the few examples is the work of Engerer [1], which presents a
diffuse fraction model based on 1-min clearness index data together
with other predictors for southeastern Australia. Gueymard and Ruiz-
Arias [14] reported the incapability of hourly models to account for
cloud enhancement effects, aiming at the need for reliability in hourly
models until more specific minutely models appear in the literature.
Therefore, the purpose of this study is to develop a new diffuse fraction
model based on 1-min measurements from stations around the globe.
Since the model presented by Engerer [1] requires more than one input
parameter, the performance assessment of the model developed in this
work will be conducted against hourly and sub-hourly models whose
only predictor is Kt. To that end, ten statistical indicators were used,
namely the mean bias error (MBE), mean absolute error (MAE), root
mean square error (RMSE), mean percentage error (MPE), uncertainty
at 95% (U95), relative root mean square error (RRMSE), maximum
absolute error (erMAX), correlation coefficient (R) and mean absolute
relative error (MARE). These statistical indicators were also combined
into a global performance index (GPI). The GPI was used in previous
studies in this field by Jamil and Akhtar [23]. Other option to combine
different statistical indicators is the combined performance index (CPI),
as described by Gueymard [24]. A Taylor diagram and a skill score [25]
were also used to provide an additional statistical analysis. In this view,
a comprehensive performance assessment of the proposed model as
well as of other models in the literature is presented aiming at the
identification of the best performing model for the estimation of DHI in
a minute resolution all over the world. The organization of this paper is
as follows: Section 2 presents a review of the hourly and sub-hourly

models for estimating the diffuse fraction, Section 3 presents the data
used in this study and the model development, Section 4 presents the
results and discussion, and, finally, conclusions are drawn in Section 5.

2. Review of the available models

The models available in the literature were developed using several
functional forms, number of predictors and for different time resolu-
tions. The first form to obtain the diffuse fraction was a second degree
polynomial as a function of the clearness index, as first proposed by Liu
and Jordan [9] in 1960. Later, other models were presented using
higher polynomial degrees as well as other functions such as the logistic
[26] and the double exponential [27] forms. Several models included
other predictors than Kt , such as sunshine duration, zenith angle, air
mass, etc. Regarding time resolution, the available models were pro-
posed to estimate the monthly, daily, hourly and sub-hourly diffuse
fraction. In this work, a review of the models that use only Kt as the
predictor with hourly or sub-hourly time resolutions is presented. The
authors were able to find 121 different models that met the require-
ments specified above, although more models may be available in other
publications or internal reports and communications that are not
readily accessible. In many cases, authors present the same model but
for different locations. These models are treated here as unique models
when assessing their performance in Section 4. Table 1 presents the
models studied in this work. The various locations from which authors
used data to develop their models are classified according to the climate
region as follows [14]: temperate (TM), arid (AR), tropical (TR) and
high albedo (HA).

Based on the information of Table 1, it is notorious that the majority
of the models were derived using a polynomial form, followed by the
double exponential and logistic functions. This information is also
useful to see the distribution of the data used to derive the models
according to the climate zone and to identify the length of the datasets,
as this is a crucial factor on the determination of the coefficients of the
models. Fig. 1 presents the distribution of models as a function of the
number of years of the datasets and climate zone. Only the models that
presented an explicit dataset length in their respective publications
were used to produce Fig. 1. Models based on data from several loca-
tions, different climatic zones or models derived from distinct dataset
lengths were not considered, hence the 100 models examined in Fig. 1.
The higher number of models was developed for the temperate (TM)
zone, followed by the arid (AR), tropical (TR) and finally the high al-
bedo (HA) zones. This representativeness of the climate zones is also
useful to perceive the distribution of solar radiation measuring stations
around the globe and how this may affect the model development. One
can conclude that the high albedo and the tropical climate zones are not
well represented. However, nowadays there are more meteorological
stations in these climate zones (see, e.g. Ref. [69]). The most typical
length of the training datasets is two years, followed by one, three and
four years. It worths to note that some authors used twenty and even
thirty years of data to derive their models (e.g. Refs. [27,61]).

3. Model development and test data

3.1. Model formulation

The model proposed in this study is based on the correlation of two
limiting functions for large and small values of Kt through the expres-
sion disclosed by Churchill and Usagi [70] for the correlation of transfer
phenomena, described as follows:

= +Y Z(1 )n n
1

(1)

where the arbitrary exponent n needs to be selected in order to correlate
those functions accurately [70]. This expression can be used to any
phenomenon varying uniformly, for example in heat transfer modelling
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Table 1
Review of hourly and sub-hourly Kd models whose only predictor is Kt .

Model Reference Location Climate Data period Constrains Kd

1 Orgill and
Hollands [15]

Toronto, Canada TM 1967–1971 ≤K 0.35t − K1.0 0.249 t
≤ ≤K0.35 0.75t − K1.557 1.840 t

>K 0.75t 0.177
2 Bruno [18] Hamburg,

Germany
TM 1973–1974 – +K K0.310 0.139sin(4.620 )t t

3 Erbs et al. [19] Four cities in the
United States

Various
climates

1974–1976
(Various data
periods)

≤K 0.22t − K1.0 0.0900 t
< ≤K0.22 0.80t − + − +K K K K0.9511 0.1604 4.3880 16.6380 12.3360t t t t

2 3 4

>K 0.80t 0.165
4 Spencer [28] Albany, Australia AR 1973–1977 <K 0.35t 0.890

≤ ≤K0.35 0.75t − K1.414 1.736 t
>K 0.75t 0.110

5 Spencer [28] Alice Springs,
Australia

AR 1974–1977 <K 0.35t 0.750
≤ ≤K0.35 0.75t − K1.183 1.444 t

>K 0.75t 0.110
6 Spencer [28] Geraldton,

Australia
AR 1972–1977 <K 0.35t 0.850

≤ ≤K0.35 0.75t − K1.345 1.644 t
>K 0.75t 0.110

7 Spencer [28] Guildford,
Australia

AR 1975–1977 <K 0.35t 0.780
≤ ≤K0.35 0.75t − K1.254 1.595 t

>K 0.75t 0.060
8 Spencer [28] Hobart, Australia TM 1971–1977 <K 0.35t 0.860

≤ ≤K0.35 0.75t − K1.360 1.678 t
>K 0.75t 0.100

9 Spencer [28] Laverton,
Australia

AR 1976–1977 <K 0.35t 0.860
≤ ≤K0.35 0.75t − K1.360 1.678 t

>K 0.75t 0.150
10 Spencer [28] Melbourne,

Australia
AR 1970–1977 <K 0.35t 0.850

≤ ≤K0.35 0.75t − K1.352 1.668 t
>K 0.75t 0.100

11 Spencer [28] Mildura, Australia AR 1972–1977 <K 0.35t 0.870
≤ ≤K0.35 0.75t − K1.366 1.666 t

>K 0.75t 0.120
12 Spencer [28] Mt Gambier,

Australia
AR 1974–1977 <K 0.35t 0.930

≤ ≤K0.35 0.75t − K1.450 1.744 t
>K 0.75t 0.140

13 Spencer [28] Port Hedland,
Australia

AR 1974–1977 <K 0.35t 0.710
≤ ≤K0.35 0.75t − K1.142 1.431 t

>K 0.75t 0.070
14 Spencer [28] Rockhampton,

Australia
AR 1974–1977 <K 0.35t 0.790

≤ ≤K0.35 0.75t − K1.245 1.527 t
>K 0.75t 0.100

15 Spencer [28] Waga Waga,
Australia

AR 1974–1977 <K 0.35t 0.800
≤ ≤K0.35 0.75t − K1.280 1.605 t

>K 0.75t 0.080
16 Spencer [28] Australia

(average)
Various
climates

1970–1977
(Various data
periods)

