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Resumo 

A doença inflamatória intestinal (DII) é uma doença crónica do trato gastrointestinal 

que inclui a Colite ulcerosa (CU) e a doença de Crohn (DC). A etiopatogénese da DII ainda 

não está suficientemente elucidada, e a doença permanece incurável com a sua incidência 

a aumentar mundialmente. Não obstante, as estratégias terapêuticas atuais para DII são 

limitadas pela eficácia reduzida, custos elevados e / ou presença de efeitos tóxicos / 

colaterais. Uma das principais preocupações da gestão clínica dos pacientes com DII é a 

fraca caracterização dos mecanismos moleculares subjacentes à doença. Neste estudo 

demonstrámos que a desregulação da interação coordenada entre N-glicanos ramificados 

e a actividade das células T é um fator chave e um mecanismo molecular ainda não 

identificado subjacente à patogénese da DII. Com o reportar deste novo mecanismo, 

investigámos ainda se este seria um alvo terapêutico na DII. Os resultados obtidos usando 

células T ex vivo, isoladas de biópsias frescas de cólon e sangue periférico de doentes com 

CU, mostraram que a modulação da glicosilação destas células tem um impacto na 

supressão da resposta imunológica, nomeadamente na profileração e diferenciação das 

células T, supressão de citocinas pró-inflamatórias e sinalização pelo TCR. 

Adicionalmente, a regulação metabólica pela glicosilação resultou no controlo da 

severidade da doença e supressão da resposta adaptativa in vivo, em diferentes modelos 

de indução de colite em ratinhos que apresentam diferentes genótipos de síntese de N-

glicanos ramificados. 

Em suma, a presente tese de doutoramento contribuiu para identificar um novo 

mecanismo de doença em CU e propor uma nova terapia-alvo específica para CU, com 

potencial de evitar efeitos tóxicos desnecessários e terapias intensivas em DII. A eficácia 

terapêutica desta nova estratégia terapêutica em DII, aqui descrita, sustentou a avaliação 

da mesma em estudos clínicos que estão atualmente em curso. 
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Abstract 

Inflammatory bowel disease (IBD) is a chronic disorder of the gastrointestinal tract 

that encompasses Ulcerative Colitis (UC) and Crohn´s disease (CD). The etiopathogenesis 

of IBD is far from being fully elucidated, and the disease remains incurable with incidence 

increasing worldwide. Furthermore, the current therapeutic strategies for IBD are limited by 

reduced effectiveness, high costs, and/or presence of toxic/side effects. One of the major 

concerns in the clinical management of IBD patients is the poor characterization of the 

underlying molecular mechanisms of the disease. In this study we demonstrated that the 

dysregulation of the coordinated interplay between N-glycan branching and T cell activity is 

a key factor and a yet uncovered molecular mechanism underlying IBD pathogenesis. The 

disclosure of this new mechanism set the ground to further investigate whether this altered 

mechanism can be therapeutically targeted in IBD. The results obtained on ex vivo T cells, 

isolated from fresh colonic biopsies and peripheral blood of UC patients, showed that 

modulation of glycosylation of these cells can have an impact in the suppression of the 

immune response, namely in T cell proliferation and differentiation, suppression of pro-

inflammatory cytokines and TCR signaling.  Additionally, the metabolic regulation by 

glycosylation also resulted in the control of disease severity and suppression of the adaptive 

immune response in vivo, in different colitis-induced mouse models with different branched 

glycosylated- encoded genotypes. 

Overall, the present doctoral thesis contributed to identify a new disease mechanism 

in UC, further proposing a new targeted-specific therapy for UC with potential to avoid 

unnecessary toxic effects and step-up therapies in IBD. The therapeutic efficacy of this new 

therapeutic strategy in IBD, herein described, pave the way to test it in clinical studies that 

are currently ongoing. 
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General introduction 

 
Inflammatory Bowel Disease 

Inflammatory bowel disease (IBD) is a chronic disorder of the gastrointestinal 

tract that comprises Ulcerative Colitis (UC) and Crohn´s disease (CD). The incidence of 

IBD is increasing worldwide, being estimated that over 1 million residents in the USA and 

2.5 million in Europe are affected with these diseases (Kaplan, 2015),particularly in north 

European countries (Figure 1).  

In Portugal, the prevalence of IBD has been increasing and the available data 

based on intestinal anti-inflammatory drugs consumption, estimated an increase from 86 

patients per 100 000 persons in 2003 to 146 per 100000 in 2007(Azevedo, et al., 2010) 

with a similar increase in UC and CD. Interestingly, there is also a distinct distribution 

accordingly with Portuguese districts, in which, apart from large reference treatment 

centers like Porto (area of patients studied in this thesis) and Lisboa, districts like 

Castelo-Branco and Beja also come out in this pharmaco-epidemiological approach 

(Figure 2). Moreover, in terms of age and gender, in the Portuguese population, the 

prevalence of UC is higher between 40–64 years old and the prevalence of CD is higher 

between 17–39 years old. Overall, in Portugal, females had slightly higher prevalence 

than males. 

 

Figure 1. Global incidence of IBD. Reprinted by permission from Springer Nature: Nature 

Reviews Gastroenterology & Hepatology, (Kaplan, 2015), copyright (2015). 
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Figure 2. Prevalence of IBD, in the 20 districts of Portugal (patients per 100 000 persons), in 

2007. Reprinted by permission from John Wiley & Sons, Inc: Pharmacoepidemiology & Drug 

Safety, (Azevedo, et al., 2010), copyright (2010). 

The precise etiopathogenesis of IBD remains to be clarified. In fact, this disease 

does not arise as a consequence of an isolated/single cause, being a multifactorial 

disease that remains incurable. There is a synergitic effect of different risk factors 

involved in IBD pathogenesis that includes genetic predisposition, altered immune 

response, dysbiosis, environmental factors and lifestyle (diet, stress). There is an urgent 

need in the field to disclose the specific mechanisms underlying intestinal inflammation 

that can be therapeutically targeted as well as identify potential risk factors (markers of 

disease susceptibility) that could help to explain the complexity of IBD pathogenesis. 

Interestingly, in less developed countries the incidence of IBD is lower and it is 

postulated that might be due to modulation of host immunity induced by helminths. It was 

observed in IBD murine models that the helminth, Heligmosomoides polygyrus bakeri 

prevents colitis, preventing antigen-specific gut T cell response by altering dendritic cell 

(DC) function (Blum, et al., 2012). This mechanism of suppression of inflammation that 

was found to occur through helmith´s glycans has been explored and recently, it was 

suggested that IL-4Rα signaling is the key pathway required for an effective suppression 
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of immune response (Matisz, et al., 2017) which has contributed to raise the interest for 

helminth’s antigen cell-based therapy (Maizels, 2016), already tested in small clinic trials 

in UC (Summers, et al., 2005).  

Genetics has a major contribution in defining disease susceptibility and since 

2001, when the first gene, NOD2 gene (Ogura, et al., 2001), was described to be 

associated with Crohn’s disease, hundreds of risk loci were then identified to be 

associated with IBD, shared by both CD and UC, or only associated with CD or UC 

(Lees, et al., 2011).That knowledge is very helpful for the understanding of IBD 

etiopathogenesis. However, it does not completely explain IBD incidence worldwide. For 

instance, IBD in Asian populations is not associated with NOD2, CARD15 or IL23R 

variants (Sood and Midha, 2007).   

Moreover, the heritable component of CD and UC is supported by twin studies. 

Despite in Crohn’s disease was found concordance rates in monozygotic twins (20-50%) 

and less in dizygotic twins (10%), in UC there is a weaker heritable component for 

monozygotic (16%) and dizygotic (4%) twins (Ananthakrishnan, 2015; Halme, et al., 

2006; Orholm, et al., 2000). 

During the last decades notable efforts emerged to unravel the pathogenesis of 

IBD. A recent clinical review summarizes it and in Figure 3 is illustrated the progression 

of disease stages.  

 

Figure 3. Proposed model of IBD pathogenesis and progression. Adapted from (Torres, et al., 

2016). 

 

The disease initiation triggered by genetic and environmental factors lead to loss 

of epithelial barrier integrity therefore compromising enteric commensal bacteria survival 
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and in consequence exposing inner mucosa layers to pathogenic microbiota. 

Consequently, it promotes an inflammatory process and activation of innate and adaptive 

immune responses. Once this inflammation is perpetuated and there is an uncontrolled 

immune response associated with tissue damage, the IBD diagnosis is stablished 

(Figure 3) (Torres, et al., 2016).  

Apart from common pathways that link the pathogenesis of CD and UC, these 

two disorders are very distinct in terms of disease pattern. CD can affect any part of the 

gastrointestinal tract (from the mouth to the anus). The inflammation associated with CD 

is transmural, affecting all layers of the intestine and can extend into the deep layers of 

the intestinal wall. On the other hand, UC affects mainly the rectum and colon and the 

inflammation is confined to the mucosa occurring in an uninterrupted pattern (Baumgart 

and Sandborn, 2012; Ungaro, et al., 2017).  

The work developed and presented in this doctoral thesis is mainly focused on 

UC. UC is classified into different categories depending on the location and extension of 

the disease. There are three main types of ulcerative colitis (represented in Figure 4). 

UC affects different parts of colon and rectum with different disease extension. Proctitis 

is confined to the rectum (the lower part of the colon that connects with the anus) and in 

about one third of the individuals, UC begins with ulcerative proctitis. Left-Sided Colitis 

causes continuous inflammation throughout the left side of the colon from the rectum to 

the area near the spleen. Pancolitis is when the disease and inflammation occurs 

throughout the entire colon  (Ungaro, et al., 2017). 

 

 

Figure 4. Ulcerative colitis is classified into different categories depending on the location and 

extension of the disease. Reprinted by permission from Elsevier: The Lancet Nature (Ungaro, et 

al., 2017), copyright (2017). 
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Diagnosis and clinical management of Ulcerative colitis 

The diagnosis of UC takes into consideration the Mayo endoscopic score 

(detailed in Table 1). The final score combines the evaluation of clinical symptoms of 

disease (stool frequency, rectal bleeding); assessment of mucosa integrity and friability 

and physician’s global assessment (Magro, et al., 2017).  

Table 1. Mayo endoscopic score for Ulcerative colitis. Adapted from (Magro, et al., 2017). 

Mayo index 0 1 2 3 

Stool frequency Normal 1-2/day > normal 3-4/day > normal 5/day > normal 

Rectal bleeding None Streaks Obvious Mostly blood 

Mucosa Normal Mild friability Moderate friability 
Spontaneous 

bleeding 

Physician’s global 

assessment 
Normal Mild Moderate Severe 

 

The IBD clinical management also takes into consideration some biomarkers that 

are expected to help in the diagnosis and monitoring of IBD. By definition a good 

biomarker should be disease-specific; able to identify individuals at risk for the disease; 

able to detect disease activity; able to monitor the effects of treatment; and prognostically 

valuable for assessing disease relapse or recurrence. Therefore, it should present high 

sensitivity and specificity.  

In the context of IBD, biomarkers are important to predict the occurrence of the 

disease, to distinguish IBD subtypes (CD or UC), to discriminate IBD from IBS and to 

predict the therapeutic response. However, there is no single “gold standard” test that 

can assess all these parameters. Among others listed in Table 2, there are biomarkers 

that can discriminate CD from UC, such as perinuclear anti-neutrophil cytoplasmic 

antibodies (pANCAs) and anti-Saccharomyces cerevisiae antibodies (ASCAs) and 

markers that can evaluate disease activity or inflammation in IBD, such as C-Reactive 

Protein (CRP) and fecal calprotectin (Viennois, et al., 2015). Nonetheless, efforts have 

been made to develop new tools to assess, for instance, circulating miRNAs or protein 

profiles, in order to identify high risk patients (Viennois, et al., 2015) 
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Table 2. Current IBD biomarkers. Adapted from (Viennois, et al., 2015). 

 

The main goal of IBD clinical management is to achieve clinical remission and 

inactive disease with maintenance of no clinical symptoms (stool frequency ≤ 3/day with 

no bleeding) and mucosa healing detected by endoscopy (Harbord, et al., 2017; Magro, 

et al., 2017). In this regard, new molecular mechanisms need to be disclosed to design 

more target-specific therapies for IBD. The main achievement is to have a clinical 

management as closer as possible to a personalized medicine - “an emerging practice of 

medicine that uses an individual’s genetic profile to guide decisions made in regard to 

the prevention, diagnosis, and treatment of disease” (National Institutes of Health; 

http://www.genome.gov/glossary/).  
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Current IBD therapies and their known targets 

IBD treatment is based in a step-up therapeutic strategy, both in CD and UC. 

Particularly in UC, the standard therapy is aminosalicylates for mild to moderate UC. 

Often, topical and systemic steroids can be used to treat UC flares, while 

immunosuppressants and biological drugs are used in moderate to severe disease. 

Colectomy is the extreme solution and it is needed in up to 15% of patients with UC 

(Ochsenkuhn and D'Haens, 2011) (Figure 5). 

 

Figure 5. Common IBD step-up therapy following the course of disease severity. 

Adapted from (Marchioni Beery and Kane, 2014). 

For decades, 5-aminosalicylic acid (5ASA) was the first line of therapy despite the 

fact that the underlying molecular mechanism has been suggested later in 2005. The 

action of 5ASA was found to be dependent on the increased expression of peroxisome 

proliferator-activated receptor-gamma (PPAR-gamma) (Rousseaux, et al., 2005). 

In the last two decades, there was an exponential pharmaceutical development 

that gave rise to a new era of therapies, with the introduction of immunosuppressive 

(such as azathioprine) and biologic agents (such as tumor necrosis factor alpha (TNF- α) 

inhibitors) which markedly reduced the need to use corticosteroids. After that, many 

other different therapies have been investigated and are now available, including 

the α4β7 integrin blocker, vedolizumab; a number of new cytokine inhibitors (e.g. IL-6–

IL-6R and IL-12–IL-23 blockers or apremilast); modulators of cytokine signaling events 

(for example, JAK inhibitors or SMAD7 blocker); inhibitors of transcription factors (e.g. 

GATA3 or RORγt), reviewed in (Neurath, 2017). 
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Moreover, new anti-adhesion and anti-T-cell-activation and migration strategies 

(e.g. β7 integrin, sphingosine 1-phosphate receptors and MAdCAM1 inhibitors, 

regulatory T-cell therapy and stem cells) are being evaluated in controlled clinical trials 

(Neurath, 2014).  

Indeed, this therapeutic revolution contributed to increase the percentage of 

therapy success predominantly in the most severe cases. In both CD and UC, several 

anti-TNF-α either chimeric (e.g. infliximab), humanized (e.g. certolizumab pegol) or fully 

human (e.g. adalimumab and golimumab) antibodies display a high impact in controlling 

chronic intestinal inflammation. Briefly, anti-TNF-α therapies consist in antibodies that 

neutralize both soluble TNF-α and membrane-bound TNF-α (such as infliximab and 

adalimumab). Their effectiveness was found to be due to induction of T cell apoptosis in 

vivo ( via TNF receptor 2 and CD14+ macrophages)  whereas agents that preferentially 

block only soluble TNF-α (for example, etanercept) had no therapeutic effect (Atreya, et 

al., 2011; Neurath, 2014; Van den Brande, et al., 2007). 

In fact in IBD, there is an association with high production of both soluble and 

membrane-bound TNF-α which can be produced by several cell populations (immune 

and stroma) like macrophages, dendritic cells (DCs), effector T cells, adipocytes and 

fibroblasts. Indeed, TNF-α drives pleiotropic pro-inflammatory effect in several pathways.  

It can induce hypervascularization and angiogenesis; enhances pro-inflammatory 

cytokine production by macrophages and T cells; causes barrier alterations and 

promotes cell death of intestinal epithelial cells (IECs) and Paneth cells. Additionally, it 

promotes tissue damage through the production of matrix metalloproteinases (MMPs) by 

myofibroblasts. It also drives T cell resistance to apoptosis via the induction of TNF 

receptor-associated factor 2 (TRAF2) and the activation of nuclear factor-κB (NF-κB) 

(Neurath, 2014). 

It is worth nothing that not all anti-cytokine therapies are efficient for the treatment 

of IBD. Some examples have demonstrated that neutralization of other cytokines, such 

as IFN-γ (with fontolizumab) (Reinisch, et al., 2010) or IL-17A (with secukinumab) 

(Hueber, et al., 2012) do not demonstrated therapeutic efficiency in Crohn’s disease. 

Therefore future strategies in IBD treatment should target T cell subsets themselves or 

simultaneous targeting multiple cytokines, rather than targeting a single effector cytokine 

(Neurath, 2014).  

However, immunogenicity is a well-known complication during treatment with 

biologic agents and involves the formation of anti-drug antibodies (ADAb). For anti-TNF-

α drugs, ADAb are associated with alterations in anti-TNF-α levels, reduced efficacy, and 

side-effects reactions, being responsible for loss of response to biologics (Vincent, et al., 

2013). Moreover, there are other drawbacks associated, namely infection related 
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complications, a potential risk of malignancy, the need for parenteral administration and 

high treatment related costs.  

Despite that, and because the percentage of response to this type of therapy is 

still very significant in some cases, and, based on preclinical and clinical data, the 

European Medicines Agency (EMA) has allowed the introduction of biosimilars of anti-

TNF to be marketed in rheumatoid arthritis, spondyloarthritis, UC and CD. Biosimilars 

appear to constitute efficient drugs but a less expensive option (Deiana, et al., 2017). 

Recently, Olivera and colleagues discussed the new generation of small 

molecules (SMDs) based therapies (in late-stage clinical development) which present 

main advantages in comparison with monoclonal antibodies, being most of them under 

clinical investigation in UC patients, on phase II and III of clinical trials (Olivera, et al., 

2017). 

Indeed, SMDs have been showing promising results in other diseases with 

significant levels of efficacy and an acceptable safety. For instance, tofacitinib (JAK 

inhibitor) was found to be effective in phase III clinical trials, and Pfizer is seeking 

marketing authorization in UC (Olivera, et al., 2017). 

In fact, the particularities of SMDs make them a good alternative over biologics as 

they can diffuse more easily through cell membranes due to their  low molecular weight 

(<1kDa, usually <500Da). Moreover, they can be administered orally resisting to gastric 

degradation, and entering in to systemic circulation rapidly, displaying a short half-life 

(rapid drug elimination) in comparison to biologics (Leeson and Springthorpe, 2007; 

Olivera, et al., 2017; Veber, et al., 2002). Additionally, SMD’s lack immunogenicity and 

they are less expensive than biologics so they represent a better relation of cost-

effectiveness. 

Despite all these progresses in IBD treatment, a considerable proportion of 

patients are still refractory to the treatment and overall half of the patients do not achieve 

sustained remission (Ochsenkuhn and D'Haens, 2011). Hence, there is an urgent unmet 

need in the clinic to develop new and optimized targeted-specific therapies. Moreover, 

with the introduction of this broad setting of new drugs, it is fundamental to identify 

reliable biomarkers able to predict and monitor therapeutic success, improving the 

individualized therapy in IBD. 
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Intestinal immune response in Ulcerative colitis 

IBD is characterized by a perturbation on the intestinal homeostasis which is 

known to be critically dependent on complex interactions between the microbiota, the 

intestinal epithelium and the host immune system (Maloy and Powrie, 2011) . Upon 

injury of epithelial barrier function, innate and adaptive immune recognition precipitates a 

hyperimmune response in IBD (Figure 6) (Neurath, 2017), with distinct particularities, in 

UC and CD, as reviewed in (Baumgart and Sandborn, 2012; Ungaro, et al., 2017). 

The gut microbial content is definitely a major player in IBD pathogenesis as 

alterations in microbiota composition and functions (dysbiosis) have been consistently 

associated with IBD (Ananthakrishnan, 2015; Hall, et al., 2017). In UC patients is 

commonly observed a decreased of biodiversity, with a lower proportion of Firmicutes 

and increased Gammaproteobacteria and Enterobacteriaceae (Frank, et al., 2007). 

However, it remains to be elucidated whether dysbiosis is cause or consequence of 

mucosal inflammation. 

Together with colonic microflora composition, intestinal homeostasis is also 

dependent on the role of different gut cell types, from both epithelium and immune 

system.  

The intestinal epithelium is mainly composed by IECs coated with mucus layer 

that prevent a direct contact of the commensal microbiota with IECs. This barrier 

comprises two layers, an outer layer of secreted mucins overlying a dense inner layer 

(glycocalyx) of membrane-anchored mucins that is inaccessible to most bacteria (Artis, 

2008).  In addition, as a biophysical barrier, mucus forms a matrix that allows the 

retention of high concentrations of antimicrobial molecules, such as defensins and 

secretory IgA, close to the epithelial surface. IBD is characterized by a reduction of 

goblet cells with consequent reduction of mucin secretion. In mice, the absence of MUC2 

(principal mucin in intestine) leads to spontaneous colitis (Van der Sluis, et al., 2006).  

On the other hand, IECs produce cytokines that can preclude the priming of T 

helper 1 (Th1)-cell responses, favoring thereby the induction of T regulatory (Treg)-cell 

and Th2-cell responses. On the contrary, upon sensing pathogenic invasion or damage, 

IECs secrete chemokines like IL-8 (CXCL8) that promote immune activation (Artis and 

Spits, 2015). Furthermore, IECs are involved in local antibody responses by producing 

transforming growth factor-β (TGF-β) and they also mediate the transport of secretory 

IgA into the mucus layer which complements the innate response by limiting the 

penetration of commensal bacteria across the epithelium (Maloy and Powrie, 2011).  
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Figure 6. Immune response in UC and CD. Reprinted by permission from Springer Nature: 

Nature Reviews Gastroenterology & Hepatology,(Neurath, 2017), copyright (2017). 

 

Another cellular component of bowel epithelium are innate lymphoid cells 

(ILCs) which constitute the most recently identified component of the innate immune 

system with an important role on the control of intestine homeostasis (Artis and Spits, 

2015). Indeed, ILCs isolated from patients with active UC show increased gene 

expression of type 3 ILCs (ILC3s) cytokines (IL17A and IL22), transcription factors 

(RORC and AHR), and cytokine receptors (including IL23R) (Geremia, et al., 2011) . 

Interestingly, a recent report (Goto, et al., 2014) demonstrated that α-1,2 fucose 

expressed on the apical side of epithelial cells is controlled by ILC3s and luminal 

microbes, reviewed in (Goto, et al., 2016). In line with those findings, it was 

demonstrated that commensal bacteria, pathogenic bacteria and bacterial products 

(LPS) directly or indirectly stimulate (via gut dendritic cells) ILC3s to produce IL-22 

promoting epithelial FUT2 expression and to induce α-1,2 fucosylation. Hence, epithelial 

α1,2-fucose protects against pathogenic bacteria and it is key in maintaining the 

commensal microbiota and thereby intestinal homeostasis. 

Neutrophils are critical components of the innate immune system in protecting 

the host from pathogens through their uniquely capability to produce toxic molecules, 

like reactive oxygen species. In general, during intestinal inflammation, neutrophils 

present in the blood sense a chemoattractant gradient, generated through cytokines 

production by resident monocytes, and then translocate across the vascular 

endothelium infiltrating the intestinal lamina propria (Amulic, et al., 2012). In UC 
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patients is characteristic an increase of activated neutrophils at blood and biopsies in 

comparison to healthy controls (Hanai, et al., 2004). However, the role of neutrophils 

particularly in intestinal inflammation is still controversial whether beneficial or 

detrimental, reviewed in (Fournier and Parkos, 2012).  

Antigen presenting cells (APCs) like DCs are crucial in mediating immune 

homeostasis by bridging innate and adaptive immunity to foreign or self antigens. 

Interestingly, intestinal DCs were shown to be distinct from those in blood and also 

between non-inflamed and inflamed human colon (Hart, et al., 2005). Intestinal DCs 

isolated from IBD patients present increased expression of Toll-like receptors (TLRs) 

namely, TLR2 and TLR4. DCs control microbial driven T-cell polarization in part through 

the ligation of TLRs (Kaisho and Akira, 2003). TLR4 is required for recognition of 

lipopolysaccharide from Escherichia coli, and TLR2 recognizes peptidoglycan and 

lipoteichoic acid from Gram-positive bacteria and lipoproteins from both Gram-positive 

and Gram-negative organisms (Chow, et al., 1999; Michelsen, et al., 2001; Morath, et al., 

2002; Takeuchi, et al., 2000). Importantly, DCs  express another type of receptor (a C-

type lectin receptor), Dendritic cell specific intracellular adhesion molecule-3 (ICAM-3) 

grabbing nonintegrin (DC-SIGN) (that binds mainly high-mannose but also fucose 

moieties (Feinberg, et al., 2001; Svajger, et al., 2010)), being responsible to stablish the 

DCs’ interactions with endothelial cells (via ICAM-2) (Geijtenbeek, et al., 2000a), with T 

cells (via ICAM-3) (Geijtenbeek, et al., 2000b) and with neutrophils (via Mac-1)(van 

Gisbergen, et al., 2005). In those circumstances, DCs play a key role on the initiation 

and perpetuation of inflammatory cascade in IBD.  

Intestinal macrophages are also instrumental in gut homeostasis, owing to their 

plasticity and ability to change phenotype and function according to the neighboring 

environment. Most of the current knowledge about intestinal macrophages is 

predominantly based on mouse studies or on macrophages derived from peripheral 

blood monocytes from CD patients (Xue, et al., 2014) . Nonetheless, it is well established 

that bone marrow-derived monocytes are the precursors of tissue-resident intestinal 

macrophages. Hence, the production of interleukin (IL)-8 and transforming growth factor 

(TGF)-β promotes the recruitment of these monocytes (through blood circulation) into the 

intestinal mucosa (Smythies, et al., 2006). At least, in mice, there is a constant 

replacement of intestinal macrophages, eliminated by senescence or apoptosis, by 

newly recruited blood monocytes (Jenkins, et al., 2011).  

Macrophages may be classified in distinct subsets according to produced 

cytokines or other functional features. Namely, pro-inflammatory (M1) and anti-

inflammatory (M2) macrophages have been consequently regarded as mirrors of the 

polarization of T helper cell subsets (Mantovani, et al., 2004).  In IBD, tissue-resident 



General introduction 

 

15 | C h a p t e r  I   

macrophages are M2-type macrophages and CD68+ macrophages which massively 

infiltrate the intestinal mucosa. Despite they can spread throughout the thick mucosa and 

submucosa, their composition and function is distinct in UC and CD (Kuhl, et al., 2015). 

Regarding UC, macrophages only reach mucosa level but in CD they can also infiltrate 

the muscular layer and the mesenteric fat (Kredel, et al., 2013; Mahida, et al., 1989). 

 Remarkably, reduction of macrophages in colon biopsies has been a unique 

histological change in successful cases of treatment with glucocorticoids or anti- TNF-α-

antibodies (Caprioli, et al., 2013).Moreover, aldehyde dehydrogenase positive (ALDH+) 

macrophages (meaning retinoic acid synthesis) are reduced in the intestinal mucosa of 

UC (both active and remission) but not of CD patients and there is also a clear 

involvement of macrophages on fibrosis development more evident in CD than UC 

(Magnusson, et al., 2016). Emerging evidences indicate that IL-33 plays a role in 

epithelial restoration, repair, and mucosal healing in UC and CD (Duan, et al., 2012). 

More recently, it was suggested that IL-33 can restore goblet cell numbers and induce 

macrophage switching from the M1 to the M2 phenotype, thereby controlling intestinal 

inflammation in IBD (Seo, et al., 2017). 

In the late 1980’s, the discovery that Th cells may differentiate into Th1 and Th2 

cells subsets (Mosmann, et al., 1986) lead to the establishment of disease-specific 

cytokine patterns that distinct CD from UC. Those earlier evidences suggested that UC is 

a modified T-helper-2 (Th2) disease, while Crohn’s disease is Th1 driven, the so-called 

Th1 /Th2 paradigm for CD versus UC (Strober and Fuss, 2011). Throughout the years, 

UC have been designated a “Th2-like” disease supported by the predominant expression 

of IL-13 and IL-4 in UC patients. Accordingly, IL-4 and IL-13 mRNA levels were found 

significantly increased in rectal biopsies from UC patients compared with healthy controls 

(Inoue, et al., 1999). Furthermore, IL-5 has been observed highly expressed in CD4+ 

lamina propria cells of UC patients. On the other hand, CD has been designated Th1-

driven due to the increased expression of IFN-γ in patients with this condition (Fuss, et 

al., 1996). 

Over the past few years, the characterization of T cell differentiation, meaning T 

cell-subsets and their role in inflammation has been of paramount importance to 

understand their influence in chronic inflammatory diseases like IBD. The differentiation 

of naïve T cells, through the activation of separate signaling pathways, lead to 

differentiated Th cells, respectively designated as Th1, Th2 and Th17 or regulatory T 

cells (Treg), which suppress Th cells. This quartet of T cell subsets has an important role 

in orchestrating the adaptive immune response in IBD (Figure 7), as well summarized in 

(de Souza and Fiocchi, 2016). Importantly, the process of Th cell differentiation is 

mediated by STAT proteins which, although transiently activated, are gateways and the 
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first step on the road to commitment to a specific Th cell phenotype (O'Shea and Paul, 

2010). 

In 2014, a new population of CD4+ Th cells, which produce IL-9 and express the 

transcription factor PU.1, Th9 cells, has been implicated in the development of UC. Th9 

cells develop after Th0 cells encounter peptides presented on major histocompatibility 

complex II (MHC II) molecules in the presence of TGF- β and IL-4 cytokines. Through IL-

9 production, these cells can impair tissue repair processes, increase intestinal 

permeability and may enhance pro-inflammatory Th cell responses. Additionally, IL-9 

slightly increases tissue concentrations of TNF-α (Gerlach, et al., 2014). 

Notably, constant progresses in the development of new therapies, for UC or CD, 

have relied on this better understanding of T cell differentiation and specific cytokines 

role (Figure 7).  

Altogether, these cellular and molecular discoveries set the ground for the 

development of new and successful therapeutic approaches essential to improve the 

global IBD burden. For instance, Tofacitinib, an oral Janus kinase inhibitor, was the first 

JAK multi-cytokine blocker reported for the treatment of IBD (Sandborn, et al., 2012). 

And very recently the final results of clinical trial (OCTAVE) with tofacitinib, in moderately 

to severely active UC patients, demonstrated its efficacy, by induction and maintenance 

of both remission and mucosal healing (Sandborn, et al., 2017), two critical aspects to 

avoid IBD flares and sustained clinical remission. 
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Protein Glycosylation  

Since more than 25 years ago, the field of glycobiology had a tremendous growth 

confirming that glycans are fundamental players in biological processes. The new era of 

glycomics, in parallel with genetics and proteomics, brought new perspectives in 

biomedical research, from cancer research to infection and other diseases (Pinho and 

Reis, 2015; Rudd, et al., 2001).  

Interestingly, the magnitude of glycome repertoire - the spectrum of all glycans 

structures- is estimated to be 10-104 times bigger than the proteome and far more 

complex than the genome and proteome (Cummings, 2009; Cummings and Pierce, 

2014). From the four fundamental biomolecules in cells (nucleic acids, proteins, lipids 

and glycans), glycans are by far the ones that bring more diversity. If “DNA is made up of 

four nucleotides (G, A, T and C), so there are theoretically 4,096 possible ways to build a 

string of six elements, or a 6-mer. Proteins have more building blocks (20 amino acids) 

and can potentially assemble into 64 million different 6-mers. But 6-mer carbohydrates 

can adopt 193 billion possible configurations” (Peter Seeberger).Therefore, the diversity 

of glycan structures can provide an additional level of information content in a diversity of 

biological systems (Moremen, et al., 2012). 

By definition, glycosylation consists in the covalent attachment of a carbohydrate 

to proteins and lipids producing different families of glycoconjugates (Pinho and Reis, 

2015; Stanley, et al., 2015) (Figure 7). 

Glycoprotein is a glycoconjugate in which a protein carries one or more glycans 

linked to a polypeptide backbone, usually via nitrogen (in N-glycans) or oxygen (in O-

glycans) linkages. N-linked glycans are attached to asparagine (Asn) residue of proteins 

in the consensus peptide sequence Asn- X- Ser/Thr, where X is any amino acid except 

proline. O-glycans, particularly found on secreted or membrane bound mucins, consist of 

O-linked glycan attached to serine (Ser) or threonine (Thr) residue which can be further 

extended resulting in different types of O-glycans structures (Moremen, et al., 2012; 

Pinho and Reis, 2015). 

Nonetheless, as represented in figure 7, there are other classes of 

glycoconjugates like, glycosaminoglycans (GAGs) which are O-linked glycans, 

constituted by linear co-polymers of acidic disaccharide repeating units. Glycoproteins 

carrying one or more GAG chains are called proteoglycans and Hyaluronic acid is a 

GAG primarily found as a free sugar chain. 

