
A Hands-on Approach on Botnets for Behavior Exploration

João Pedro Dias1,2, José Pedro Pinto1,2 and José Magalhães Cruz2

1Articial Intelligence and Computer Science Laboratory, Faculdade de Engenharia da Universidade do Porto,
Paranhos, Portugal

2Faculdade de Engenharia da Universidade do Porto, Porto, Portugal

Keywords: Computer Security, Botnets, Distributed Systems.

Abstract: A botnet consists of a network of computers that run a special software that allows a third-party to remotely
control them. This characteristic presents a major issue regarding security in the Internet. Although common
malicious software infect the network with almost immediate visible consequences, there are cases where that
software acts stealthy without direct visible effects on the host machine. This is the normal case of botnets.
However, not always the bot software is created and used for illicit purposes. There is a need for further
exploring the concepts behind botnets and network security. For this purpose, this paper presents and discusses
an educational tool that consists of an open-source botnet software kit with built-in functionalities. The tool
enables anyone with some computer technical knowledge, to experiment and find out how botnets work and
can be changed and adapted to a variety of useful applications, such as introducing and exemplifying security
and distributed systems’ concepts.

1 INTRODUCTION

A botnet, or zombie army, is the name given to any
collection of compromised hosts controlled by an at-
tacker remotely. Botnets generally are created by a
specific attacker or small group of attackers using one
piece of malware to infect a large number of machines.
The individual machines that are part of the botnet
are, generally, called bots, nodes or zombies. There
are botnets of various sizes, and they can vary from
small ones with hundreds or low thousands of infected
machines to larger ones with millions of compromised
hosts (Cooke et al., 2005).

There are specific cases where bots perform be-
neficial activities, for example, the participants of
SETI@home initiative (Search for Extraterrestrial In-
telligence) which are, voluntarily, a part of a large
botnet used to analyze radio telescope data in order to
track evidence of intelligent extraterrestrial life (An-
derson et al., 2002).

Attackers usually install bots by exploiting vulne-
rabilities in software or by using social engineering
tactics to trick users into installing malware. So, users
are unaware that their computers are being used for
malicious purposes (Abraham and Chengalur-Smith,
2010).

Botnets can be used for various activities but the
most traditional and common use is for DDoS (Dis-

tributed Denial of Service) attacks. Other uses for
botnets are spamming, sniffing traffic, keylogging and
even manipulating online polls and games (Bächer
et al., 2005).

As of today, there should be a straightforward way
to learn about botnets, what they are, how they work
and what can be done about them. Even though there
are tools, mechanisms and even open-source projects
that make it possible to build our own botnets, the
complexity and obscurity of these alternatives is pre-
venting, or even making it impossible, to learn their
inner functionalities and details (Barford and Yegne-
swaran, 2007). For that reason, we conceived and
implemented a simple and open-source botnet kit with
a set of built-in functionalities for anyone interested.
It can be set up in a controlled environment and expe-
rimented with, finding out how can it be changed and
adapted for many purposes.

The paper is organized as follows: Section 2 gi-
ves a background on botnets, Section 3 describes our
approach on a base implementation of a botnet labo-
ratory and some closing remarks and further work are
presented in Section 4.

Dias, J., Pinto, J. and Cruz, J.
A Hands-on Approach on Botnets for Behavior Exploration.
DOI: 10.5220/0006392404630469
In Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security (IoTBDS 2017), pages 463-469
ISBN: 978-989-758-245-5
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

463

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/199448293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 BACKGROUND

The term botnet was widely used to describe a situa-
tion where several IRC bots were linked and setting
channel modes on other bots and users while keeping
IRC (Internet Relay Chat) channels free from unwan-
ted users. This is where the term is originally from,
since the first illegal botnets were similar to legal ones,
operating over IRC Channels (Cooke et al., 2005). As
of today, botnets are widespread in the terms of com-
plexity, functionalities and are adapted to a variety
of devices, from mobile phones up to Linux embed-
ded systems (Internet of Things) (Bertino and Islam,
2017).