<K 0.35t 0.830
≤ ≤K0.35 0.75t − K1.321 1.624 t

>K 0.75t 0.100
17 Hawlader [20] Singapore TM 1962 <K 0.225t 0.9150

≤ ≤K0.225 0.775t − −K K1.1389 0.9422 0.3878t t
2

>K 0.775t 0.2150
18 Ineichen et al. [29] Geneva,

Switzerland
TM 1978–1984 <K 0.15t 0.98

≥K 0.15t + − +K K K0.80 2.25 7.93 5.26t t t
2 3

19 Ineichen et al. [29] Geneva,
Switzerland

TM 1978–1984 <K 0.25t 1.0
≤ ≤K0.25 0.80t − K1.38 1.52 t

>K 0.80t 0.16
20 Ineichen et al. [29] Geneva,

Switzerland
TM 1978–1984 <K 0.25t 1.0

≥K 0.25t −K K1.28 1.40t t
2

21 Muneer et al. [21] New Delhi, India TR 1971, 1974 <K 0.175t 0.9500
≤ ≤K0.175 0.775t + − +K K K0.9698 0.4353 3.4499 2.1888t t t

2 3

>K 0.775t 0.2600
22 Bakhsh et al. [30] Dharan, Saudi

Arabia
AR 1983–1984 <K 0.23t − K1.0 0.220 t

≤ ≤K0.23 0.80t − K1.235 1.260 t
>K 0.80t 0.225

23 Hollands [31] Toronto, Canada TM 1967–1971 – − − − − −b b ab K aK abK[1 (1 ) 4 (1 ) ]/(2 )t t t2 2

=a 1.115; =b 0.491
24 Reindl et al. [6] Five locations in

North America
and Europe

Various
climates

1979–1982
(Various data
periods)

≤K 0.30t − K1.020 0.248 t
< <K0.30 0.78t − K1.450 1.670 t

≥K 0.78t 0.147
25 Al-Rihai [32] Fudhaliyah, Iraq AR 1984–1987 <K 0.25t 0.932

≤ ≤K0.25 0.70t − K1.293 1.631 t
>K 0.70t 0.151

(continued on next page)
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Table 1 (continued)

Model Reference Location Climate Data period Constrains Kd

26 Bourges [33] 37 stations across
Europe

TM At least four
years of
measurements

≤K 0.20t 1.0
< ≤K0.20 0.35t − K1.116 0.580 t
< ≤K0.35 0.75t − K1.557 1.840 t

>K 0.75t 0.177
27 Chandrasekaran

and Kumar [34]
Madras, India TR 1983–1987 ≤K 0.24t − K1.0086 0.1780 t

< ≤K0.24 0.80t + + − +K K K K0.9686 0.1325 1.4183 10.1860 8.3733t t t t
2 3 4

>K 0.80t 0.1970
28 Chendo and

Maduekwe [35]
Lagos, Nigeria TM Two years of

measurements
≤K 0.30t − K1.022 0.156 t

< <K0.30 0.80t − K1.385 1.396 t
≥K 0.80t 0.264

29 Maduekwe and
Chendo [36]

Lagos, Nigeria TM 1990–1991 ≤K 0.30t − K1.021 0.151 t
< <K0.30 0.80t − K1.385 1.396 t

≥K 0.80t 0.295
30 Lam and Li [37] Hong Kong, China TM 1991–1994 ≤K 0.15t 0.977

< ≤K0.15 0.70t − K1.237 1.361 t
>K 0.70t 0.273

31 Hijazin [38] Amman, Jordan AR 1985 <K 0.10t 0.744
≤ ≤K0.10 0.80t − K0.842 0.977 t

>K 0.80t 0.060
32 Hijazin [38] Amman, Jordan AR 1985 – − K0.847 0.985 t
33 González and

Calbó [39]
Two locations in
Iberian Peninsula

TM 1994–1996
(Various data
periods)

< <K0.25 0.75t − K1.421 1.670 t
≥K 0.75t − + K0.043 0.290 t

34 Boland et al. [26] Geelong, Australia TM 67 days – + −K1.0/[1.0 exp{8.645( 0.613)}]t
35 Boland et al. [26] Geelong, Australia TM 67 days – + −K1.0/[1.0 exp{7.997( 0.586)}]t
36 De Miguel et al.

[40]
North
Mediterranean
belt area (11
stations)

TM 1974–1996
(Various data
periods)

≤K 0.21t − K0.995 0.081 t
< ≤K0.21 0.76t + − +K K K0.724 2.738 8.320 4.967t t t

2 3

>K 0.76t 0.180

37 Li and Lam [41] Hong Kong, China TM 1991–1998 ≤K 0.15t 0.976
< ≤K0.15 0.70t + −K K0.996 0.036 1.589t t

2

>K 0.70t 0.230
38 Oliveira et al. [42] São Paulo, Brazil TM 1994–1999 < <K0.17 0.75t + − − +K K K K0.97 0.80 3.00 3.1 5.2t t t t

2 3 4

39 Ulgen and
Hepbasli [43]

Izmir, Turkey TM 1994–1998 ≤K 0.32t 0.6800
< ≤K0.32 0.62t − K1.0609 1.2138 t

>K 0.62t 0.3000
40 Ulgen and

Hepbasli [43]
Izmir, Turkey TM 1994–1998 ≤K 0.32t 0.6800

< ≤K0.32 0.62t − + − + −K K K K K0.0743 19.3430 206.9100 719.7200 1053.4000 562.69t t t t t
2 3 4 5

>K 0.62t 0.3000
41 Karatasou et al.

[44]
Athens, Greece TM 1996–1998 ≤K 0.78t − − +K K K0.9995 0.0500 2.4156 1.4926t t t

2 3

>K 0.78t 0.2000
42 Tsubo and Walker

[45]
Southern Africa AR 2000 – − +K K0.613 0.334 0.121t t

2

43 Tsubo and Walker
[45]

Southern Africa AR 2000 <K 0.140t 0.907
≤ ≤K0.140 0.794t

>K 0.794t 0.138
44 Tsubo and Walker

[45]
Southern Africa AR 2000 <K 0.140t 0.907

≤ ≤K0.140 0.794t − K1.063 1.114 t
>K 0.793t 0.180

45 Soares et al. [46] São Paulo, Brazil TM 1998–2001 – + − + +K K K K0.90 1.10 4.50 0.01 3.14t t t t
2 3 4

46 Mondol et al. [47] Ballymena,
Northern Ireland

TM 21 months of
data

≤K 0.20t 0.9800
>K 0.20t + − +K K K0.5836 3.6259 10.1710 6.3380t t t

2 3

47 Jacovides et al.
[48]

Athalassa, Cyprus AR 1998–2002 ≤K 0.10t 0.987
< ≤K0.10 0.80t + − +K K K0.940 0.937 5.010 3.320t t t

2 3

>K 0.80t 0.177
48 Elminir et al. [49] Aswan, Egypt AR 1999–2001 ≤K 0.22t − K0.653 1.728 t

< ≤K0.22 0.80t − + − +K K K K0.724 1.821 8.221 16.370 9.845t t t t
2 3 4

>K 0.80t 0.217
49 Elminir et al. [49] Cairo, Egypt AR 2003 ≤K 0.22t − K0.793 2.198 t

< ≤K0.22 0.80t − + − +K K K K1.341 9.566 32.200 47.909 25.419t t t t
2 3 4

>K 0.80t 0.131
50 Elminir et al. [49] South-Valley,

Egypt
AR 2003 ≤K 0.22t − K0.8526 1.7780 t

< ≤K0.22 0.80t − + − +K K K K0.8140 1.1060 0.3660 0.9970 1.2210t t t t
2 3 4

>K 0.80t 0.213
51 Boland et al. [50] Adelaide,

Australia
AR – – + − + K1.0/[1.0 exp( 5.83 9.87 )]t

52 Boland et al. [50] Bracknell,
England

TM – – + − + K1.0/[1.0 exp( 4.38 6.62 )]t

53 Boland et al. [50] Darwin, Australia TM – – + − + K1.0/[1.0 exp( 4.53 8.05 )]t
54 Boland et al. [50] Lisbon, Portugal TM – – + − + K1.0/[1.0 exp( 4.80 7.98 )]t
55 Boland et al. [50] Macau, China TM – – + − + K1.0/[1.0 exp( 4.87 8.12 )]t

(continued on next page)
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Table 1 (continued)