Glycosphingolipids are ceramide – linked glycans which are major components of 

the outer leaflet of the cell plasma membrane. Other glycoproteins can also be found in 
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the outer leaflet of the plasma membrane linked to a phosphatidylinositol (GPI) termed 

GPI-anchored proteins (Moremen, et al., 2012; Pinho and Reis, 2015). 

 

 

Figure 7 – Major classes of glycoconjugates in mammalian cells. Adapted from (Pinho and Reis, 

2015). 

 

Protein glycosylation can confer many advantages in biological systems due to 

the diversity, complexity, hydrophilicity, and structural mobility of cell-surface glycans 

(Gagneux and Varki, 1999).  

Importantly, this process is not template driven and is subject to multiple 

sequential and competitive enzymatic pathways (Drickamer and Taylor, 1998; Esko and 

Selleck, 2002). Moreover, it is also not predictable by gene expression patterns per se 

once glycans composition is dynamically altered in response to small variations in the 

extracellular environment and intracellular events. 

 

N-glycosylation 

Glycosylation is one of the most abundant and complex forms of protein 

posttranslational modifications in which approximately 90% of glycoproteins are N-

glycosylated. It is a highly regulated process catalyzed, by a portfolio of specific enzymes 

(glycosyltransferases) that mediate the addition of carbohydrate structures (glycans) to 

proteins and lipids in the endoplasmic reticulum (ER) /Golgi secretory pathway. Notably, 

N-glycosylation is firmly stablished to be species-, cell- and tissue-specific process 

(Varki, 2006).  
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All eukaryotic N-glycans share a common core sequence, Manα1-3(Manα1-

6)Manβ1-4GlcNAcβ1–4GlcNAcβ1–Asn-X-Ser/Thr being classified in three major types 

(Stanley, et al., 2015): (1) oligomannose, in which only Man residues extend the core; 

(2) complex, in which “antennae” initiated by GlcNAc extend the core; and (3) hybrid, in 

which Man extends the Manα1-6 arm of the core and one or two GlcNAcs extend the 

Manα1-3 arm (detailed structures in figure 7) (Pinho and Reis, 2015).  

The N-glycans biosynthesis in eukaryotic cells is mainly divided in two 

phases. The first phase (Figure 8), at the ER membrane, in which a lipid-like 

polyisoprenoid molecule termed dolichol-phosphate (Dol-P), hold/mediate the assembly 

of a precursor oligosaccharide structure that is then transferred to the secretory and 

membrane proteins. In the second phase, the N-glycans processing, in the lumen of the 

ER and Golgi, is orchestrated by a diverse repertoire of glycosidases and 

glycosyltransferases (which main substrates are nucleotide sugars and dolichol-sugars) 

(Figure 8). This phase is dependent on the expression of glycosylation genes in each cell 

type in which the glycoprotein is processed, as well as on the physiological state of the 

respective cell which can affect the localization and activity of glycosylation enzymes and 

transporters (Stanley, et al., 2015). 

The assembly of precursor glycan in ER involves a GlcNAc-1-

phosphotransferase (ALG7, DPAGT1 in mammals) which transfers GlcNAc-1-P from 

UDP-GlcNAc to Dol-P forming the Dol-P-P-GlcNAc. Dol-P-P-GlcNAc is extended with 

two GlcNAc and five Man residues, from Dol-P-Man and Dol-P-Glc, respectively, 

originating the Dol-P-P-GlcNAc2Man5 before it is “flipped” across the ER membrane to 

the luminal side. Subsequently, other four Man residues are added from Dol-P-Man and 

three Glc residues from Dol-P-Glc. Dol-P-Man and Dol-P-Glc (used by mammalian 

MPDU1) are also made on the cytoplasmic side of the ER membrane and “flipped” onto 

the luminal side where occurs the synthesis of the mature N-glycan precursor 

Glc3Man9GlcNAc2-P-P-Dol (detailed structure in Figure 8). Lastly, this 14-sugar chain is 

transferred by an oligosaccharyltransferase (OST) to Asn residue in the consensus Asn-

X-Ser/Thr site in protein regions that have translocated across the ER membrane 

(Stanley, et al., 2015).   
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Figure 8. Schematic representation of the N-linked oligosaccharide assembly. Reprinted by 

permission from The Consortium of Glycobiology Editors, La Jolla, California: (Stanley, et al., 

2015), copyright (2017).   

 

The N-glycans processing occurs upon covalent attachment of the mature N-

glycan percursor (Glc3Man9GlcNAc2) to a protein. Then the process of trimming by 

glucosidases (I and II) takes place in the lumen of the ER, in which α-glucosidase I 

remove on the terminal α1–2Glc and α-glucosidase II sequentially removes the two inner 

α1–3Glc residues. This process originates the monoglucosylated intermediate 

Glc1Man9GlcNAc2 (G1M9 structure), the key ligand to initiate chaperone-assisted 

proofreading of protein folding by the calnexin (CNX) / calreticulin (CRT) quality control 

cycle. These lectins determine whether the newly made membrane and secreted 

proteins continue to the Golgi or are degraded (Caramelo and Parodi, 2015). 

Additionally to CNX/CRT, the quality control mechanism of protein folding 

involves three other components, ERp57 (a lectin-associated oxidoreductase acting on 

monoglucosylated glycoproteins), UGGT (a glucosyltransferase that creates 

monoglucosylated epitopes in protein-linked glycans) and a glucosidase (GII) that 

removes the glucose units added by UGGT (Parodi, et al., 2015). Cycles of 

deglucosylation by GII and reglucosylation by UGGT continue until the glycoprotein folds 

properly. If properly folded, these glycoproteins are packaged into COPII-coated vesicles 

and transferred to the Golgi. In case they remain unfolded, those proteins are recognized 

by UGGT which adds the single α1–3Glc to the glycan (removed by GII), thus recreating 

the identical N-glycan (G1M9) first recognized by CNX/CRT and contributing for ER 

retention time (Parodi, et al., 2015).  
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Glycoproteins that fail to properly fold are eventually driven to proteasomal 

degradation in the cytosol following the ER-associated degradation (ERAD) pathway, in 

which the extent of N-glycan demannosylation by ER mannosidases play a relevant role 

in the identification of irreparably misfolded glycoproteins (Parodi, et al., 2015). 

Normally, before leave the ER the last event is mediated by ER α-mannosidase I 

(MAN1B1) which removes the terminal α1-2Man from the central arm of Man9GlcNAc2 to 

produce a Man8GlcNAc2 isomer. 

 

 

Figure 10. Processing and maturation of N-glycans in ER/Golgi secretory pathway. Reprinted by 

permission of the Annual Review of Biochemistry, from Kornfeld R, Kornfeld S. 1985. Annu Rev 

Biochem 54: 631–634, adapted in (Stanley, et al., 2015), copyright (2017). 
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Late processing: Biosynthesis of hybrid and complex N-glycans 

 

The majority of glycoproteins exiting the ER to the Golgi carry N-glycans with 

either eight or nine Man residues. 

Trimming of α1-2Man residues continues with the action of α1-2 mannosidases 

IA and IB (MAN1A1, MAN1A2) in the cis-Golgi to give rise to Man5GlcNAc2, a key 

intermediate in the pathway to hybrid and complex N-glycans (Figure 10). 

The action of an N-acetylglucosaminyltransferase called GlcNAc-TI (MGAT1) on 

Man5GlcNAc2 in the medial-Golgi initiates the first branch of an N-glycan (deletion of 

MGAT1 gene blocks Man5GlcNAc2 to be further processed preventing synthesis of 

complex and hybrid N-glycans) (Stanley, et al., 2015). Subsequently, the majority of N-

glycans are trimmed by α-mannosidase II enzymes MAN2A1 or MAN2A2 in the medial-

Golgi, which remove the terminal α1-3Man and α1-6Man residues form 

GlcNAcMan3GlcNAc2. Following that acts another N-acetylglucosaminyltransferase, 

GlcNAc-TII (MGAT2) to add a second GlcNAc to the C-2 of the α1-6Man in the N-glycan 

core originating the precursor for all biantennary, complex N-glycans (Stanley, et al., 

2015). 

Hybrid N-glycans (small oligomannose N-glycans found in invertebrates and 

plants) can be formed if the GlcNAcMan5GlcNAc2 glycan (produced by MGAT1) do not 

suffer action of α-mannosidase II or due to incomplete action of α-mannosidase II, 

resulting in hybrids synthesis, GlcNAcMan4GlcNAc2 (Stanley, et al., 2015).  

In the medial- Golgi, complex N-glycan has two antennae or branches initiated by 

the addition of two GlcNAc residues. Additional branches can be initiated at C-4 of the 

core α1-3Man (by GlcNAc-TIV; MGAT4A, MGAT4B) and C-6 of the core α1-6Man by 

GlcNAc-TV (MGAT5) to originate tri- and tetra-antennary N-glycans. Similar reaction is 

catalyzed by MGAT5B or GlcNAc-TIX but preferentially on O-mannose glycans in brain 

(Taniguchi and Kizuka, 2015) . 

GlcNAc-TVI (MGAT6) catalyzes the formation of the most highly branched penta-

antennary complex-type N-glycan initiated at C-4 of the core α1-6Man by MGAT6. It is 

present in various chicken (Gallus gallus) tissues and fish however, both MGAT6 gene 

and its enzymatic activity have not been detected in mammalian tissues (Brockhausen, 

et al., 1989; Sakamoto, et al., 2000). 

Complex and hybrid N-glycans may also carry a “bisecting” GlcNAc residue that 

is attached to the β-Man of the core by GlcNAc-TIII (MGAT3). A bisecting GlcNAc on a 

biantennary N-glycan can be present in all of the more highly branched N-glycans. 
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Figure 10. Branching and core modification of complex N-glycans. Reprinted by permission from 

The Consortium of Glycobiology Editors, La Jolla, California: (Stanley, et al., 2015), copyright 

(2017). 

 

Glycan maturation in the Golgi 

During the terminal glycosylation, at trans-Golgi, the repertoire of hybrid and 

branched N-glycans can be further extended giving rise to higher sugar diversity at 

several levels including branch number, composition, length, capping arrangements and 

core modifications. For example, in vertebrate N-glycans, a major core modification is 

the addition of α1-6Fuc to the Asn-linked GlcNAc in the N-glycan core (Figure 10). 

Importantly, the action of α1-6fucosyltransferase (FUT8) requires the prior action of 

MGAT1 (Stanley, et al., 2015).  

Moreover, the majority of complex and hybrid N-glycans have extended branches 

resulting from the addition of Gal to the initiating GlcNAc to produce the ubiquitous 

building block Galβ1-4GlcNAc which is a type-2 N-acetyllactosamine (LacNAc) 

sequence. The sequential addition of LacNAc disaccharides, in tandem repeats, 

originate biosynthesis of poly-N-acetyllactosamines (poly-LacNAc) which are key ligands 

of lectins ( as galectins) and antibodies (Stanley, et al., 2015). 
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Role of glycans in the regulatory circuits of the immune 

response 

Glyco-immunology is an emergent area in health and life sciences with increasing 

amount of evidences demonstrating how the immune system is tightly controlled by 

cellular glycosylation. In fact, almost all of the key molecules involved in the innate and 

adaptive immune response are glycoproteins (Johnson, et al., 2013; van Vliet, et al., 

2008; Wolfert and Boons, 2013). Alterations in protein glycosylation both at the cell 

surface and on secreted glycoproteins can, positively and negatively dictate the immune 

response. 

The complex interplay between glycans and glycan-binding proteins (such as 

galectins, siglecs and other C-type lectin receptors (CLRs)) are recognized as crucial 

factors in the immune system. Additionally, other processes like antigen presentation, 

immune signaling cascades, innate recognition of microbial products and T cell response 

are also regulated in a glycan-dependent manner (Johnson, et al., 2013).  

Selectins are surfaces localized members of CLR family which are carbohydrate-

binding molecules that bind to fucosylated and sialylated glycoprotein ligands and are 

found on endothelial cells, leukocytes and platelets (E-, L- and P-selectin, respectively) 

(Ley, 2003). During an inflammatory response, the release of chemokines stimulates the 

endothelial cells to express selectins at their surface which are responsible for controlling 

leukocytes recruitment and homing to sites of inflammation and injury. An update of 

leukocyte adhesion cascade is reviewed in (Ley, et al., 2007). Interestingly, this 

particular feature leads to the successful use of anti-selectin antibodies in preclinical 

models as a new targets for inhibiting tissue-specific inflammation (Everts, et al., 2002; 

Jubeli, et al., 2012). However the challenge is inhibit specific subsets of leukocytes  that 

lead to inflammation without affecting trafficking and function of other unaffected 

leukocytes avoiding systemic immunodeficiency (Luster, et al., 2005).  

 Siglecs have a key role in self- versus non-self-discrimination. Several 

pathogenic microorganisms, including several strains of E. coli, have evolved the 

capacity to synthesize or capture sialic acids from their hosts and incorporate these into 

their own glycoconjugates using it as a mechanism of immune escape. Interestingly, it is 

also widely assumed that negatively charged sialic acids could reduce pathogen 

interactions with the host by electrostatic repulsion, and/or by inhibiting the alternative 

pathway of complement activation (Crocker, et al., 2007).  

Another important siglec is the cell surface CD22 glycoprotein, a key B-cell co-

receptor, which recognizes α(2,6)-linked sialylated glycans suppressing B-cell receptor 

(BCR) signaling (Poe and Tedder, 2012) and further preventing autoimmunity. 
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Accordingly, CD22-deficient mice exhibit hyperimmune responses in vitro and in vivo 

(Collins, et al., 2006). In contrast, ST6Gal1–deficient mice, which cannot make CD22 

ligands, exhibit hypoimmune responses (Hennet, et al., 1998). 

Galectins, are a family of soluble conserved carbohydrate-binding proteins, that 

preferentially bind N-acetyllactosamine sequences (Galβ(1,4)GlcNAc) of O- and N-linked 

glycoproteins. They can form galectin–glycan structures termed lattices (van Kooyk and 

Rabinovich, 2008), that contribute to restrict the interactions between receptors and co-

receptors on immune cells regulating intracellular signaling pathways, apoptosis, 

proliferation and migration (Liu and Rabinovich, 2010). After their first description in 1975 

(Teichberg, et al., 1975), galectins were later associated with modulation of the immune 

response in 1983 where an eletrolectin could prevent the onset of experimental 

autoimmune myasthenia gravis in rabbits (Levi, et al., 1983). 

Galectins family have three distinct classes based on their global structure, 

protopypical (e.g. galectin 1), tandem-repeat (e.g. galectin 8) and chimeric (e.g. galectin 

3). Galectins are highly expressed in leucocytes namely in activated T cells, Treg cells, 

macrophages and DCs. They can also play distinct functions in modulating either 

negatively or positively the immune system. Galectin 1 and 3 are known to suppress 

inflammation and T cell response (Chung, et al., 2000; Demetriou, et al., 2001; Toscano, 

et al., 2007). Galectin 1 is described to negatively regulate Th1 and Th17 effector cells 

by inducing cell death (Toscano, et al., 2007). Galectin 3 has been described to limit 

TCR clustering due to lattice formation in MGAT5-expressing cells controlling thereby the 

threshold of T cell activation (Chen, et al., 2009b; Demetriou, et al., 2001). Similarly, 

galectin 2 also exhibits a suppressive effect by inducing apoptosis of lamina propria T 

lymphocytes attenuating acute and chronic colitis in mouse (Paclik, et al., 2008). In 

contrast, galectin 8 and galectin 4 induce T cell immune response. When binding to T 

cells, galectin 8 promotes T-cell proliferation, possibly through unique interactions with 

CD45 (Tribulatti, et al., 2009). Galectin 4 mediates CD4+ T cells stimulation (by IL-6 

production) leading to exacerbation of T cell- mediated chronic colitis (Hokama, et al., 

2004). 

A good example of how glycosylation affects the adaptive immune system is 

shown by immunoglobulins (large Y-shaped glycoproteins) that are produced by B cells 

and plasma cells. Their glycosylation profile critically determines their biological function, 

namely recognition of microbial antigens. IgG is the most abundant class of antibody in 

human plasma (accounting to approximately 75% of serum immunoglobulins) 

representing the major antibody isotype mediating immunity against pathogens 

(Aschermann, et al., 2010). The IgG conserved functional (Fc) domain contains a single, 

highly conserved, glycosylation site (Asn 297) that carries complex N-glycans. This N-
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linked glycans can directly affect IgG antibody function. IgG agalactosylation, meaning 

loss of terminal galactose residues, has been observed in the sera of patients with 

autoimmune disorders like rheumatoid arthritis (RA) and IBD (Dube, et al., 1990; Parekh, 

et al., 1985; Shinzaki, et al., 2008). Interestingly, RA patients, in remission stages of 

disease, present an increase of α-2,6 sialylated (by ST6Gal-1 enzyme) IgG in circulation 

similarly with healthy controls. Moreover, high-dose intravenous immunoglobulin (IVIg) 

has been used as an effective treatment to control autoimmunity and later it was 

discovered that the anti-inflammatory portion of IVIg is exactly the α-2,6 sialylated N-

glycans on the Fc domain (Kaneko, et al., 2006). 

On the other hand, changes in the glycans repertoire can also fine tune host 

immune response by bi-directionally regulate microbiota content and function. 

Accumulating evidences have shown that gut microbiota and intestinal homeostasis are 

mediated by glycans influx (either from diet or mucosal secretion). Particularly in the 

intestinal mucosa, glycocalix (dense and complex coat of glycans) represents an extra 

physical and biological barrier. Glycoproteins on intestinal brush border membrane suffer 

a dynamic remodeling of its glycan content that shapes the intestinal homeostasis. The 

carbohydrate moieties (glycocalyx) at epithelial cells (ECs) surface, suffers a turning over 

of approximately every 6 to 12 hours in human jejunum (Moran, et al., 2011). This 

remodeling is crucial to maintain not only the protection barrier but also as a continuous 

source of nutrients that sustain commensal microbiome. For instance, mice experiments 

revealed a protective role of B4GALT1 expression, which encodes for β-1,4-

galactosyltransferase I, that mediates  the addition of galactose moeieties to 

glycoproteins. Higher galactosylation of N-glycans on mucus proteins has been 

associated with increased ratio of Firmicutes/Bacteroidetes in healthy conditions, 

conferring protection against TNF-induced systemic inflammation and DSS-induced 

colitis (Vanhooren, et al., 2013). By contrast, the sialic acid composition of the intestinal 

glycocalyx has been also associated with dysbiotic conditions. The overgrowth of E. coli 

that occurs in colitis was demonstrated to be dependent on the sialic acid release from 

the host´s glycans after sialidase activity (Huang, et al., 2015). The dependence of E. 

coli on sialidases secreted by Bacteroides spp. (abundant in intestinal inflammation) 

contribute to the overgrowth of E. coli and thereby to dysbiosis in patients with colitis 

(Gophna, et al., 2006). 

Moreover, several microorganisms (including meningococci, Trypanosoma and 

Helicobacter) can synthesize terminal glycan structures that are similar to those found in 

mammalian cells in a process of “molecular mimicry”. This “glycan escape” strategy 

contributes to hide from host immune system and thereby triggering pro-inflammatory 

responses (van Die and Cummings, 2010; van Kooyk and Rabinovich, 2008). 
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Another example of glycosylation impact in innate immune response was 

demonstrated by an elegant study, where mice deficient in a Golgi enzyme, α-

Mannosidase II (αM-II; MAN2A1) that partially abolishes the complex N-glycans 

production, lead to the exposure of unusual hybrid glycans epitopes (commonly 

expressed at pathogen surfaces) on erythroid lineage, contributing to the abnormal 

recognition by innate immune system and triggering an excessive co-stimulation of the 

immune response (Green, et al., 2007). 

Emergent evidences pointing out for a crucial role of glycans in mediating 

tolerogenicity of DCs. It was shown that sialylation of antigens can induce antigen-

specific immune tolerance which promotes a dual-tolerogenic function of DCs in inducing 

Treg cells and concomitantly, suppressing the IFN-γ- producting T cells. Hence, it can be 

a potential strategy to dampen excessive T-cell pathologies (Perdicchio, et al., 2016). 

Protein glycosylation can also influence the adaptive immune response and 

consequently T cell priming (Wolfert and Boons, 2013). On this process there are key 

glycoproteins, namely the MHC class I and II proteins which form a complex with 

glycosylated peptides to be recognized by T cells. Hence, T helper cell (by MHC II) and 

cytotoxic T cell (by MHC I) responses are highly driven in a glycan dependent manner 

(Neefjes, et al., 2011).  

More recently, protein O-GlcNAcylation, which consist in the addition of O-

GlcNAc moieties to serine or threonine residues of nuclear and cytoplasmic proteins by 

the O-GlcNAc transferase (OGT) through UDP-GlcNAc (Hart, et al., 2007), has been 

demonstrated to be implicated in the metabolic processes involved in T cell self-renewal, 

differentiation and proliferation (Swamy, et al., 2016). This work highlights that access to 

nutrients which enables all cellular functions is more highly regulated than previously 

imagined. Current data showed that T cells activation accompanies increased nutrients 

(glucose and glutamine) uptake inducing increase of UDP-GlcNAc which in turn can 

enhance OGT activity and glycosylation of multiple proteins such as c-Myc. The 

glycosylated form of c-Myc is an important factor that regulates a feedback mechanism 

controlling the nutrients uptake and UDP-GlcNAc production thereby regulating O- 

GlcNAcylation which is a key factor in the regulation of T cells and their precursors. The 

loss of OGT enzyme blocked T cell progenitor renewal, malignant transformation and 

peripheral T cell clonal expansion (Swamy, et al., 2016) . 

Additionally, complex O-glycans have also been demonstrate to be key in protein 

modification from which T cells depend to interact with selectins and in consequence, 

they are indispensable in regulating the trafficking of T cells, namely the distribution and 

homing of both naive and activated T cells in vivo (Hobbs and Nolz, 2017). Evidences 

support also that the capacity for memory T cells to rapidly traffic into a site of infection is 
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critical for protective immunity and is highly dependent on de novo synthesis of core 2 O-

glycans. Interestingly, it is postulated that stimulation of core 2 O-glycans on tumor-

specific T cells can be a potential combinatory therapy to enhance T cell trafficking and 

ultimately improve cancer immunotherapy (Hobbs and Nolz, 2017).  

Overall, glycans are key players in the regulatory circuits of both innate and 

adaptive immune response. However, it remains unclear whether glycans changes are 

cause or consequence of the inflammatory cascade. Therefore, the short-term goal in 

glyco-immunology field is the unceasingly effort on decoding and selectively modulate 

cellular glycomes which certainly will provide exciting opportunities to control innate and 

adaptive immune responses (Rillahan and Paulson, 2011; Smith and Cummings, 2013). 
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T cell receptor  

 

TCR structure and activity  

The T cell receptor (TCR) is the primordial receptor at the surface of T 

lymphocytes. It is a glycoprotein that interacts with other glycoproteins like MHC I and II 

in response to an immunological stimulus. MHC I interacts with TCRs on CD8+ T cells, 

whereas MHC II is recognize by CD4+ T cells (Johnson, et al., 2013; Rossy, et al., 2012). 

The stoichiometry of the TCR/CD3 complex has not yet been clearly established 

but is generally accepted to consist of a αβTCR heterodimer, two CD3ϵ chains, one 

CD3γ, one CD3δ chain and a ζ homodimer (Brownlie and Zamoyska, 2013; Rudd, et al., 

1999). 

According to the literature, TCR α, β subunits have at least 7 N-glycan addition 

sites and alterations on the glycoprofile can interfere with its flexibility, movement and 

interactions with surface molecules. TCR-CD3 complex has a total of 12 N-glycan 

addition sites (Kuball, et al., 2009; Rudd, et al., 1999). 

Activation of T cells is a key element in adaptive immune response and requires 

the coordination of complex signal transduction networks. The process of T cell 

activation begins at the immunological synapse formed at the interface of the TCR and 

APC (Figure 11). The synapse has a classic bull’s-eye pattern and it is organized into 

supramolecular activation clusters (SMACs), with the central SMAC (cSMAC) rich in 

TCRs. Then, surrounding this layer there is the peripherial SMAC (pSMAC) that is 

enriched in signaling co-factors and adhesion complexes. The distal SMAC (dSMAC) 

comprises CD45 glycoprotein among others (Rossy, et al., 2012). 

 

 

Figure 11.  The immunological synapse formed at the interface of the TCR and APC and 

organization of distinct supramolecular activation clusters (SMACs). Adapted from (Rossy, et al., 

2012). 
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This bull’s-eye pattern has been described in Th cells, cytotoxic T cells, Treg 

cells, B cells and natural Killer (NK) cells. However the SMAC organization is not 

necessarily required for T cell signaling because for instance at the interface between 

DCs and Th2 cells there are multiple focal structures instead (Rossy, et al., 2012). 

Interestingly, the pattern of immunological synapses in self-reactive T cells clonally 

derived from patients with multiple sclerosis (MS) and type 1 diabetes showed a strong 

TCR phosphorylation and signaling activity but cSMAC was not formed in self-reactive T 

cells (Schubert, et al., 2012). 

The TCR has no intrinsic enzymatic activity thus it depends on the kinase activity 

of the Src family kinase (SFKs), particularly Lck which initiates the signaling by binding to 

the cytoplasmic domains of the TCR co-receptors CD4 and CD8 (Brownlie and 

Zamoyska, 2013). 

Summarizing the cascade of events occurring upon activation of TCR signaling 

pathway (Figure 12), the TCR signal transduction is initiated by the recognition of 

cognate peptide-MHC molecules. As already mentioned, Lck is the first to be recruited to 

the TCR-CD3 complex, which phosphorylates immunoreceptor tyrosine- based activation 

motifs (ITAMs) in the CD3γ chain, CD3δ chain, CD3ϵ chains and the ζ-chains. 

Phosphorylation of the ITAMs enables the recruitment of ZAP70 (ζ- chain associated 

protein kinase), that is phosphorylated by LcK and activated. Activated ZAP70 further 

phosphorylates four key tyrosine residues on linker for activation of T cells (LAT), which 

recruits numerous signaling molecules to form a multiprotein complex, termed the LAT 

signalosome. This complex includes phospholipase Cγ1 (PCγ1), growth factor receptor-

bound protein 2 (GRB2), GRB2- related adaptor protein GADS, SLP76 (SH2 domain-

containing leukocyte protein), adhesion- and degranulation-promoting adaptor protein 

(ADAP), interleukin-2-inducible T cell kinase (ITK), NCK1 and VAV1. Then, LAT 

signalosome propagates signal to three major signaling pathways: the calcium (Ca2+), 

the mitogen-activated protein kinase (MAPK) and the nuclear factor- кB (NF- кB) 

signaling pathways, leading to the mobilization of transcription factors that are crucial for 

gene expression and for T cell growth and differentiation. Signals initiated from the TCR 

also result in actin reorganization and the activation of integrins by inside-out signaling 

(Brownlie and Zamoyska, 2013). 
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Figure 12. T cell receptor signaling cascade. Adapted from (Brownlie and Zamoyska, 2013). 

In fact, from all these elements in TCR signaling, LAT is considered to be a 

gatekeeper since it ensures signal propagation in a regulated manner. Indeed, cells 

deficient in LAT, such as Jurkat cell mutant JCAM2.5, cannot propagate TCR signals 

(Finco, et al., 1998). Moreover, LAT-deficient mice do not have mature T cells in spleen 

and lymph nodes, and the thymocytes of these mice were exclusively CD4-CD8- 

meaning that LAT-/- thymocytes fail to develop beyond the double negative (DN) stage. 

Thus, LAT also have a critical role on T cell development (Zhang, et al., 1999). 

However, there is a considerable number of evidences that point toward the 

existence of LAT-independent signaling pathways (Brownlie and Zamoyska, 2013). 

Surprisingly, it was observed that LAT-deficient T cells still proliferate and produce 

cytokines. Therefore, the simplistic idea of TCR signaling propagation in a linear manner 

through the LAT signalosome are still under investigation as well as spatiotemporal 

concepts of how LAT reaches the TCR (reviewed in (Brownlie and Zamoyska, 2013)). 

Overall, a critical understanding of the regulation of these signaling cascades is 

essential as these mechanisms regulate the thresholds of T cell activation, controlling 

antigen sensitivity, which is particularly important in naïve T cells that respond only to 

foreign-peptide-MHC-complexes to maintain immune tolerance (Adachi and Davis, 

2011).  

Notably, during TCR signal transduction, glycans play a key role in stabilizing 

individual molecules in the complexes at the immunological synapse and by protecting 

them from the action of proteases during T cell engagement  (for class II APCs this 
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process may take several hours). Additionally, glycans can restrict nonspecific protein-

protein interactions like aggregation of TCRs on the membrane helping to orient the 

interactions of the proteins in the central clusters (Rudd, et al., 1999). 

 

 

N-glycosylation and T-lymphocytes 

The proper function of T-lymphocytes function is highly dependent on their 

surface receptors which in turn are highly mediated by glycosylation. 

One of the major negative regulators of T-cell responses is the cytotoxic T-

lymphocyte protein 4 (CTLA-4) which function is dependent on its retention at T cell 

surface. Indeed after TCR activation, endocytosis rates are increased and Src-family 

kinases and phosphatidylinositol 3-kinase/Erk stimulate hexosamine flux in the Golgi to 

generate β1,6 GlcNAc branched N-glycans which in turn glycosylate CTLA-4 enhancing 

its surface retention and thereby suppresses T cell activation promoting immune 

tolerance. On the contrary, β1,6GlcNAc branched N-glycans reduction on T cells induces 

CTLA-4 endocytosis contributing to exacerbation of T cell response which can lead to 

autoimmunity (Dennis, et al., 2009). 

Programmed cell death protein-1 (PD-1) is another inhibitory receptor of T cells 

that leads to inhibition of T lymphocyte proliferation, cytokine production, cytolytic 

activity and suppression of immune response (Freeman, et al., 2000). Recently, it was 

demonstrated that core fucosylation (which refers to fucose attached to the innermost N-

acetylglucosamine of N-linked glycans, catalyzed by α1-6 fucosyltransferase (FUT8)) on 

N-linked oligosaccharides is required for cell-surface expression of PD-1 on T cells. 

Blocking this post-translational modification results in anti-tumor immune responses 

mediated by T cells, being a new attractive target for enhancing anti-tumor immunity in 

future clinical settings (Okada, et al., 2017). 

The T cell activity is also influenced by complexes of TCR and CD45 which are 

also critically dependent on glycosylation. Particularly, galectin-3 is a key mediator of the 

CD45 and the TCR signaling complex organization which via their glycans close 

proximity originate a lattice formation. Consequently, CD45 phosphatase activity induces 

downregulation of T-cell signaling, preventing T-cell activation (Wolfert and Boons, 

2013). 

The CD28 is another T cell surface glycoprotein important as secondary 

signaling molecule of T cell activation. Interestingly, nearly 50% of the molecular mass 
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of CD28 is constituted by N-glycans (Aruffo and Seed, 1987). Previous studies reported 

that N-glycosylation of human CD28 can negatively regulate CD28-mediated T cell 

adhesion and costimulation, namely the interaction between CD28/CD80. Different 

approaches like mutation of all potential CD28 N-linked glycosylation sites as well as 

treatment of Jurkat cells with inhibitors of N-glycosylation resulted in a defective CD28 

glycosylation and enhancement of the binding to CD80 expressed on APCs (Ma, et al., 

2004). 

CD25 receptor surface retention by branching N-glycans is important to control T 

differentiation and immune tolerance. Recently, it was demonstrated that by reducing 

UDP-GlcNAc and branching it induces a decrease of CD25 surface retention and IL-2 

signaling and promotes TH17 over iTreg differentiation (Araujo, et al., 2017).  

Notably, all these evidences reinforce that glycosylation plays a key role in T cell 

activation regulating not only TCR but also many of its key partners (co-stimulatory 

receptors and multiple receptor-ligand interactions between T cell and an APC). Hence, 

glycans alterations directly or indirectly dictate the overall T cell function (Johnson, et al., 

2013). 

 

 

Dysregulation of TCR N- glycosylation in autoimmunity 

Accumulating evidences have been demonstrating that β1,6GlcNAc branched N-

glycans structures regulate T cell activation (Demetriou, et al., 2001).This type of 

structures are catalyzed by the β1,6 N-acetylglucosaminyltransferase V (GnT-V) which is 

encoded by MGAT5 gene. MGAT5 gene transcription is positively regulated by Ras-Raf-

Ets (Chen, et al., 1998; Ko, et al., 1999), a pathway commonly activated in cancer cells 

as well as on activated T cells.  