Figure 1: Overview of a DDoS attack using a botnet.

Botnets take advantage of computers whose secu-
rity defenses have been breached and control conceded
to a third party. Each compromised device, known
as a “bot”, is created when a computer is penetra-
ted by software from a malicious party. The botnet
herder (or master) is able to control the activities of
these compromised computers through communica-
tion channels (Room, 2003). Once the attacker is in
control, he can send any task to the bots, as, for exam-
ple, DDoS-ing individuals or organizations, or sending
spam (Cooke et al., 2005). A pictorial representation
of one botnet attack is given in Figure 1

A bot typically runs as a background process and
uses a covert channel to communicate with its C&C
(Command & Control) server. Generally, the perpetra-
tor has compromised multiple systems using various
mechanisms which themselves can be auto-replicators,
in the sense that a machine that was infected and has
become a bot, could infect other machines, and so on.
In a more basic approach, bots simply make use or
steal computing resources of other machines. This
process as a result of a system being joined to a botnet
is sometimes referred to as “scrumping”.

One important note is that some botnets have self-

defense mechanisms against things that try to disrupt
their normal operation. Botnet servers are typically re-
dundant, linked for greater redundancy so as to reduce
the threat of a takedown. Actual botnet communities
usually consist of one or several controllers that rarely
have highly developed command hierarchies relying
on peer-to-peer relationships (Ollmann, 2009). Some
botnets are scaling back in size to minimize detection.
As of 2006, the average size of a network was estima-
ted at 20,000 computers (DSLReports.com, 2009).

The existent literature about botnets is very dis-
perse in the way that different authors characterize,
detail and categorize botnets in a variety of different
ways. Still, based on the existent literature, the follo-
wing subsections try to make a summary of a typical
botnet anatomy, malicious uses and detection techni-
ques.

2.1 Botnet Anatomy

Botnets have a typical lifecycle that consists mainly of
five phases, from creation to maintenance (Feily et al.,
2009):

• Initial infection phase: the attacker scans a target
subnet for known vulnerabilities, infecting machi-
nes through different exploitation methods.

• Injection phase: fetches the actual bot binary from
a specific location, via File Transfer Protocol(FTP),
HyperText Transfer Protocol(HTTP) or Peer-to-
Peer Protocol (P2P), and installs itself on the
victim machine. From this point the victim com-
puter becomes a “Zombie”.

• Connection phase: the bot program establishes
a C&C channel and connects the zombie to the
command and control server, becoming part of the
botnet.

• Malicious command and control phase: the bot-
master uses the C&C channel to disseminate com-
mands to the nodes of the botnet, and the bot pro-
grams execute this commands, in order to conduct
various illicit activities.

• Update and maintenance phase: the botmaster ta-
kes care of maintaining the bots live and updated.
These updates are made, in the majority of situati-
ons, to evade new detection techniques or add new
functionalities.

Botnets can be classified into three different cate-
gories based on the C&C models (Tanwar and Goar,
2014; Li et al., 2009a):

• Centralized Model: The master takes advantage of
Internet Relay Chat (IRC) or the HTTP protocol
as the C&C channel to communicate and control

WICSPIT 2017 - Special Session on Innovative CyberSecurity and Privacy for Internet of Things: Strategies, Technologies, and
Implementations

464

the bots. This approach is similar to the first appea-
rances of botnets. The main disadvantage of this
model is that this server is the single point of fai-
lure of the botnet, making it easier to be detected
and destroyed (Li et al., 2009b; Seenivasan and
Shanthi, 2014). Examples of this model are the
AgoBot, SDBot, and Zotob (Li et al., 2009a).