Model Reference Location Climate Data period Constrains Kd

56 Boland et al. [50] Maputo,
Mozambique

AR – – + − + K1.0/[1.0 exp( 5.18 8.80 )]t

57 Boland et al. [50] Uccle, Belgium TM – – + − + K1.0/[1.0 exp( 4.94 8.66 )]t
58 Boland et al. [50] Multi-location

average
Various
climates

– – + − + K1.0/[1.0 exp( 4.94 8.30 )]t

59 Boland and Ridley
[51]

Multi-locations
worldwide

Various
climates

– – + − + K1.0/[1.0 exp( 5.00 8.60 )]t

60 Furlan and
Oliveira [52]

Sâo Paulo, Brazil TM 2002 ≤K 0.228t 0.961
>K 0.228t − K1.337 1.650 t

61 Mondol et al. [53] Aldergrove,
Northern Irland

TM 1989–1998 ≤K 0.20t 0.9800
< ≤K0.20 0.70t + − +K K K0.6109 3.6259 10.1710 6.3380t t t

2 3

>K 0.70t − K0.6720 0.4740 t
62 Moreno et al. [54] Seville, Spain TM 2000–2008 ≤K 0.27t 0.9930

< ≤K0.27 0.82t − K1.4946 1.7899 t
>K 0.82t 0.0450

63 Pagola et al. [55] 3 locations in
Spain

TM 2005–2008 ≤K 0.35t − K0.9818 0.5870 t
< ≤K0.35 0.75t − K1.2056 1.3240 t

>K 0.75t 0.2552
64 Pagola et al. [55] 3 locations in

Spain
TM 2005–2008 ≤K 0.22t − K0.9522 0.3119 t

< ≤K0.22 0.80t + − + −K K K K0.6059 2.9877 10.5675 10.1833 3.0475t t t t
2 3 4

>K 0.80t 0.3209
65 Posadillo and

Lopez Luque [56]
Córdoba, Spain TM 1993–2002 – −K K(1.17 1.381 )t t

66 Posadillo and
Lopez Luque [56]

Córdoba, Spain TM 1993–2002 – − + + − +K K K K0.00829 1.16300 0.43300 5.83900 4.64880t t t t
2 3 4

67 Janjai et al. [57] Chiang Mai,
Thailand

TR 1995–2006 – − + − + −K K K K K0.9429 0.3707 6.4927 30.3560 39.1626 15.4850t t t t t
2 3 4 5

68 Janjai et al. [57] Nakhon Pathom,
Thailand

TR 1995–2006 – + − +K K K0.7699 2.3552 8.1480 5.3811t t t
2 3

69 Janjai et al. [57] Songkhla,
Thailand

TR 1995–2006 – + − + − + −K K K K K K0.869 1.559 11.176 26.143 38.302 31.799 10.602t t t t t t
2 3 4 5 6

70 Janjai et al. [57] Ubon Ratchathani,
Thailand

TR 1995–2006 – + − + − + −K K K K K K0.846 1.841 13.425 42.888 85.804 84.476 30.637t t t t t t
2 3 4 5 6

71 Ruiz-Arias et al.
[27]

Albacete, Spain TM 2002–2006 – + − − +0.086 0.880e Ktexp( 3.877 6.138 )

72 Ruiz-Arias et al.
[27]

Boulder, USA TM 1961–1990 – − − −0.967 1.024e Ktexp(2.473 5.324 )

73 Ruiz-Arias et al.
[27]

Dresden, Germany TM 1981–1990 – + − − +0.140 0.962e Ktexp( 1.976 4.067 )

74 Ruiz-Arias et al.
[27]

Pittsburgh, USA TM 1961–1990 – − − −1.001 1.000e Ktexp(2.450 5.048 )

75 Ruiz-Arias et al.
[27]

Savannah, USA TM 1961–1990 – − − −0.988 1.000e Ktexp(2.456 5.172 )

76 Ruiz-Arias et al.
[27]

Talkeetna, USA HA 1961–1990 – − − −0.985 0.962e Ktexp(2.655 6.003 )

77 Ruiz-Arias et al.
[27]

Tucson, USA AR 1961–1990 – − − −0.988 1.073e Ktexp(2.298 4.909 )

78 Ruiz-Arias et al.
[27]

7 locations in
Europe and USA

Various
climates

1961–2006
(Various data
periods)

– − − −0.952 1.041e Ktexp(2.3 4.702 )

79 Torres et al. [58] Pamplona, Spain TM 2006–2008 ≤K 0.24t − K1.0058 0.2195 t
< <K0.24 0.75t − K1.3264 1.5120 t

≥K 0.75t 0.1923
80 Torres et al. [58] Pamplona, Spain TM 2006–2008 ≤K 0.22t − K0.9920 0.0980 t

< <K0.22 0.75t − −K K1.2158 1.0467 0.4480t t
2

≥K 0.75t 0.1787
81 Torres et al. [58] Pamplona, Spain TM 2006–2008 ≤K 0.22t − K0.9923 0.0980 t

< ≤K0.24 0.755t − − +K K K1.1459 0.5612 1.4952 0.7103t t t
2 3

>K 0.755t 0.1755
82 Torres et al. [58] Pamplona, Spain TM 2006–2008 ≤K 0.225t − K0.9943 0.1165 t

< ≤K0.225 0.755t − + − +K K K K1.4101 2.9918 6.4599 10.3290 5.5140t t t t
2 3 4

>K 0.755t 0.1800
83 Chikh et al. [59] Alger, Algeria AR 1992 ≤K 0.175t − K1.0 0.232 t

< ≤K0.175 0.87t − K1.170 1.230 t
>K 0.87t 0.203

84 Chikh et al. [59] Bechar, Algeria AR 1990–1992 ≤K 0.175t − K1.0 0.3000 t
< ≤K0.175 0.87t − K1.1370 1.0770 t

>K 0.87t 0.2043
85 Chikh et al. [59] Tamanrasset,

Algeria
AR 1990–1992 ≤K 0.175t − K1.0 0.640 t

< ≤K0.175 0.87t − K1.052 0.935 t
>K 0.87t 0.240

86 Sanchez et al. [60] Badajoz, Spain TM 2009–2010 <K 0.30t 0.78
≤ ≤K0.30 0.75t − K1.23 1.43 t

>K 0.75t 0.13

(continued on next page)
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Table 1 (continued)

Model Reference Location Climate Data period Constrains Kd

87 Lee et al. [61] South Korea TM 1986–2005 ≤K 0.20t 0.9200
>K 0.20t + − +K K K0.6910 2.4306 7.3371 4.7002t t t

2 3

88 Yao et al. [62] Shanghai, China TM 2012 ≤K 0.30t − K0.9381 0.1481 t
< ≤K0.30 0.80t − K1.5197 1.5340 t

>K 0.80t 0.2700
89 Yao et al. [62] Shanghai, China TM 2012 – + − +K K K0.8142 2.0792 6.1439 3.4707t t t

2 3

90 Yao et al. [62] Shanghai, China TM 2012 ≤K 0.20t + −K K0.8755 1.3991 4.9285t t
2

< ≤K0.20 0.80t − + − +K K K K1.1209 2.1699 11.0600 22.3550 12.8630t t t t
2 3 4

>K 0.80t 0.2700
91 Yao et al. [62] Shanghai, China TM 2012 – + + −K0.2421 0.7202/[1 exp{( 0.6203)/0.0749}]t
92 Tapakis et al. [63] Athalassa, Cyprus AR 2001–2010 <K 0.10t + −K K0.9100 2.4993 18.8580t t

2

≤ ≤K0.10 0.78t + − − +K K K K0.9605 0.4482 2.0011 1.5581 2.0080t t t t
2 3 4

>K 0.78t − + K2.4518 3.3014 t
93 Abreu et al. [64] Évora, Portugal TM 2015–2016 – + − − −K[1.0 (1.502 1.820 ) ]t 48.589 1.0/48.589