In homeostasis, when an antigen presenting cell binds a specific TCR through the 

MHC II-peptide complex, the triggered TCR signaling activation has been shown to 

regulate multiple Golgi N-glycan branching-processing enzymes at the mRNA level, 

including MGAT5 (Chen, et al., 2009a). Increasing expression of MGAT5 lead to the 

enhancement of GnT-V activity and increase β1,6GlcNAc branched N-glycans structures 

on TCR which precludes the TCR clustering and signaling, leading to T cell growth arrest 

and, consequently, to a controlled immune response (Chen, et al., 2009a). The 

dysregulation of this key regulatory mechanism of T cell glycosylation with branched N-

glycans results in T-cell hyperactivity and susceptibility to immune-mediated diseases. 

Mice deficient in MGAT5 and lacking GnT-V function (no synthesis of β1,6GlcNAc 
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branched N-glycans structures), display a significantly increased TCR clustering, leading 

to a decreased threshold of T-cell activation and increased Th1 differentiation resulting in 

a hyperimmune response and increased susceptibility to autoimmunity (Demetriou, et al., 

2001; Morgan, et al., 2004). This increased sensitivity is also due to the lack of lattice 

formation between TCR complex and the endogenous polylactosamine-binding lectin, 

galectin 3 (Demetriou, et al., 2001).  

The production of these polylactosamine extensions in glycoproteins of T cells is 

central to the control of the immune response (Togayachi, et al., 2007). Accordingly, 

β3GnT2- deficient mice show a T cell hypersensitivity due to the reduction of 

polylactosamine on the N-glycan similarly to the observations in MGAT5 deficient mice 

(Demetriou, et al., 2001; Togayachi, et al., 2007) .  

On the other hand, the metabolic supplementation of mouse models of EAE and 

type I non-obese diabetic mice and T cells with GlcNAc resulted in the enhancement of 

GlcNAc branching on T cells by GnT-V activity, which increased the threshold for T cell 

activation, suppressing T cell growth and inhibiting Th1 differentiation concomitantly with 

a decreased disease severity (Grigorian, et al., 2011; Grigorian, et al., 2007). These 

results demonstrate that GnT-V-mediated glycosylation plays a key role in the regulation 

of T cell activity and signaling in immune-mediated disorders.  

The mechanism of GlcNAc uptake is still debatable but to date it was observed 

that exogenous GlcNAc added to mammalian cells appeared to be taken up by 

pinocytosis and was then converted to UDP-GlcNAc (Grigorian, et al., 2007). A recent 

study focused on the impact of GlcNAc supplementation on mouse physiology and 

metabolism showed that oral GlcNAc supplementation is mainly converted into body-

mass and fat content meaning weight gain and lipid storage in adult mice. Moreover, no 

significant alterations were observed in other parameters like calorie-intake, total activity, 

energy expenditure and gut microbiome (Ryczko, et al., 2016). However, it remains 

unclear whether O-linked GlcNAc is also altered when cells are exposed to exogenous 

GlcNAc. Nonetheless, Araujo and colleagues observed that the effects of GlcNAc on T 

cell differentiation were reversed by directly blocking Golgi branching activity, confirming 

that the effects of UDP-GlcNAc enhancement were predominantly through branching 

rather than other pathways (Araujo, et al., 2017). 

Recent evidences on mice suggested that composition of glycans, rather than 

their structure, determines their role (Mkhikian, et al., 2016). In mice lacking specific 

MGAT enzymes, disruption of branching pathway produce LacNAc with fewer branches 

glycans due to reduction of UDP-GlcNAc consumption at medial Golgi. Alternatively this 

unused GlcNAc is driven forward to trans Golgi where the local β3GnTs enzymes are 

postulated to be able to produce bioequivalent poly-LacNAc structures. Accordingly, the 
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authors proposed that loss of LacNAc  branches is balanced by increased production of 

linear LacNAc polymers, a Golgi self-correcting ability that sustain cell surface LacNAc 

density and thereby the galectin-glycoprotein lattice controlling the risk of autoimmunity 

(Mkhikian, et al., 2016). 

In the last decade, Demetriou and colleagues have been exploring this 

mechanism of T cells regulation by N-glycosylation and how N-glycan biosynthesis can 

rescue branching deficiency in MS disease model. In this regard, it has been proposed 

that MGAT5 is a gene that appears to be associated with severity and susceptibility to 

MS (Brynedal, et al., 2010; Li, et al., 2013), including in a GWAS (Brynedal, et al., 2010). 

Furthermore, it was proposed that the association between environmental factors 

(sunlight/vitamin D3 and metabolism) combined with multiple genetic variants (IL17RA, 

IL2RA, MGAT1 and CTLA-4) converge to dysregulate Golgi N-glycosylation and regulate 

MS disease development and severity (Mkhikian, et al., 2011). 

Another type of N-glycans structures with implications in T cell-mediated 

inflammation is core fucose catalyzed by α1-6 fucosyltransferase (FUT8). Recently, Fujii 

and colleagues demonstrated that FUT8 dysregulation is associated with IBD 

pathogenesis (Fujii, et al., 2016). In mouse models of induced colitis, the authors 

described that T cells display an increased expression of core fucosylation when 

compared with mice without colitis. Accordingly, the Fut8-/- mice developed a less severe 

colitis than Fut8+/+ mice, and T cells from Fut8-/- mice produced lower levels of T-helper 1 

and 2 cytokines. Accordingly, colonic samples from both CD and UC also revealed that 

inflamed mucosa exhibited higher levels of core fucosylation comparing to non-inflamed 

mucosa and healthy colon (Fujii, et al., 2016).  

Altogether, these emerging evidences on the impact of glycosylation in immune-

mediated diseases have been drawing the attention of many researchers and became 

also one of the main purposes of this doctoral thesis in the IBD field. 
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Experimental murine models of colitis 

In vivo models are generally used as good alternatives to test new hypothesis as 

they constitute more complex systems than cell lines, being frequently used as proof-of-

concept studies for new drug development. In IBD, there are suitable animal models 

available that closely resembles human IBD. 

In contrast with genetically engineered mouse models of IBD or adoptive T-cell 

transfer and spontaneous models of IBD, the chemically induced mouse models develop 

a much faster onset of inflammation and the involved procedures are relatively 

straightforward, being extensively used in the last decades.  

 

Chemically induced mouse models of colitis 

§ Dextran sulfate sodium model 

In this doctoral thesis, we have used one of the most widely used mouse models 

of colitis, the dextran sulfate sodium (DSS). This model was stablished since almost 30 

years ago, by Okayasu and colleagues, and it is the model that most closely resembles 

human UC in which mice develop similar symptoms like bloody stools, diarrhea and 

weight loss (Okayasu, et al., 1990). Although the exact mechanism of its colitogenicity 

remains to be elucidated, it is believed that DSS induces intestinal inflammation by 

damaging the intestinal epithelial cells allowing the dissemination of pro-inflammatory 

intestinal contents (e.g. bacteria and their products) into underlying tissue (Chassaing, et 

al., 2014; Wirtz, et al., 2017).  

The main advantages of this model is that induction of colitis is very simple (oral 

administration in drinking water), rapid (acute DSS colitis: 8–14 days; chronic DSS 

colitis: 52–56 days) and reproducible. It is possible to implement acute, chronic and 

relapsing models of intestinal inflammation by simply modifying the concentration of DSS 

and its frequency of administration (Wirtz, et al., 2017).  

Throughout the years, different studies demonstrated particularities of this model 

that need to be taken into account dependent on the final goal of the study namely strain 

differences (e.g. C57BL/6 mice are more susceptible to DSS-induced colitis than BALB/c 

mice); gender differences (e.g. male mice tend to be more susceptible than female mice) 

and age of induction is also a crucial aspect (e.g. mice must have 6 to 8 weeks at the 

beginning of induction). Moreover, the colitogenic potential of DSS is critically dependent 

on its molecular weight, ideally 36 to 50 KDa (Wirtz, et al., 2007; Wirtz, et al., 2017). 

Additionally, depending on the study purpose, a certain mouse strain can reveal other 
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critical aspects, for instance, a certain strain with a genotype never tested with DSS 

model can demonstrate outcomes different due to gender or age. In this regard, pilot 

studies are always required to initial test and to help in further protocols refinements 

despite the existence of detailed ones (Wirtz, et al., 2017). 

Interestingly, the DSS model can also be integrated in the type of mouse models 

used to investigate the narrow relationship between chronic colitis and neoplasia 

development.  The model AOM/DSS was proposed in 2003 by Takuji Tanaka and 

colleagues and consists on the combination of repeated cycles of DSS with the 

genotoxic agent azoxymethane (AOM). AOM is administered by an intraperitoneal 

injection following one week of oral DSS (in drinking water) and together these agents 

induce colonic epithelial cell damage and mutagenesis. Shortly, in 10 weeks, this model 

develops tumors (Tanaka, et al., 2003). Importantly, this model shows histopathological 

features of human colitis-associated colorectal cancer (CA-CRC) like distant-located 

tumors and invasive adenocarcinomas (De Robertis, et al., 2011). In addition to this 

chemically induced model, genetically modified mouse models, like  TRUC mice(Garrett, 

et al., 2009), IL-10 KO mice (Berg, et al., 1996) and TCR-α KO mice (Dianda, et al., 

1997), have been used to shed light on the understanding of CA-CRC. 

 

§ Trinitrobenzene Sulfonic Acid model 

 The hapten reagent 2,4,6-trinitro-benzene sulfonic acid (TNBS) was introduced in 

1989, by Morris et al. (Morris, et al., 1989), as a model of chemically induction of colitis 

by rectal administration. Ethanol is used as a vehicle as it is needed for disruption of 

intestinal barrier enabling the interaction of TNBS with colon tissue proteins (Ikeda, et al., 

2008; Neurath, et al., 1995). After the first week upon intracolonic administration, signs of 

severe disease characterized by bloody diarrhea and loss of body weight are observed 

(Antoniou, et al., 2016). 

 TNBS –induced colitis is a suitable model to assess therapeutic studies that 

closely resembles features of human CD like transmural inflammation with increase 

infiltration of macrophages, neutrophils and lymphocytes as well as colonic patch 

hypertrophy. This model is also known to develop an acute Th1 inflammation (Elson, et 

al., 1995). Chronic TNBS colitis in BALB/c mice is characterized by persistent lamina 

propria fibrosis, a well-known feature of CD (Antoniou, et al., 2016). 
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§ Oxazolone model 

 In 1998, oxazolone was described by Boirivant M. and colleagues, as a new 

method of experimental colitis (Boirivant, et al., 1998). As TNBS, oxazolone is also a 

hapten reagent that needs to be dissolved in ethanol and be administered topically to 

induce colitis. Of note, both methods are distinct in the type of T cell responses induced. 

Comparing with TNBS, oxazolone mouse model develops colitis restricted to the distal 

half of the colon. Moreover, oxazolone induces the release of TGF-β which plays an 

important role in the control of inflammation. This model typically induces a Th2- immune 

response, and tissue damage is characterized by an increased production of interleukin, 

IL-4 and IL-5 (Boirivant, et al., 1998). 

 Importantly, mouse strain susceptibility is an issue to be considered. Accordingly, 

C57BL/6 mouse strain is more resistant to oxazolone colitis and may require a 

subcutaneous sensitization step before intrarectal administration. In this case, it 

resembles histologically UC features with a mixed neutrophil/lymphocyte infiltration 

limited to the superficial layer. More recently, it was accepted as the ideal model to study 

the type-2- and type-9-related immune responses during intestinal inflammation 

(Gerlach, et al., 2014).On the other hand, in BALB/c mouse strain, chronic colitis can be 

induced by repetitive administration of oxazolone which can be useful to study specific 

characteristics on the progression of inflammatory response to a chronic stage (Wirtz, et 

al., 2017). 

 

Other IBD models 

§ Adoptive T cell Transfer model 

 Firstly described by in 1993 by Morrissey et al. and Powrie et al., adoptive T cell 

transfer model consists in the adoptive transfer of a subset of CD4+ T cells to syngeneic 

SCID or Rag-knockout mice, results in the development of a chronic, progressive colitis 

and wasting disease, usually 5 to 10 weeks after treatment (Morrissey, et al., 1993; 

Powrie, et al., 1993). As other models, it develops common colitis symptoms such as 

chronic, progressive disease with diarrhea and weight loss, heavily inflamed colon-

occasionally transmural damage and loss of mucus from goblet cells.  

This model has been extensively used for studying the function of effector cells 

and regulatory cells in IBD pathogenesis as well as testing new IBD drug candidates 

(Coombes, et al., 2005; Powrie, et al., 1994; Uhlig and Powrie, 2009). It has contributed 

to understand the mechanisms that control intestinal inflammation being, for instance, 
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widely used to identify mechanisms through which CD4+CD25+ Treg cells suppress 

intestinal inflammation in vivo. The initial findings demonstrate that transfer naive 

CD45RBhigh T cells (which cannot be induced to generate Treg cells) to lymphopenic 

mice induces colitis but if naïve T cells were transferred with mature CD45RBlow T cells 

(already contains Treg cells) prevents the development of intestinal inflammation 

(Kiesler, et al., 2015). The role of Th1 and Th17 effector T –cell responses in this model 

has been challenging to define but current data support that transfer colitis is largely 

mediated by Th1 cells producing IFN-γ. However, there are some evidences showing an 

atypical IFN-γ origin indirectly from a Th17 differentiation pathway depending on IL-23 

rather than directly from a Th1 differentiation (Kiesler, et al., 2015). 

Overall, cell transfer models are crucial to understand colitis immune regulation 

but it cannot be assumed that a model that depends on cell expansion in a lymphopenic 

host completely mimics human IBD. However, comparing with other chronic colitis 

models, adoptive transfer colitis present several practical advantages to pharmacological 

testing (e.g., the synchronized onset of disease, no generation of anti-drug antibodies 

and commercial availability of mice). 

 

§ IL-10 Knockout model 

 IL-10 is a key immunosuppressive cytokine that drives the maintenance of gut 

homeostasis and in 1993, it was identified that IL-10- deficient mice develop chronic 

enterocolitis. This murine model develops spontaneous inflammation of the colon 

characterized by the presence of an inflammatory infiltrate made up of lymphocytes, 

macrophages and neutrophils (Kuhn, et al., 1993). Currently, it is known that genetic 

polymorphisms of IL-10 confer risk to both UC and CD (Franke, et al., 2008; Franke, et 

al., 2010).  

 Throughout the years, several studies using this model shed light on how IL-10, 

alone or in combination with other molecular alterations, is a key factor on colitis 

development. Recently, the ability to respond to TLR stimulation through regulation by 

PTEN phosphatase was shown to be important in IL-10-deficient mice’ susceptibility to 

develop colitis. It was shown that mice lacking both IL-10 and PTEN develop early onset 

disease and increase severity and could form colonic tumors (Im, et al., 2014). 

Moreover, PTEN/ IL-10-deficiency seems to influence colitis pathogenesis through 

alterations in gut microbiome due to a predominance of Bacteroides organisms (Im, et 

al., 2014). Furthermore, IL-10R murine studies indicate that IL-10R-dependent signals 

suppress pro-inflammatory macrophages function as well as enhance tolerogenic 
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macrophages properties, both at the peripheral level and in the intestine. This study 

defined innate immune IL-10R signaling as a key factor regulating mucosal immune 

homeostasis in mice and humans (Shouval, et al., 2014). 

 Taken together, this model not only has been essential to understand intestinal 

immune response mediated by IL-10 signaling pathways but it can also represent an 

important tool to further explored target drug development to a subset of patients once 

that particularly early-onset IBD patients harboring mutations in IL-10R genes (Shouval, 

et al., 2014).  

 

Apart from the different aforementioned animal models, other models have 

emerged to study human gastrointestinal disorders like IBD, such as the in vitro organoid 

models (Dedhia, et al., 2016). Despite they are hard to implement, they have been 

optimized and became more frequently used because we can gain insights on the cell 

composition and organization once their cellular complexity and physiology is similar to 

that of native organ systems. Therefore, they represent an extraordinary technical 

breakthrough being an important tool for basic biology and clinical applications (Dedhia, 

et al., 2016; Noben, et al., 2017a). Emergent evidences focused on studying stem cells 

from IBD patients, demonstrate distinct expressed genes in organoids from patients with 

UC in comparison to controls pointing out to a genetic imprinting which is recapitulated in 

vitro (Dotti, et al., 2017; Noben, et al., 2017b). 

  Additionally, linking those models with the topic of this doctoral thesis, it is worth 

to mention that all these in vivo models of IBD have also shed light on the importance of 

glycosylation alterations, both N- and O- glycosylation, on colitis development. In fact, 

several studies demonstrate that glycosylation-based modifications in mice have an 

association with intestinal inflammation presenting different phenotypes, some promoting 

colitis protection, others increasing colitis susceptibility or even spontaneously developed 

colitis as summarized in Table 3. 
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Table 3. Examples of glycosylation alterations associated with intestinal inflammation. 

Type of 

alterations 
Colitis association Intestinal feature References 

Core 3 -/- Susceptible to DSS 
Mucins were more 

susceptible to proteolysis; 
Loss mucus barrier  

(An, et al., 
2007; 

Bergstrom, et 
al., 2017) 

Core 1 -/- Spontaneously develop 
colitis 

Mucins were more 
susceptible to proteolysis; 

Loss mucus barrier 

(Bergstrom, et 
al., 2017) 

FX -/-  

(fucosylation 

deficiency) 

Develop colitis 

Altered the composition of 

the fecal microbiota, 

epithelial barrier dysfunction, 

altered epithelial proliferation 

(Wang, et al., 
2017) 

MUC 2 -/- 
Spontaneously develop 

colitis 
Associated with epithelial 

barrier dysfunction 
(Van der Sluis, 

et al., 2006) 

FUT 8 +/+ Develop more severe colitis 
than FUT 8 -/- 

Increase TCR signaling and  
production of inflammatory 

cytokines 

(Goto, et al., 
2014) 

 

In summary, the use of well-established murine models of colitis and the 

continuous development of novel in vivo models of colitis are a crucial tool to better 

understand intestinal inflammation and IBD pathogenesis. Together with the progress on 

routine methods for analysis of the degree of intestinal inflammation such as in vivo 

imaging of inflammation (Becker, et al., 2005), it can promote a new body of knowledge 

regarding the abnormalities that lead to the genesis of intestinal inflammation.  
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Main aims  

IBD is a multifactorial disorder and although progress has been made in IBD 

research, its precise etiopathogenesis is far from being fully elucidated. Therefore it is of 

paramount importance to identify and characterize the underlying molecular mechanisms 

of IBD pathogenesis in order to improve the development of novel biomarkers that may 

help the determination of prognosis and also improve patients’ stratification for 

appropriate treatment. Accumulating evidences have been shown that GnT-V-mediated 

glycosylation on T cells has a critical role in the regulation of some immune-mediated 

disorders, such as multiple sclerosis (Demetriou, et al., 2001; Grigorian and Demetriou, 

2011). Since this question was never addressed in IBD, the main goal of this project is to 

assess for the first time whether the dysregulation of this coordinated interplay (T cell 

function/branched N-glycans) is a novel underlying molecular mechanism in IBD with 

potential clinical and therapeutic applications. 

The general aim of the present thesis is to disclose how glycans regulate the 

immune response in IBD, emphasizing the role of N-glycosylation of T cells in IBD 

pathogenesis and the potential of specific glycans, such as N-acetylglucosamine 

(GlcNAc) as an immunomodulatory strategy in IBD.  

 

Specific aims  

 

1. To uncover the underlying molecular mechanism of T cells´ branching N-

glycosylation in UC. 

 

 A growing body of evidence has demonstrated that in homeostasis and self-

tolerance, the T cell activation (TCR signaling) induces up-regulation of the MGAT5 gene 

which in turns leads to GnT-V-mediated glycosylation of the TCR. The N-glycan 

branching on T cells, catalyzed by GnT-V glycosyltransferase, promotes the formation of 

multivalent galectin binding which negatively regulates T cell growth by precluding TCR 

clustering, and increasing the TCR activation thresholds, ultimately modulating the 

immune response. 

We aimed to assess whether T cell regulation by GnT-V-mediated glycosylation is 

a new underlying molecular mechanism in UC. 
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In chapter II, we investigated the relationship between the levels of expression of 

branched N-glycan structures in the intestinal lymphocytic infiltrate in relationship with 

clinicopathological parameters of UC patients. We also analyzed the MGAT5 gene 

expression and GnT-V enzymatic activity comparing UC patients with different disease 

severity versus controls. 

 

 

2. To evaluate the relationship between the glycosylation of T cells and 

regulation of the immune response underlying UC to understand the 

impact of glycophenotype modulation in intestinal inflammation. 

 

Despite the recent advances in IBD therapeutic resources, a high proportion of 

patients remain refractory to conventional treatment, and approximately half of the 

patients with UC do not achieve sustained remission. Furthermore, issues related to side 

effects and failure in therapy response highlight the need to identify more effective and 

targeted-specific therapies. Following the disclosure of the molecular mechanism based 

on dysregulation of TCR N-glycosylation (in chapter II), we hypothesized that modulating 

N-glycosylation of T cells, by enhancing the hexosamine pathway, can control immune 

response in UC.  

 

In chapter III, we investigated the biological effects and the potential therapeutic 

efficacy of GlcNAc in T cells function and activity. We used an ex vivo approach to 

assess the effects of supplementation with GlcNAc in the regulation of T cell response, 

testing T lymphocytes isolated from blood and biopsies of UC patients. The clinical 

efficacy of GlcNAc was further tested in pre-clinical models of colitis using the DSS-

induced mouse model. Moreover, we assessed whether deficiency in branched N-

glycosylation (in MGAT5 null or heterozygous mice) has an impact in disease onset and 

severity. We also conducted in vivo studies to assess the therapeutic efficacy of GlcNAc 

in severe forms of colitis testing different routes of administration.  

 

 



 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dysregulation of T cell receptor N-glycosylation: a 

molecular mechanism involved in ulcerative colitis. 
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Mucosal T lymphocytes from patients with ulcerative colitis (UC) were

previously shown to display a deficiency in branched N-glycosylation

associated with disease severity. However, whether this glycosylation

pathway shapes the course of the T cell response constituting a

targeted-specific mechanism in UC remains largely unknown. In this

study, we demonstrated that metabolic supplementation of ex vivo

mucosal T cells from patients with active UCwithN-acetylglucosamine

(GlcNAc) resulted in enhancement of branched N-glycosylation in the

T cell receptor (TCR), leading to suppression of T cell growth, inhibition

of the T helper 1 (Th1)/Th17 immune response, and controlled T cell

activity. We further demonstrated that mouse models displaying a

deficiency in the branched N-glycosylation pathway (MGAT5
−/−,

MGAT5
+/−) exhibited increased susceptibility to severe forms of colitis

and early-onset disease. Importantly, the treatment of thesemicewith

GlcNAc reduced disease severity and suppressed disease progression

due to a controlled T cell-mediated immune response at the intestinal

mucosa. In conclusion, our human ex vivo and preclinical results dem-

onstrate the targeted-specific immunomodulatory properties of this

simple glycan, proposing a therapeutic approach for patients with UC.

T lymphocytes | T cell receptor | adaptive immune response |
branched N-glycosylation | intestinal inflammation

Inflammatory bowel diseases (IBDs), encompassing Crohn’s
disease and ulcerative colitis (UC), are chronic, relapsing, and

life-long inflammatory disorders of the gastrointestinal tract affecting
mainly young populations. The incidence of IBD is increasing
worldwide, and the disease remains incurable, placing a heavy bur-
den on populations by reducing patients’ quality of life and in-
creasing disability (1). The current therapeutic strategies for IBD are
limited by reduced effectiveness, high costs, and/or side effects. This
scenario highlights the urgent need in the clinic of identifying novel
molecular markers capable of being selectively targeted with new and
optimized therapies. Future progress in IBD monitoring and therapy
mostly depends on the identification of key mechanism(s) mediating
intestinal inflammation that could be therapeutically targeted.
The immune system is tightly regulated by glycosylation, through

the addition of carbohydrate structures (glycans) to key molecules
(proteins) involved in innate and adaptive immune responses (2).
The N-acetylglucosaminyltransferase V (GnT-V) is a glycosyl-
transferase encoded by the human MGAT5 gene that catalyzes
the synthesis of β1,6-N-acetylglucosamine (GlcNAc) branched
N-glycans, which are known to play pivotal roles in many glycopro-
teins in cancer (3–6) and also in T cell activity and function (7, 8). In
homeostasis and self-tolerance, T cell activation [via T cell receptor
(TCR) signaling] induces up-regulation of the MGAT5 gene, which,
in turn, leads to GnT-V–mediated glycosylation of the TCR (9).
Consequently, it can promote growth arrest of T cells early, by raising

T cell activation thresholds via limiting TCR clustering at the immune
synapse (and restricting TCR signaling), and, later, by increasing
surface retention of growth inhibitory receptors such as cytotoxic T
lymphocyte antigen-4 (CTLA-4) (9).
In fact, mice deficient in the MGAT5 gene display an increased

susceptibility to autoimmune diseases (7, 10, 11). These mice lacking
GnT-V function (no synthesis of β1,6-GlcNAc branched N-glycan
structures) display an increased TCR clustering and increased T
helper 1 (Th1) differentiation that result in a hyperimmune response
in mouse models of multiple sclerosis (7, 10). Interestingly, in mouse
models of experimental autoimmune encephalomyelitis (EAE) and
type I diabetes, it was shown that supplementation with GlcNAc
induces increased N-glycan branching, through increasing the hex-
osamine pathway, that was associated with inhibition of T cell
growth and differentiation (12, 13), leading to delayed disease
progression. Moreover, N-glycan branching was also found to reg-
ulate T cell development (14). Recently, it was demonstrated that
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branching N-glycans potentiate the differentiation of induced
regulatory (iTreg) T cells over Th17 differentiation (15). Im-
portantly, and in the setting of human immune-mediated disor-
ders, we have recently found that patients with UC exhibit a
deficiency in branched glycosylation (catalyzed by GnT-V) in
mucosal T cells that was associated with disease severity. Patients
with UC who have severe disease showed the most pronounced
defect on branched N-glycans in intestinal T cells, together with
a significant reduction of MGAT5 gene transcription in these
cells (16).
In the present study, and building upon our previous findings in

patients with UC (16), we have evaluated the impact of glycosylation,
particularly the branched N-glycosylation pathway, in the regulation
of the T cell-mediated immune response in patients with UC. We
further explored whether this mechanism could be therapeutically
targeted in vivo through a simple glycan-based strategy. Our results
showed that metabolic supplementation of mucosal T cells, isolated
from patients with active UC, with GlcNAc led to the enhancement
of branched N-glycosylation on the TCR, controlling T cell activation
and function. Preclinical data further demonstrated that GlcNAc
treatment of MGAT5 null or heterozygous mice developing severe
forms of induced colitis significantly controlled disease severity and
progression due to suppression of the intestinal T cell-mediated
immune response, with good clinical effects when GlcNAc was
topically administered by enemas. Altogether, this study highlights
the potential of glycans as novel immunomodulatory agents in IBD,
warranting validation in human clinical trials.

Results

Ex Vivo GlcNAc Supplementation Increased Branched N-Glycosylation

of T Cells from Patients with Active UC. We have previously dem-
onstrated that patients with UC display reduced branched
N-glycosylation on mucosal T cells (16). To assess the ability of
glycans as repairers of the above-mentioned mechanistic defect, we
herein promoted, ex vivo, the hexosamine biosynthetic pathway (SI
Appendix, Fig. S1A) in purified intestinal T cells by metabolic sup-
plementation with GlcNAc. Previous studies showed that supple-
mentation with GlcNAc increases the availability of the substrate
(UDP-GlcNAc) to Golgi enzymes such as GnT-V, enhancing β1,6-
GlcNAc branching N-glycans, particularly in T cells (13). To test this
hypothesis, T cells (CD3+) were isolated ex vivo from both the in-
testinal lamina propria of fresh colonic biopsies and peripheral
blood of patients with UC who have active disease and were sup-
plemented with increasing doses of GlcNAc. Different GlcNAc
concentrations (40 mM, 80 mM, and 100 mM) were tested, and
40 mM did not reveal major alterations compared with nontreated
T cells (SI Appendix, Fig. S1B). The expression of β1,6-GlcNAc
branched N-glycans on colonic T cells was evaluated by flow
cytometry using Phaseolus vulgaris leukoagglutinating (L-PHA) lectin.
We observed a dose-dependent increase of branched N-glycans on
intestinal T cells upon GlcNAc supplementation across different
patients (Fig. 1A). This increased modification with branched
N-glycans was also observed in T cells isolated from peripheral blood
mononuclear cells of patients with active UC displaying FSChigh and
SSChigh light-scattering parameters, characteristic of activated T
lymphocytes (Fig. 1B). The increased expression of β1,6-GlcNAc
branched N-glycans was detected both on CD4+ and CD8+ T cells
(SI Appendix, Fig. S1 C and D). No effects of GlcNAc treatment in
the proportion of CD4+ and CD8+ T cell subsets in the cultures were
observed (SI Appendix, Fig. S1 E and F), supporting that GlcNAc
supplementation leads to a specific modification with branched gly-
cans on T cells in a dose-dependent manner. Importantly, the en-
hancement of branched N-glycans was only observed in T cells from
patients with active UC (Fig. 1C and SI Appendix, Fig. S1G). T cells
from healthy controls and from patients with inactive disease did not
show alterations in the levels of branched glycans upon treatment
with increasing concentrations of GlcNAc (Fig. 1C and SI Appendix,
Fig. S2), possibly due to the higher baseline branching comparing
with patients with active UC. These results were further confirmed by
other technical approaches. Increased expression of β1,6-GlcNAc
branched N-glycans on a band the same size as the TCR β-chain

(TCRβ) after GlcNAc supplementation was also detected by L-PHA
blotting (Fig. 1C) and by TCR immunoprecipitation using lysates of
lamina propria T lymphocytes (LPLs) purified from patients with UC
(Fig. 1D). Interestingly, this increased branching of N-glycans after
GlcNAc supplementation was found to occur in intestinal T cells
from patients with UC with different Mayo subscores (with Mayo
endoscopic subscores 1, 2, and 3) with a trend association with disease
severity, as depicted in SI Appendix, Fig. S1G. The internalization of
externally given GlcNAc was already demonstrated in cell lines (17).
The specific effects of GlcNAc in enhancing branched glycosylation
on T cells from patients with active UC was further demonstrated by
the reversed effects on L-PHA mean fluorescence intensity when
T cells were treated with the N-glycan branching inhibitors kifu-
nensine (KF) and swainsonine (SW) (SI Appendix, Fig. S3) in T cells
from biopsies and blood of patients with active UC. Moreover, the
specific effects of GlcNAc in the enhancement of branched glyco-
sylation in T cells was further validated by supplementation of T cells
from patients with active UC with other glycan types such as D-
mannose, which revealed no impact in branched N-glycan expression
(SI Appendix, Fig. S3). To further validate these observations, we also
performed imaging flow cytometry showing that TCRα/β+ cells dis-
play an increase of fluorescence intensity due to staining with L-PHA
on the cell membrane. This increase was observed in T cells dis-
playing blast-like morphology (Fig. 1 E and E1). Taken together,
these results demonstrate that treating ex vivo T cells from patients
with active UC with GlcNAc promotes the hexosamine biosynthetic
pathway enhancing β1,6-GlcNAc branched N-glycans on the TCR,
and thus restoring the deficiency on branched N-glycans previously
shown in mucosal T cells from patients with UC (16). Next, we have
determined the specificity of this enhancement of β1,6-GlcNAc N-
glycan branching by analyzing the correspondent GnT-V enzymatic
activity. Interestingly, and in line with our previous observations on
MGAT5 gene transcription (16), T cells from patients with active UC
displayed reduced GnT-V enzymatic activity compared with healthy
controls (SI Appendix, Fig. S4). Our results showed that this reduced
GnT-V enzymatic activity of T cells could be significantly recovered
after metabolic supplementation with GlcNAc (Fig. 2A), which fur-
ther supports the effects of GlcNAc in the enhancement of N-glycan
branching mediated by GnT-V. In the N-glycosylation branching
pathway, the β1,6-GlcNAc branched N-glycan catalyzed by GnT-V
can be further extended with polylactosamine structures (ligands for
galectins), which, in turn, can be terminally sialylated (SI Appendix,
Fig. S1A). Our results showed that GlcNAc supplementation of ex
vivo activated T cells led to increased expression of β1,6-GlcNAc
branched N-glycans (as detected by L-PHA lectin) (Figs. 1E and 2 B
and B1) with a trend of increased extension with polylactosamine
structures, as indicated by staining with the Lycopersicon esculentum
agglutinin (LEL) (Fig. 2 B and B1). Additionally, we determined
whether there was a terminal addition of α2,6-linked sialic acid, rec-
ognized by binding of Sambucus nigra agglutinin (SNA), and/or α2,3-
sialic acid, recognized byMaackia amurensis agglutinin (MAL-II). The
results demonstrated a trend of increase in α2,6-linked sialic acid, and
no consistent alterations in α2,3-sialic acid linkages were detected
(Fig. 2 B and B1). Overall, our results support that ex vivo supple-
mentation of T cells from patients with UC with GlcNAc has the
potential to enhance the branched N-glycosylation on T cells,
remodeling the T cell glycoprofile, which is ultimately expected to
have an impact on the regulation of the immune response.