• Peer-To-Peer Model (Decentralized): The botnet
consists of a decentralized peer-to-peer network of
nodes. Here, the connection does not depend on
any particular server, making this type of botnet
highly robust because the network is resilient (Dit-
trich and Dietrich, 2008; Seenivasan and Shanthi,
2014). The master usually shares specific com-
mands to each and every bot in the network and
the bots frequently communicate between them
and send keep-alive messages (Dittrich and Die-
trich, 2008). Grizzard et al. make a case study over
the Trojan.Peacomm P2P botnet (Grizzard et al.,
2007).

• Unstructured Model (Random Model): The bot
program will not actively contact other bots or
its master. Instead, it will just listen to incoming
connections from the master. The master, when
in need, scans the network and passes along an
encrypted message. When received by a bot, the
message will be decrypted and its commands exe-
cuted (Li et al., 2009a). The main advantage of
this approach is the easy implementation, however,
the model is only theoretical and no real use cases
have been discovered (Rataj, 2014).

2.2 Malicious Uses of Botnets

A botnet is nothing more than a tool and there are many
different motives for using it. The most common uses
are criminally motivated or for destructive purposes.
Some of the possible uses of botnets can be categorized
as listed below.

• Distributed Denial-of-Service Attacks: Often bot-
nets are used for DDoS attacks. Such, is an attack
on a computer system or network that causes a loss
of service to users, by consuming the bandwidth
of the victim network or overloading the computa-
tional resources of the victim’s system (Mirkovic
and Reiher, 2004; Sharma et al., 2016).

• Spam (bulk email): Some bots offer the possibility
to open a SOCKS proxy on a compromised ma-
chine in order to be used for spamming. With the
help of a botnet and thousands of bots, an attacker
is able to send massive amounts of bulk emails.
Some bots also implement a special function to
simultaneously harvest email-addresses increasing

the amount and impact of this functionality (Leech
et al., 1928; Bächer et al., 2005).

• Sniffing Traffic: Bots can also use a packet snif-
fer to watch for interesting clear-text data passing
by a compromised machine, like usernames and
passwords. If a machine is compromised more
than once and is now a member of more than one
botnet, the packet sniffing allows to it to gather the
key information of the others botnets. Thus it is
possible to sniff other botnets using bots (Bächer
et al., 2005).

• Keylogging: Bots can implement keylogger functi-
onalities in order retrieve sensitive information
from the zombie machines, that can lead to massive
identity theft (Bächer et al., 2005). One example
of a botnet that implements this functionality is
SpyBot (Barford and Yegneswaran, 2007).

• Spreading new malware: Botnets typical imple-
ment auto-replication mechanisms, used to spread
new bots, but can also have functionalities to
spread other malware. The Witty worm, which
attacked the ICQ protocol parsing implementation
in Internet Security Systems (ISS) products is sus-
pected to have been initially launched by a botnet
due to the fact that the attacking hosts were not
running any ISS services (Bächer et al., 2005).

• Google AdSense1 abuse: An attacker can leverage
his botnet to click on these advertisements in an
automated fashion and thus artificially increment
the click counter (Bächer et al., 2005; Cole et al.,
2007).

• Manipulating online polls and games: Online polls
and games are getting more and more attention
and its rather easy to manipulate them with botnets.
Since every bot has a distinct IP (Internet Protocol)
address, every vote will have the same credibility
as a vote cast by a real person (Bächer et al., 2005;
Cole et al., 2007).

• Bitcoin mining: Due to the appearing of the
blockchain-based digital currencies like Bitcoin,
botnets combined computing power is being used
for bitcoin mining activities. One example is Ze-
roAccess botnet that already implements this fea-
ture (Wyke, 2012).

2.3 Botnet Detection

Botnet detection deals with the identification of bots
in a machine or network so that some sort of patch can

1AdSense offers companies the possibility to display
Google advertisements on their own website and earn money
this way. The company earns money due to clicks on these
ads, for example per 10.000 clicks in one month.