94 Marques Filho
et al. [65]

Rio de Janeiro,
Brazil

TM 2011–2014 – + − + K1.0/[1.0 exp( 4.90 8.78 )]t

95 Marques Filho
et al. [65]

Rio de Janeiro,
Brazil

TM 2011–2014 – + + − + K0.13 0.86/[1.0 exp( 6.29 12.26 )]t

96 Paulescu and
Blaga [66]

Timisoara,
Romania

TM 2009–2010 <K 0.247t + K0.936 0.194 t
≥K 0.247t − K1.436 1.824 t

97 Abal et al. [67] Montevideo,
Uruguay

TM 2011–2013 <K 0.20t 1.0
≤ ≤K0.20 0.85t + − + − +K K K K K0.50 5.92 22.22 29.51 19.54 6.09t t t t t

2 3 4 5

>K 0.85t 0.10
98 Abal et al. [67] Salto, Uruguay TM 1998–2003 <K 0.20t 1.0

≤ ≤K0.20 0.85t + − − + −K K K K K0.72 2.80 6.62 4.66 14.13 6.20t t t t t
2 3 4 5

>K 0.85t 0.09
99 Abal et al. [67] Luján, Uruguay TM 2011–2012 <K 0.20t 1.0

≤ ≤K0.20 0.85t + − − + −K K K K K0.80 1.97 3.93 5.97 10.96 3.56t t t t t
2 3 4 5

>K 0.85t 0.11
100 Abal et al. [67] Artigas, Uruguay TM 2014–2015 <K 0.20t 1.0

≤ ≤K0.20 0.85t + + − + −K K K K K0.86 0.87 3.53 28.43 39.51 16.21t t t t t
2 3 4 5

>K 0.85t 0.11
101 Abal et al. [67] Treinta y Tres,

Uruguay
TM 2014–2015 <K 0.20t 1.0

≤ ≤K0.20 0.85t − + − + −K K K K K1.04 1.45 13.21 43.80 48.79 17.60t t t t t
2 3 4 5

>K 0.85t 0.12
102 Abal et al. [67] Uruguay TM 1998–2015

(Various data
periods)

<K 0.20t 1.0
≤ ≤K0.20 0.85t + − − + −K K K K K0.77 2.16 3.91 9.02 17.00 6.79t t t t t

2 3 4 5

>K 0.85t 0.10
103 Abal et al. [67] Montevideo,

Uruguay
TM 2011–2013 <K 0.35t − K1.0 0.40 t

≤ ≤K0.35 0.75t − K1.51 1.86 t
>K 0.75t 0.12

104 Abal et al. [67] Salto, Uruguay TM 1998–2003 <K 0.35t − K1.0 0.29 t
≤ ≤K0.35 0.75t − K1.60 2.00 t

>K 0.75t 0.10
105 Abal et al. [67] Luján, Uruguay TM 2011–2012 <K 0.35t − K1.0 0.24 t

≤ ≤K0.35 0.75t − K1.60 1.95 t
>K 0.75t 0.14

106 Abal et al. [67] Artigas, Uruguay TM 2014–2015 <K 0.35t − K1.0 0.33 t
≤ ≤K0.35 0.75t − K1.56 1.93 t

>K 0.75t 0.11
107 Abal et al. [67] Treinta y Tres,

Uruguay
TM 2014–2015 <K 0.35t − K1.0 0.19 t

≤ ≤K0.35 0.75t − K1.63 1.99 t
>K 0.75t 0.14

108 Abal et al. [67] Uruguay TM 1998–2015
(Various data
periods)

<K 0.35t − K1.0 0.28 t
≤ ≤K0.35 0.75t − K1.59 1.96 t

>K 0.75t 0.12
109 Abal et al. [67] Montevideo,

Uruguay
TM 2011–2013 <K 0.22t − K1.0 0.24 t

≤ ≤K0.22 0.80t + − + +K K K K0.70 2.63 7.38 1.86 2.67t t t t
2 3 4

>K 0.80t 0.13
110 Abal et al. [67] Salto, Uruguay TM 1998–2003 <K 0.22t 1.0

≤ ≤K0.22 0.80t + − + −K K K K0.38 6.54 21.25 21.37 6.99t t t t
2 3 4

>K 0.80t 0.09
111 Abal et al. [67] Luján, Uruguay TM 2011–2012 <K 0.22t − K1.0 0.06 t

≤ ≤K0.22 0.80t + − + −K K K K0.62 3.70 10.83 7.00 0.30t t t t
2 3 4

>K 0.80t 0.12
112 Abal et al. [67] Artigas, Uruguay TM 2014–2015 <K 0.22t − K1.0 0.15 t

≤ ≤K0.22 0.80t + − + +K K K K0.68 2.91 7.75 1.47 3.24t t t t
2 3 4

>K 0.80t 0.13

(continued on next page)
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[71] and fluid flow and heat transfer optimisation when combined with
the concept of the intersection of asymptotes [72,73]. In the case of
modelling the diffuse fraction as a function of the clearness index, the
functions used here are the physically possible limit of =K 1d and a
function Z that is the best fit for the clear sky periods. The occurrence of
cloud enhancement effects in 1-min resolution data is quite frequent
[1,14], then function Z was defined as the best fit to the clear sky data
using a second degree polynomial in the form:

= − + − +Z A K B K( 0.5) ( 0.5) 1t t
2 (2)

Since Kd is a concave function of Kt, the exponents used in Eq. (1)
must be − n and − n1/ , and thus, the final form of the model is given
by:

= + − + − + − −K A K B K{1 [ ( 0.5) ( 0.5) 1] }d t t
n n2 1

(3)

Fig. 2 shows the fitting of the model to the data of Fort Peck station
(FPE), USA, as an example of the procedures implemented in this work
for all the analysed stations. Red lines represent the limiting functions

=K 1d and Z (fitted to the FPE dataset), and the blue line represents the
fitted model. The three parameters of the adjusted model for FPE sta-
tion are also presented, as well as the period of data used.

3.2. Test stations and data quality control

The data used in this study is from the Baseline Surface Radiation
Network (BSRN) [69,74] and the Institute of Earth Sciences (IES) at the
University of Évora, Portugal. The BSRN is a project of the Global En-
ergy and Water Cycle Experiment (GEWEX) under the umbrella of the
World Climate Research Programme (WCRP). The primary objective of
this network is to detect changes in the radiation field at the Earth's
surface which may be related to climate changes. Measurements of
solar radiation in the IES station are taken likewise as in the BSRN
stations: the diffuse horizontal irradiation (DHI) is measured by a Kipp&
Zonnen CM6B pyranometer and shading ball attached to the sun tracker
and the global horizontal irradiance is also measured by a Kipp&
Zonnen CM6B pyranometer. The sensors are installed on a Kipp&
Zonnen Solys2 sun tracker and are properly maintained and calibrated
according to the BSRN and WMO guidelines and recommendations
[69,75]. Table 2 shows detailed information on the stations used in this
study: location, climate zone, data period, number of valid data points
and mean GHI of all valid measurements.

Data quality control was performed by applying the quality filters
defined by Long and Shi [76] for the global horizontal irradiance (GHI).
Furthermore, Kd values higher than 1 and lower than 0 were removed

Table 1 (continued)

Model Reference Location Climate Data period Constrains Kd

113 Abal et al. [67] Treinta y Tres,
Uruguay

TM 2014–2015 <K 0.22t − K1.0 0.10 t
≤ ≤K0.22 0.80t + − − +K K K K0.85 0.98 0.06 9.75 8.62t t t t

2 3 4

>K 0.80t 0.13
114 Abal et al. [67] Uruguay TM 1998–2015

(Various data
periods)

<K 0.22t − K1.0 0.09 t
≤ ≤K0.22 0.80t + − + −K K K K0.60 3.97 11.74 7.76 0.28t t t t

2 3 4

>K 0.80t 0.11
115 Abal et al. [67] Montevideo,

Uruguay
TM 2011–2013 – − − −0.95 0.97e Ktexp(2.96 6.07 )

116 Abal et al. [67] Salto, Uruguay TM 1998–2003 – − − −1.00 1.07e Ktexp(2.82 5.82 )

117 Abal et al. [67] Luján, Uruguay TM 2011–2012 – − − −0.98 1.05e Ktexp(2.96 5.75 )

118 Abal et al. [67] Artigas, Uruguay TM 2014–2015 – − − −0.95 0.92e Ktexp(3.57 7.32 )

119 Abal et al. [67] Treinta y Tres,
Uruguay

TM 2014–2015 – − − −0.96 0.97e Ktexp(3.46 6.68 )

120 Abal et al. [67] Uruguay TM 1998–2015
(Various data
periods)

– − − −0.97 1.01e Ktexp(3.07 6.17 )

121 Al-Najar and Al-
Khazzar [68]

Baghdad, Iraq AR 2015 – − + −K K K1.5973 4.6603 5.7190 2.5719t t t
2 3

Fig. 1. Distribution of the models according to the length of the training da-
tasets and climate zone: temperate (TM), arid (AR), tropical (TR) and high al-
bedo (HA).