Shaping the T Cell-Mediated Immune Response in UC Through

Increased Branching N-Glycans. After demonstrating the ability of
GlcNAc supplementation to repair the deficiency of branched
N-glycans on ex vivo T cells, we next evaluated its impact on the
modulation of T cell responsiveness. The metabolic supple-
mentation with GlcNAc of ex vivo activated T cells from naive
patients (without therapy) resulted in significant suppression of
their proliferative response to anti-CD3/CD28 mAb stimulation
(Fig. 3 A and A1). In addition, and importantly, the increased
N-glycan branching on T cells resulted in a significant reduction
in the production of the proinflammatory cytokines TNF-α, IFN-
γ, and IL-17A, which are associated with UC pathogenesis (18),
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in a GlcNAc dose-dependent manner (Fig. 3B), supporting its effect
on the control of Th1/Th17-type immune responses. The effects of
GlcNAc on the suppression of proinflammatory cytokine production
were found to be independent of cell death and/or decreased T cell
proliferation. After normalization of cytokine concentrations to the
respective T cell proliferation index (index of division), we still ob-
served a reduction in the production of proinflammatory cytokines
(SI Appendix, Fig. S5A). Moreover, the percentage of IFN-γ– and
TNF-α–expressing cells among total CD4+ T cells, evaluated by
intracellular flow cytometry, was decreased upon GlcNAc treatment
(Fig. 3B1). The impact of GlcNAc supplementation on other cy-
tokines, such as TGF-β and IL-10, is not significant (SI Appendix,
Fig. S5 B and C). The specific effects of GlcNAc in suppressing
proinflammatory cytokine production is further confirmed by in-
hibitors (KF and SW), which blocked the regulatory impact of
branched N-glycans in T cell function (SI Appendix, Fig. S6). Next,
we have evaluated the expression of the transcription factors (T-
bet, RORγt, Foxp3, and Gata3) in T cells (CD3+) under ex vivo
GlcNAc treatment. The results showed that GlcNAc supple-
mentation was associated with a reduction in the expression of T-
bet and RORγt, which corroborates the negative impact on the
Th1/Th17-type response (Fig. 3 C and C1). The expression of
Foxp3, a transcription factor associated with regulatory T cells as
well as with human activated T cells (18), was also found to be
reduced upon GlcNAc treatment. To gain insight into the mo-
lecular basis of this modulation of the T cell response through
metabolic supplementation with GlcNAc, we analyzed its impact
on the TCR signaling pathway. We observed that GlcNAc sup-
plementation led to an inhibition of the phosphorylation of
ZAP70 and LAT, thereby hindering T cell activity by controlling
the TCR signaling pathway (Fig. 3D). Additionally, we evaluated
whether GlcNAc supplementation had an impact on T cell apo-
ptosis. Our results showed that T cells from patients with active
UC treated with GlcNAc displayed an increased susceptibility to
apoptosis compared with nontreated T lymphocytes as soon as 3 h

after stimulation (SI Appendix, Fig. S7A). This effect was not seen
in T cells from controls and patients with inactive UC, which
demonstrated no differences, or even a trend to decrease apoptosis,
respectively, at the same time points upon GlcNAc supplementa-
tion. This argues against a putative effect of hyperosmolarity in the
observed increase of apoptosis/cell death in GlcNAc-supplemented
T cells from patients with active UC and in controls (16) (SI Ap-
pendix, Fig. S7A). Treatment with the branched N-glycan inhibitors
(KF and SW) did not reverse the effects of GlcNAc in apoptosis (SI
Appendix, Fig. S7B). At 72 h, a significant decrease in branched
glycosylation levels was observed with KF and SW (SI Appendix, Fig.
S3); however, no differences in the apoptosis were detected (SI
Appendix, Fig. S7B). The percentage of cell death was unchanged or
even higher with SW and KF than with treatment with GlcNAc only
(SI Appendix, Fig. S7B1). Taken together, these data collectively
demonstrate that ex vivo GlcNAc supplementation of T cells from
patients with active UC enhances the branched N-glycans and
resulted in a significant suppression of T cell proliferation and TCR
signaling, as well as controlled Th1/Th17-type immune responses.

Treatment with GlcNAc Reduces Disease Severity and Ameliorates

Clinical Signs of Disease in Mice with Colitis. To determine whether
dysregulation of branched N-glycans on TCR occurs in different
experimental mouse models of colitis, we have evaluated two dif-
ferent chemically induced colitis mouse models, the dextran sodium
sulfate (DSS)-induced and 2,4,6-trinitrobenzene sulfonic acid
(TNBS)-induced models (19), in C57BL/6 wild-type mice. In both
models, colitis was successfully induced, and we have observed a
similar impact on the dysregulation of branched N-glycans in the
TCR (SI Appendix, Fig. S8 A and B), which is in accordance with
our previous observations on human patients with UC (16). The
DSS-induced colitis model was selected as the ideal one to proceed
with, since the rectal induction of disease in the TNBS model would
interfere with the enema administration of GlcNAc. After disease

Fig. 1. Ex vivo GlcNAc supplementation of T cells from patients with UC resulted in increased branching N-glycans. (A and B) CD3+ T cells from patients with

active UC were cultured with different concentrations (millimolar) of GlcNAc, and the fold change of mean fluorescence intensity due to L-PHA staining was

determined by flow cytometry. The scatter plots illustrate the mean ± SEM of five biological replicates. One-way ANOVA using the Newman–Keuls multiple

comparison posttest: *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. (C) Protein lysates of purified CD3+ T cells under GlcNAc treatment were subjected to L-PHA lectin

blotting to evaluate the expression levels of β1,6-GlcNAc branched N-glycans on a protein band corresponding to the migration profile of the TCRβ. WB,

Western blot. (Inset) Linear regression using mean values per treatment condition. (D) Immunoprecipitation (IP) of TCR followed by β1,6-GlcNAc branched N-

glycan recognition with L-PHA. The density of bands is indicated below each band. (E) Imaging flow cytometry analysis (on an ImageStreamX) of L-PHA

membrane distribution on TCR+ cells after GlcNAc supplementation in T cells isolated from blood of patients with active UC. Representative images of ac-

tivated T cells display blast-like morphology showing colocalization (overlaid images) of TCRαβ and L-PHA staining on the cell membrane. (E1) Bars depict the

mean ± SEM of L-PHA staining intensity on gated TCRαβ+ L-PHAhigh cells from three independent experiments. One-way ANOVA using Dunnett’s multiple

comparison posttest: **P ≤ 0.01. In all experiments, results are normalized to the corresponding untreated condition (0 mM).
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onset using 2% DSS, GlcNAc was administered through two different
routes: orally, by supplementing the drinking water with 0.25 mg/mL
GlcNAc, and/or rectally, using 0.5 mg/mL GlcNAc enemas. With
this approach, we assessed the therapeutic effects of GlcNAc
on disease activity and on the control of intestinal inflammation.
The experiment design is summarized in Fig. 4A. Our results
showed that mice with colitis and treated with GlcNAc exhibited
lower body weight loss (Fig. 4B) and significant improvements in
disease activity index (DAI) (Fig. 4C) in comparison to mice with
colitis not treated with GlcNAc (DSS control). Importantly,
whenever animals received GlcNAc topically by enema adminis-
tration (either alone or in combination with oral GlcNAc), the
body weight changes were lower in comparison to animals receiving
only oral GlcNAc. These results suggest that GlcNAc enemas may
have promising topical effects on the control of disease severity
(Fig. 4 B and C, Insets). Accordingly, macroscopic observation of
the colon showed that mice with colitis displayed visible colonic
edema (swelling of the bowel wall) that recovered upon GlcNAc
treatment (SI Appendix, Fig. S8C). In addition, mice with colitis
displayed extensive lymphocytic infiltrates (Fig. 4D, arrowhead)
presenting with CD3+ cells (Fig. 5A) in the intestinal lamina
propria, together with notable alterations of the glandular mor-
phology. Furthermore, these animals also showed a reduced mucus
layer (produced by glycoproteins at the glycocalyx), a natural bar-
rier that confers protection from microbiota, preventing disease
aggressiveness and progression (20). When animals with colitis were
treated with GlcNAc, there was a decrease in the lymphocytic in-
filtrate and an improvement of the glandular architecture (Fig. 4D),
which is compatible with disease remission (21). To further in-
vestigate the relationship between this overall improvement of
disease severity through GlcNAc treatment and the levels of β1,6-
GlcNAc branched N-glycans on LPLs, we performed L-PHA and
CD3 histochemistry in the formalin-fixed, paraffin-embedded
(FFPE) colonic specimens from the different groups of animals
(Fig. 5A). The results showed that induction of colitis was accom-
panied by a notable intestinal lymphocytic infiltrate in the lamina
propria, including CD3-expressing cells that expressed low levels of
branched N-glycans. When mice were treated with GlcNAc, an

increased expression of β1,6-branched glycans in the inflammatory
infiltrate was observed (Fig. 5A, arrowheads). Importantly, the ad-
ministration of GlcNAc also resulted in increased mucus lining,
with augmented expression of branched glycans in glycoproteins in
the superficial mucus layer, which is compatible with disease re-
mission. Afterward, we investigated whether the TCR was partic-
ularly targeted by the observed enhancement of branched N-glycans
in vivo. The results showed that GlcNAc treatment resulted in in-
creased branching glycosylation on intestinal T cells, particularly in
the TCR (Fig. 5 B and B1). To further address the mechanistic basis
of the clinical efficacy of GlcNAc, we have evaluated the impact on
T cell activity and signaling. Interestingly, LPLs from GlcNAc-
treated mice displayed a decrease in the phosphorylation levels of
ZAP70 and LAT that was more pronounced in mice treated with
GlcNAc enemas (Fig. 5C). This result supports control of T cell
activity through GlcNAc treatment, with effective results in topical/
enema administration. Next, the effects of GlcNAc administration
on the expression levels of T-bet, the transcription factor associated
with proinflammatory Th1 cell polarization, were assessed in situ in
the intestinal lamina propria. We have observed abundant cells
expressing T-bet in lymphocytic infiltrates in mice with colitis that
were markedly reduced in GlcNAc-treated mice (Fig. 5D, Insets).
Furthermore, mice treated with GlcNAc revealed a significant re-
duction of IFN-γ production and a trend in the suppression of IL-
17A secretion, further supporting that the enhancement of
branched N-glycans by GlcNAc treatment controls Th1/Th17-type
immune responses in vivo (Fig. 5E). Taken together, our in vivo
results demonstrate a therapeutic effect of GlcNAc in a colitis-
induced mouse model, revealing the immunomodulatory proper-
ties of this agent in the control of intestinal inflammation and,
consequently, in the control of disease severity and progression.

Deficiency in Branched Glycosylation in MGAT5 Null or Heterozygous

Mice Is Associated with Early-Onset Disease and Increased Severity of

Colitis that Is Suppressed by GlcNAc Treatment. To gain insights into
the targeted-specific therapeutic effects of GlcNAc, we used
MGAT5 null or heterozygous mice that display a deficiency in
branched N-glycosylation, mimicking the mechanistic defect de-
scribed in humans (16). The impact on DSS-induced colitis onset
and severity was assessed in MGAT5 heterozygous (+/−, partial de-
ficiency on branched N-glycosylation) and MGAT5 knockout (−/−,
absence of branched N-glycans) mice. Those genotypes represent
intermediate N-glycans and the loss of one branch (β1,6-branching)
of N-glycans, which may mimic mild/moderate versus severe de-
ficiency on branched glycosylation. Our results showed that after
DSS induction, MGAT5 null or heterozygous mice exhibited in-
creased susceptibility to early-onset disease and to severe forms of
colitis. At day 2 after DSS induction, more that 50% of MGAT5−/−

mice developed both mild and moderate forms of colitis compared
with WT mice, which only developed clinical signs of colitis at day
6 postinduction (Fig. 6A). Moreover, at the end of DSS induction
period (day 7), and based on the DAI, we observed increased sus-
ceptibility to severe forms of colitis in MGAT5 null or heterozygous
mice (Fig. 6A). As depicted in the pie chart in Fig. 6A, on day 7,
more than 50% of MGAT5−/− mice exhibited severe forms of dis-
ease (scores ≥3) and 29% of MGAT5+/− mice developed severe
colitis. In contrast, WT mice presented only mild/moderate forms
of the disease. These results reinforce that MGAT5-mediated
branched glycosylation has a strong impact on UC disease onset
and progression.
Afterward, we tested the effect of GlcNAc treatment on the

control of disease severity in mice with the different MGAT5
genotypes. As shown in Fig. 6 B and B1, MGAT5+/− mice with
colitis and treated with GlcNAc presented lower body weight loss
and lower DAI compared with nontreated controls. With regard
to body weight changes and DAI scores, the same tendency was
observed in MGAT5−/− mice treated with GlcNAc (Fig. 6 C and
C1). Due to their higher susceptibility to colitis, nontreated
MGAT5−/− animals were euthanized on day 10 since they
reached the established humane end points. MGAT5−/− mice,
besides developing a much more aggressive disease phenotype,

Fig. 2. Remodeling of the glycosylation phenotype upon metabolic sup-

plementation with GlcNAc. (A) Impact of GlcNAc supplementation on GnT-V

activity was determined using a pool of lysates from treated vs. nontreated

peripheral blood T cells, in three biological replicates of patients with active

UC, from two independent technical experiments. Student’s t test: **P ≤

0.01. (B) Flow cytometry evaluation of glycophenotype of T cells upon

GlcNAc supplementation. (B1) Scatter plot: fold change of MFI due to

staining with each lectin on T cells, in two biological replicates with different

stages of disease severity (Mayo endoscopic scores 1 and 2), from two in-

dependent experiments. Results are normalized to the untreated condition,

which was taken as 1. Student’s t test: *P ≤ 0.05. NS, not significant.
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were also less responsive to GlcNAc, which makes GlcNAc
therapy in these mice more challenging. Nevertheless, the results
in MGAT5+/− and MGAT5−/− mice (Fig. 6 B–D) showed that
even in these mice, treatment with GlcNAc improved clinical
scores compared with the scores of DSS mice. This beneficial
effect was pronounced whenever GlcNAc was administered
topically by enema (single or in combination with oral adminis-
tration), as evidenced by lower body weight loss and lower colitis
scores compared with DSS mice. Interestingly, when GlcNAc
treatment was initiated earlier in disease course of MGAT5−/−

mice, at day 5, when animals started to develop severe colitis, we
observed a decrease of the colitis scores compared with non-
treated diseased animals (DSS), which supports the benefits
of treating these susceptible animals earlier with GlcNAc, as
demonstrated in Fig. 6D.

GlcNAc Treatment of MGAT5 Null or Heterozygous Mice Attenuates

Disease Progression by Controlling Th1/Th17-Type Immune Responses.
MGAT5 null and heterozygous mice showed disorganization of the
glandular architecture and an increase of inflammatory infiltrates in
the colonic mucosa after DSS-induced colitis that was improved
overall upon GlcNAc treatment (Fig. 7A). Notably, the evaluation
of β1,6-GlcNAc branched N-glycan levels on CD3+ LPLs con-
firmed that the induction of colitis was accompanied by decreased
expression of branched N-glycans in LPLs from MGAT5+/− mice
and by the absence of branched N-glycans in MGAT5−/− mice with
induced colitis (DSS) (Fig. 7A). Interestingly, when mice of both
MGAT5 genotypes were treated with GlcNAc, a recovery of β1,6-
branched glycan expression was observed in the intestinal in-
flammatory infiltrate (Fig. 7A, arrowhead) and in the superficial

mucus layer, which is compatible with mucosal healing. The positive
detection of L-PHA staining in MGAT5 null mice upon GlcNAc
supplementation was unexpected, as these mice lack the GnT-V
enzyme. This positive detection was confirmed at the protein level
by L-PHA blot (Fig. 7B and SI Appendix, Fig. S9A). In fact, the
reactivity of L-PHA in MGAT5−/− mice is the lowest, compared
with heterozygous and WT mice, but it is still positive. These ob-
servations may be in line with redundant effects of other GnTs at
the Golgi (22–24) that, within an activated hexosamine pathway,
may compensate for the absence ofMGAT5 by producing the β1,6-
GlcNAc branched glycans, although with a much lower yield of
synthesis, as we have observed. In an attempt to explore the po-
tential compensatory synthesis of β1,6-GlcNAc branched N-glycans
in MGAT5 null mice, interestingly, we have observed that the
MGAT5b gene [a homologous gene of MGAT5a that codifies the
GnT-IX or GnT-Vb enzyme (25)] is apparently up-regulated in
colonic T cells from MGAT5 null mice treated with GlcNAc
compared with control mice (nontreated mice) (SI Appendix, Fig.
S9B). MGAT5 null mice with DSS-induced colitis do not express
MGAT5b. This preliminary evidence suggests GnT-IX/Vb as a
potential candidate that might compensate for the synthesis of β1,6-
GlcNAc branched glycans in MGAT5 null mice. This issue needs
further investigation. We then assessed the enhancement of
branched N-glycans specifically on T cells after GlcNAc treatment.
MGAT5 null or heterozygous mice treated with GlcNAc showed an
enhanced expression of branched N-glycans in the TCR compared
with nontreated diseased animals (DSS) (Fig. 7 C and D). This
effect was highlighted when animals were treated topically with
GlcNAc enemas (Fig. 7 C andD). To explore the mechanistic effects
of GlcNAc treatment in the T cell-mediated immune response, the

Fig. 3. Control of T cell-mediated immune response through enhancing branching N-glycosylation. (A) Purified CD3+ T cells from fresh biopsies of naive

patients with active UC were labeled with CFSE and cultured with GlcNAc treatment. The gated cells in the histograms correspond to the percentage of live

cells. (A1) Bar plot: the mean percentage of effect ± SEM due to GlcNAc supplementation on T cell proliferation in comparison to untreated cells. Results

include four biological replicates. Student’s t test: *P ≤ 0.05. (B) Cytokine profile assessed by flow cytometry in the supernatants from ex vivo T cell cultures

under GlcNAc supplementation. Bar plots: mean fold change ± SEM of cytokine concentrations (picograms per milliliter) in six biological replicates. Student’s t test: *P ≤

0.05; **P ≤ 0.01. (B1) Evaluation of the percentage of IFN-γ– and TNF-α–producing CD4+ T cells treated vs. nontreated with GlcNAc. Bar plots: mean ± SEM percentage

of CD4+cytokine-producing cells in three biological replicates from two independent experiments. Two-way ANOVA with Bonferroni postcorrection: **P ≤ 0.01. (C)

Expression of the transcription factors (TFs) in CD4+CD45+ T cells isolated from patients with UC and analyzed by flow cytometry. Histogram overlays correspond to the

expression of the indicated TFs observed upon GlcNAc supplementation (gray-shadowed histograms depict the respective unstained control). (C1) Bar plots: mean fold

change in TF mean fluorescence intensity ± SEM in two biological replicates, from two independent experiments. Two-way ANOVA with Bonferroni postcorrection:

*P ≤ 0.05; **P ≤ 0.01. (D) Western blot analysis of TCR signaling, p-ZAP70, and p-LAT assessed in T cell lysates from cultures supplemented with GlcNAc. Bar plots:

mean ± SEM fold change of p-ZAP70 and p-LAT densities normalized to tubulin in five biological replicates, from three independent experiments. Student’s t test: *P ≤

0.05. In all experiments, results are normalized to the corresponding untreated condition (0 mM), which was taken as 1.
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impact on TCR signaling was evaluated in MGAT5 null and het-
erozygous mice. An overall decrease of ZAP70 phosphorylation,
indicative of reduced TCR signaling, was detected in colonic T cells
from GlcNAc-treated mice that was evident when GlcNAc was
administered topically (Fig. 7E). This topical effect was particularly
observed in MGAT5−/− mice, where oral treatment did not affect
TCR signaling. The more marked effect achieved through GlcNAc
enema administration suggests that this molecule may be more effi-
ciently taken up by cells in this way, likely by increasing its local
concentration, thus facilitating its entry into the hexosamine path-
way and usage by glycosyltransferases other than GnT-V (SI Ap-
pendix, Fig. S9A) that may redundantly catalyze the branched
N-glycans. These redundant effects need further investigation. Ad-
ditionally, the evaluation of the Th1 proinflammatory response
revealed that GlcNAc treatment in both genotypes was associated
with reduced proportions of cells expressing T-bet in lymphocytic
infiltrates compared with control mice with colitis (Fig. 7F). Nota-
bly, similar to our observations of GlcNAc treatment in T cells from
patients with UC, colonic explants from MGAT5 null or heterozy-
gous mice treated with GlcNAc indicate a trend for IFN-γ sup-
pression, but with a more pronounced effect in reducing IL-17A.
These results further support the impact of GlcNAc treatment and,
consequently, the enhancement of branched N-glycans in control-
ling Th1/Th17-type immune responses also in the IBD in vivo
model (Fig. 7G). Regarding the impact of GlcNAc on regulatory
T cells, no apparent difference in the numbers of FoxP3-expressing
cells was observed at the intestinal lamina propria comparing non-

treated versus GlcNAc-treated mice of MGAT5wt and MGAT5−/−

genotypes (SI Appendix, Fig. S9C). Nevertheless, further studies are
needed to better characterize the regulatory effects of GlcNAc
treatment in the different components of the immune response, such
as in macrophages (SI Appendix, Fig. S9 D and E), as proposed by
previous reports (26), and other T cell populations. Taken together,
these data support the targeted-specific effects of GlcNAc that were
able to repair the deficiency in branched glycosylation on T cells as-
sociated withMGAT5 deficiency, thus controlling progression of colitis.

Discussion

IBD is characterized by a substantial heterogeneity concerning dis-
ease onset, course, response to therapy, and progression to compli-
cations (e.g., hospitalization, need for surgery, cancer) (1). Moreover,
and despite recent advances in IBD therapeutic resources, a high
proportion of patients remain refractory to conventional treatment,
and approximately half of the patients with UC do not achieve

Fig. 5. Colitis-induced mouse model treated with GlcNAc showed increased

branched N-glycosylation associated with suppression of T cell function. (A)

L-PHA histochemistry and CD3 immunohistochemistry. L-PHA lectin reactivity

showed an increased expression of β1,6-branched structures in the intestinal

inflammatory infiltrate (positive to CD3) as well as an increase in mucus

lining in mice treated with GlcNAc enemas (arrowheads). (Magnification:

63×.) (B) Immunoprecipitation (IP) of TCR followed by β1,6-GlcNAc branched

N-glycan recognition in mouse colon, DSS (DSS-induced colitis) vs. DSS + GlcNAc

treatment (Tx). WB, Western blot. (B1) Scatter plot: ratio of densities of L-PHA

reactivity normalized to that of TCR depicted as the mean ± SEM comparing DSS

(n = 2) mice with DSS + GlcNAc Tx (n = 3) mice. Student’s t test: *P ≤ 0.05. (C) TCR

signaling by Western blot analysis of the phosphorylation levels of ZAP70 and

LAT in LPLs. Values of pZAP70 densities normalized to tubulin are indicated. (D)

Immunofluorescence of T-bet in colonic sections of DSS vs. DSS + GlcNAc Tx.

(Insets) T-bet–expressing cells at intestinal inflammatory infiltrate are highlighted.

(Magnification: 20×.) (E) Concentration of IFN-γ and IL-17A in the supernatants of

24-h colonic explant cultures from DSS and DSS + GlcNAc TxMGAT5wt (n = 5)

mice by ELISA. Plots depict the mean ± SEM of two to three animals per

group. Student’s t test: **P ≤ 0.01. NS, not significant.

Fig. 4. Colitis-induced mouse model treated with GlcNAc displays significant

control of disease severity and recovery from clinical signs. (A) Schematic

representation of the in vivo study performed on C57BL/6 mice. (B and C)

Body weight changes and DAI. (B) Effects of GlcNAc on body weight change

(%) comparing DSS control and GlcNAc-treated animals. Graphs depict the

mean ± SEM. Two-way ANOVA with Bonferroni postcorrection: ***P ≤ 0.001.

(Inset) Discrimination of the effects of GlcNAc on body weight change (%)

using different routes of administration. Scatter plots include the mean ±

SEM. One-way ANOVA with Bonferroni postcorrection: *P ≤ 0.05; ***P ≤

0.001. (C) DAI comparing mice with colitis that were untreated with those

that were treated with GlcNAc. Plots depict the mean ± SEM. Two-way

ANOVA with Bonferroni postcorrection: *P ≤ 0.05; **P ≤ 0.01. (Inset) Dis-

crimination of the effect of GlcNAc on colitis scores using different routes of

administration. Plots depict the mean ± SEM. One-way ANOVA with Bon-

ferroni post correction: ***P ≤ 0.001. (D) Representative histological images

(H&E) of colonic samples from mice [normal colon, DSS (DSS-induced colitis),

and GlcNAc treatment (Tx) (DSS + GlcNAc Enema Tx)]. (Magnification: 40×.)
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sustained remission (27). In addition, issues related to side ef-
fects and failure in therapy response highlight the need for more
effective and targeted-specific drugs (28). We have recently
demonstrated that patients with UC exhibit a deficiency in
branched glycosylation on intestinal T cells due to a transcrip-
tional reduction of the MGAT5 gene that accompanied disease
severity (16).
Herein, we uncovered a prominent role for the branched gly-

cosylation pathway in IBD pathogenesis, by shaping the course of
the T cell response. This pathway is thus an attractive target for
novel therapies. Indeed, we have shown here that checkpoints of
T cell immune response in UC could be modulated by metabolic
supplementation with the simple sugar GlcNAc. We showed that
GlcNAc therapy concomitantly increased branched N-glycosylation
on T cells and down-regulated T cell proinflammatory responses
both ex vivo and in vivo. In line with these observations, it was
previously reported that lack of β1,6-GlcNAc branched N-glycans,
by targeted deletion of the locus encoding GnT-V, results in en-
hanced TCR signaling and increased susceptibility to multiple
sclerosis (7, 10). Moreover, and in accordance with our results, the
increase of N-glycan branching through GlcNAc salvage into the
hexosamine pathway was associated with a decreased threshold in
T cell activation and more stable CTLA-4 surface expression, which
resulted in the inhibition of adoptively transferred EAE (7, 13).
The evidence presented here suggests that GlcNAc supple-

mentation of T cells isolated from patients with active UC resulted
in remodeling of the glycophenotype of T lymphocytes through a
marked increase of β1,6-GlcNAc branched N-glycans and an in-
crease of polylactosamine structures, the ligand for galectins (29),
that can then be terminally sialylated, predominantly with α2,6-
sialic acid residues. This glycan reprogramming on T cells was
shown to translate into key immunomodulatory effects in UC.
Importantly, the enhancement of branched N-glycans on T cells
induced by GlcNAc supplementation led to the suppression of
T cell proliferation; inhibition of T cell signaling; reduced pro-
duction of the proinflammatory cytokines TNF-α, INF-γ, and IL1-
7A; and controlled Th1- and Th17-type responses. Both Th
responses have been associated with IBD pathogenesis (30).
Furthermore, these results are in accordance with a very recent
report using mouse T cell cultures, which showed the ability of
GlcNAc to promote iTreg over Th17 differentiation (15).
The glycosylation of T cells can also have an impact on the sus-

ceptibility to cell death (31). Accordingly, treatment of T cells with
GlcNAc induced an increased susceptibility to apoptosis, which is at
the core of different regulatory processes controlling T cell activa-
tion and expansion, thus avoiding exacerbated inflammation (32).
This effect of GlcNAc on apoptosis was dose-dependent and limited
to T cells from patients with active UC (SI Appendix, Fig. S7B). In
agreement, previous reports have shown that extension with poly-
lactosamine structures, which are ligands for galectins (such as
galectin 1), was associated with proapoptotic effects of CD4+ T cells
(31, 33). Nevertheless, and given that treatment with KF and SW did
not reverse the apoptotic effects induced by GlcNAc in the cells of
patients with active UC, it cannot be excluded that factors other
than branching glycans can also contribute to GlcNAc-mediated
regulation of in vitro T cell apoptosis. Importantly, besides the
TCR, the enhancement of branched N-glycosylation can also
modify other receptors like the coreceptors CD4 and CD8, as well
as the growth inhibitory receptor CTLA-4 (7, 10, 22). Moreover,
CD45 and CD25 are also potential targets of branched glycosyl-
ation modification that can further contribute to the regulation of
the T cell-mediated immune response through branching N-
glycans (15, 34). Immunomodulation through GlcNAc-mediated
enhancement of branched glycosylation, as described here, is a
promising therapeutic approach to restore T cell homeostasis in
IBD (SI Appendix, Fig. S10). Indeed, metabolic regulation of T cell
function has been highlighted by recent research (35) and may be
manipulated to reduce T cell-mediated inflammation (15, 36).
The preclinical data reported here provide the proof of concept

supporting such a therapeutic approach in IBD. Deficiency of the
MGAT5 gene was associated with higher susceptibility to severe

forms of colitis and early-onset disease. These data highlight the
prominent role of branched N-glycosylation in the pathogenesis of
IBD, and are in accordance with previous studies on multiple
sclerosis (11). GlcNAc supplementation improved clinical scores
and was associated with a better disease course in mice developing
the most severe disease phenotype (MGAT5−/−). These immune-
suppressive effects catalyzed by GlcNAc were observed by both
oral and enema administration routes, with promising effects when
mice received GlcNAc topically via enemas. This topical effect of
GlcNAc is in line with the ability of GlcNAc to be more efficiently
taken up by the intestinal mucosa, thereby entering directly into the

Fig. 6. MGAT5 null or heterozygous mice develop early-onset colitis and an

increase in disease severity that is suppressed by GlcNAc treatment. (A)

Evaluation of colitis onset and disease severity in MGAT5 null or heterozygous

mice: C57BL/6 WT (n = 14), MGAT5+/− (n = 23), and MGAT5−/− (n = 11) mice.

Active disease was defined when animals showed a DAI of ≥2, and three stages

of severity were defined: mild (≥2 and <2.5), moderate (≥2.5 and <3), and severe

(≥3). Average results of body weight change (B and C) and DAI (B1 and C1) of

MGAT5+/− (n = 23) andMGAT5−/− (n = 9) mice, respectively, randomly distributed

in controls and GlcNAc treatment groups are shown. DSS-induced colitis (DSS) vs.

DSS treated with GlcNAc treatment (DSS + GlcNAc Tx). Animals showing severe

signs of disease were euthanized (†). (B and B1, Insets) Discrimination of the

efficiency of GlcNAc treatment (colitis scores) with different routes of adminis-

tration upon 4 d of treatment. Graphs correspond to the mean ± SEM of

17 animals (three to seven animals per route of administration). Student’s t test

(B and B1) and one-way ANOVA with Bonferroni postcorrection (B and B1, In-

sets): *P ≤ 0.05*; **P ≤ 0.01; ***P ≤ 0.001. Body weight changes of MGAT5−/−

mice treated through different routes vs. nontreated upon 2 d of treatment (C)

and DAI scores of MGAT5−/−mice treated (n = 7) vs. nontreated (n = 2) (C1) are

shown. (C and C1, Insets) Discrimination of the efficiency of GlcNAc treatment

(colitis scores) with different routes of administration upon 3 d of treatment.