A Hands-on Approach on Botnets for Behavior Exploration

465

be applied. Despite the long existence of malicious
botnets, just a few formal studies have analyzed this
problem. One of the pioneering studies of the bot-
net thematic was the Honeynet project (Bächer et al.,
2005).

Due to the increasing impact of the botnets (and
related attacks) this has become a major research topic
in recent years. As suggested by Feily (Feily et al.,
2009) there are mainly two ways of botnet detection
and tracking. Setting up honeynets, that is specially
important for the understanding of the characteristics
of the botnet, and passive traffic monitoring and analy-
sis, which is the most used approach for detecting bot
infections, both approaches are usually integrated with
Intrusion Detection System (IDS) (Gu et al., 2008b).

As for passive traffic monitoring and analysis there
are some relevant techniques being used (Feily et al.,
2009):

• Signature-based Detection: Uses the signatures2

of current botnets for their detection. The main
problem with this method is that it’s only able to
detect well known botnets. Thus, unknown botnets
can’t be detected by this method (Feily et al., 2009;
Bächer et al., 2005).

• Anomaly-based Detection: Botnet detection is per-
formed by considering several different network
traffic anomalies, including high network latency,
high traffic volume, traffic on unusual ports, and ot-
her unusual system behavior that could indicate the
presence of malicious bots in the network (Feily
et al., 2009; Bächer et al., 2005; Gu et al., 2008b).

• DNS-based Detection: This technique bases it-
self on particular DNS (Domain Name System)
information generated by a botnet, being similar to
anomaly detection techniques (Feily et al., 2009;
Choi et al., 2007).

• Mining-based Detection: Because identification of
botnet traffic, is a difficult task, due to the similari-
ties with normal traffic, this approach uses several
data mining and machine learning techniques to
detect botnet traffic. One example is the BotMiner
which uses clustering techniques in order to detect
botnet traffic (Gu et al., 2008a).

3 IMPLEMENTATION

With the goal of producing a real hands-on tool for
testing and developing purposes we created a base core
for a botnet lab which comprehends, a communication

2Signature is an algorithm or hash that uniquely identifies
a specific virus.

protocol, a command and control center, encryption
capabilities and a basic bot implementation with some
built-in features.

The botnet built using this laboratory matches the
general architecture for any botnet based on a C&C
architecture. Our actor is the (Bot) Herder or (Bot)
Master, that operates using a special IRC client (which
is part of this laboratory) and connects to a IRC-Server
(IRCD-Hybrid) where all the bots also connect to.

Whenever the Master sends a message to the IRC
Server, it will broadcast it to all the connected bots.
By connected bots, we mean bots that are already
hosted in a machine (which for the purpose of this tool
can be a local, virtual or foreign machine) and have
started and connected themselves to the server has then
acknowledged them. Having received a message, the
bot will execute the requested action.

3.1 Architecture

The main network components that interact with the
botnet are showed in fig.2. This figure also illustrates
a practical use of the lab, having a relation of one
master to many bots, which can be deployed in several
machines.

IRCD-Hybrid
 Server

Bot Herder
Controller

Application

PasteBin API

Mandrill API

Imgur API

Figure 2: Network diagram.

This project neither exploits software vulnerabili-
ties nor mention ways of using them to place bots in
remote machines escaping detection from their owners.
With this in mind, when using this lab a bot should
be placed on a machine whose owner willingly and
knowingly accepts it. After it has been successfully
deployed, its typical communication process with the
master, through an IRC server, goes like the following:

<- :irc1.XXXXXX.XXX NOTICE AUTH :***
Looking up your hostname

<- :irc1.XXXXXX.XXX NOTICE AUTH :***
Found your hostname

-> PASS secretserverpass
-> NICK [urX]-700159
-> USER mltfvt 0 0 :mltfvt
<- :irc1.XXXXXX.XXX NOTICE [urX]-700159

:*** If you are having problems
connecting due to ping timeouts ,

WICSPIT 2017 - Special Session on Innovative CyberSecurity and Privacy for Internet of Things: Strategies, Technologies, and
Implementations

466

please type /quote pong ED322722 or
/raw pong ED322722 now.