Fig. 2. Data for the FPE station (Fort Peck, USA) and representation of the
limiting functions (red) and model correlation (blue). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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for the fitting of the model parameters A and B, since measurements of
diffuse irradiance higher than global irradiance are very dubious.
However, instrumental errors can occur, and therefore, the Kd max-
imum value was set to 1.2 when determining the parameter n. Finally,
measurements taken when the zenith angle was higher than ∘85 were
also removed due to disturbances caused mainly by the horizon line and
also due to instrumental and modelling accuracy issues in that case
[14]. Since 1-min data was used in this work, the extraterrestrial irra-
diance on a horizontal surface, Eoh, that is needed to determine the Kt
was simply calculated based on the solar constant ( = −G Wm1361.1s

2

[77]) and the solar zenith angle, this last being calculated through the
very accurate solar position algorithm developed by Reda and Andreas
[78]. The data was divided into two sets: the training set with two years
of data used to determine the fitting parameters of the proposed model;
and the validation set with one year of data, used to validate the de-
veloped model as well as the models available in the literature (Section
2). These datasets are composed of years with high number of valid
measurements, i.e., records that successfully passed the quality control
procedures [76], as shown in Table 2.

3.3. Statistical indicators for model assessment

The developed model, as well as the models reviewed in Section 2,
were evaluated using the statistical indicators described below taking
the measured values as reference. Lower values indicate better model
accuracy except for the mean bias error and mean percentage error, in
which values closer to zero indicate a better model accuracy, and for
the correlation coefficient, in which a value closer to 1 represents better
model accuracy. In the following, H and N stand for minutely diffuse
horizontal irradiance (DHI) and number of observations, respectively,
and the subscripts m, e and avg stand for measured, estimated and
average, respectively.

3.3.1. Mean bias error (MBE)

∑= −
=N

H HMBE 1 ( )
i

N

e i m i
1

, ,
(4)

Table 2
Information on the data of BSRN and IES stations. Acronyms: AR (Arid), HA (High albedo), TM (Temperate), and TR (Tropical).

Station Code Lat. (°N) Long. (°E) Elev. (m) Climate Data period Samples Mean GHI (W m/ 2)

Alert ALE 82.490 −62.420 127 HA 2009–2011 631284 223.84
Alice Springs ASP −23.798 133.888 547 AR 2007–2009 704784 561.96
Bermuda BER 32.267 −64.667 8 TM 2006–2008 458837 497.33
Billings BIL 36.605 −97.516 317 TM 2005–2007 631822 451.65
Bondville BON 40.067 −88.367 213 TM 2007–2009 220046 507.54
Boulder BOU 40.050 −105.007 1577 TM 2002–2004 481571 519.33
Brasilia BRB −15.601 −47.713 1023 TR 2009–2011 598116 472.22
Carpentras CAR 44.083 5.059 100 TM 2003–2005 619585 419.19
Chesapeake Light CLH 36.905 −75.713 37 TM 2011–2013 681269 408.60
Cener CNR 42.816 −1.601 471 TM 2010–2012 666202 374.60
Cocos Island COC −12.193 96.835 6 TR 2006–2008 556163 505.99
De Aar DAA −30.667 23.993 1287 AR 2002–2004 592787 518.07
Darwin DAR −12.425 130.891 30 TR 2009–2011 699416 489.94
Concordia station DOM −75.100 123.383 3233 HA 2005–2007 255370 377.86
Desert Rock DRA 36.626 −116.018 1007 AR 2007–2009 324644 596.47
Évora EVR 38.568 −7.912 293 TM 2016–2017 199169 504.11
Eureka EUR 79.989 −85.940 85 HA 2009–2011 654421 230.99
Fort Peck FPE 48.317 −105.100 634 TM 2007–2009 227621 481.02
Fukuoka FUA 33.582 130.376 3 TM 2011–2013 715368 337.10
Goodwin Creek GCR 34.250 −89.870 98 TM 2007–2009 244471 529.24
Gobabeb GOB −23.561 15.042 407 AR 2012–2014 627165 596.64
Georg von Neumayer GVN −70.650 −8.250 42 HA 2011–2013 509631 316.63
Ilorin ILO 8.533 4.567 350 TR 1995,1999,2000 160661 307.77
Ishigakijima ISH 24.337 124.163 6 TM 2011–2013 710421 374.30
Izana IZA 28.309 −16.499 2373 AR 2011–2013 680660 612.14
Kwajalein KWA 8.720 167.731 10 TR 1998–2000 517467 544.96
Lauder LAU −45.045 169.689 350 TM 2005–2007 583349 399.17
Lerwick LER 60.139 −1.185 80 TM 2004–2006 586958 213.18
Lindenberg LIN 52.210 14.122 125 TM 2001–2003 665675 285.77
Momote MAN −2.058 147.425 6 TR 2008–2010 689159 470.82
Minamitorishima MNM 24.288 153.983 7 TM 2011–2013 727974 470.67
Nauru Island NAU −0.521 166.917 7 TR 2005–2007 649304 513.96
Ny-Alesund NYA 78.925 11.930 11 HA 2007–2009 619576 187.06
Palaiseau PAL 48.713 2.208 156 TM 2009–2011 701389 302.24
Payerne PAY 46.815 6.944 491 TM 2008–2010 573646 349.50
Rock Springs PSU 40.720 −77.933 376 TM 2007–2009 203868 471.41
Petrolina PTR −9.068 −40.319 387 TR 2007–2009 149097 566.04
Regina REG 50.205 −104.713 578 TM 2009–2011 620001 365.50
Sapporo SAP 43.060 141.328 17 AR 2011–2013 722699 305.91
Sede Boqer SBO 30.860 34.779 480 TM 2009–2011 662564 542.45
Sonnblick SON 47.054 12.958 3109 HA 2013–2015 462080 371.23
Solar Village SOV 24.907 46.397 768 AR 2000–2002 717011 564.91
Sioux Falls SXF 43.730 −96.620 473 TM 2007–2009 228600 475.41
Tamanrasset TAM 22.790 5.529 1385 AR 2006–2008 644908 596.17
Tateno TAT 36.050 140.133 25 TM 2008–2010 683402 334.39
Tiksi TIK 71.586 128.919 48 HA 2011–2013 617716 211.72
Toravere TOR 58.254 26.462 70 TM 2010–2012 649189 245.32
Xianghe XIA 39.754 116.962 32 TM 2008–2010 561393 381.54
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3.3.2. Mean absolute error (MAE)

∑= −
=N

H HMAE 1 | |
i

N

e i m i
1

, ,
(5)

3.3.3. Root mean square error (RMSE)

∑=⎡

⎣
⎢ − ⎤

⎦
⎥

=N
H HRMSE 1 ( )

i

N

e i m i
1

, ,
2

1
2

(6)

3.3.4. Mean percentage error (MPE)

∑ ⎜ ⎟= ⎛
⎝

− ⎞
⎠

×
=N

H H
H

MPE 1 100
i

N
e i m i

m i1

, ,

, (7)

3.3.5. Uncertainty at 95% (U95)

= +SD RMSEU95 1.96( )2 2 1
2 (8)

where SD represents the standard deviation of the difference between
He and Hm.