(D) Evaluation of the impact of early oral route (O) + enema route (E) GlcNAc

treatment (starting on the second day of disease onset: 5–6 d after DSS in-

duction) on the colitis scores (DAI of animals per group) of MGAT5−/− mice,

comparing DSS (n = 5) with GlcNAc treated mice (n = 4).
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hexosamine pathway to increase branched glycosylation. Intriguingly,
in MGAT5−/−, with the absence of MGAT5/GnT-V, expression of the
β1,6-GlcNAc branched N-glycans detected by L-PHA lectin histo-
chemistry and blotting was positive and slightly increased with GlcNAc
treatment. This unexpected result may be in accordance with the fact
that several glycosyltransferase-deficient mice exhibit no or only mild
phenotypes due to redundancy or compensation of glycan functions. In
fact, several family members of glycosyltransferases are known to be
functionally redundant (37, 38). This potential redundant effect
observed in MGAT5−/− mice treated with GlcNAc might be due to
the fact that other Golgi glycosyltransferases within an activated
hexosamine pathway triggered by UDP-GlcNAc may compensate
for the lack of this specific glycan structure, thereby guaranteeing
immune homeostasis. One of the candidate enzymes is the homol-
ogous GnT-Vb that may compensate for the synthesis of the
branched glycans; however, further studies are needed to clarify this

issue. Similar examples of the redundancy of glycosyltransferases
were described, such as for FUT8-deficient mice (39). Nevertheless,
this redundant effect observed upon GlcNAc supplementation needs
to be further explored.
The clinical effects of GlcNAc were further evidenced by the

decreased frequency of T-bet–expressing cells in colonic mucosa
of treated mice, together with reduced release of the proin-
flammatory cytokine IL-17A of respective colonic explants.
GlcNAc is a naturally occurring amino sugar for which no ad-

verse effects were reported in humans (40). It is available as a
dietary supplement, and oral GlcNAc administration showed no
toxicity in rats (41). Interestingly, 17 y ago, oral GlcNAc was de-
scribed to promote intestinal lining through mucus production in
children with severe treatment-resistant IBD (21). In that study,
eight of the 12 children studied went into clinical remission, which
could have resulted from the immunomodulatory effects of

Fig. 7. GlcNAc treatment of MGAT5 null or heterozygous mice attenuates disease progression by controlling Th1/Th17-type immune responses. (A) Rep-

resentative histological images (H&E) of colonic sections fromMGAT5+/− andMGAT5−/− [normal colon, DSS-induced colitis (DSS), and GlcNAc treatment (DSS +

GlcNAc Tx)] (Magnification: 20×.) DSS mice displayed visible signs of lymphocytic infiltrate in the intestinal lamina propria (arrowheads). L-PHA histochemistry

and CD3 immunohistochemistry of mouse colon from the different groups. (Magnification: 20×.) (B) Evaluation of branching N-glycans on colonic total cell

lysates from MGAT5wt, MGAT5+/−, and MGAT5−/− mice comparing DSS control with GlcNAc Tx enema by Western blot (WB). TCL, total cell lysate. (C) Protein

lysates from LPLs isolated from the colon of MGAT5+/− mice with DSS (colitis) or treated (DSS + GlcNAc Tx) mice were subjected to L-PHA lectin blotting to

evaluate the expression of β1,6-GlcNAc branched N-glycans on the TCR (39 kDa). L-PHA density normalized to tubulin is indicated for each case, and fold

change differences of DSS vs. DSS + GlcNAc Tx are highlighted. (D) Immunoprecipitation (IP) of the TCR in total cell lysates from MGAT5−/− mouse colon

followed by β1,6-GlcNAc branched N-glycan recognition. DSS vs. DSS + GlcNAc Tx with different routes of administration. (E) Analysis of the phosphorylation

levels of ZAP70 in LPL lysates from colon of MGAT5+/− and MGAT5−/− mice. Values of pZAP70 normalized to actin in MGAT5+/− and MGAT5−/− mice are

indicated. (F) Immunofluorescence of T-bet in MGAT5+/− and MGAT5−/− mice comparing normal colon, DSS, and DSS + GlcNAc Tx mice. (Magnification: 20×.)

(G) Concentration of IFN-γ and IL-17A in the supernatants of 24-h colonic explant cultures from DSS and DSS + GlcNAc Tx MGAT5 heterozygous (n = 10) and

null (n = 10) mice by ELISA. Plots depict the mean ± SEM of two to seven animals per group. Student’s t test: *P ≤ 0.05; ***P ≤ 0.001. NS, not significant.
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GlcNAc proposed here. Taken together, the combined evidence
from both ex vivo and preclinical data provides proof of concept
for the therapeutic use of GlcNAc (either alone or in combina-
tion with other antiinflammatory therapies) as a simple immu-
nomodulatory strategy in IBD. Assessment of this strategy in
clinical studies is currently ongoing. Some of the most relevant
properties associated with GlcNAc treatment are the absence of
side effects, low cost, and possibility of being used as a simple
rescue therapy to avoid unnecessary toxic effects and step-up
therapies in IBD.

Materials and Methods
Patient Selection and Colonic Biopsy Collection. Fresh colonic biopsies were

obtained from 75 patients (three patients in remission) diagnosed with UC

and normal controls (n = 3) who underwent a scheduled colonoscopy (2014–

2017) at the Gastroenterology Department of Centro Hospitalar do Porto–

Hospital de Santo António (CHP-HSA), Porto, Portugal. All participants gave

informed consent, and procedures were approved by the Ethics Committee

of CHP/HSA [233/12(179-DEFI/177-CES)].

Isolation of CD3+ T Cells from Fresh Colonic Biopsies and Blood of Patients with

Active UC: Ex Vivo Culture of T Cells. After mechanical dissociation of colonic

biopsies and blood density gradient centrifugation using Lymphoprep, CD3+

T cells (from biopsies and blood) were magnetically sorted using an EasySep

Human T Cell Enrichment Kit (STEMCELL Technologies) following the manufac-

turer’s instructions. CD3+ T cells were cultured for 72 h with anti-CD3 mAb (clone

OKT3) and soluble anti-CD28 mAb (clone CD28.2) (eBioscience). T cell cultures

were supplemented with GlcNAc (Sigma and Wellesley Therapeutics, Inc.).

Imaging Flow Cytometry. Imaging flow cytometry analysis was performed as

previously described (42).

Flow Cytometry. CD3+ T cells were stained with CD4 and CD8 (BD Biosciences)

and fluorescein isothiocyanate (FITC)-conjugated L-PHA (Vector Laboratories),

as well as with cell surface markers (CD4, CD45), intracellular antigens (T-bet,

RORγt, Foxp3, and Gata3), and cytokine intracellular staining (TNF-α, IFN-γ).

Various antibodies used for staining are described in SI Appendix, Table S1.

Proliferation Assay. CD3+ T cells were purified from colonic biopsies and la-

beled with 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE)

using a CellTrace CFSE Cell Proliferation Kit (Invitrogen), as described by

Oliveira et al. (43).

Cytokine Production. Supernatants from colonic T cell cultures were analyzed

by flow cytometry using the BD Cytometric Bead Array Human Th1/Th2/Th17

Cytokine Kit (BD Biosciences) following the manufacturer’s instructions.

Human TGF-β1 quantification was performed using ELISA kits (R&D Systems)

according to the manufacturer’s instructions. The supernatants from mouse

colonic explant cultures were concentrated using Amicon Ultra-2 mL Cen-

trifugal Filters (Merck Millipore), according to manufacturer’s instructions.

The levels of IFN-γ and IL-17A (anti-mouse, Ready-SET-Go! kits; eBioscience)

and TNF-α and IL-6 (anti-mouse; Biolegend) were quantified by ELISA,

according to the manufacturers’ instructions.

Western Blot and TCR Signaling. TCR signaling and L-PHA lectin blot analysis

(44), using T cell protein lysates (extracted with radioimmunoprecipitation

buffer), were performed as described by Dias et al. (16). Incubation of

phospho–Zap-70 [Tyr319/Syk (Tyr352)] rabbit mAb and anti–phospho-LAT

(Tyr191) rabbit mAb (Cell Signaling Technologies) was performed. Goat

anti-rabbit IgG-HRP mAb was used as a secondary antibody, and rabbit IgG

antiactin (Santa Cruz Biotechnology) or mouse IgG antitubulin (Sigma) was

used as a loading control.

Immunoprecipitation. TCR immunoprecipitation, using total cell lysates

obtained from mouse colons or from ex vivo human T cell cultures, was

performed as previously described (16).

Glycophenotype. T cells were incubated with biotinylated L-PHA, biotinylated

LEL, biotinylated SNA, or biotinylated MAL-II (Vector Labs). Lectins were

revealed with FITC-conjugated streptavidin.

Apoptosis Assays. Apoptotic cells were identified by flow cytometry, using an

FITC Annexin V Apoptosis Detection Kit I (BD Biosciences), following the

manufacturer’s instructions.

Enzymatic Reaction and HPLC Analysis. The GnT-V enzymatic activity analyses

in T cells from patients with UC and controls were performed as previously

described by Takamatsu et al. (45).

DSS- and TNBS-Induced Colitis and in Vivo GlcNAc Treatment. Colitis was in-

ducedwith DSS in C57BL/6,MGAT5wild-type, heterozygous, and knockoutmice

(kindly provided by Michael Pierce, University of Georgia, Athens, GA) (19). The

TNBS model was also performed using C57BL/6 mice (19). After disease onset,

DSS mice were treated with GlcNAc (Sigma and Wellesley Therapeutics, Inc.)

(12). LPLs were isolated from mouse colon as previously described (16).

Tissue Immunohistochemistry and Immunofluorescence. FFPE colonic tissue

slides were used for H&E staining and for immunohistochemistry with L-PHA

and anti-CD3 mAb as well as Foxp3 and F4/80, as described, respectively, by Dias

et al. (16) and Teixeira et al. (46). For T-bet immunofluorescence, mouse IgG1 T-

bet–specific mAb (clone 4B10; Santa Cruz Biotechnology), goat anti-mouse

Alexa 594 secondary antibody (Invitrogen), and DAPI staining were used.

Real-Time PCR. Total RNA from isolated LPLs was extracted and the quanti-

tative real-time PCR (qRT-PCR) was performed using TaqMan Gene Expression

Assays (Applied Biosystems), as previously described (16). qRT-PCR was carried

out in triplicates for the target geneMGAT5b (Taqman probe: Mm01252571_m1)

and the endogenous control 18S (Hs99999901_s1) (Applied Biosystems) (16).

Statistics. Statistical significance was assessed by one-way or two-way ANOVA

using a Bonferroni’s, Dunnett’s, or Newman–Keuls multiple comparison post-

test and, where appropriate, by an unpaired Student’s t test (two-tailed) using

GraphPad Prism 5. P values of <0.05 were considered statistically significant.

More details can be found in SI Appendix, SI Materials and Methods.
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Abstract 

 The diversity of glycans expression within a cell or an organism is enormous and the 

amount of relevant biological information that each glycan structure encodes is far from 

being clarified. The importance of glycans in health and life sciences is highlighted by their 

multiple functional implications in cellular and molecular biology processes with impact in 

homeostasis and in diseases, such as cancer and immune-mediated disorders. Glycans 

are major participants in the intricate regulatory circuits that govern immune response. 

Changes in the glycans repertoire occur during the transition from normal to inflamed 

conditions and this aberrant expression of glycans contribute to the excessive immune-

stimulation that characterizes inflammatory diseases, such as Inflammatory Bowel Disease 

(IBD). This review summarizes the most recent evidences underlying how glycans integrate 

the regulatory networks of immune response with a particular focus on IBD pathogenesis. 

The translational value of glycans to the clinical setting is discussed, addressing its potential 

applications as biomarkers and as immunomodulatory agents.  
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1. Introduction 

 Inflammation is a complex biological process that occurs as a normal host response 

to tissue damage inflicted by infections or other stimuli. An inadequate resolution of 

inflammation and/or an unchecked inflammatory reaction can evoke chronic inflammation, 

predisposing the host to various diseases, including chronic immune-mediated disorders, 

such as Inflammatory Bowel Disease (IBD), a focus of this review, and cancer.  

 A compelling body of evidences has been revealing that glycans (carbohydrates or 

sugar chains) integrate into the canonical circuits that govern inflammation as demonstrated 

by the fact that alterations in the cellular glycosylation repertoire have remarkable effects in 

the development and progression of immune-mediated disorders (Marth and Grewal, 2008; 

Rudd, et al., 2001), such as IBD. 

 The intestinal mucosa is considered a major physical and biological barrier that 

supports the body´s immune system. The extensive and diversified microbiota content of 

the gut appears to positively contribute to the host´s immune system. The glycans 

composition of the gut is considered a key factor that guides the establishment of the 

microbial community (Koropatkin, et al., 2012), being also instrumental in shaping the 

course of immune response both in homeostasis and in diseases such as in IBD.  

 This review summarizes the importance of glycosylation as a fundamental player in 

inflammation using IBD as a disease model system. The recent evidences on the impact of 

glycans, with a focus on N-linked glycans, in the regulatory circuits that govern inflammation 

is discussed, highlighting their impact on T cell-mediated immune response in the context 

of IBD pathogenesis. The implications of glycans as a source of promising clinical 

biomarkers and targets for new therapeutic strategies in immune-mediated diseases are 

introduced and discussed. 

 

 

2. Inflammatory Bowel Disease pathogenesis: glycans as the missing factor?  

 

 Inflammatory bowel disease (IBD) is a global disease with incidence increasing 

worldwide. It is estimated to affect over 1,5 million people in USA and 2 million people  in 

Europe (Burisch, et al., 2013). It comprises two major bowel disorders, Crohn’s disease 

(CD) and Ulcerative Colitis (UC), that arise in a multifactorial context in which a chronic 

immune-mediated inflammatory process takes place triggered by genetic factors, 

environmental conditions and alterations in the composition of the gut microbiota (Figure 

1). Nevertheless, this is far from being a perfectly matched puzzle on IBD pathogenesis 
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since it remains unclear the precise factors underlying the excessive co-stimulation of the 

immune system.   

 Importantly, the advent of genome-wide association studies (GWAS) studies 

imposed a tremendous progress in the genetic discovery of IBD susceptibility (Lees, et al., 

2011). Although genetics only explains 7,5% of UC and 13,6% of CD (Jostins, et al., 2012), 

the identification of UC and CD specific loci was a major contribution to identify causal 

genes, related signaling pathways and to understand shared pathways between IBD and 

other autoimmune disorders(Lees, et al., 2011).  

 A meta-analysis of GWAS together with an ImmunoCHIP has identified genetic 

variants in 163 loci that explain the susceptibility of patients to develop CD and UC in almost 

all the loci (Jostins, et al., 2012). These loci are enriched in genes related with immune 

deficiencies, cytokine production (specifically interferon gamma (INF-�), tumor necrosis 

factor alpha (TNF-�), interleukin (IL)-12, and IL-10 signaling), lymphocyte activation, 

response to molecules of bacterial origin and JAK-STAT signaling pathway. The impairment 

of immune system and the predisposition for host-microbe interactions (genetic variants in 

nucleotide-binding oligomerization domain-containing protein 2 (NOD2), caspase 

recruitment domain-containing protein (CARD) 9 and IL10) are considered the main triggers 

for IBD pathogenesis, however this huge number of loci are far to explain the total disease 

variance in IBD. In fact, the risk loci to develop IBD may not explain the disease-course over 

time, concerning disease relapsing, need of surgical intervention and also therapeutic 

outcomes. A recent study showed that the loci associated with CD prognosis are 

independent of the loci that contribute to disease susceptibility (Lee, et al., 2017b). The 

NOD2/CARD15 (Yarur, et al., 2011) has been shown to predict the clinical course. Other 

studies showed that genetic variants in IBD risk loci, as in Major histocompatibility 

complexes (MHC) (Kolho, et al., 2016) and multidrug resistance protein 1 (MDR1) 

(Potocnik, et al., 2004) genes were associated with bad prognosis as well as with the non-

response to therapy. Moreover, a GWAS in UC identified 46 single-nucleotide 

polymorphisms (SNPs) associated with refractory treatment that required colectomy (a 

marker of severe disease) (Haritunians, et al., 2010). 

 Nevertheless, all of these genetic data require further functional studies to validate 

its clinical impact. 

 Multidisciplinary efforts have been made to identify  environmental factors 

associated with  IBD (Ananthakrishnan, 2015).Evidences suggest that IBD incidence is 

particularly rising in the newly industrialized countries (Ng, et al., 2017) which provides 

strong evidences supporting the effect of the environment for both CD and UC. Smoking 

has been described to increase the risk of CD, conferring protection in UC. Diet, lifestyle, 

high standards of hygiene and use of antibiotics and other medications, have been 
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postulated to have an impact in disease susceptibility and pathogenesis, as reviewed in 

(Ananthakrishnan, 2015). 

 The gut microbiome content is definitely a major player in IBD pathogenesis as 

alterations in microbiota composition and functions (dysbiosis) have been consistently 

associated with IBD (Ananthakrishnan, 2015; Hall, et al., 2017).Generally, in IBD, there is 

a depletion of bacteria belonging to Firmicutes phylum (such as Faecalibacterium 

prausnitzii), particularly in CD patients (Hansen, et al., 2012) and an increase in bacteria 

belonging to the Proteobacteria phylum (such as Escherichia coli) (Marchesi, et al., 2016). 

The association of the Bacteroidetes phylum with IBD is not consensual, however, 

evidences suggests that there is a possible spatial reorganization of the Bacteroides 

species in patients with IBD, being Bacteroides fragilis an important  species able to 

distinguish IBD patients from healthy controls (Swidsinski, et al., 2005). 

 Regarding the fungal microbiota content, little is known about its influence in IBD 

pathogenesis. However, evidences suggest that mice lacking important genes involved in 

fungi sensing, such as Dectin-1 or CARD9, have an increased load of fungal microbiota 

being  thus more susceptible to colitis (Iliev, et al., 2012; Sokol, et al., 2013). Recently, the 

analysis of the faecal microbiota of 235 IBD patients versus 38 healthy subjects 

demonstrated that a distinct fungal microbiota dysbiosis occur in IBD being characterized 

by alterations in their biodiversity and composition (Sokol, et al., 2017).  

The contribution of glycans to intestinal microbiome composition and functions as 

well as to dysbiotic conditions is far from being fully elucidated. In fact, the colon mucosa is 

heavily glycosylated and different parts of the intestine display a specific glycosylation 

signature. Changes in mucins glycosylation have been reported to occur over the entire 

healthy colon (Arike and Hansson, 2016). Advanced glycoproteomics approaches, 

demonstrated that the cellular glycosylation profile vary among the different parts of the 

intestine when comparing IBD patients and controls (Stavenhagen, et al., 2015). This 

differential glycans composition at the level of colonic mucosa might influence the 

microbiota composition and function due to the fact that individual microorganisms prefer 

different glycans for degradation. This selective consumption of nutrients (glycans) can 

influence which microbial groups proliferate and persist in the gastrointestinal tract.  For 

instance, mice experiments revealed a protective role of B4GALT1 expression, which 

encodes for �-1,4-galactosyltransferase I, that mediates  the addition of galactose moeieties 

to glycoproteins. Higher galactosylation of N-glycans on mucus proteins were associated 

with increased ratio of Firmicutes/Bacteroidetes in healthy conditions, conferring protection 

against TNF-induced systemic inflammation and DSS-induced colitis (Vanhooren, et al., 

2013).  
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Glycans can also act at the interface of microbiota and immune response. As 

example, glycans in helminth act as a conserved molecular pattern that instructs dendritic 

cells (DCs) functions to drive T helper  (Th)2-polarized responses (Smits, et al., 2010). 

Curiously, in less developed countries in which the incidence of IBD is rare, it is postulated 

that helminths might have a protective effect by modulating the host immune response. 

Using IBD murine models, it was demonstrated that the helminth, Heligmosomoides 

polygyrus bakeri prevents colitis by inhibiting antigen-specific gut T cell response through 

alterations of dendritic cells function (Blum, et al., 2012). This mechanism of suppression of 

inflammation through helmith´s glycans has been explored and recently, it was suggested 

that IL-4R� signaling is the key pathway required for an effective suppression of immune 

response (Matisz, et al., 2017), which has been raising the interest for helminth antigen cell-

based therapy (Maizels, 2016), already tested in small clinic trials in UC (Summers, et al., 

2005).  

Taken together, IBD is a multifactorial disease, which consequently imposes a major 

challenge in the clinical and therapeutic management of IBD patients. There is an urgent 

need in the clinics to identify and characterize novel molecular mechanisms underlying 

disease pathogenesis in order to improve the development of novel clinical biomarkers and 

new targeted-specific therapeutic strategies in IBD. 

In the last decade novel insights on the impact of the glycome (biological repertoire 

of glycans structures in an organism) in the regulation of immune response (Demetriou, et 

al., 2001; Grigorian, et al., 2011; Mkhikian, et al., 2016; Rabinovich and Toscano, 2009; 

Toscano, et al., 2007; Zhou, et al., 2014) have been contributing to push the glyco-

immunology field to the “prime-time” of immunity with relevant clinical implications in 

immune-mediated disorders such as IBD (Dias, et al., 2014) (Figure 1).  

 

 

3. Glycosylation as a major biological barrier of the gut. Impact in host-

interaction and immune response.  

Glycosylation is a well-orchestrated post-translational process catalyzed by a 

diverse repertoire of glycosyltransferases (enzymes that catalyze the transfer of a sugar 

chain from a nucleotide sugar donor to a specific substrate) and glycosidases (enzymes 

that catalyze the hydrolysis of glycosidic bonds in glycan structures). The genes encoding 

the portfolio of those enzymes contribute to more than 1% of the total human genome which 

results in a huge diversity of glycosylation modifications in which the same protein or lipid 

can exhibit different glycoforms and consequently different biological functions (Gagneux, 

et al., 2015).  



��

�

In fact, all cells are covered with a dense and complex coat of glycans called 

glycocalyx that, particularly in the intestinal mucosa represents an important physical and 

biological interface. In fact, the glycans composition of the intestinal glycocalyx creates a 

meshwork of different types of sugar chains that project to the lumen acting as molecular 

sensors with a vast potential for information display. Glycoproteins on intestinal brush 

border membrane suffer a dynamic remodeling of its glycan content that shapes the 

intestinal homeostasis. The carbohydrate moieties (glycocalyx) at epithelial cells (ECs) 

surface, suffers a turning over of approximately every 6 to 12 hours in human jejunum 

(Moran, et al., 2011). 

One of the major components of the intestinal glycocalyx is the oligomeric mucus 

gel-forming glycoprotein Mucin 2 (MUC2) which is the main intestinal mucin produced by 

goblet cells. Curiously, in a cancer context, expression of MUC2 is associated with intestinal 

metaplasia being the most prominent mucin in mucinous type gastric carcinomas (Reis, et 

al., 2000).  

Mucin’s glycans serve as a nutritional source for bacteria. Recent reports have 

shown that in UC the alterations on MUC2 glycosylation are associated with inflammation 

(Larsson, et al., 2011; Larsson, et al., 2009). Moreover, core 3–derived O-glycans seems 

to be pivotal in the intestinal barrier function as C3GnT-deficient mice revealed a reduction 

of MUC2 glycoprotein content and a consequent impairment of mucosal integrity making 

these mice more prone to develop colitis and colorectal adenocarcinoma  (An, et al., 2007). 

Changes in cellular glycosylation occur during the transition from normal to inflamed 

conditions. This altered expression of glycans in inflammation has major implications in the 

regulation of both innate and adaptive immune responses (Johnson, et al., 2013; van Kooyk 

and Rabinovich, 2008; Wolfert and Boons, 2013).  

Regarding innate immunity, glycans are key mediators of immune response due 

to its interaction with a particular family of receptors called C-type lectin receptors (CLRs) 

that bind to carbohydrates in a calcium-dependent manner.  CLRs, such as dendritic cell 

specific intracellular adhesion molecule-3 (ICAM-3) grabbing nonintegrin (DC-SIGN) (that 

bind mainly high-mannose but also fucose moieties) (Feinberg, et al., 2001; Svajger, et al., 

2010)), sialic acid-binding immunoglobulin-type lectins (siglecs) and macrophage mannose 

receptor (MMR), are expressed in various innate immune cells including DCs and 

macrophages. These CLRs are involved in glycan-mediated pathogen recognition and 

internalization of antigen for loading on MHC class I and II molecules inducing T cell 

response (Rabinovich and Croci, 2012; Singh, et al., 2009; van Gisbergen, et al., 2005; van 

Kooyk and Geijtenbeek, 2003).  

In the process of loss of tolerogenicity associated with the development of 

autoimmunity and allergies (Buckner, 2010), an interesting report demonstrated that 
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sialylation of antigens is able to induce antigen-specific tolerogenic immune response 

through recognition by DCs and consequent induction of T regulatory (Treg) cells and 

suppression of IFN-� production (Perdicchio, et al., 2016).  

The sialic acid composition of the intestinal glycocalyx has been also associated 

with dysbiotic conditions. The sialic acid catabolism was reported to mediate intestinal 

inflammation concomitantly with the expansion of E. coli during colitis. The overgrowth 

of E. coli that occurs in colitis was demonstrated to be dependent on the sialic acid 

release from the host´s glycans after sialidase activity (Huang, et al., 2015). The 

dependence of E. coli on sialidases secreted by Bacteroides spp. (abundant in intestinal 

inflammation) contribute to the overgrowth of E. coli and thereby to dysbiosis in patients 

with colitis (Gophna, et al., 2006). In line with this, it was proposed that sialidase inhibitors 

can constitute a glycan-mediated strategy to decrease E. coli outgrowth preventing 

dysbiosis and thereby controlling the severity of colitis (Huang, et al., 2015).  

In fact, the glycan influx to intestine either from diet or mucosal secretion, directly 

influence the adhesion, composition and the metabolic activity of microbiota with 

consequences in intestinal immune response. 

Additionally, proteins glycosylation can also influence the adaptive immune 

response.  In this regard, the MHC class I and II (MHC I and II) can display glycosylated 

peptides that are recognized by T cells, supporting the impact of glycans in the modulation 

of T helper cell (by MHC II) and cytotoxic T cell (by MHC I) responses (Neefjes, et al., 2011). 

Protein O-GlcNAcylation, consisting in the addition of O-GlcNAc moieties to serine 

or threonine residues of nuclear and cytoplasmic proteins by the O-GlcNAc transferase 

(OGT) through UDP-GlcNAc (Hart, et al., 2007), has been revealed to be implicated in the 

metabolic processes involved in T cell self-renewal, differentiation and proliferation (Swamy, 

et al., 2016).  

Interestingly, a recent study demonstrated that expression of �-1,2 fucose on the 

apical side of intestinal epithelial cells (IECs) protects against pathogenic bacteria being 

essential in the maintenance of the commensal microbiota (Goto, et al., 2014) (Figure 2). 

This process of fucosylation was found to be mediated by group 3 innate lymphoid cells 

(ILC3s).  It was demonstrated that commensal bacteria, pathogenic bacteria and bacterial 

products (lipopolysaccharide (LPS)) stimulate (via gut DCs) ILC3s to produce IL-22 which 

in turn induces �-1,2 fucosylation of IECs. Accordingly, inactivating polymorphisms of 

fucosyltransferase (FUT) 2 (non-secretor status) were associated with CD (Franke, et al., 

2010; McGovern, et al., 2010).  

Another important type of fucosylation is core fucose which refers to fucose attached 

to the innermost N-acetylglucosamine of N-linked glycans, catalyzed by �1-6 

fucosyltransferase (FUT8). A dysregulation of FUT8 was described to be associated with 
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IBD pathogenesis (Fujii, et al., 2016).  In mouse models of induced colitis, T cells were 

found to display an increased expression of core fucosylation when compared with mice 

without colitis. Accordingly, the Fut8-/- mice developed a less severe colitis than Fut8+/+ mice, 

and T cells from Fut8-/- mice produced lower levels of Th1 and Th2 cytokines. Accordingly, 

colonic samples from both CD and UC also revealed that inflamed mucosa exhibited higher 

levels of core fucosylation comparing to non-inflamed mucosa and healthy colon (Fujii, et 

al., 2016).  

The complex branching N-linked glycan have been also described to impact in 

immune response, particularly the �1,6 GlcNAc branched complex N-glycans, catalyzed by 

N-acetylglucosaminiltransferase V (GnT-V). In homeostasis and self-tolerance, the T cell 

activation (T cell receptor (TCR) signaling) was described to induce up-regulation of MGAT5 

gene (encoding GnT-V glycosyltransferase) leading to GnT-V-mediated branched 

glycosylation of the TCR. This phenotype promotes growth arrest of T cells by at least two 

mechanisms: early, by raising T cell activation thresholds via limiting TCR clustering at the 

immune synapse and controlling hyperimmune response, and later by increasing surface 

retention of growth inhibitory receptors such as cytotoxic T lymphocyte antigen-4 (CTLA-

4)(Chen, et al., 2009a; Demetriou, et al., 2001). The dysregulation of this mechanism 

between GnT-V-mediated glycosylation and T cells function results in T-cell hyperactivity 

and susceptibility to multiple sclerosis (Demetriou, et al., 2001). Recently, it was also 

demonstrated that UC patients exhibit a deficiency of branched N-glycans on intestinal T 

cells associated with UC pathogenesis (discussed in detail in section below) (Dias, et al., 

2014). Accordingly, mice deficient in MGAT5 and lacking GnT-V function (no synthesis of 

�1,6 GlcNAc branched N-glycans structures), display a significantly increased TCR 

clustering, leading to a decreased threshold of T-cell activation which result in a 

hyperimmune response and increased susceptibility to autoimmunity (Demetriou, et al., 

2001; Morgan, et al., 2004). 

Besides the TCR, the enhancement of branched N-glycosylation can also modify 

other receptors like the co-receptors CD4 and CD8 as well as the growth inhibitory receptor 

CTLA-4 (Demetriou, et al., 2001; Lau, et al., 2007; Morgan, et al., 2004) . Moreover, CD45 

and CD25 are also potential targets of branched glycosylation modifications with impact in 

the regulation of T cell-mediated immune response (Araujo, et al., 2017; Chen, et al., 2007). 

The branched N-glycans can be further modified and elongated with 

poly-N-acetyllactosamine (repeats of Gal�1,4GlcNAc�1,3) that can be capped with sialic 

acid and fucose. This poly-N-acetyllactosamine structure is the preferred ligand for 

galectins, a family of soluble conserved carbohydrate-binding proteins, forming galectin–

glycan structures termed “lattices” (van Kooyk and Rabinovich, 2008). This molecular 

complex contributes to restrict the interactions between receptors and co-receptors on 
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immune cells regulating intracellular signaling pathways, apoptosis, proliferation and 

migration (Liu and Rabinovich, 2010). Galectins can be found in activated T and B cells, 

being significantly upregulated in activated macrophages and regulatory T cells (Treg) (Liu 

and Rabinovich, 2005; Rabinovich, et al., 2007). These C-type lectins have been implicated 

in a wide range of key biological processes including:  regulation of host-pathogen 

interactions; innate and adaptive immune responses; acute and chronic inflammation, and 

immune tolerance (Sundblad, et al., 2017). 

Interestingly, galectins family can play an opposite role in immune response as they 

can act as negative or positive regulators of T cell immune response. Galectin 1 and 3 are 

known to suppress inflammation and T cell response (Chung, et al., 2000; Demetriou, et 

al., 2001; Toscano, et al., 2007). Galectin 1 is described to negatively regulate Th1 and 

Th17 effector cells by inducing cell death (Toscano, et al., 2007). Galectin 3 has been 

described to limit TCR clustering due to lattice formation in MGAT5-expressing cells 

controlling thereby the threshold of T cell activation (Chen, et al., 2009b; Demetriou, et al., 

2001). Similarly, Galectin 2 also exhibits a suppressive effect by inducing apoptosis of 

lamina propria T lymphocytes attenuating acute and chronic mouse colitis (Paclik, et al., 

2008). In contrast, galectin-8 and galectin-4 act in opposite way. When binding to T cells, 

galectin-8 promotes T-cell proliferation, possibly through unique interactions with CD45 

(Tribulatti, et al., 2009).Galectin-4 mediates CD4+ T cells stimulation (by IL-6 production) 

leading to exacerbation of T cell- mediated chronic colitis (Hokama, et al., 2004). 

Glycans can also function as a “sweet escape” strategy used by many prokaryotic 

and eukaryotic pathogens (including meningococci, Trypanosoma and Helicobacter). 

These microorganisms can synthesize terminal glycan structures that are similar to those 

found in mammalian cells in a process of “molecular mimicry”. This “glycan escape” strategy 

contributes to hide from host immune system and thereby triggering pro-inflammatory 

responses (van Die and Cummings, 2010; van Kooyk and Rabinovich, 2008).  

Taken together, the integration of glycans in the regulatory networks that govern 

both innate and adaptive immune response, translating these glycan-circuits in clinical 

implications is an emerging topic in immunology. In fact, glycans act as a pivotal molecular 

interface in intestinal mucosa that bidirectionally regulate the cycle of transmitted signals 

from microbiota via glycans-mediated pathogen recognition to IECs and to immune cells, 

as well as the cycle of transmitted signals from glycans-dependent regulation of immune 

cells to IECs that are further converted into signals that regulate the composition of gut 

microbiota (Figure2) (Goto, et al., 2016). 
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4. Glycosylation alterations in Inflammatory Bowel Disease: a mechanism 

involved in pathogenesis. 

 A compelling body of evidences have been pointing toward the importance of 

complex branched N-glycans catalyzed by GnT-V in controlling T cell activity and functions 

in different immune-mediated disorders as demonstrated in mouse models of Multiple 

sclerosis (MS) and Type I diabetes (Demetriou, et al., 2001; Grigorian, et al., 2007; Lau, et 

al., 2007). IBD is characterized by a massive infiltration of inflammatory cells in intestinal 

mucosa but the mechanisms underlying this excessive stimulation of the immune system 

with loss of immune tolerance remains largely unknown and thereby the disease is still 

incurable.  