<- PING :ED322722
-> PONG :ED322722
<- :irc1.XXXXXX.XXX 001 [urX]-700159 :

Welcome to the irc1.XXXXXX
IRC Network
[urX]-700159! mltfvt@nicetry

<- :irc1.XXXXXX.XXX 002 [urX]-700159 :
Your host is irc1.XXXXXX ,

running version IRCd -Hybrid
<- :irc1.XXXXXX.XXX 003 [urX]-700159 :

This server was created
Set 8 18:58:31 2015

<- :irc1.XXXXXX.XXX 004 [urX]-700159
irc1.XXXXXX.XXX IRCd -Hybrid
iowghraAsORTVSxNCWqBzvdHtGp
lvhopsmntikrRcaqOALQbSeKVfMGCuzN

Afterwards, the server accepts
the bot as a client and replies with
RPL ISUPPORT, RPL MOTDSTART, RPL MOTD,
RPL ENDOFMOTD or ERR NOMOTD. Replies
starting with RPL contain information for the client,
for example RPL ISUPPORT tells the client which
features the server understands and RPL MOTD
indicates the Message Of The Day. In contrast to this,
ERR NOMOTD is an error message if no MOTD is
available.

On RPL ENDOFMOTD or ERR NOMOTD, the
bot will try to join his master’s channel with the provi-
ded password:
-> JOIN #botnet channelpassword
-> MODE [urX]-700159 +x

After the bot establishes a connection with the ser-
ver, it will remain there listening to commands from
the master and replying to them accordingly. This
initial connection and command broadcasting, by the
master, can be visualized in the sequence diagram in
fig. 3.

3.2 Technologies

Concerning the IRC server we used a IRCd-hybrid ser-
ver - “A lightweight, high-performance internet relay
chat daemon.” (Team, 2015).

As our development tool we used Python 2.7 (Foun-
dation, 2015) with the help of some external libraries.
With it, we built the bots, both master and slaves, along
with the whole lab infrastructure.

Having a IRC server set up, we had the need for an
IRC Client to manually communicate with the bots as
well as to maintain a visual representation of the tool.
Such client was built using Python 2.7 (Foundation,
2015) as well.

As mentioned before, it was not feasible to build all
the tools from scratch for most of our needs during the

Bot Herder
Command-and-control

Server
BotBot

Authentication (Password)

alt

Authentication O.K.

Failed to Authenticate

BotBot BotOther Bots

Send Request (ex. Keylogger)

Broadcast (ex. Keylogger)

Broadcast (ex. Keylogger)

Broadcast (ex. Keylogger)

Response encrypted with RSA

Response encrypted with RSA

Response encrypted with RSA

Response encrypted with RSA

Response encrypted with RSA

Response encrypted with RSA

loop

[parameters]

PING

PING

PING

PONG

PONG

PONG

PING

PONG

It's alive check

[parameters]

Authentication (Password)

Authentication (Password)

Authentication (Password)

alt

Authentication OK

Failed to Authenticate

Figure 3: Basic use sequential diagram.

development of the lab. We had available to us many
external, public available, tools and services, namely
API’s, with proved stability and reliability. Of those,
we used the following:

• Freegeoip3: provides a public REST API for soft-
ware developers to search the geolocation of IP
addresses. It uses a database of IP addresses that
are associated to cities along with other relevant
information like time zone, latitude and longitude.

• Google Static Map API: creates a map based on
URL parameters sent through a standard HTTPS
request.

• Mandrill4: is a reliable, scalable, and secure API
for delivering and manage transactional emails.

• Pastebin5: a website where we can store text for a
certain period of time.

• Imgur API6: an image storage website.

All the developed objects, namely the client and
the bot, are cross-platform, capable of running on both
Windows and Linux machines. The exception goes to
the IRCd-Hybrid server that needs a Linux machine to
work.