3.3.6. Relative root mean square error (RRMSE)

= RMSE
H

RRMSE
m avg, (9)

3.3.7. T-statistics (TSTAT)

=⎡
⎣⎢

−
−

⎤
⎦⎥

N MBE
RMSE MBE

TSTAT ( 1) 2

2 2

1
2

(10)

3.3.8. Maximum absolute relative error (erMAX)

= ⎧
⎨⎩

−
= … ⎫

⎬⎭

H H
H

i NerMAX max | |, 1, ,e i m i

m i

, ,

, (11)

3.3.9. Correlation coefficient (R)

=
∑ − −

∑ − ∑ −
=

= =

H H H H

H H H H
R
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(12)

3.3.10. Mean absolute relative error (MARE)

∑=
−

=N
H H

H
MARE 1 | |

i

N
e i m i

m i1

, ,

, (13)

3.3.11. Global performance index (GPI)
The global performance index, firstly proposed by Behar et al. [79],

then modified by Despotovic et al. [80] and used by Jamil and Akthar
[23,81], is also used here to combine all the statistical indicators pre-
sented in Subsections 3.3.1 to 3.3.10. The need for using this index is
due to the incapacity of those statistical indicators to, consistently,
identify the best model (see Table 4). The values of the statistical in-
dicators need to be scaled between 0 (worst performing model) and 1
(best performing model) to determine the GPI values, which otherwise
would make difficult to compare the models. This normalisation also
allows using the same statistical weight for all of the indicators when
determining the GPI, as follows:

∑= −
=

α y yGPI (¯ )
j

j j ij
1

10

(14)

where ȳj is the median of the scaled values of the indicator j, yij is the
scaled value of the statistical indicator j for the model i, and αj equals to
1 for all statistical indicators except R, in which αj equals to −1. The
GPI also allows to combine several indicators regardless if the value of a
single indicator is 0 or not, which is not possible if a simple product of

Fig. 3. Relative frequency of Kt in BSRN stations
according to the climate zone.
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the indicators is computed, and therefore a higher GPI stands for better
accuracy of a given model.

4. Results and discussion

4.1. Determination of model parameters and climate analysis

Fig. 3 shows the distribution of the Kt values for the climate zones
considered, which is useful to identify the range of the clearness index
and the clear sky occurrences (frequency). The AR climate zone pre-
sents the highest relative frequency for high values of Kt , reaching a
relative frequency of 0.038 for ≃K 0.77t , followed by the TM and TR
climate zones with maximum relative frequency around 0.030 for ap-
proximately the same Kt value. The HA climate zone presents the lower
values of Kt relative frequency for clear sky.

The training of the model was performed using the stations from the
BSRN network, while the IES station (EVR) was used only in the vali-
dation of the model. The parameters A and B for each station were
found by fitting Eq. (2) to the data in the range of ≥K 0.5t , using the
non-linear least squares method. Then, the parameter n was obtained
through an optimisation process in order to achieve the maximum GPI
value for the entire range of the data. One also investigated the ex-
istence of a possible relationship between these parameters and the
elevation of the stations according to the climate zone, as shown in
Fig. 4. However no conclusions can be drawn on the existence of any
clear dependence, and therefore, no traditional fitting equations using
the parameters of the model and the elevation of the stations were able
to present an acceptable coefficient of determination.

To develop a model based only on the Kt as predictor for each cli-
mate region, the mean value and standard deviation of these para-
meters were calculated for the four zones considered, and the stations
in which at least one of the three parameters were out of the confidence
interval defined by the mean ± standard deviation were excluded from

this calculation. After this procedure, the values inside this imposed
range are averaged in order to obtain the mean values of A, B and n for
each climate zone, as shown in Table 3. These parameters were used for
the model performance assessment as presented in the following sec-
tion.

4.2. Performance assessment

The statistical tools presented in Section 3.3 were used to assess the
performance of the models from the literature as well as of the model
developed in this work using measurements from the EVR station and
the datasets from the BSRN, as presented in Table 2. The performance
assessment was carried out using the corresponding set of parameters
according to the climate zone of the 48 radiometric stations analysed in
this study. The performance assessment is presented in detail for the
EVR station as an example of both the methodology used in this study
and as a completely independent assessment since data from this station
was not included in the determination of the model parameters. Table 4
presents the results of the statistical analysis of the selected models
using the indicators shown in Section 3.3 for the EVR station. The bold
font indicates the optimal values of the statistical indicators, i.e., it
indicates the best model according to each statistical indicator.

The statistical evaluation regarding the accuracy of the models

Fig. 4. Variation of the parameters A, B and n according to the elevation of the stations and climate zone: Arid (AR), High Albedo (HA), Temperate (TM) and Tropical
(TR).

Table 3
Parameters of the developed model according to the climate zone: Arid (AR),
High Albedo (HA), Temperate (TM) and Tropical (TR).

Parameters Climate Zone

AR HA TM TR
A 11.39 7.83 10.79 11.59
B −6.25 −4.59 −5.87 −6.14
n 1.86 3.25 2.24 1.87
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Table 4
Statistical analysis of the selected models for the EVR station.

Model MBE ( −W m 2) RMSE ( −W m 2) TSTAT MPE (%) U95 ( −W m 2) erMAX RRMSE MAE ( −W m 2) R MARE GPI