 Glycans have been shown to have an instrumental role in IBD pathogenesis. 

Particularly, the GnT-V-mediated branched glycosylation of intestinal T cells was found to 

play a role in UC pathogenesis. Patients with UC exhibit, at the level of intestinal mucosa, 

a deficiency in the expression of branched N-glycans on the TCR that was associated with 

disease severity. This decreased expression of branched glycans in UC patients comparing 

with healthy controls was demonstrated to be due to a reduced transcription of MGAT5 

glycogene in intestinal T lymphocytes (Dias, et al., 2014). 

 Nevertheless, whether this dysregulation of MGAT5/GnT-V-mediated glycosylation 

on T cells is a cause or consequence of intestinal inflammation in UC remains unclear. 

Evidences suggest that GnT-V-mediated �1,6GlcNAc N-glycans are implicated in the  

development of Th2 over Th1 responses (Morgan, et al., 2004). Recently, it was 

demonstrated that branching N-glycans potentiate the differentiation of induced Treg cells 

over Th17 differentiation (Araujo, et al., 2017). 

 Moreover, in other models of immune-mediated disorders such as MS (that can 

constitute models for IBD understanding) an association between environmental factors 

(sunlight/vitamin D3 and metabolism) combined with multiple genetic variants (IL17RA, 

IL2RA, MGAT1 and CTLA-4) was described to dysregulate Golgi N-glycosylation with 

impact in disease development and severity (Mkhikian, et al., 2011). Accordingly, GWAS 

studies revealed that MGAT5 polymorphisms cooperatively with MGAT1 and interleukin-2 

and 7 receptor variants were associated with susceptibility to multiple sclerosis (Brynedal, 

et al., 2010; Li, et al., 2013). Preliminary evidences point towards a promising association 

between MGAT5 genetic variants and IBD severity (Salomé S. Pinho et al, unpublished) 

which support the prominent role of MGAT5 glycogene and other related genes involved in 

the branched glycosylation pathway for determining genetic susceptibility to immune-

mediated disorders.  
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 Additionally, DNA methylation has been demonstrated to have a physiological role 

on IBD development, mediating genetic risk in IBD (Howell, et al., 2017; Kraiczy, et al., 

2016; Ventham, et al., 2016). The DNA methylation and EWAS (Epigenome-wide 

association studies) have been providing novel insights in complex diseases (Callaway, 

2014) and will certainly contribute to clarify how epigenetic alterations of key glycogenes 

in a tissue/cell-specific manner are implicated in IBD pathogenesis.  

 In summary, and taking into account the multifactorial nature of autoimmune 

disorders such as IBD, MS and type I diabetes, it is very likely that the integration, in a 

common pathway, of genetic factors (including glycogenes), environmental triggers and 

specific glycans modifications (both in microbiota, epithelial cells and in immune cells) will 

contribute to gain novel insights into the mechanisms underlying the global loss of immune 

tolerance that characterizes autoimmune disorders (Figure 1).  

 The rapid advance of cutting edge (glyco)technological approaches that are 

decoding the human glycome (Holst, et al., 2016; Rillahan and Paulson, 2011; Smith and 

Cummings, 2013) will be an asset to disclose how glycans impact in immunity and 

autoimmunity, paving the way for the development of optimized (glyco)biomarkers and 

novel glycan-based therapeutic approaches. 

 

 

5. Glycans as immunomodulatory agents in the control of T cell-mediated 

immune response in IBD. 

 The current IBD therapeutic strategies are limited by reduced effectiveness, high 

costs, and/or presence of toxic/side effects (Plevy and Targan, 2011), highlighting the need 

of novel and targeted-specific therapeutic strategies. 

 Interestingly, the metabolic supplementation of mice models of Experimental 

autoimmune encephalomyelitis (EAE) and type I non-obese diabetic mice and T cells with 

UDP-GlcNAc resulted in the enhancement of branching N-glycans on T cells by GnT-V 

activity, which increased the threshold for T cell activation, suppressing T cell growth and 

inhibiting Th1 differentiation which led to a controlled immune response (Grigorian, et al., 

2011; Grigorian, et al., 2007). Interestingly, 17 years ago, oral N-Acetylglucosamine 

(GlcNAc) was described to promote intestinal lining through mucus production in children 

with severe treatment-resistant IBD in which  8 out of 12 children studied went into clinical 

remission (Salvatore, et al., 2000). Evidences from our group, both ex vivo (in human 

intestinal T cells from UC patients) and in vivo (in mouse models of colitis) have been 

demonstrating that GlcNAc supplementation is actively acting as an immunomodulatory 

agent by leading to suppression of T cell growth, inhibition of Th1/Th17 immune response 
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and by inhibiting TCR signaling (Dias, et al., 2017) (Ana M. Dias and Salomé S. Pinho, In 

revision), which set the ground to test the therapeutic effects of  GlcNAc in IBD clinical trial 

(ongoing).   

 Accordingly, in MS, an ongoing pilot study using low-dose oral GlcNAc (3 g/day) 

revealed  increased serum GlcNAc levels and branching N-glycans in T cells (Araujo, et al., 

2017). 

 The immunomodulatory effects of glycans (such as the complex branched N-

glycans), place them at the interface of inflammation and cancer, where they can exert dual 

roles in these pathological conditions, acting simultaneously as a  “benefit” in the control of 

immune-mediated disorders through its immunosuppressive functions (Dias, et al., 2014), 

but also as a “threat” in cancer by contributing to malignant transformation and cancer 

aggressiveness  (Carvalho, et al., 2016a; Carvalho, et al., 2016b; Pinho, et al., 2012a; 

Pinho, et al., 2012b; Pinho and Reis, 2015). 

 In the context of  IBD, and taking into consideration that this disease is one of the 

three highest risk factors for colorectal cancer (CRC) after familial adenomatous polyposis 

(FAP) and hereditary nonpolyposis colorectal cancer syndrome (HNPCC) (Eaden, et al., 

2001; Lutgens, et al., 2015), and that CRC accounts for 1/6 of ulcerative colitis-related 

deaths (Jess, et al., 2006), it is definitely worth explored how glycans impact in colitis-

associated colorectal cancer. 

 

 

6. GlycoMedicine in IBD: a near future? 

 The complex mechanisms underlying the pathogenesis of IBD explain the 

substantial heterogeneity of the disease with respect to disease onset, course, response to 

therapies and progression to complications (Cosnes, et al., 2011). Consequently, there is a 

major need in the field to identify novel molecular markers able to help on the identification 

of patients who are most likely to develop aggressive/complicated disease and carefully 

select them for appropriate therapy. This tailored approach will certainly improve the long-

time course of the disease and the success of the therapeutic results (D'Haens, 2010).  

 Recent advances in IBD research have been contributing to the identification of 

genetic, serological, fecal and biopsy-based markers with relevant implications in the clinical 

decision. How glycans can integrate the clinical-algorithm of IBD by constituting reliable 

prognostic biomarkers as well as providing a source for the development of new therapeutic 

strategies are introduced and discussed in the following sections. 
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6.1. Glycans as a promising prognostic biomarker 

 

6.1.1.  Genetic glycobiomarkers 

 As mentioned above, glycosylation constitutes a key player in immunity. The 

contribution of glycans-encoding genes to IBD pathogenesis is far from being fully 

characterized. In fact, the emerging role of glycoconjugates in IBD pathogenesis gave rise 

to the creation of an online database called Glycosylation and Gut Associated Immune 

Tolerance (GlycoGAIT-https://apps.connexios.com/glycogait/), in which the profile of the 

glycome can be analyzed under different inflammatory conditions (Oommen, et al., 2016). 

 Genetic alterations in glycogenes have been associated with multiple primary 

immunodeficiency diseases (Lyons, et al., 2015). Accordingly, mouse genetics in which 

selected glycogenes are mutated revealed a remarkable impact in T cell development and 

thymus positive and negative selection (Zhou, et al., 2014). Interestingly, transgenic mice 

with overexpression of �1,2-fucosyltransferase (FUT1) spontaneously develop colitis, by 

influencing T-cell development and altering glycosylation of mucosal barrier (Brown, et al., 

2004). Moreover, a GWAS of the human Immunoglobulin G (IgG) N-glycome was 

performed and 16 genes involved in IgG glycosylation were identified, in which 4 out of 16 

encode glycosyltransferases (ST6GAL1, B4GALT1, FUT8, and MGAT3) and 5 genes were 

associated with IBD (IKZF1, LAMB1, MGAT3, IL6ST and BACH2) (Lauc, et al., 2013). 

Genetic variants associated with loss-of-function of FUT2, also demonstrated to increase 

susceptibility to CD by altering host-microbial interactions. Specifically, the non-secretor 

status of those patients, display an altered microbiome at both composition and functional 

levels potentially explaining the CD risk (McGovern, et al., 2010; Tong, et al., 2014). 

Additionally, FUT3 polymorphisms were also associated with higher susceptibility of 

Southeast China individuals to UC (Hu, et al., 2016). Recent evidences also point toward 

the identification of genetic variants in the intronic region of MGAT5 gene that are 

associated with UC severity and response to therapy (Márcia S. Pereira and Salomé S. 

Pinho, unpublished data). 

 Furthermore, genetic alterations in immuno-genes, associated with IBD, can 

indirectly lead to alterations on glycogenes, with a synergistic impact in the dysregulation of 

the immune system. The very early onset (VEO) – IBD can be caused by loss-of-function 

mutations of IL10 and IL10R. A point mutation in the intronic region of IL10R1 (only 

stimulated by IL10), observed in three VEO-IBD patients, impaired the mRNA splicing with 

consequences in the N-linked glycosylation, and thus with the anti-inflammatory signal 

mediated by IL10 (Murugan, et al., 2014). Interestingly, IL-22/IL-22RA1 signaling in 

intestinal organoids was shown to up-regulate glycosylation genes such as FUT2, FUT8, 
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SEC1 and B4GALT1, in which IL-22RA1/FUT2 axis was demonstrated to be involved in the 

maintenance of healthy microbiota (Pham, et al., 2014).  

 Taken together, glycogenes constitute important genetic determinants with 

functional impact in IBD pathogenesis and prognosis.  

 

6.1.2. Tissue specific glycobiomarkers 

 The histological information obtained from colonic biopsies is routinely performed in 

the clinical practice helping IBD diagnosis (Canavese, et al., 2015), serving also to monitor 

mucosal inflammation and healing. Taking into consideration that a colonic biopsy is a 

snapshot of the inflammatory state of the patient, relevant in situ information can be further 

explored from biopsies. On this regard, the in situ glycosylation-signature, at the cellular 

and tissue-specific level is able to provide important molecular information that can be 

translated into clinical and prognostic value. Recent evidences have been showing that 

changes in the glycans signature of the intestinal lamina propria can be associated with the 

therapeutic outcome of the patients. At the time of diagnosis, low levels of branched N-

glycans on intestinal inflammatory infiltrate are able to predict 75% of the patients that not 

respond to standard therapy, thus needing to step-up to biologics. The predictive capacity 

of this glycobiomarker was showed to be independent and improved when used together 

with C-reactive protein (CRP). Importantly, the best performance (best predictive capacity) 

of the glycobiomarker was observed in patients displaying a severe endoscopic Mayo 

subscore (Mayo 3) at diagnosis (Pereira, et al., 2017). These results are in accordance with 

previous evidences showing that, low levels of branching N-glycans on intestinal T 

lymphocytes are associated with severe disease phenotypes (Dias, et al., 2014). 

 Alterations in the O-glycans profile of the MUC2 from colonic biopsies are also 

associated with UC disease activity and severity (Larsson, et al., 2011). Active UC patients 

display an increase of short O-glycans (SialylTn (STn) – glycan 513) and a decrease of 

more complex O-glycans (glycan 1104) (Itzkowitz, et al., 1996; Larsson, et al., 2011). 

 Taken together, the determination of the glycosignature in situ provides a plethora 

of important biological information that can be translated in relevant molecular parameters 

with clinical and therapeutic applications. 

 

6.1.3.  Glycans as non-invasive biomarkers  

 Non-invasive biomarkers are attracting tools for monitoring disease activity and for 

predicting therapy response. Glycosylated proteins have been already demonstrated to be 

useful in the clinical decision (Lakatos, et al., 2011). For instance, fecal Lactoferrin is an N-

glycosylated protein secreted by neutrophil-specific granules that act as selective anti-
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microbial, and is able to distinguish active IBD from inactive IBD (Lakatos, et al., 2011; 

Masoodi, et al., 2009; Siqueiros-Cendon, et al., 2014). In IBD, specific antibodies are 

produced by the host immune system against specific bacterial glycans, such as the case 

of anti-glycans antibodies, including anti-Saccharomyces cerevisiae antibody (ASCA) that 

is used as a clinical marker in CD to differentiate the diagnosis from UC (Lakatos, et al., 

2011; Lichtenstein and McGovern, 2016). Studies using GlycoChip microarrays showed the 

importance of the detection of serum anti-glycan antibodies for CD diagnosis and 

stratification (Dotan, et al., 2006; Seow, et al., 2009). 

 Another important non-invasive glycobiomarker that has been described to be 

associated with IBD is the glycosylation profile of serum IgG. In fact, IgG exhibits in the 

constant domain a single N-glycosylated site that can comprises hundreds of different 

glycoforms, generally resulting from the combination of the presence or absence of fucose, 

galactose, sialic acid and bisecting GlcNAc (Kiyoshi, et al., 2017). The analysis of IgG 

glycome comparing IBD patients and controls showed that IBD patients display a distinct 

pattern of IgG glycosylation that is characterized by a decrease in galactosylation in both 

UC and CD, decreased sialylation and increased bisecting GlcNAc in IgG glycans from CD 

patients (Trbojevic Akmacic, et al., 2015). The combination of agalactosyl IgG with ASCA 

further showed higher specificity in IBD diagnosis (Shinzaki, et al., 2013). Moreover, the 

analysis of IgG glycoprofile of 75 UC patients (Miyahara, et al., 2013) demonstrated that 

high sialylation in IgG was associated with higher disease activity. A ratio between the 

presence of bisecting GlcNAc in monogalactosylated structures with the absence of 

bisecting GlcNAc in these structures were associated with a poor prognosis of UC patients 

(Trbojevic Akmacic, et al., 2015). 

 In fact, alterations in the glycosylation of IgG are able to switch the phenotype of IgG 

from anti-inflammatory to pro-inflammatory. Loss of sialylation and low levels of 

galactosylation were associated with pro-inflammatory properties of IgG. Sialylation of 

fragment crystallizable (Fc) region reduces the affinity of IgG to activating Fc gamma 

receptors (FcγR, notably FcγRIII/IV, that are present in monocytes and macrophages) and 

also increase the expression of inhibiting FcγRIIB, promoting the anti-inflammatory action 

of IgG (Kaneko, et al., 2006). In addition, agalactosyl IgG was shown to enhance antibody-

dependent phagocytosis (Nakajima, et al., 2011). 

 The determination of the glycosylation signature of human biological fluids, such as 

serum constitutes a non-invasive tool with promising prognostic value that is worth explored. 
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6.2.  Glycans as an emerging therapeutic strategy in IBD 

 In the last years, an explosion of new targeted therapies arose to overcome the 

ineffectiveness of the standard therapy. The continuously discloser of the mechanisms 

behind IBD, gave rise to several therapies that target many proteins involved in immune 

response, such as TNF blockers, anti-adhesion molecules, cytokines inhibitors, JAK 

inhibitors, among others (Coskun, et al., 2017; Danese, et al., 2015). However, and given 

the heterogeneity of IBD in terms of disease course, progression to complication and 

therapy response, there are still a significant proportion of patients that remain refractory to 

therapy. 

 Glycosylation has been demonstrated to be an important step to consider in the 

design of effective therapeutic monoclonal antibodies (mAb) (Gomollon, 2014; Sha, et al., 

2016). The quality of an antibody relies not only in the primary structure, charge and purity 

but also in the type, quantity and position of glycosylation. The Fc glycosylation influences 

the clearance rate, pharmacokinetic, pharmacodynamic and the binding to Fc receptors 

(Sola and Griebenow, 2010). Moreover, antigen-binding fragment (Fab) glycosylation also 

influences the binding to antigens and glycan binding proteins (Plomp, et al., 2016). 

Therefore, the efficacy of a therapeutic mAb is critically dependent on its glycosylation 

pattern. For example, a comparative study of biosimilars and biologics of anti-TNF that took 

into consideration its glycans profile support the relevance of glycans in determining efficacy 

and stability of the mAb (Lee, et al., 2017a). 

 The pharmaceutical industry has been using different hosts to produce mAb in order 

to promote glyco-heterogeneity of the antibodies. As described above, the altered pattern 

of glycosylation observed in the IgG of IBD patients influence their capacity to suppress 

inflammation. Accordingly,  intravenous immunoglobulin (IVIG)  administration containing a 

pool of serum IgG´s from thousands of healthy individuals are used as an infusion therapy 

to modulate the immune response in a variety of chronic inflammatory and autoimmune 

diseases (Schwab and Nimmerjahn, 2013). The de-glycosylated Fc from IVIG was shown 

to have no anti-inflammatory activity, since the terminal sialic acid of Fc revealed to play a 

key role in the immuno-modulatory effects of IgG (Kaneko, et al., 2006). IVIG, dependent 

on sialylated IgG glycovariants was demonstrated to result in Treg cell expansion, 

suppression of T cell activity by selective engagement of the type II Fc receptor SIGN-R1 

(human DC-SIGN) (Fiebiger, et al., 2015). Moreover, IVIG therapy in mice with colitis was 

shown to reduce the intestinal inflammation by induction of IL-33 (Fiebiger, et al., 2015), 

supposedly through promotion of Treg cell expansion, since this regulation was already 

described (Schiering, et al., 2014). Additionally, sialylated IgG reduce antibody-dependent 

cell-mediated cytotoxicity (ADCC) by decreasing IgG affinity to FcγR, suggesting that sialic 
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acid in Fc promotes a conformational change in IgG. The administration of IVIG has been 

demonstrated to be beneficial in IBD treatment (Horton, et al., 2017). Despite being 

tolerated by the patients and reduce disease activity in refractory IBD patients, these 

therapy is not chosen as an option due to high cost comparing with standard therapy, 

however the cost is much less than biologics therapy (Rogosnitzky, et al., 2012).  

 The therapeutic benefits of glycans in the regulation of immune response are 

evident, as described above. Interestingly, glycomacropeptide (GMP) (Sawin, et al., 2015), 

which is released during cheese making, has been shown to exert immunomodulatory 

activities in some disorders such as IBD. This macropeptide is extensively O-glycosylated, 

and enriched with N-acetylneuraminic acid (sialic acid), galactose and N-

acetylgalactosamine, and its oral administration in colitis-induced mice showed an 

improvement on the disease severity due to its anti-inflammatory effects (Lopez-Posadas, 

et al., 2010). Moreover, this glycomacropeptide also control gut microbiota (Sawin, et al., 

2015), which can potentially act as a prebiotic agent in IBD.  

 In addition, the metabolic supplementation with glycans  that are salvage into the 

hexosamine pathway, can also represent also a promising immunomodulatory therapeutic 

strategy for IBD (Dias, et al., 2017). 

 Overall, the specific effects of glycans in the control of immune response as well as 

in the regulation of microbiota content and functions highlight the clinical and therapeutic 

effects of glycans in controlling inflammation, particularly in IBD. 

 

 

7. Concluding Remarks 

 Glycosylation is now considered an important “building block” of life. Glycans encode 

a huge diversity of different biological functions within a cell or an organism with remarkable 

implications both in homeostasis and in disease. Particularly, glycans are essential 

regulatory elements that fine tune the immune response. During the transition from normal 

to inflamed conditions, changes in the glycans repertoire occur and the aberrant expression 

of glycans integrates into the regulatory circuits underlying immune stimulation or immune 

inhibition.   

 In intestinal mucosa, the abundance and diversity of glycan structures that compose 

the glycocalix reveal its prominent role at the interface of host-pathogen interaction in which 

glycans can bi-directionally regulate microbiota content and function and the host immune 

response. This holistic implication of glycans in the gut homeostasis and intestinal immunity, 

place them as fundamental molecules with major implications in the pathogenesis of bowel 

diseases such as IBD or gastrointestinal cancer. 
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 The detailed identification and characterization of the impact of aberrant expression 

of specific glycans will bring to light new mechanisms of intestinal inflammation and 

consequently new biomarkers of disease and novel targeted-specific therapeutic strategies, 

able to be included in the clinical and therapeutic algorithm of IBD patients.     
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Figure legends 

Figure 1 

 

Figure 1. Glycans as a missing factor in IBD pathogenesis. IBD is a multifactorial 

disorder in which the combination of genetic factors, environmental conditions, alterations 

in the microbiome composition and functions as well as a dysregulated immune response 

are known to contribute to this chronic disease of the gastrointestinal tract.  However this is 

not a perfectly matched puzzle and the precise pathogenesis of IBD remains to be fully 

understood and therefore the disease is still incurable. A compelling body of evidences 

suggests that glycosylation constitute a fundamental factor in IBD pathogenesis as glycans 

act at the interface of the four well-known risk factors of IBD. In fact, glycans and their 

binding partners are implicated in the regulation of both innate and adaptive immune 

responses that occur in IBD. The glycome composition of each individual can also be 

influenced by environmental factors such as diet, or medication. Many glycogenes 

displaying aberrant promoter methylation and/or deficient cis-regulation have been 

described to be associated with IBD-susceptibility locus. Therefore the host`s glycome 

alterations is a central component in IBD pathogenesis imposing new perspectives in IBD 

clinical management and targeted-specific therapies.  
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Figure 2 

 

Figure 2. Impact of glycosylation in IBD pathogenesis. During the transition from normal 

to inflamed gut mucosa changes in the glycans repertoire occur. The aberrant expression 

of specific glycans that accompany intestinal inflammation impacts not only in the host´s 

immune response but also in the microbiota content and functions. Glycans composition 

namely in mucins are crucial to maintain the protective function of the intestinal barrier 

against pathogenic microbiota. Particularly, the �-1,2 fucosylation catalyzed by FUT2 in 

epithelial cells is crucial in maintaining commensal microbiota  protecting against 

pathogenic microorganisms. The loss of mucosal integrity results in pathogens invasion 

concomitantly with a cascade of inflammatory events mediated by dendritic cells, 

macrophages, neutrophils and later by T cells. These pathogenic microorganisms can took 

advantages from host´s glycans, through glycosidades activity as strategies to “escape” 

recognition by host´s immune system. This selective process gives rise to dysbiosis that in 
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IBD is characterized by a decreased in microbiota diversity (less Firmicutes and more 

Proteobacteria) and a higher Fungi ratio of Basidiomycota/ Ascomycota. 

At the level of lamina propria, glycosylation alterations are known to regulate T cell-

mediated immune response. In homeostasis, the expression of �1,6 GlcNAc branched N-

glycans, catalyzed by GnT-V is crucial to control T cell receptor (TCR) function and 

signaling. On this process, specific carbohydrate recognition proteins (C-type lectins) such 

as galectins (Galectin 3) recognizes  the elongated chain (polylactosamine) of the branched 

N-glycans forming a “lattice” that precludes the TCR clustering and in this way control the 

threshold of T cell activation. Other galectins, such as Galectin 1 and Galectin 2, are also 

important in controlling T cell-mediated immune response towards a T regulatory response. 

Importantly, in homeostatic conditions, the profile of IgG glycosylation released in the serum 

has been described to exhibit predominantly galactosylated and terminal sialylated N-

glycans in the Fc portion. 

In IBD, specific alterations on the expression of glycans, particularly the upregulation of �1-

6 fucosyltransferase (FUT8) with overexpression of core-fucose and the downregulation of 

MGAT5 gene with decreased expression of GnT-V-mediated branched N-glycans 

negatively impact in T cell response. This altered expression of N-glycans (branched and 

core-fucosylated) lead to T cell hyperactivation and signaling of intestinal T lymphocytes, 

being also associated with  a T cell differentiation towards Th1 and Th17 immune 

responses. In addition, the expression of the C-type lectins, galectins 4 and 8 further 

stimulate T cell proliferation in colitis. Moreover, in IBD the expression profile of serum IgG 

is different from homeostasis, being predominantly characterized by agalatosylation. 

Altogether, the glycosignature that accompany IBD pathogenesis provides a plethora of 

opportunities to understand the mechanisms underlying intestinal inflammation which will 

consequently improve the development of novel disease biomarkers and targets for new 

therapeutic strategies.   
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General discussion 

 

In the last couple of years significant progresses in the understanding of IBD 

occurred. Namely the development of new therapeutic targets, the disclosure of new 

molecular mechanisms (Neurath, 2017), numerous clinical trials (Olivera, et al., 2017), 

and even the development and approval of biosimilars (FDA approved CT-P13 and ABP 

501 as biosimilars for infliximab and adalimumab, respectively) (Ha and Kornbluth, 

2018). However, as the incidence of IBD has been continuously increasing, it is now 

considered a global disease. The most updated review point out that IBD incidence has 

raised in the newly industrialized countries (Ng, et al., 2017), with 70,000 new cases 

diagnosed each year, and with approximately 80,000 children suffering from CD or UC 

(Colombel and Mahadevan, 2017). 

In fact IBD places a heavy burden in young populations incurring in substantial 

healthcare and societal costs, impeding career aspirations with impact in patients’ quality 

of life (Kaplan, 2015).   

Taking into consideration the complexity of IBD pathogenesis, it is of paramount 

importance to identify risk factors as well as relevant environmental influences since “low 

risk” populations are witnessing an increasing of IBD incidence. Therefore, renewing 

efforts in unravelling the natural history of IBD is crucial to develop new avenues for 

therapeutic intervention and improvement of patient’s outcomes. This doctoral thesis have 

contributed to improve IBD clinical management as this PhD project culminates with new 

insights on a new molecular mechanism, proposing an alternative target-specific therapy 

for IBD based in glycans.  

 

Chapter II- Dysregulation of T cell receptor N-glycosylation: a molecular mechanism 

involved in ulcerative colitis. 

Accumulating evidences have shown that GnT-V-mediated glycosylation plays a 

key role in regulating T cell activity in immune-mediated disorders (Demetriou, et al., 

2001; Grigorian, et al., 2007; Lau, et al., 2007). TCR is a glycoprotein with at least 7 N-

glycan sites on α and β subunits (Rudd, et al., 1999) and in homeostasis and self-

tolerance, T cell activation (TCR signaling) induces up-regulation of MGAT5 gene which in 

turns leads to GnT-V-mediated glycosylation of the TCR (Chen, et al., 2009). The 

branching N-glycans on TCR promote growth arrest of T cells by at least two 
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mechanisms: early, by raising T cell activation thresholds via limiting TCR clustering at the 

immune synapse and the consequent hyperimmune response, and later by increasing 

surface retention of growth inhibitory receptors such as CTLA-4 (Chen, et al., 2009). 

Together these evidences from other immune-mediated disorders set the ground to this 

project which intends to address whether the dysregulation of this critical interplay 

between N-glycan branching and T cell activity is a major contributory factor and a yet 

uncovered mechanism underlying UC.  

 

Herein, we have demonstrated that GnT-V-mediated glycosylation of the TCR on 

lamina propria T cells is a new molecular mechanism underlying UC pathogenesis. We 

found a significant correlation between low expression levels of branched N-glycans in 

intestinal lymphocytic infiltrates and disease severity.  Then, and taking into consideration 

that TCR signaling regulates multiple Golgi N-glycan branching-processing enzymes at 

the mRNA level (Chen, et al., 2009), such as MGAT5, we showed that the mRNA 

expression of glycogene MGAT5 is reduced in intestinal lamina propria lymphocytes 

(LPLs) isolated from UC patients. No significant alterations were found on MGAT3 

glycogene (Dias, et al., 2014). The competition between branching N-glycans (by GnT-V) 

and bisecting (by GnT- III) known in cancer context (Pinho, et al., 2013) appears to be not 

observed at least in UC, however further studies are needed. Moreover, we further 

validate that this dysregulation of GnT-V-mediated branched N-glycans in T cells from UC 

patients also occurs at the level of GnT-V enzymatic activity (Ana M. Dias et al., under 

revision, in chapter III in this thesis).  

Nevertheless, whether this dysregulation of MGAT5/GnT-V-mediated glycosylation 

on TCR is a cause or consequence of UC remains to be elucidated. It has been proposed 

that MGAT5 is a gene that determines severity and susceptibility to MS (Brynedal, et al., 

2010; Li, et al., 2013), including in a GWAS (Brynedal, et al., 2010). Future studies are 

warranted to clarify whether dysregulation MGAT5 expression represents a common 

alterations determining autoimmune susceptibility together with other susceptibility loci 

raised with GWAS (Lees, et al., 2011). 

These findings described in chapter II give rise to many other questions: what are 

the underlying mechanisms that could explain this MGAT5 mRNA dysregulation? 

Epigenetics?; Does this relationship between deficiency of branched N-glycans with 

disease severity can help to identify patients’ likely to develop severe forms of UC? ; Do T 

cells from normal adjacent mucosa display this deficiency in branched N-glycans? ; Can 

this deficiency in branched N-glycans in T cells be repaired representing thereby a new 

opportunity for IBD treatment? 
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Despite, DNA methylation demonstrates to have a physiological role on the IBD 

development being associated with genetic risk in IBD (Kraiczy, et al., 2016; Ventham, et 

al., 2016), so far,  no major alterations on DNA methylation were found and thereby it 

does not represent the major cause of MGAT5 gene downregulation in IBD (Ana M. Dias 

and Salomé S. Pinho, unpublished data) (results from training visit and collaboration with 

Prof. Vlatka Zoldos group in Zagreb, Croatia). In fact, DNA methylation and EWAS 

(Epigenome-wide association studies) are providing new insights in complex diseases 

(Callaway, 2014) and soon they may help to understand epigenetic alterations in 

different cell-types, particularly at mucosa level, on the different gut cell types and also 

explore how it may regulate or is regulated by post-translational modifications. 

Interestingly, Demetriou and colleagues reported a direct environmental impact on 

genetic risk in MS. They demonstrated that the association between environmental factors 

(sunlight/vitamin D3 and metabolism) combined with multiple genetic variants (IL17RA, 

IL2RA, MGAT1 and CTLA-4) converge to dysregulate Golgi N-glycosylation and regulate 

disease development and severity (Mkhikian, et al., 2011). 

On the other hand, N-glycan branching pathway includes at least 30 different 

genes, representing a major harbour of genetic variants which together with additional risk 

factors is likely to be an important hit on the discloser of autoimmune disorders, like MS, 

IBD and type I diabetes. Further studies are warranted. 

We cannot discard the possibility that this MGAT5 mRNA dysregulation can be 

mediated through a disease-dependent immune modulatory process. Critically, it is also 

not clear yet if this dysregulation is confined to T cells from the inflamed colon mucosa of 

UC patients or not.  

Hence, two possibilities/ hypothesis arise: Is it confined to the inflamed colonic 

mucosa due to the inflammation? Or, Is it systemic meaning a general alteration of 

MGAT5 gene (in blood, inflamed tissue and normal adjacent mucosa) that might be derive 

from genetic plus environmental causes? 

In the near future, those questions may be easily elucidated with development of 

innovative glyco-approaches (Holst, et al., 2016; Rillahan and Paulson, 2011; Smith and 

Cummings, 2013) and others approaches like in situ RNA sequencing (Ke, et al., 2013) 

which I had the opportunity to perform and initiate the optimizations to apply it in UC 

samples, during my training visit in collaboration with Prof. Mats Nilsson and Prof. 

Carolina Wählby (Sweden). 

Moreover, it remains an open question whether this mechanism is also present in 

CD patients and we need other cohorts to further validate the association with UC and 

CD. In fact, this study was conducted in a restricted geographic population from Porto 

(Portugal) (Dias, et al., 2014), and another cohort (either national or international) needs 
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to be used to validate the association with UC pathogenesis. As in the case of NOD2 

gene (specific marker of CD but not representative of all geographic regions in the world), 

dysregulation of MGAT5 gene expression can possibly be restricted to a geographic area 

and associated only to UC. Nonetheless, all these findings/observations can be 

considered a step forward on the understanding of IBD pathogenesis, representing a 

major contribution for IBD clinical management, namely by improving the development of 

novel biomarkers that may help the determination of prognosis and also improve the 

patients’ stratification for appropriate treatment. 

Undoubtedly, the disclosure of this new molecular mechanism in UC pathogenesis 

opens also new windows of opportunity to improve the target-specific therapy of UC 

patients. The findings in chapter II represented the basis of the research developed in 

chapter III. 