1 −40.31 111.13 36.42 −6.42 297.74 2.00 0.86 75.41 0.19 0.55 0.22
2 −29.87 102.79 28.42 3.82 278.84 2.11 0.79 71.26 0.30 0.54 0.64
3 −46.36 112.67 42.25 −12.76 298.80 1.79 0.87 75.05 0.19 0.53 0.13
4 −74.08 124.44 69.34 −41.84 312.87 0.89 0.96 79.87 0.19 0.50 −0.46
5 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63
6 −74.08 124.44 69.34 −41.84 312.87 0.89 0.96 79.87 0.19 0.50 −0.46
7 −99.29 140.53 93.43 −68.28 337.45 0.94 1.08 99.29 0.19 0.68 −1.46
8 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63
9 −53.92 115.14 49.60 −20.69 301.16 1.54 0.89 75.16 0.19 0.51 0.00
10 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63
11 −69.04 121.78 64.41 −36.56 309.23 1.03 0.94 77.95 0.19 0.49 −0.32
12 −58.96 117.11 54.53 −25.98 303.36 1.37 0.90 75.67 0.19 0.50 −0.10
13 −94.25 136.99 88.73 −62.99 331.75 0.93 1.06 94.31 0.19 0.63 −1.24
14 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63
15 −89.21 133.59 83.95 −57.70 326.42 0.92 1.03 89.69 0.19 0.58 −1.02
16 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63
17 −21.15 109.03 18.51 13.67 299.35 2.64 0.84 78.71 0.19 0.64 0.24
18 28.34 79.71 35.61 56.30 213.84 2.98 0.62 63.06 0.68 0.69 0.91
19 −48.88 113.43 44.69 −15.41 299.45 1.71 0.88 75.01 0.19 0.52 0.09
20 −38.25 107.47 35.65 −3.12 288.30 2.10 0.83 69.93 0.24 0.49 0.45
21 1.53 112.10 1.28 37.46 310.72 3.40 0.87 85.97 0.19 0.78 −0.01
22 −16.11 109.19 13.96 18.96 301.01 2.81 0.84 80.05 0.19 0.67 0.20
23 0.42 82.32 0.48 28.96 228.18 2.45 0.64 54.46 0.59 0.51 1.66
24 −55.43 115.71 51.08 −22.28 301.76 1.49 0.89 75.28 0.19 0.50 −0.03
25 −53.41 114.96 49.11 −20.17 300.96 1.56 0.89 75.13 0.19 0.51 0.01
26 −40.31 111.13 36.42 −6.42 297.74 2.00 0.86 75.41 0.19 0.55 0.22
27 −30.22 109.49 26.88 4.15 297.65 2.34 0.85 76.76 0.19 0.59 0.29
28 3.55 112.66 2.95 39.58 312.20 3.47 0.87 86.76 0.19 0.80 −0.09
29 19.18 118.40 15.36 55.97 326.03 3.99 0.91 93.67 0.19 0.91 −0.69
30 8.09 114.07 6.65 44.34 315.79 3.62 0.88 88.64 0.19 0.83 −0.26
31 −99.29 140.53 93.43 −68.28 337.45 0.94 1.08 99.29 0.19 0.68 −1.46
32 −56.45 105.00 59.68 −26.47 269.19 1.77 0.81 60.44 0.49 0.33 0.64
33 −47.02 121.55 39.26 −12.54 324.08 2.03 0.94 82.07 0.08 0.60 −0.29
34 −129.12 164.09 119.34 −99.48 377.92 1.00 1.27 129.12 0.18 0.99 −2.82
35 14.18 77.91 17.32 42.93 214.17 2.63 0.60 58.39 0.65 0.60 1.37
36 −38.79 110.81 34.98 −4.83 297.59 2.05 0.86 75.56 0.19 0.56 0.24
37 −13.59 109.39 11.72 21.60 302.03 2.89 0.84 80.77 0.19 0.69 0.18
38 21.99 87.63 24.26 45.07 239.04 5.94 0.68 60.85 0.61 0.60 0.49
39 21.70 119.55 17.27 58.61 328.63 4.08 0.92 94.89 0.19 0.93 −0.79
40 21.70 119.55 17.27 58.61 328.63 4.08 0.92 94.89 0.19 0.93 −0.79
41 −28.71 109.34 25.47 5.74 297.82 2.39 0.84 77.04 0.19 0.60 0.28
42 91.34 162.12 63.82 130.84 412.18 6.25 1.25 131.34 0.23 1.48 −3.61
43 −59.97 117.54 55.52 −27.04 303.86 1.34 0.91 75.82 0.19 0.50 −0.12
44 −38.79 110.81 34.98 −4.83 297.59 2.05 0.86 75.56 0.19 0.56 0.24
45 4.17 75.61 5.17 28.26 209.41 4.19 0.58 52.45 0.67 0.47 1.56
46 35.49 81.81 45.07 63.51 215.83 3.10 0.63 65.77 0.69 0.74 0.64
47 −40.31 111.13 36.42 −6.42 297.74 2.00 0.86 75.41 0.19 0.55 0.22
48 −20.14 109.03 17.59 14.73 299.64 2.67 0.84 78.97 0.19 0.65 0.23
49 −63.50 119.10 58.98 −30.74 305.76 1.22 0.92 76.47 0.19 0.49 −0.20
50 −22.16 109.03 19.43 12.61 299.08 2.61 0.84 78.47 0.19 0.64 0.25
51 0.97 74.95 1.21 27.30 207.75 2.63 0.58 50.05 0.67 0.47 1.92
52 80.04 123.80 79.32 114.80 305.19 4.66 0.96 101.68 0.51 1.22 −1.94
53 −1.70 75.32 2.12 25.91 208.75 2.26 0.58 51.50 0.67 0.47 1.96
54 25.21 82.06 30.22 54.78 222.02 2.88 0.63 64.16 0.64 0.69 0.89
55 22.66 80.81 27.34 51.93 219.55 2.85 0.62 62.57 0.64 0.67 1.01
56 8.51 75.99 10.54 36.20 209.99 2.64 0.59 54.50 0.67 0.54 1.62
57 −2.72 74.91 3.40 24.30 207.57 2.33 0.58 50.11 0.67 0.46 1.97
58 17.72 78.78 21.61 46.49 215.59 2.77 0.61 59.71 0.65 0.62 1.23
59 5.25 75.53 6.53 32.87 209.11 2.52 0.58 53.32 0.67 0.52 1.75
60 −48.27 108.42 46.53 −19.98 285.25 2.48 0.84 57.67 0.42 0.36 0.56
61 38.92 113.31 34.23 75.18 304.68 4.23 0.87 92.15 0.31 0.97 −0.91
62 −106.85 146.12 100.33 −76.21 346.67 0.96 1.13 106.85 0.19 0.76 −1.80
63 −0.89 111.49 0.74 34.92 309.04 3.32 0.86 85.04 0.19 0.77 0.06
64 32.23 124.95 24.99 69.66 340.53 4.43 0.96 100.26 0.19 1.01 −1.23
65 −72.77 123.26 68.46 −39.64 310.46 2.34 0.95 74.37 0.23 0.42 −0.50
66 −57.44 104.79 61.34 −28.93 267.76 2.56 0.81 65.17 0.51 0.39 0.43
67 17.89 77.44 22.22 44.70 211.78 2.80 0.60 58.85 0.67 0.60 1.30
68 17.38 74.36 22.50 44.68 203.28 2.59 0.57 57.34 0.70 0.60 1.44
69 54.08 108.58 53.76 86.97 281.68 4.31 0.84 87.56 0.47 0.99 −0.92
70 10.66 75.44 13.35 38.81 208.07 6.90 0.58 56.61 0.68 0.56 0.86
71 8.27 74.35 10.48 36.44 205.45 2.64 0.57 55.35 0.69 0.55 1.66
72 −24.73 80.84 30.08 2.11 218.76 1.88 0.62 47.74 0.66 0.33 1.87
73 −7.55 78.20 9.08 21.51 216.24 2.09 0.60 55.36 0.66 0.47 1.84
74 18.79 80.38 22.50 48.26 219.75 2.67 0.62 61.71 0.64 0.64 1.15

(continued on next page)
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presented in Table 4 for EVR does not give a unanimous decision on
which of the models is considered the most accurate. The model de-
veloped in this work is the best performing model if we consider the
RMSE (70.80 −W m 2), U95 (189.61 −W m 2), RRMSE (0.55) and R (0.76)
statistical indicators. On the other hand, the model 23 presented by
Hollands [31], is the most accurate model regarding the MBE (0.42

−W m 2) and TSTAT (0.48) indicators. Considering the values of MPE
(1.31%) and MARE (0.32) of the model 116 derived by Abal et al. [67],
it would be selected as the best performing model for this station. Re-
garding the erMAX, it does not allow identifying the single most ac-
curate model, due to presenting the same value for several models. The
analysis of these results shows the advantage of using the GPI in order
to present a more concise performance evaluation, allowing the com-
bination of several statistical indicators and providing, through a simple
procedure, a result easy to understand. Therefore, the model with
higher GPI for the station being analysed (EVR) is the model 95 pre-
sented by Marques Filho et al. [65] with a GPI value of 2.12, although it
was not considered the best performing model according to any of the
statistical indicators separately. This result is due to the scaling down of
the values of the statistical indicators mentioned above in the GPI de-
termination procedure, which allows for a fair comparison of the

Table 4 (continued)

Model MBE ( −W m 2) RMSE ( −W m 2) TSTAT MPE (%) U95 ( −W m 2) erMAX RRMSE MAE ( −W m 2) R MARE GPI

75 3.70 76.96 4.50 32.28 213.19 2.17 0.59 55.20 0.65 0.52 1.78
76 −16.42 77.36 20.33 10.66 211.99 1.89 0.60 49.07 0.68 0.38 1.97
77 −20.39 80.17 24.61 6.91 218.59 1.91 0.62 48.59 0.65 0.36 1.87
78 −9.96 78.53 11.97 18.35 216.80 1.92 0.61 51.70 0.64 0.43 1.88
79 −32.59 109.77 29.10 1.67 297.48 2.26 0.85 76.37 0.19 0.58 0.29
80 −39.45 110.95 35.60 −5.52 297.65 2.03 0.86 75.49 0.19 0.55 0.23
81 −41.06 111.30 37.15 −7.21 297.83 1.97 0.86 75.35 0.19 0.55 0.21
82 −38.79 110.81 34.98 −4.83 297.59 2.05 0.86 75.56 0.19 0.56 0.24
83 −27.20 109.23 24.06 7.33 298.03 2.44 0.84 77.34 0.19 0.61 0.27
84 −26.54 109.18 23.46 8.01 298.14 2.46 0.84 77.48 0.19 0.61 0.27
85 −8.55 110.00 7.29 26.89 304.45 3.06 0.85 82.35 0.19 0.72 0.14
86 −64.00 119.33 59.47 −31.27 306.06 1.20 0.92 76.58 0.19 0.49 −0.21
87 84.34 128.86 81.01 116.82 316.63 5.10 0.99 103.80 0.50 1.24 −2.17
88 6.58 113.58 5.43 42.75 314.55 3.57 0.88 88.00 0.19 0.82 −0.20
89 92.63 132.94 90.92 126.87 320.66 5.13 1.03 108.04 0.51 1.32 −2.49
90 88.67 123.26 96.91 119.65 294.17 4.67 0.95 100.93 0.61 1.24 −2.00
91 87.44 121.89 96.37 119.29 291.17 4.63 0.94 100.66 0.61 1.24 −1.97
92 −179.35 287.33 74.77 −141.81 714.66 5.68 2.22 202.48 −0.30 1.59 −6.35
93 −18.41 72.93 24.41 5.27 198.91 2.15 0.56 44.95 0.72 0.36 2.08
94 −11.85 75.52 14.87 14.47 208.03 2.23 0.58 47.25 0.68 0.39 1.98
95 −5.82 71.58 7.64 19.72 198.07 2.30 0.55 47.76 0.72 0.41 2.12
96 −60.98 121.20 54.48 −33.86 313.97 2.74 0.94 67.90 0.38 0.46 −0.10
97 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63
98 −84.16 130.36 79.13 −52.42 321.48 0.91 1.01 85.68 0.19 0.55 −0.82
99 −74.08 124.44 69.34 −41.84 312.87 0.89 0.96 79.87 0.19 0.50 −0.46
100 −74.08 124.44 69.34 −41.84 312.87 0.89 0.96 79.87 0.19 0.50 −0.46
101 −69.04 121.78 64.41 −36.56 309.23 1.03 0.94 77.95 0.19 0.49 −0.32
102 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63
103 −69.04 121.78 64.41 −36.56 309.23 1.03 0.94 77.95 0.19 0.49 −0.32
104 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63
105 −58.96 117.11 54.53 −25.98 303.36 1.37 0.90 75.67 0.19 0.50 −0.10
106 −74.08 124.44 69.34 −41.84 312.87 0.89 0.96 79.87 0.19 0.50 −0.46
107 −58.96 117.11 54.53 −25.98 303.36 1.37 0.90 75.67 0.19 0.50 −0.10
108 −69.04 121.78 64.41 −36.56 309.23 1.03 0.94 77.95 0.19 0.49 −0.32
109 −64.00 119.33 59.47 −31.27 306.06 1.20 0.92 76.58 0.19 0.49 −0.21
110 −84.16 130.36 79.13 −52.42 321.48 0.91 1.01 85.68 0.19 0.55 −0.82
111 −69.04 121.78 64.41 −36.56 309.23 1.03 0.94 77.95 0.19 0.49 −0.32
112 −64.00 119.33 59.47 −31.27 306.06 1.20 0.92 76.58 0.19 0.49 −0.21
113 −64.00 119.33 59.47 −31.27 306.06 1.20 0.92 76.58 0.19 0.49 −0.21
114 −74.08 124.44 69.34 −41.84 312.87 0.89 0.96 79.87 0.19 0.50 −0.46
115 −15.14 76.83 18.81 11.50 210.89 2.11 0.59 47.82 0.67 0.38 1.95
116 −24.37 80.74 29.63 1.31 218.65 2.19 0.62 45.81 0.65 0.32 1.84
117 −6.69 76.75 8.19 20.13 212.34 2.34 0.59 49.23 0.66 0.43 1.91
118 −14.95 75.02 19.03 10.74 205.86 2.27 0.58 46.33 0.69 0.36 2.01
119 −2.52 74.47 3.16 23.97 206.36 2.44 0.57 49.39 0.68 0.45 1.98
120 −16.08 77.31 19.90 10.01 211.97 2.25 0.60 46.70 0.67 0.36 1.93
121 1.42 92.87 1.44 34.45 257.41 2.85 0.72 69.35 0.42 0.62 0.95
This work 25.84 70.80 36.68 47.87 189.61 2.59 0.55 53.70 0.76 0.58 1.43

Fig. 5. Best performing models according to the climate zone: arid (AR), high
albedo (HA), temperate (TM) and tropical (TR).
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models under study.
This analysis was also carried out for all of the BSRN stations in

order to identify the best performing model for various locations in
different climate zones. Fig. 5 presents the result of this comprehensive
performance assessment, where the absolute frequency of selection as
the best performing model (based on the maximum GPI) is shown, also
according to the climate zone of the stations.

The best overall performing model is the one presented in this work
(Eq. (3) and Table 3), followed by model 46 by Mondol et al. [47]. The
best performing model for the AR climate zone is the model 118 pro-
posed by Abal et al. [67] while the best performing model for the HA
climate zone is the model 46 derived by Mondol et al. [47]. The best
performing model for the TM and TR climate zones is the model pre-
sented in this work (Eq. (3) and Table 3). The results presented in Fig. 5
show the advantage in deriving specific model parameters for each
climate zone as suggested by Gueymard and Ruiz-Arias [14], despite
the good performance of the model proposed by Mondol [47]. Only the
model proposed here, and the model proposed by Mondol [47] were
selected as best performing models for the four climate zones con-
sidered, showing excellent versatility regarding climate zone selection.
On the other hand, the higher number of stations in the temperate (TM)
zone allows for a better characterisation of the model parameters in
comparison against other climate zones, where less data is available.

To further test the closeness of the two best performing models from
Fig. 5 to the measured data, i.e., model 46 and the one proposed in this
work, a Taylor diagram [25] is presented in Fig. 6 for all stations. This
diagram helps to identify the closeness between the modelled and ob-
served data in terms of their correlation coefficient (azimuthal position,
R) and standard deviation of model output normalised by the standard
deviation of the corresponding observations (radial distance, nSD). In
this diagram, a better accuracy is achieved when the model is located
close to the normalised standard deviation unit line [14], while the
open circle in the coordinates (nSD=1, R= 1) represents the point of
perfect match between model and observations. It is worth to mention
that the distance between the model representation and this point is the
so-called centred pattern Root Mean Square Difference, which accounts
for the mean values of both data series, and is also a measure of the
model closeness to the observed data (not shown). Instead, a more
elaborated skill score proposed by Taylor [25] was determined as a
function of the correlation coefficient (R) and the normalised standard

deviation (nSD) in the form = + + +S R nSD nSD R4(1 )/[( 1/ ) (1 )]2
0

with =R Rmax( )0 , which is represented in Fig. 6 by the S isolines. This
definition allows guaranteeing that the skillfulness of the model in-
creases when →nSD 1, which is not assured by the centred pattern
RMSE for lower values of R. Best model accuracy is achieved when skill
score values tend to unity. In this way, the best performing model ac-
cording to Fig. 6 is the model proposed in this work, with a skill score
higher than 0.80 for the majority of the stations and with nSD values in
general higher than those of model 46. This conclusion is in agreement
with the results presented in Fig. 5, showing that the proposed model
has best accuracy, using two distinct statistical analysis.

5. Conclusions

In this work is presented a newly developed model based on minute
resolution data and climate zone classification. A review of the litera-
ture on models that use hourly and sub-hourly Kt values to compute Kd
was carried out. An extensive statistical analysis of the proposed as well
as of other 121 models found in the literature was performed, using 1-
min resolution data. In this analysis, the elevation of the stations was
not an essential factor when determining the parameters of the new
model. The performance assessment was done using several statistical
indicators and a Global Performance Index (GPI), which is a composite
indicator that simplifies the analysis. The best performing model for the
arid (AR) climate zone was found to be the model proposed by Abal
et al. [67], while the best model for the high albedo (HA) climate zone
is the model proposed by Mondol et al. [47]. The best model for the
temperate (TM) and tropical (TR) climate zones is the model proposed
in this work. It was also found that the best overall performing model
(highest GPI in the more significant number of stations and highest skill
score) was the model proposed in this work followed by the model by
Mondol et al. [47]. This work helps to identify the best model that uses
only the Kt according to the climate zone, thus allowing to easily es-
timate the diffuse horizontal irradiance (DHI) and consequently the
direct normal irradiance (DNI), based only on global horizontal irra-
diance (GHI) measurements. The proposed model is also a tool for long-
term data series quality control and gap-filling.
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