 

 

Chapter III- Metabolic control of T cell immune response through glycans in 

Inflammatory Bowel Disease. 

A compelling body of evidences have been pointing toward the importance of 

complex branched N-glycans catalyzed by GnT-V in controlling T cell activity and 

functions in immune-mediated disorders as demonstrated in mouse models of MS and 

Type I diabetes (Demetriou, et al., 2001; Grigorian, et al., 2007; Lau, et al., 2007). 

Moreover, from these models of IBD understanding, it was shown that metabolic 

supplementation of mice and T cells with UDP-GlcNAc enhances GlcNAc branching of T 

cell catalyzed by GnT-V which increases the threshold for T cell activation, suppresses T 

cell growth and inhibits Th1 differentiation leading to a controlled immune response and a 

decreased disease clinical severity in EAE and type I non-obese diabetic mice (Grigorian, 

et al., 2011; Grigorian, et al., 2007). Interestingly, 18 years ago, oral GlcNAc was 

described to promote intestinal lining through mucus production in children with severe 

treatment-resistant IBD. In this study, 8 out of the 12 children studied went into clinical 

remission (Salvatore, et al., 2000). However the specific therapeutic effect of GlcNAc was 

not understood at the time.  

 

Therefore, in line with our findings shown in chapter II (Dias, et al., 2014), we 

investigated whether the mechanism described could be therapeutically targeted in IBD. 

Therefore, we conducted ex vivo and in vivo studies in order to evaluate the impact of 

GlcNAc supplementation in the regulation of T cell-mediated immune response.  We 
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evaluated the effect of the supplementation with N-glycans in the adaptive immune 

response in purified mucosal T cells (obtained from fresh colonic biopsies) from UC 

patients with active disease. 

Our results on ex vivo T cells cultures revealed that the supplementation with N-

glycans is able to enhance the glycosylation of T cells, repairing the previously described 

deficiency on branched N-glycans in T lymphocytes (Dias, et al., 2014). The enhancement 

of N-glycosylation in T cells was validated by several techniques and by an innovative 

approach designated Imaging flow cytometry (which combines features of both 

conventional flow cytometry and fluorescence microscopy) that was specifically adapted 

to analyze the β1,6 GlcNAc branched N-glycans, on the membrane of T cells from IBD 

patients ((Dias, et al., 2016) in Appendix 3).    

Moreover, we observed that increasing doses of GlcNAc resulted in a significant 

reduction of T cell proliferation, suppression of Th1 and Th17 response through 

decreasing the expression of the transcription factors, T-bet and RORγt and the 

respective cytokines production, TNF-α, INF-γ and IL17A. Downstream TCR signaling 

was also suppressed as observed by the reduction in phosphorylation levels of ZAP70 

and LAT (Dias, et al., 2017).  

Besides the TCR, the enhancement of branched N-glycosylation can also modify 

other receptors like the co-receptors CD4 and CD8 as well as the growth inhibitory 

receptor CTLA-4 (Demetriou, et al., 2001; Lau, et al., 2007; Morgan, et al., 2004) . 

Moreover, CD45 and CD25 are also potential targets of branched glycosylation 

modification that can further contribute to the regulation of T cell-mediated immune 

response through branching N-glycans (Araujo, et al., 2017; Chen, et al., 2007). 

In our in vivo approach, we took advantage of transgenic mice with different 

glycosylation profiles and we induced colitis to study the impact of glycans in the control of 

disease severity and disease progression. Interestingly, our in vivo data reveal that mice 

with colitis treated with GlcNAc exhibited a suppression of disease severity and a delay in 

disease progression as demonstrated by low disease activity index (DAI) and suppression 

of Th1 immune response in the gut (Dias, et al., 2017). 

Importantly, it would be also important to further explore the therapeutic effect of 

GlcNAc in other systems (like organoids or explants cultures) where the consequences of 

the uptake by other cells like intestinal epithelial cells would be investigated. Taking into 

account that GlcNAc treatment improves mucosal lining, it seems that GlcNAc helps in 

maintaining mucins layer on the epithelial barrier. Hence, it is worth exploring on GlcNAc 

treatment context, like this possible crosstalk between epithelial and immune cells (T cells 

and others) which deserves to be deeply investigated. 
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Furthermore, it would be interesting to explore other mouse models in order to 

validate that the immunomodulatory effect by GlcNAc treatment is specifically mediated by 

T cells. The T cells transfer mouse models or Cre-loxP mouse models (conditional 

inactivation of a target gene only in a selected cell population) (Kiesler, et al., 2015; 

Sharma and Zhu, 2014) would be two possible strategies to assess this important 

question. 

On the other hand, the development of new strategies, other than the enemas 

tested in this study, to improve the local delivery of GlcNAc at the site of inflammation by 

implementing, for instance, the GlcNAc incorporation in “customized” nanoparticules with 

targeted effects, is an interesting strategy that is worth explored. Through this targeted 

approach we might direct the GlcNAc to those mucosal T cells, with TCR displaying lower 

branching, which would preferentially uptake the GlcNAc nanoparticles and presumably 

inducing a quicker and more stable immunomodulatory effect. Indeed, nanotechnology 

delivery systems of drugs to IBD treatment have been explored and tested in IBD patients. 

The main advantage is that we can decrease the number of administrations, get the 

desired pharmacologic effects with smaller doses and therefore allowing more stable and 

prolonged remissions (Viscido, et al., 2014). 

Furthermore, and despite the several advantages of GlcNAc (natural compound, 

nontoxic, less expensive) for treating IBD patients, whether a single versus a combined 

administration of GlcNAc is complete effective remains to be explored. The use of GlcNAc 

as adjuvant/combination (COMBO) therapy with other existent IBD drugs has being now 

tested in the group. In this regard, we have very preliminary data indicating that a COMBO 

strategy with GlcNAc and other standard IBD therapy appear to be even more effective 

than the single therapy in reducing inflammation, through the control of the release of pro-

inflammatory cytokines namely TNF-α and IL-6.  

Certainly, the continuous improvements in the identification of new molecular 

mechanisms and consequently identification of new therapies are fundamental to develop, 

in the near future, a personalized therapy in IBD.  

Overall, in chapter III, we demonstrate that enhancing the glycosylation of T cells 

resulted in a significant suppression of T cell mediated-immune response associated with 

the control of intestinal inflammation and suppression of disease severity and progression.  

Importantly the association of pre-malignant disease like IBD and cancer deserves 

attention and future studies must address the overall impact of this specific glycans on the 

narrow/vulnerable line between MGAT5 expression “benefit” in IBD (Dias, et al., 2014) 

and MGAT5 expression “threat” to colorectal cancer (CRC) or other gastrointestinal 

related carcinomas (Carvalho, et al., 2016; Pinho, et al., 2012a; Pinho, et al., 2012b; 

Pinho and Reis, 2015). 
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Remarkably, in addition to the examples of glycosylation-based models of IBD 

listed in Table 3 (chapter I), this work propose now MGAT5 null mice as a model of IBD 

susceptibility. 

 

 

Chapter IV- Glycans as immunomodulators in inflammation: Inflammatory Bowel 

Disease as a model. 

Lastly, the work presented in chapter II and chapter III was included in an updated 

review (chapter IV) summarizing the most updated evidences on the impact of glycans as 

key players in maintaining the equilibrium between homeostasis and exacerbation of 

immune responses. 

In chapter IV, we discuss the pivotal role of glycans in mediating immune 

response, particularly in IBD, proposing glycans as the missing factor in IBD 

pathogenesis.  

Evidences derived from the studies performed during this doctoral thesis and from 

other authors, namely Prof. Miyoshi’s group, clearly demonstrate that, in IBD patients, 

there are two main glycosylation alterations in T cells; the upregulation of α1-6 

fucosyltransferase (FUT8) (Fujii, et al., 2016) and the downregulation of branched N-

glycans (by reduction of MGAT5 gene and glycosyltranferase GnT-V) (Dias, et al., 2014) 

in IBD. Both alterations lead to a T cell hyperactivation (increasing of TCR signaling and 

pro-inflammatory cytokines production) on intestinal T lymphocytes from IBD patients, 

representing promising specific targets for new IBD therapies.  

In chapter IV is highlighted the dynamic process, mediated by glycans, between 

transmitted signals of microbiota via pathogen recognition (by the innate immune system) 

to intestinal epithelial cells (IECs) and vice versa, immune cells transmitted signals to 

IECs and translate that into signals which regulate composition of gut microbiota. An 

elegant study demonstrated a clear example of this dynamic process (Goto, et al., 2014). 

At epithelial level, α-1,2 fucosylation by FUT2 in intestinal epithelial cells is crucial in 

maintaining commensal microbiota and protect against pathogenic microbiota. The α-1,2 

fucose expression on ECs is controlled by ILC3s immune cells and luminal microbes. 

Basically, it was demonstrated that commensal bacteria, pathogenic bacteria and bacterial 

products (LPS) stimulate directly or indirectly (via gut DCs) ILC3s to produce IL-22 to 

promote epithelial FUT2 and to induce α-1,2 fucosylation on epithelial cells (Goto, et al., 

2014). 
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In chapter IV is also described how the development of glyco-based approaches 

namely genetic glycobiomarkers, tissue specific glycobiomarkers and certain glycosylated 

proteins (as non-invasive biomarkers) have been essential in enhancing clinical decision 

making of IBD in the last years. 

In conclusion, a compelling body of evidence pinpoint that glycans are on the road 

as attractive targets with a tremendous potential to help in improving the understanding of 

mechanisms underlying loss of immune tolerance that will catalyze the development of 

target-specific IBD therapies and new clinical biomarkers. 
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Concluding remarks 

 

The main goal of the present doctoral thesis was to contribute to the disclosure of 

a new molecular mechanism in IBD pathogenesis, namely in UC and to purpose a new 

molecular target to improve IBD clinical management promoting the development of 

targeted-specific therapies. To achieve this main goal, we set specific aims from which 

resulted the following main conclusions. 

 

1. Taking in consideration that in other autoimmune disorders T cell functions are 

modulated by N-glycosylation of the T cell receptor (TCR), we have explored whether 

a dysregulation of GnT-V-mediated branch glycosylation in T cells influences IBD 

pathogenesis. 

 

In this doctoral thesis, we have shown that GnT-V-mediated glycosylation of the 

TCR on lamina propria T cells is a new molecular mechanism underlying UC 

pathogenesis. We found a correlation between disease severity and decreased 

expression of branched N-glycans in intestinal lymphocytic infiltrates. Furthermore, we 

found that the glycogene MGAT5 mRNA expression is reduced in intestinal lamina propria 

lymphocytes (LPLs) isolated from UC patients with active disease compared with controls. 

These results support a genetic alteration of the MGAT5 gene from intestinal T 

lymphocytes of UC patients, being the underlying event that promotes a dysregulated 

immune response through a disturbance in protein branched N-glycosylation catalyzed by 

GnT-V on intestinal TCR. 

 

2. In line with the urgent need for target-specific therapies in IBD and following the 

disclosure of a dysregulation on TCR N-glycosylation as a new important factor in UC 

pathogenesis, we explored whether this deficiency can be repaired and whether it has 

an impact on the control of immune response in UC. 

 

In this doctoral thesis, we found that metabolic supplementation with GlcNAc 

(precursor of hexosamine pathway) in ex vivo T cells, was able to enhance TCR 

glycosylation, repairing the previous identified deficiency on branched glycans in T 

lymphocytes. More important, we found that it induces a suppression of T cell function 

mainly via suppression of Th1 and Th17 responses. Additionally, our in vivo studies 
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provided the proof-of-concept of GlcNAc as a new immunomodulatory agent for IBD 

treatment. We demonstrated for the first time that deficiency in branched glycosylation in 

MGAT5 null or heterozygous mice is associated with early onset disease and increased 

severity of colitis. Moreover, the GlcNAc treatment of MGAT5 mice with severe colitis, 

particularly via enemas, exhibited a suppression of disease severity and a delay in disease 

progression as demonstrated by low disease activity index (DAI) and suppression of Th1 

and Th17 immune response.  

Overall, the present study contributed to ,“Bridge Basic Research and Clinical 

Practice” improving IBD clinical management and paving the way for the development of 

novel target-specific therapies that ultimately will culminate in a better IBD patient quality of 

life, especially in young populations that are commonly affected. 
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Future perspectives 

 

This multidisciplinary and translational work provided novel insights on the pivotal 

role of glycans in T cell-mediated immune response in IBD pathogenesis with impact in 

IBD treatment. The findings herein described, raised many other pertinent questions with 

clinical relevance (some of them ongoing in the group): 

§ The correlation of the deficiency of branched N-glycans in lamina propria T cells 

with UC disease severity can be further explored as a potential predictive 

biomarker to stratify patients accordingly with disease severity.  

 

§ The deep understanding of the mechanism(s) behind decreased expression of 

MGAT5 mRNA in T cells from UC patients may help to screen some possible 

genetic susceptibility factor in UC.  

 
§ With the advance of new cutting edge techniques in glycoproteomics remaining 

questions can be accurately assessed soon, such as: Do T cells from normal 

adjacent mucosa from UC have also this deficiency in branched N-glycans? Or is it 

similar to healthy controls? On this regard, we have initiated collaboration with 

Prof. Mats Nilsson and Prof. Carolina Wählby, and I have been conducting the first 

experiments to perform RNA in situ sequencing and investigate MGAT5 

expression in normal adjacent mucosa and respective inflamed mucosa from UC 

patients. 

 
§ The herein described glycosylation dependent molecular mechanism and 

proposed therapy need to be tested in other UC cohorts. It would be also 

interesting to evaluate whether it is involved also in CD. 

 

In summary, this doctoral thesis contributed to identify a mechanism dysregulated 

in autoimmune disorders like IBD which result in the development of a targeted-specific 

strategy of treatment that can be applied not only in IBD but it can also be tested in other 

autoimmune disorders. The results from this doctoral thesis gave a main contribution to 

support the development of an IBD clinical trial which is now ongoing (where I will be 

involved as study coordinator). 
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Overall, in the near future, GlcNAc therapeutic strategy might be an alternative IBD 

therapy, single or in combination. Most patients refractory to the current therapies might 

benefit from this less expensive, natural and non-toxic alternative. 
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Appendix I 

 

 

Dysregulation of T cell receptor N-glycosylation: a molecular mechanism involved 

in ulcerative colitis 

 

Ana M. Dias*, Joana Dourado *, Paula Lago, Joana Cabral, Ricardo Marcos-Pinto, Paulo 

Salgueiro, Catarina R. Almeida, Sandra Carvalho, Sónia Fonseca, Margarida Lima, 

Manuel Vilanova, Mário Dinis-Ribeiro, Celso A. Reis, Salomé S. Pinho  

 
 
 
 
Supplementary Figures of Chapter II 
 

Supplementary Table S1: Relationship between L-PHA expression in intestinal 

lymphocytic infiltrate and the inflammatory activity. 

Supplementary Fig.1: Levels of bisecting GlcNAc N-glycans expression and MGAT3 

gene expression in LPLs from UC patients and normal controls. 
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Supplementary Table S1 - Relationship between L-PHA expression in intestinal 

lymphocytic infiltrate and the inflammatory activity. 
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Supplementary Fig.1 

 

Supplementary Fig.1. Levels of bisecting GlcNAc N-glycans expression and MGAT3 

gene expression in LPLs from UC patients and normal controls. (A) Protein lysates 

from the isolated LPLs were subjected to E-PHA lectin blot in order to evaluate the 

expression levels of bisecting GlcNAc N-glycans on the TCR (39kDa). (B) 

Immunoprecipiation of TCR followed by bisecting GlcNAc structures recognition (E-PHA 

reactivity). The results in A and B demonstrate no significant alterations of the TCR 

glycosylation with bisecting GlcNAc structures comparing UC patients and normal 

controls. (C) qRT-PCR analysis for mRNA expression of MGAT3 from intestinal LPLs from 

normal controls and active UC patients (Mayo subscore 2) showing no significant 

alterations. Results in (C) are an average of two independent experiments, performed in 

triplicate, using RNA from 2 independent normal controls and 2 independent active UC 

patients. The mRNA expression levels are expressed as mean ± SEM (Student’s t-test:  P 

= 0.45). Lanes in A and B were on the different gels (black lines). 
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Appendix II 
 

 

Metabolic control of T cell immune response through glycans in Inflammatory Bowel 

Disease  

 

Ana M. Dias, Alexandra Correia, Márcia S. Pereira, Catarina R. Almeida, Inês Alves, Vanda 

Pinto, Telmo A. Catarino, Nuno Mendes, Magdalena Leander, M. Teresa Oliva-Teles, Luís 

Maia, Cristina Delerue-Matos, Naoyuki Taniguchi, Margarida Lima, Isabel Pedroto, Ricardo 

Marcos-Pinto, Paula Lago, Celso A. Reis, Manuel Vilanova, Salomé S. Pinho.  

 

 
 
 
 
Supporting information of Chapter III 

 

1- SI Material and Methods 

 

2- Supplementary Figures and Tables 

 

Supplementary Fig.1: Enhancing ex vivo the hexosamine biosynthetic pathway in T cells 

by metabolic supplementation with N-acetylglucosamine (GlcNAc). 

Supplementary Fig.2: Upon GlcNAc treatment, N-glycosylation of T cells from controls and 

UC inactive disease remains unaltered. 

Supplementary Fig.3: Enhancement of branched glycosylation on T cells from active UC 

patients is abolished by specific inhibitors of branching N-glycans synthesis.  

 
Supplementary Fig.4: T cells from active UC patients display reduced GnT-V enzymatic 

activity comparing with healthy controls. 

Supplementary Fig.5: Secreted cytokines in supernatants of ex vivo T cells from active 

UC patients. 

Supplementary Fig.6: Inhibition of branching N-glycans synthesis abrogates the regulation 

of pro-inflammatory cytokines production. 
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Supplementary Fig.7: Impact of ex vivo GlcNAc treatment in cell apoptosis/death of T cells 

from control versus active UC patients. 

Supplementary Fig.8: Evaluation of branched N-glycosylation on TCR of colonic T cells 

from DSS and TNBS-induced colitis mouse models.  

Supplementary Fig.9: GlcNAc administration effects in different genotypes of MGAT5. 

Supplementary Fig.10: Shaping the T cell-mediated immune response in IBD through 

metabolic enhancement of branched N-glycosylation. An opportunity for new therapeutic 

strategies. 

Table S1: The table summarizes the list of antibodies used for staining by flow cytometry 

experiments. 
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1- SI Material and Methods 

Patient’s selection and colonic biopsies collection 

The present study includes fresh colonic biopsies obtained from 75 patients (including 3 

patients in remission stage) diagnosed with UC that underwent scheduled colonoscopy 

(between 2014 and 2017) at the Gastroenterology Department of Centro Hospitalar do 

Porto- Hospital de Santo António (CHP-HSA), Porto, Portugal. Fresh colonic biopsies (5-10 

biopsies per patient) were representative of macroscopically active disease topography, as 

defined by Mayo endoscopic score (41) and intestinal CD3+ T cells were purified. Blood was 

also collected for T cell isolation at the time of colonoscopy. 

The eligibility criteria for inclusion in this study were UC patients with inaugural 

disease (naïve, without therapy) or with standard 5ASA therapy with no history of human 

immunodeficiency virus infection or cancer. 

Normal controls (n=3) are represented by individuals that attend the 

gastroenterology department of CHP-HSA for a planned colonoscopy (no history of IBD or 

cancer). 

All specimens were subjected to histological examination and classification. All 

participants gave informed consent about all clinical procedures and research protocols 

were approved by the ethics committee of CHP/HSA, Portugal (233/12(179- DEFI/177-

CES). 

 

Isolation of CD3+ T cells from fresh colonic biopsies and blood of active UC patients. 

Ex vivo culture of T cells. 

Colonic biopsies from controls, inactive and active UC patients were mechanically 

dissociated to prepare single cell suspensions using the Hanks’ Balanced Salt solution 

Modified medium, without calcium chloride and magnesium sulfate (HBSS) (Sigma) with 

Penicilin/Streptomycin and Gentamicin. Peripheral Blood Mononuclear Cells (PBMCs) were 

obtained by density gradient centrifugation using Lymphoprep. 

CD3+ T cells (from biopsies and blood) were magnetically sorted by using the 

EasySep™ Human T Cell Enrichment Kit (STEMCELL) following the manufacturer’s 

instructions. CD3+ T cells (2 × 104) were cultured for 72h in 96-well round bottom plates with 

plate-bound anti-CD3 mAb (clone OKT3) (0,5µg/ml) and soluble anti-CD28 (clone CD28.2) 

mAb (0,5µg/ml) (eBioscience). N-acetylglucosamine (GlcNAc) (Sigma and Wellesley 

Therapeutics Inc) was added to the T cells cultures (0, 40, 80, 100mM). Kifunensine (10µm) 

and Swainsonine (500nM) (both from Sigma) were used as inhibitors of N-glycosylation, 
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specifically inhibits the enzymes mannosidase I (α-MAN I) and mannosidase II (α-MAN II), 

respectively (Supplementary Fig.1a). D-Mannose (80, 100 mM) (Sigma). 

 

 

Imaging Flow Cytometry  

Imaging flow cytometry analysis was performed as previously described (42) to 

assess co-localization of the TCRα/β+ with L-PHA on T cells cultured for 72h under T cell-

stimulation and different concentrations of GlcNAc. Data acquisition was performed in 

ImageStreamX (Amnis, Millipore). Data analysis was performed using IDEAS 5.0 software 

(Amnis, EMD Millipore), to determine the percentage of TCR+ cells, mean bright detail 

similarity and mean fluorescence intensity of L-PHA at the cell membrane by creating a 

specific mask to evaluate fluorescence at the cell membrane.  

 

 

Flow cytometry  

CD3+ T cells were resuspended in PBS containing 10mM sodium azide and 2%BSA 

and incubated for 30 min at 4°C with specific conjugated antibodies (detailed Table S1) and 

for β1,6-GlcNAc branched N-glycans detection, fluorescein isothiocyanate (FITC)-

conjugated L-PHA (Vector Lab) (2µg/ml). Results were expressed as percentage (%) of 

cells that stained positively for CD4 and CD8, as well as the MFI due to L-PHA staining 

within each T cell population. 

For cell surface and intracellular antigens used are indicated in TableS1. Surface-

stained cells were fixed and permeabilized using the Foxp3/Transcription Factor Staining 

Buffer Set (eBioscience) according to manufacturer’s instructions. Fluorescence minus one 

stainings and isotype controls (eBioscience) were included for each assessed transcription 

factor. 

For cytokine intracellular staining, CD3+ T cells, cultured as described above for 72 

h with anti-CD3 and anti-CD28, were washed with fresh medium and further incubated for 

3 h at 37 °C in complete RPMI medium containing 500 ng/mL of ionomycin, 50 ng/mL PMA 

and 10 μg/mL of Brefeldin A (all from Sigma). Cells were stained with APC-eFluor® 780 

Fixable viability dye before being surface stained with PerCP Cy 5.5 anti-human CD4 (clone 

RPA-T4) (Biolegend). Cells were then fixed with 2% formaldehyde, washed, permeabilized 

with 0.5% saponin (Sigma) and pre-incubated with 2% mouse serum before intracellular 

staining with human antibodies for TNF-α and IFN-γ (details in Table S1) or respective 

isotype controls (all from eBioscience).  
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 In all flow cytometry experiments, dead cells were excluded with Fixable Viability 

Dye APC-eFluor® 780-conjugated (eBioscience). 

Data acquisition was performed on a FACSCanto™ II system (BD Biosciences, San 

Jose, CA) using the FACSDiva™ software (BD) and compensated and analysed in FlowJo 

version 10.4. (Tree Star, Inc., Ashland, OR). Doublets were excluded from the analysis 

based on FSC-A versus FSC-H parameters. Fluorescence minus one gating was used to 

define the gates for cytokine-producing cells. Isotype controls were used to evaluate 

unspecific staining.  

 

 

Proliferation assay 

For T cell proliferation assays, CD3+ cells were purified from colonic biopsies of 

naïve patients (with inaugural disease) and 5-(and-6)- carboxyfluorescein diacetate 

succinimidyl ester (CFSE)-labelled using the CellTrace CFSE Cell Proliferation Kit 

(Molecular Probes, Invitrogen), as previously described (43), prior to culture. Dead cells 

were excluded based on propidium iodide incorporation. Acquisition was performed in an 

EPICS XL cytometer (Beckman-Coulter Corporation) and data were analyzed (always 

gating in live cells) using FlowJo software. 

 

 

Cytokine production  

Supernatants from colonic T cell cultures (treated and untreated) were analyzed by 

flow cytometry using the BD™ Cytometric Bead Array (CBA) Human Th1/Th2/Th17 

Cytokine Kit (BD) following the manufacturer’s instructions. Sample acquisition was 

performed in BD FACS CantoTM II flow cytometer (Becton Dickinson) and data were 

analyzed using the Flow Cytometric Analysis Program (FCAP) ArrayTM software. Human 

TGF-β1 was quantified in the concentrated culture supernatants by using the ELISA kits 

(R&D systems), according to manufacturer’s instructions. 

The supernatants from mouse colonic explant cultures were concentrated 15 fold by 

using Amicon® Ultra-2 mL Centrifugal Filters (Merck Millipore, Billerica, MA), according to 

manufacturer’s instructions. The levels of the cytokines IFN-γ and IL-17A were quantified in 

the concentrated culture supernatants by using the respective anti-mouse Ready-Set-Go!® 

ELISA kits (eBioscience), according to manufacturer’s instructions. The levels of the 

cytokines TNF-α and IL-6 were quantified in the concentrated culture supernatants by using 

the respective anti-mouse (Biolegend), according to manufacturer’s instructions.  
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Western-blot and TCR signaling 

TCR signaling was evaluated by assessing the phosphorylation levels of LAT and 

ZAP70.  After 72h of ex vivo T cell culture in absence or presence of GlcNAc lysates were 

extracted using RIPA buffer. Twenty µg of protein lysates were separated by 12% SDS–

PAGE electrophoresis and transferred onto nitrocellulose membranes (GE Healthcare, Life 

Sciences, UK). Membranes were blocked before incubation phospho-Zap-70 (Tyr319/Syk 

(Tyr352) rabbit mAb (1:500) and anti-phospho-LAT (Tyr191) rabbit mAb (1:500) (both from 

Cell Signaling Technologies, USA). Goat anti-rabbit IgG-HRP mAb (Santa Cruz 

Biotechnology, USA) was used as secondary antibody. 

For L-PHA lectin blot analysis (44), 20µg of T cell protein lysates separated by 12% 

SDS-PAGE electrophoresis was performed as in previous methods(16) . For loading control 

analysis, mouse IgG anti-tubulin (Sigma) or rabbit IgG anti-actin (Santa Cruz 

Biotechnology,USA) was used. The target proteins were visualized using ECL reagent (GE 

Healthcare, Life Sciences). Positive reaction was observed in a band the same size as 

TCRβ (mouse monoclonal antibody anti-human, Santa Cruz Biotechnology, USA) (39kDa, 

accordingly with manufacturer antibody details). 

 

 

Immunoprecipitation 

For T cell receptor (TCR) immunoprecipitation (IP), equal amounts of total cell 

lysates (TCL) obtained from mouse colons or from ex vivo human T cell cultures (in absence 

or presence of GlcNAc) were treated as previously described(16). Positive reaction was 

observed in a band the same size as rabbit anti-human TCR β (39kDa) polyclonal antibody 

(Santa Cruz Biotechnology).  

 

Glycophenotype 

T cells were incubated with biotinylated L-PHA (2µg/ml), biotinylated LEL 

(recognizes poly-lactosamine structures) (1 µg/ml), biotinylated SNA (recognizes α2,6 sialic 

acid) (5µg/ml) or biotinylated MALII (recognizes α2,3 sialic acid) (10µg/ml) (Vector Labs, 

USA). Lectins were revealed with (FITC)-conjugated streptavidin. FITC-conjugated 

streptavidin alone was used as control. Propidium iodide (PI) was used to exclude dead 

cells. Data acquisition was performed in a FACS CantoTM II flow cytometer. Data were 

analyzed using FlowJo software. 
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Apoptosis assays 

Apoptotic cells were identified by flow cytometry using the FITC Annexin V Apoptosis 

Detection Kit I (BD Biosciences), following the manufacturer’s instructions. Only cells 

staining positive with FITC-Annexin V and negative with propidium iodide (indicative of early 

apoptosis) were considered. Data acquisition was performed in a FACS CantoTM II flow 

cytometer. Data were analyzed using FlowJo software. 

 

 

Enzymatic reaction and HPLC analysis 

Blood and colonic T cells of UC patients and controls were prepared as described 

above to evaluate the enzymatic activity of GnT-V, using a previously  described 

methodology (45). 

 

 

DSS and TNBS-induced colitis and in vivo GlcNAc treatment 

Intestinal inflammation was induced in both male and female C57BL/6 mice, MGAT5 

wildtype (WT), heterozygous (MGAT5+/-), knockout mice (MGAT5-/-) ( kindly provided by 

Prof. Michael Pierce, CCRC, Georgia University, Athens, USA) , (6 to 8 weeks old), at 

IPATIMUP/i3S’s animal facility by treating ad libitum with 2% dextran sodium sulfate (DSS) 

(36,000–50,000 Da; MP Biomedicals) in the drinking water, as previously described (19). 

The 2,4,6-trinitrobenzene sulfonic acid (TNBS) model was also performed using male 

C57BL/6 mice (6 to 8 weeks old),   following previously described protocols(19) and 

including the following groups (animals randomly distributed): Control Group_water (H2O, 

via rectal), Control Group_ethanol (50% ethanol, via rectal) and Group TNBS (3% TNBS in 

50% ethanol, via rectal).  

All procedures involving animals and their care were conducted in conformity with 

institutional guidelines in compliance with national and International laws and policies on 

the protection of animals used for scientific purposes (Directive 2010/63/EU, Guide for the 

Care and Use of Laboratory Animal. Eight edition, 2011). All the procedures were approved 

by local and national committees. 

Both colitis models showed a dysregulation of branched N-glycosylation on T cells 

in mice with colitis (Supplementary Fig. 8a-b). In this study we have chosen the DSS model 

of colitis because it does not interfere with the enema treatment strategy the as TNBS 

model, that imply a rectal induction, would originate biased results. 
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The therapeutic effects of GlcNAc administration were evaluated by treating the DSS 

mice with GlcNAc (Sigma and Wellesley Therapeutics Inc) after disease onset, either orally 

by supplementing the drinking water at 0.25 mg/ml (as previously described (12)) and/or 

rectally, by GlcNAc enemas at 0.5 mg/ml (using a catheter). Treatment was performed daily 

for 7 consecutive days (19).Animals were randomly distributed per group of treatment. Oral 

consumption was verified by measuring the amount of drinking water left over each 

treatment.  

Mice were clinically evaluated daily and over the next 7 days upon GlcNAc treatment 

and scored in a blinded fashion as follows: body weight change (values of body weight are 

expressed as percentage of body weight on day 0) ; disease activity index (DAI), the mean 

of the following parameters:  % weight; stool consistency and blood stool (46).  

The evaluation of colitis onset and disease severity in mice with different MGAT5 

genotypes: C57BL/6 wild-type mice (n=14); MGAT5+/- (n=23) and MGAT5-/-(n=11) was 

based on DAI score per animal per day. Active disease was defined when animals showed 

DAI ≥ 2 and three stages of severity were defined: mild (≥2 and < 2,5), moderate ( ≥2,5 and 

<3) and severe ( ≥3 ). 

In both in vivo models (TNBS and DSS), lamina propria T lymphocytes (LPLs) 

were isolated from mice colon samples following previously described methods (16). 

 

 

Tissue immunohistochemistry and immunofluorescence  

Formalin-fixed paraffin-embedded (FFPE) colonic tissue slides prepared from the 

different group of animals were used for H&E staining to evaluate histopathological 

alterations, and for immunohistochemistry with L-PHA and anti-CD3 mAb, following a 

previously described protocol(16). The evaluation of the mucus layer was focused on 

glycoproteins and glycans modifications in proteins (such as TCR) not removed by FFPE 

processing(47).  Immunohistochemistry to evaluate Foxp3 and F4/80 expression was 

evaluated as described in (48). 

T-bet immunofluorescence, in colon sections, was performed using heat-induced 

antigen retrieval with EDTA (Sigma), blocking with goat normal serum (Dako, diluted) before 

incubation with mouse IgG1 T-bet-specific mAb (clone 4B10, Santa Cruz, 1:50) overnight, 

at 4ºC. Then slides were incubated with goat anti-mouse Alexa 594 secondary antibody 

(Invitrogen, 1:250) following nuclear staining with DAPI (1:100). Immunofluorescent images 

were obtained using a Zeiss Imager.Z1 AxioCam MRm (Carl Zeiss). 
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Real -time PCR 

 Total RNA from isolated LPLs was extracted and the quantitative real-time PCR 

(qRT-PCR) was performed using TaqMan Gene Expression Assays (Applied Biosystems) 

as previously described (16). qRT-PCR was carried out in triplicates using RNA source from 

intestinal LPLs from MGAT5 null mice controls (n=2) versus GlcNAc treated mice after DSS 

(n=2), for the target gene MGAT5b (Taqman probe: Mm01252571_m1, Applied 

Biosystems) and for the appropriated lymphocytes endogenous control 18S 

(Hs99999901_s1,  Applied Biosystems). 

 

Statistical analysis 

 Statistical significance was assessed by one-way or two-way analysis of variance 

(ANOVA) using Bonferroni’s, Dunnett’s or Newman–Keuls multiple comparison post-tests 

and, where appropriate, by unpaired Student’s t-test (two-tailed) using GraphPad Prism 5.  

P values of <0.05 were considered statistically significant.  

 In the in vivo studies, we have estimated the number of animals per genotype n >20, 

α= 0,05 and power >0,07. Statistical outliers were identified and excluded from the analysis, 

such as the animals that were euthanized when they reached the established 

humane endpoints. 
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Supplementary Fig.1 
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Supplementary Fig.1 (continued.) 

 

 

Supplementary Fig. 1. Enhancing ex vivo the hexosamine biosynthetic pathway in T 

cells by metabolic supplementation with N-acetylglucosamine (GlcNAc). (a) 

Schematic representation of T cells glycophenotype upon GlcNAc supplementation. In the 

canonical pathway, the GnT-V glycosyltransferase catalyzes the addition of β1,6-GlcNAc 

branched N-glycans (as detected by L-PHA lectin) on T cells that are further extended with 

polylactosamine structures (detected by plant lectin Lycopersicon esculentum agglutinin 
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(LEL)). Additionally, our results demonstrate a trend increase in α2,6- linked sialic acid 

recognized by binding of Sambucus nigra agglutinin (SNA) and no significant alteration in 

α2,3- sialic acid residues. This glycosylation signature in T cells was shown to regulate the 

adaptive immune response. (b) CD3+ T cells, magnetically sorted from blood of active UC 

patient were cultured for 72h under anti-CD3/CD28 mAb stimulation. Different 

concentrations (mM) of GlcNAc were added to cultures, as indicated. Fold change of L-PHA 

staining was determined by flow cytometry. (c and d) In CD4+ and CD8+ T cell subsets, N-

glycosylation was determined by co-staining with L-PHA (lectin that recognize β1,6-

branched N-glycans) and evaluated by flow cytometry. Fold change of L-PHA staining of 

CD4+ and CD8+ T cells sorted from intestinal biopsies or from blood of UC patients were ex 

vivo cultured for 72h under anti-CD3/CD28 mAb stimulation, in the presence of GlcNAc at 

indicated concentrations. (e and f) GlcNAc treatment does not affect the proportion of the T 

cell subsets. Results are presented as mean ± SEM of two to four independent experiments. 

(g) Fold change of L-PHA expression on a protein band corresponding to TCRβ migration 

profile normalized to tubulin. Results represent 4 biological replicates, using T cells from 

patients at different stages of disease severity (Mayo 1 (n=2), Mayo 2 (n=1) and Mayo 3 

(n=1)). Results are normalized to untreated that was taken as 1.  
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Supplementary Fig.2  

 

Supplementary Fig. 2. Upon GlcNAc treatment, N-glycosylation of T cells from 

controls and UC inactive disease remains unaltered. (a) T cell N-glycosylation was 

determined by staining with L-PHA (lectin that recognize β1,6-branched N-glycans) and 

evaluated by flow cytometry. Fold change of L-PHA staining on ex vivo T cells from UC 

activated blood T cells after GlcNAc supplementation. Results of healthy controls (n=3) and 

UC inactive disease (n=2) are presented as fold change of MFI values ± SEM. (b) Protein 

lysates from the ex vivo colonic T cells from inactive UC patients (n=3), after 

supplementation with GlcNAc, were subjected to L-PHA lectin blot in order to evaluate the 

expression levels of β1,6-GlcNAc branched N-glycans on a protein band with the size of 

the TCRβ. Quantification of L-PHA densities on TCRβ band normalized to tubulin, 

presented as fold change relative to the 0 mM Glc condition. No significant alterations were 

observed in the expression of β1,6-GlcNAc branched N-glycans in T cells from inactive UC 

patients.  
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Supplementary Fig.3 

 

 

Supplementary Fig. 3. Enhancement of branched glycosylation on T cells from active 

UC patients is abolished by specific inhibitors of branching N-glycans synthesis. 

Graphs represent the effect of the treatment of T cells isolated from biopsies (n=1, left) and 

blood (n=2, right) of active UC patients with GlcNAc and the inhibitors of branching N-

glycans synthesis, Kifunensine and Swainsonine as well as a different sugar, D-mannose.   
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Supplementary Fig. 4  

 

Supplementary Fig. 4. T cells from active UC patients display reduced GnT-V 

enzymatic activity comparing with healthy controls. (a) Evaluation of the enzymatic 

activity of GnT-V assessed in a pool of lysates from colonic T cells obtained from different 

healthy individuals (n=2) and different active UC patients (n=2) and analyzed in two 

independent technical replicates. 
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Supplementary Fig. 5  

 

 

Supplementary Fig. 5. Secreted cytokines in supernatants of ex vivo T cells from 

active UC patients. (a) Concentration of pro-inflammatory cytokines detected in the 

supernatants from ex vivo cultures of mucosal T cells, normalized to respective division 

index (obtained from CFSE analysis) of T cells in the respective conditions (0 and 80 mM 

GlcNAc); BDL, means below detection limit. The effects of GlcNAc in the suppression of 

pro-inflammatory cytokines were found to be independent of cell death and/or decreased T 

cell proliferation. (b) Quantification of TGF-β in supernatants from ex vivo T cell cultures 

under GlcNAc supplementation. Scatter plots including mean fold change and ± SEM error 

bars of 5 biological replicates (biopsies: Mayo 2 (n=3); Mayo 3 (n=2). NS, not statistically 

significant. (c) The expression of IL-10 assessed by flow cytometry in supernatants from ex 

vivo T cell cultures under GlcNAc supplementation. Results include raw data of six 

biological replicates (Mayo 2 (n=3), Mayo 3 (n=3).  
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Supplementary Fig.6 

 

 

 

Supplementary Fig. 6. Inhibition of branching N-glycans synthesis abrogates the 

regulation of pro-inflammatory cytokines production. Graphs represent the effect of ex 

vivo treatment of T cells isolated from blood (Mayo 3, n=1) of active UC patient with GlcNAc 

and the inhibitors of branching N-glycans synthesis, Kifunensine and Swainsonine revealing 

no regulatory effects in T cell function, with no apparent impact in Th1- (TNF-α, IFN-γ) and 

Th17-associated (IL-17A) cytokine production. 
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Supplementary Fig.7 
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Supplementary Fig.7 (continued.) 

 

Supplementary Fig. 7. Impact of ex vivo GlcNAc treatment in cell apoptosis/death 

of T cells from control versus active UC patients. (a) Flow cytometry evaluation of T 

cell apoptosis by Annexin V/PI staining upon GlcNAc supplementation. The three dot 

plots correspond to a representative example of blood T cells from one active, one 

inactive UC patient and one heathy control. Numbers inside dot-plots correspond to the 

percentage of cells within each quadrant. Fold change in early apoptosis (Annexin V+PI-

) after 3h of culture with and without GlcNAc, as indicated. Graphs correspond to mean 

fold change ± SEM of early apoptotic cells from biological replicates (Active: 3 biological 

replicates, Mayo 2 (n=2) and Mayo 3 (n=1); Inactive: 2 biological replicates; Control: 3 

biological replicates). Results are normalized to the corresponding untreated condition 

that was taken as 1. Each value corresponds to the mean of two independent technical 

replicates. One-way ANOVA using Bonferroni’s multiple comparison post-test: * P ≤ 0.05. 

(b)  Scatter plots correspond to percentages ± SEM of apoptotic cells at 3 hours in colonic 

T cells cultures from active UC patients, under different treatments and concentrations, 

as indicated. (b1) Percentage of apoptotic cells (Annexin V+PI-) and dead cells (Annexin 

V+PI+) in 72 hours cultures of blood T cells from active UC patients, under different 

treatments and concentrations, as indicated. Two-way ANOVA using Bonferroni’s 

multiple comparison post-test: ** P ≤ 0.01;***P ≤ 0.001. 
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Supplementary Fig. 8  

 

 

Supplementary Fig. 8. Evaluation of branched N-glycosylation on TCR of colonic 

T cells from DSS and TNBS-induced colitis mouse models. (a) Protein lysates from 

the isolated colonic T cells from control mice (drinking water) and DSS-colitis mice (DSS 

in drinking water) were subjected to L-PHA lectin blot to evaluate the expression levels 

of β1,6-GlcNAc branched N-glycans on the TCRβ (39 kDa). Bar graph, quantification of 

L-PHA densities on TCR band normalized to tubulin. (b) Immunoprecipitation of TCR 

from total cell lysates of mouse colon followed by β1,6-GlcNAc branched N-glycans 

recognition with L-PHA as indicated. Bar in the graph correspond to the amounts of 

branched N-glycan structures, determined from the ratios of densities of L-PHA reactivity 

normalized to TCR, comparing control groups, water (H2O, via rectum) and ethanol (50% 

ethanol, via rectum) with TNBS- induced colitis group (3% TNBS in 50% ethanol, via 

rectum). (c) Representative macroscopic images of the colon and cecum of MGAT5 WT 

mice at the end of the experimental period: DSS control (DSS-induced colitis) and 

GlcNAc treatment (Tx) (DSS+ GlcNAc Tx, enemas), comparing with a normal colon. Mice 

under DSS treatment showed a visible colonic edema (swelling of the bowel wall) 

(arrowheads, further magnified in the inserts) comparing to normal mice or mice treated 

with GlcNAc (enemas route) after DSS-induced colitis. 
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Supplementary Fig. 9  
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Supplementary Fig.9 (continued.) 
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Supplementary Fig.9 (continued.) 

 

 

Supplementary Fig. 9. GlcNAc administration effects in different genotypes of 

MGAT5. (a) GlcNAc administration via enema reveal an enhancement of branched N-

glycosylation on total cell lysates from mice with different MGAT5 genotypes. Evaluation 

of branching N-glycans on colonic total cell lysates from MGAT5 wt mice, MGAT5 +/- and 

MGAT5 -/-, comparing DSS control (DSS-induced colitis) with GlcNAc treatment Enema 

(GlcNAc Tx) by Western blot.  Insert represents the MGAT5 -/- genotyping (gels of PCR 

products of genes MGAT5 and Lac Z) from the same animals represented in the MGAT5 
-/- L-PHA staining and lectin negative control. (b) Intestinal T cells from MGAT5 null mice 

showed an increased expression of the homologous MGAT5b gene upon GlcNAc 

treatment. qRT-PCR analysis for mRNA expression of MGAT5b from intestinal LPLs 

from MGAT5 null mice controls (n=2) versus GlcNAc treated mice after DSS (n=2), 

performed in triplicate. The mRNA expression levels are expressed as mean ± SEM, 

(Student’s t-test: !P ≤ 0.05). NE, not expressed. (c) T reg cells expression at the intestinal 

lamina propria of MGAT5 wt versus MGAT5 -/- mice. The impact on T reg cells was 

evaluated by the expression of Foxp3 by immunohistochemistry in the colon of MGAT5wt  

mice and MGAT5 -/-, comparing normal colon, DSS-induced colitis (DSS) and treated 

mice with GlcNAc (DSS + GlcNAc Tx). Represented colon sections of treated mice in 

both genotypes correspond to GlcNAc Oral+ Enema, x40 original magnification. (d-e) 

The control of inflammation upon GlcNAc treatment is associated with differences in 

MGAT5 wildtype and null mice regarding macrophages recruitment and function. (d) The 

impact of GlcNAc treatment on macrophages was evaluated by the expression of F4/80 
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by immunohistochemistry in the colon of MGAT5wt  mice and MGAT5 -/- , comparing 

normal colon, DSS-induced colitis (DSS) and treated mice with GlcNAc (DSS + GlcNAc 

Tx). Represented colon sections of treated mice in both genotypes correspond to GlcNAc 

Oral+ Enema, x40 original magnification. (e) Concentration of TNF-α and IL-6 in the 

supernatants of 24h colonic explant cultures from DSS and DSS + GlcNAc Tx MGAT5 

wildtype  (n=5) and null  (n=5) mice by ELISA. Cytokine levels are expressed as ng/g of 

dry colon explant weight. Results correspond to mean ± SEM of 2 to 3 animals per group. 

Student’s t-test: * P ≤ 0.05. NS, not statistically significant. 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

165 | A p p e n d i x  I I  

 

Supplementary Fig.10 

  

 

Supplementary Fig.10. Shaping the T cell-mediated immune response in IBD 

through metabolic enhancement of branched N-glycosylation. An opportunity for 

new therapeutic strategies. UC patients with active disease are characterized by a 

massive infiltration of lamina propria T lymphocytes (LPLs) that we previously 

demonstrated to display a deficiency in branched N-glycosylation catalyzed by GnT-

V(16). In this study we demonstrated that the simple glycan N-acetylglucosamine 

(GlcNAc) is able to repair the abovementioned deficiency having an important impact on 

the control of T cell-mediated immune response. The ex vivo supplementation of GlcNAc 

in T cells (purified from colonic mucosa of active UC patients) induces suppression of T 

cell proliferation, increased susceptibility to T cell apoptosis, inhibition of Th1/Th17-type 

inflammatory response, and suppression of T cell signaling and activation. Specifically, 

we found that GlcNAc supplementation resulted in T cell surface glycans remodeling 

characterized by an enhancement of the expression of branched N-glycans on the TCR 

that can be further extended with polylactosamine residues (ligand for galectins) and 

known to prevent TCR clustering and activation. These poly-LacNAc structures can be 

terminal sialylated. This modulation of the glycophenotype of T cells was shown to be 

translated in important regulatory effects on the adaptive immune response by 
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hampering T cell function and activation, suppressing the release of potent pro-

inflammatory cytokines known to promote the disease. 

Taken together, metabolic enhancement of branched glycosylation on T cells, revealed 

to have immunomodulatory effects in UC with clinical relevance, paving the way to further 

explore the clinical applicability of this novel immunomodulatory agent in UC patients. 

 

 

 

Table S1. 

Fluorochrome Antibody name Source Clone Specificity 

PerCP CD4 BD Bioscience  clone SK3 anti-human 

PE CD8  BD Bioscience  clone SK1 anti-human 

eF450 CD4 eBioscience clone RPA-T4 anti-human 

BV510 CD45 eBioscience clone HI30 anti-human 

Alexa Fluor488 Gata3 eBioscience clone,TWAJ anti-human 

APC RorγT eBioscience clone AFKJS-9 anti-human/mouse 

PerCP-Cyanine 5.5 T-bet eBioscience clone eBio4B10 anti-human/mouse 

PE FoxP3 eBioscience clone PCH101 anti-human/mouse 

PerCP Cy 5.5  CD4  Biolegend  clone RPA-T4 anti-human 

AF488 TNF-α eBioscience clone MAb11 anti-human 

APC IFN-γ eBioscience clone 4S.B3 anti-human 

APC-eFluor® 780 Fixable Viability Dye  eBioscience     

The table summarize es the list of antibodies used for staining by flow cytometry experiments 
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    Chapter 11   

 Studying T Cells  N -Glycosylation by Imaging 
Flow Cytometry                     

     Ana     M.     Dias    ,     Catarina     R.     Almeida    ,     Celso     A.     Reis    , and     Salomé     S.     Pinho      

  Abstract 

   Imaging fl ow cytometry is an emerging imaging technology that combines features of both conventional 
fl ow cytometry and fl uorescence microscopy allowing quantifi cation of the imaging parameters. The analy-
sis of protein posttranslational modifi cations by glycosylation using imaging fl ow cytometry constitutes an 
important bioimaging tool in the glycobiology fi eld. This technique allows quantifi cation of the glycan 
fl uorescence intensity, co-localization with proteins, and evaluation of the membrane/cytoplasmic expres-
sion. In this chapter we provide the guidelines to analyze glycan expression, particularly the β1,6 GlcNAc 
branched N-glycans, on the membrane of intestinal T cells from infl ammatory bowel disease patients.  

  Key words      N -Glycosylation  ,   T-Cell Receptor  ,   T-cells  ,   Ulcerative colitis  ,   Imaging fl ow cytometry  

1      Introduction 

 Glycosylation is an important protein posttranslational modifi ca-
tion being fundamental for the regulation of proteins biological 
functions both in homeostasis and in pathological conditions. The 
development of novel accurate assays for analysis of this key bio-
logical process is of utmost importance in the glycobiology research 
fi eld. Flow cytometry is a widely used technique that allows mea-
suring fl uorescence intensity in many events, but that lacks the pos-
sibility of analyzing imaging parameters. On the other hand, 
fl uorescence microscopy is not ideal to analyze and quantify param-
eters from a large number of cells. The invention of the ImageStream 
system, which combines features of fl uorescence microscopy and 
fl ow cytometry, overcomes these limitations opening new oppor-
tunities to explore a range of applications with utility in the glyco-
science research fi eld. This technique presents an extraordinary 
throughput, thus allowing fast acquisition of imaging data [ 1 ]. 
Furthermore the IDEAS data analysis software has the capacity to 
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calculate several quantitative features that allow the graphical 
identifi cation of populations based in several variables (fl uores-
cence intensity, cell size, shape, texture, co-localization of mul-
tiple probes, among others) [ 1 ]. Therefore, imaging fl ow 
cytometry technique becomes a remarkable tool for studies 
related with cellular morphology, internalization, cell signaling, 
co-localization, and traffi cking (see specifi c applications in: 
  https://www.amnis.com/applications.html    ). Additionally, we 
can even create/defi ne masks to easily identify our targets, for 
instance, to identify co- localization of probes at the cell 
membrane. 

 Taking advantages of the combined parameters of imaging 
fl ow cytometry, we have analyzed the levels of membrane TCR 
branched N-glycans comparing different ulcerative colitis (UC) 
patients and controls. Furthermore, we provide here an example 
for analysis of co-localization between a lectin-recognizing glycan 
and a protein receptor (TCR). Using imaging fl ow cytometry we 
evaluated the co-localization of the L-PHA lectin ( Phaseolus 
Vulgaris Leucoagglutinin  lectin that specifi cally recognizes the 
β1,6 GlcNAc branched N-glycan structures) with surface TCR 
α/β on purifi ed intestinal lamina propria T lymphocytes. 
Interestingly, this bioimaging technique has validated results 
obtained from the canonical molecular techniques used to assess 
proteins glycosylation (such as Western blot and immunoprecipi-
tation approaches) [ 2 ]. In this chapter we provide a comprehen-
sive approach on how to use imaging fl ow cytometry in 
glycoscience, particularly in studying  N -glycosylation on the 
membrane of T cells.  

2    Materials 

       1.    Phosphate buffered saline (PBS) 1 × .   

   2.    FACS Buffer: PBS 1× with 0.1 % sodium azide and BSA 2 %.   

   3.    Antibodies: anti-TCR α/β mAb (clone BW242/412, mouse 
IgG2b) conjugated with R-phycoerythrin (PE) (Miltenyi- 
Biotech); Fluorescein  Phaseolus vulgaris  Leucoagglutinin 
(L-PHA/FITC) (Vector Laboratories); mouse IgG2b anti-
human conjugated with PE (Immunotools); Streptavidin- 
conjugated fl uorescein isothiocyanate (FITC) (Caltag 
Laboratories).      

   Imaging fl ow cytometer equipped with one laser and one camera 
(ImageStream X , from Amnis, now part of Millipore). This  equipment 
can have more lasers and cameras for more complex analysis.   

2.1  Reagents 

for Cell Staining

2.2  Equipment

Ana M. Dias et al.
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3    Methods 

 This Imaging fl ow cytometry protocol involves three main parts: (1) 
Staining of cells with the probes of interest; (2) acquisition of data 
on an imaging fl ow cytometer; (3) data analysis and statistics. 

   Cells can be stained with a protocol typically used for traditional 
fl ow cytometry, but a careful titration of the labeling agents (dyes 
or antibodies) is even more crucial. As with any imaging experiment, 
one should aim for good signal-to-noise ratio while avoiding 
saturation. This is particularly important when dealing with more 
than one fl uorophore excited by the same laser: the settings that 
can be changed during acquisition (laser power and selected fi lters) 
will affect visualization of all stainings, and thus it is crucial to tune 
labeling for optimal imaging. The following protocol is described 
for already optimized dilutions of probes ( see   Note 1 ). 

 Each experiment must include different samples: the staining 
of interest, a negative control (isotype control if using antibodies) 
and single stained cells for compensation, when analyzing more 
than one color.

    1.    After isolating lamina propria T lymphocytes (LPLs), follow-
ing an adapted protocol [ 3 ], wash cells with RPMI by centri-
fuging at 800 ×  g , 5 min, 4 °C.   

   2.    Remove supernatant.   

   3.    Resuspend pellet with 1 ml FACS buffer and keep on ice.   

   4.    Divide resuspended pellet in 4 Eppendorf tubes ( see   Note 2 ) 
for: ( a ) negative control, ( b ) double staining (anti-TCR and 
L-PHA), ( c ) single staining TCR, and ( d ) single staining 
L-PHA, for compensation.   

   5.    Centrifuge at 300 ×  g , 10 min, 4 °C.    

   Blocking  

   6.    Discard supernatant.   

   7.    Resuspend samples with 500 μl of FACS buffer.   

   8.    Incubate for 30 min, on ice.   

   9.    Centrifuge at 300 ×  g , for 10 min, 4 °C.   

   10.    Discard supernatant.    

   Staining  

   11.    Resuspend samples in 100 μl FACS buffer.   

   12.    Add 10 μl PE-conjugated anti-TCR antibody to tubes  b  and  c , 
or the equivalent amount of isotype control to the negative 
control sample ( a ).   

   13.    Incubate for 30 min, on ice and in the dark.   

3.1  Cell Staining

T Cells N-Glycosylation by Imaging Flow Cytometry
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   14.    Wash with 500 μl FACS buffer by centrifuging at 300 ×  g , 
10 min, 4 °C.   

   15.    Repeat washing step ( see   Note 3 ).   

   16.    Prepare the lectin 4 μg/ml: 1 μl L-PHA-FITC in 500 μl FACS 
buffer.   

   17.    Incubate samples  b  and  d  with 50 μl of prepared lectin and 
control  a  with 50 μl of FACS buffer.   

   18.    Incubate on ice for 30 min, in the dark.   

   19.    Prepare a streptavidin-FITC 1 μg/ml solution (from stock 
1000 μg/ml): 1 μl Streptavidin-FITC in 1000 μl FACS 
buffer.   

   20.    Incubate samples  a ,  b , and  d  with 50 μl of streptavidin 
solution.   

   21.    Incubate on ice for 30 min, in the dark.   

   22.    Wash with 500 μl FACS solution by centrifuging at 300 ×  g , 
10 min, 4 °C.   

   23.    Repeat washing step.    

   Fixation  (after staining,  see   Note 4 ). 

   24.    After the previous step, discard supernatant.   

   25.    Fix cells with 100 μl formaldehyde 4 %, 20 min, room tem-
perature, in the dark.   

   26.    Centrifuge at 300 ×  g , 10 min, 4 °C.   

   27.    Wash with 500 μl PBS 1×.   

   28.    Centrifuge at 300 ×  g , 10 min, 4 °C.   

   29.    Repeat the washing step.   

   30.    Discard supernatant.   

   31.    Resuspend in 60 μl of PBS 1× ( see   Note 5 ) and maintain at 
4 °C, in the dark until acquisition in the ImageStream cytom-
eter ( see   Note 6 ).    

     Images of isolated cells can be acquired on a 6-Channel 
ImageStream X  imaging fl ow cytometer equipped with one laser 
(Amnis, EMD Millipore), using the INSPIRE software.

    1.    Initialization of equipment. 
 Initialize the ImageStream by following your facility’s rules: 
typically, you need to ensure all containers are fi lled with 
appropriate solutions (beads, sterilizer—you can use 10 % 
bleach, cleanser, debubbler—you can use 70 % isopropanol, 
rinse—ultrapure water, sheath—fi ltered PBS 1×, also add some 
bleach to the waste container) and you may need or not to 
calibrate. 

3.2  Acquisition 

of Data by Imaging 

Flow Cytometry
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 Preparation of samples immediately before acquisition:   

   2.    To fi lter samples, start by adding a 2 μl drop of PBS 1× to the 
inside edge of a 1.5 ml tube.   

   3.    Place a 70 μm cell strainer on top of the tube.   

   4.    While exerting some pressure, pipette the cell suspension on 
the cell strainer, aiming for the place where you added the PBS 
1× drop ( see   Note 7 ).    

         1.    Start by acquiring the sample with all stainings, to allow you to 
adjust the equipment settings.   

   2.    Create a classifi er based on the bright-fi eld image, so that only 
events with an area above a certain size will be included in the 
analysis. In this case, we choose an area higher than 20, mea-
sured in the bright-fi eld image.   

   3.    Adjust the laser power and choose the best fi lters for your 
image. These settings should be defi ned in such a way that 
images are not saturated ( see   Note 8 ).   

   4.    Once all settings are defi ned, you can start acquiring your data. 
Ensure that you set up the number of events to acquire to at 
least 10,000 events.   

   5.    Analyze fi rstly your stained samples and negative controls, 
and then proceed for the single stained controls for 
compensation.   

   6.    Before acquiring samples for compensation enable the option 
“Comp settings,” and change the classifi er for the channel you 
will be visualizing (as you will not be able to see any bright-
fi eld image).

       7.    After fi nishing acquisition, proceed with sterilization and 
cleaning protocols for your equipment.      

   Analysis was performed with IDEAS 5.0 (Amnis, EMD Millipore) 
as follows (Fig.  1 ):

    1.    A compensation matrix can be created by choosing “create a 
new matrix” under “Compensation,” and following the wiz-
ard. Select the fi les corresponding to single stained controls. At 
the end, verify whether images are properly compensated by 
using the “preview images” tool in the “create compensation 
matrix” dialog box.   

   2.    For analysis, several wizards are available. Here, we advise 
starting with the co-localization wizard. Briefl y, this wizard 
guides the user through the most common steps: uploading of 
raw data fi les (.rif) and compensation matrix to create compen-
sated data fi les (.cif) and data analysis fi les (.daf); gating focused 

3.3  Sample 

Acquisition

3.4  Data Analysis 

and Statistics
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  Fig. 1    Schematic representation of the analysis using an example of data acquired after staining for L-PHA and 

TCR. ( a ) Sequence of analysis steps. (1) A histogram for gradient RMS in bright-fi eld images (Channel 01) can 

be used to gate for cells in focus. (2) A scatter plot of aspect ratio/area in Channel 1 (bright-fi eld) is used to 

gate for single cells, within focused events. (3) The intensity of α/β TCR and L-PHA staining is used to gate on 

double positive cells within focused single cells. ( b ) Graphic representation of parameters analyzed from the 

double positive cells selected. (1) The level of co-localization at the membrane was quantifi ed as the bright 

detail similarity. (2) Histogram represents the intensity of L-PHA staining on the membrane of α/β TCR +  L-PHA +  

cells. (3) Panel showing examples of single cell bright-fi eld (Ch01) and merged (TCR in  red  and L-PHA in  green ) 

images, showing co-localization between TCR α/β and L-PHA       
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events; gating single cells ( see   Note 9 ); gating in populations 
of interest (in this case, TCR-FITC+ cells); calculation of co-
localization, or the Bright Detail Similarity between the two 
probes (L-PHA and anti-TCR) ( see   Note 10 ).   

   3.    Besides calculating co-localization, one can proceed to other 
analysis in the same fi le. In this case, the intensity of L-PHA 
staining specifi cally located at the membrane of TCR α/β posi-
tive events can also be determined. For that, it is necessary to 
create a new mask by going to Analysis and then Masks ( see  
 Note 11 ). Here, a new mask to depict the cell membrane was 
created. This mask uses the functions dilate and erode (“dilate 
and not erode”) and can be based in the bright-fi eld or in a 
fl uorescence image of the membrane.   

   4.    Then create a new feature by going to Features under the 
Analysis menu. Here, we were interested in evaluating the 
intensity of L-PHA staining specifi cally in the cell membrane. 
A histogram plot for this new feature can then be generated.   

   5.    Finally, create a statistics report to include all relevant informa-
tion: percentage of TCR+ cells, mean bright detail similarity, 
mean fl uorescence intensity of L-PHA at the membrane, etc..   

   6.    An interesting feature of the IDEAS software is the possibility 
to easily analyze many fi les with one template. If you have many 
fi les to analyze, save the analysis fi le as a template and perform 
a batch analysis, by going to Tools, choosing batch data fi le and 
defi ning the input fi les and template to use.       

4    Notes 

     1.    If you do not have any information about using your probe 
with the available imaging fl ow cytometer, you should start 
by titrating it. Perform the protocol described herein, but 
with different concentrations of probe. The ideal concentra-
tion of probe(s) allow you to visualize cells with a good, but 
not saturated signal ( see   Note 8 ), using the same settings for 
all probes.   

   2.    Ideally, cells should be counted and divided equally for each 
condition. But when having a limited number of cells, cell sus-
pension can be divided in the 4 Eppendorfs, as following: 
500 μl—double staining TCR-PE/L-PHA; 166 μl—single 
staining TCR-PE; 166 μl—single staining L-PHA- FITC; 
166 μl—negative control (isotype + Streptavidin-FITC).   

   3.    Samples single staining TCR-PE (tube  c ) should be resus-
pended in 60 μl of PBS 1× and kept on ice until FIXATION.   

T Cells N-Glycosylation by Imaging Flow Cytometry



174

   4.    Fixation is a critical step that should be optimized to determine if 
it is better to fi x before or after staining with the specifi c probes. 
Furthermore, it must be tested what is the best for fi xation 
(paraformaldehyde, formaldehyde, methanol), since it may 
infl uence cells morphology and protein distribution, affecting 
the quality of images and consequently evaluation of the 
parameters of interest.   

   5.    Samples are resuspended in 60 μl of PBS 1× because the 
ImageStream X  will run samples with a minimum of 50 μl. The 
number of cells per sample advised by the manufacturer is 
approximately 1 × 10 6  cells (up to 5 × 10 6  cells) in a fi nal volume 
of 50 μl, in a 1.5 ml microcentrifuge tube, but we found that 
samples with a lower number of cells can still be analyzed, 
although acquisition will take a long time.   

   6.    Ideally acquisition in the ImageStream cytometer should be 
performed immediately after staining. As this is not always 
practical, fi xation allows keeping the cells in cold PBS 1× for a 
couple of days. Imaging should however be performed as soon 
as possible.   

   7.    Samples with such a small volume are troublesome to fi lter. 
Add a 2 μl drop of PBS 1×, that may stay at the edge of the 
tube or fl ow down. Either way, it will create a channel for fl uid 
to fl ow through by capillary action. It is important to avoid 
having fl uid all around the tube as the sample will then not 
fl ow through. The fi rst time you do this start by training with 
water.   

   8.    During acquisition, you can plot in real time the highest inten-
sity in one pixel of your event vs the area of each event on the 
bottom graphs of the acquisition windows. This allows you to 
visualize whether your images are saturated.   

   9.    When performing analysis with the IDEAS software an inter-
esting feature is the fact that you can always observe the images 
to which a dot in a dot plot corresponds. This becomes 
extremely useful when deciding on where to draw a gate, as it 
is possible to visualize whether that dot is a cell, cell debris, a 
doublet, etc. 

 The bright detail similarity is one of the many built in 
features that can be used with IDEAS. This index gives a mea-
sure of the co-localization of two probes in a defi ned region. It 
computes the log transformed Pearson’s  correlation coeffi cient 
of the bright spots with a radius of 3 pixels or less within a 
masked area in the two input images. More details on how this 
feature functions can be found in [ 4 ].   

   10.    It must be pointed out that this bright detail similarity gives a 
measure of whether two molecules are within the same area of 
the cells, but due to resolution limitations, it does not indicate 
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whether these molecules interact with each other. For that, 
other techniques are necessary, such as immunoprecipitation 
[ 2 ] or FRET.   

   11.    If you use a wizard that automatically creates a mask, it is advis-
able to confi rm whether this mask is being correctly applied. 
For that, go to image properties (icon is the symbol for bright-
ness and contrast manipulation), create a new view that includes 
your channel of interest with the mask created, go back to the 
global window and choose that view. Click then on the mask 
icon and scroll through your cells to see how the mask is being 
applied (Fig.  2 ).
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