3.3 Details

Amongst all the base functionalities provided for this
lab, there are some which we’ll highlight given their
more complex and unusual behavior. Specifically the
features of spam and screenshot/webcam request.

3https://freegeoip.net/
4http://mandrill.com/
5http://pastebin.com/
6https://api.imgur.com/

A Hands-on Approach on Botnets for Behavior Exploration

467

First, the Spam feature. To avoid the trouble of
setting up a SMTP (Simple Mail Transfer Protocol)
server on every bot we used the Mandrill API to send
e-mails. This might seem unusual, because we are
centralizing all the traffic on one e-mail sender API
with low free quotas and so risking the account being
blocked. However, by sending an API Key in the
request sent to a bot, whenever we request the spam
feature, if an API Key is blocked a different API Key
is sent in future request. Additionally, the PasteBin
service is used, taking advantage of its anonymous and
hidden file ability to host relevant data, like the e-mail
sending list, the API Key and message that the master
wants to send as email spam. With this service, all that
is left to send is the URL that compiles this information
to the bot. Figure 4 show how this particular feature
would function in a practical use.

Bot Herder
Command-and-control

Server
BotBot

Authentication (Password)

alt

Authentication O.K.

Failed to Authenticate

Send Spam Request

Send Spam Request

loop

[parameters]

BotPasteBin API

Request Mail Recipient List

BotMandrill API

Request API Key
and Message Content

Simple Send Mail Request

Figure 4: Spam case sequential diagram.

In the functionality of Screenshot/Webcam, the
bots use the Imgur API in order to store images, either
an image file of a screenshot or a photo from the we-
bcam. Following the request sent by the botmaster
to a given bot, the bot will then store an image file
online using Imgur and report back to the master just
the URL of the hosted picture as we can see on fig. 5.

Bot Herder
Command-and-control

Server
BotBot

Authentication (Password)

alt

Authentication O.K.

Failed to Authenticate

Send Webcam/Screen Request

Broadcast Webcam/Screen Request

Response encrypted with RSA

Response encrypted with RSA

loop

[parameters]

BotImgur API

Image Hosting Request

Image URL (Plain Text)

Figure 5: Webcam/Screenshot case sequential diagram.

Additionally, in order to better check the bots that

are working and where they are located at a certain
point, we use the Freegeoip’s public REST (Represen-
tational State Transfer) API to search geolocations of
IP addresses and Google’s Static Map API for retrie-
ving and displaying the relative world position of the
controlled hosts (fig.6). The result of both these two
tools put together is a map of the world with pinpoints
on all the bots active in that instance of the botnet lab.

Bot Herder
Command-and-control

Server
BotBot

Authentication (Password)

alt

Authentication O.K.

Failed to Authenticate

Send BotList Request

Broadcast WHO Request

Host List Response

BotBot

Broadcast WHO Request

freegeoip API

Hosts

Host Location Response

Google Maps
Static API

Host Location Coordinates

Map URL

Figure 6: Location request case sequential diagram.

Also, we use RSA encryption (R.L. Rivest and
Adleman, 1978) so that the master is the only one
capable of decrypting the messages sent by the bots
given it is the private key owner. The bots encrypt the
messages using the public key defined by the master.

4 CONCLUSION AND FURTHER
WORK

As of today, botnets are a big issue in computer se-
curity. Botnets are responsible for many malicious
activities, including spam and DDoS, targeting every
type of device, from normal computers up to embed-
ded Linux devices.

After proceeding to an evaluation of the research
being done in the area of botnets, we found the lack of
a simple way to build and modify a botnet. In order
to overcome this lack of research, we implemented
a simple core tool for anyone who wants to setup a
botnet laboratory, following the base build principles
of common botnets. The resulting work is open-source
on GitHub (https://github.com/jpdias/botnet-lab).

There is, however, some future work that can be
done in order for the tool to reach its full potential.

First off, the addition of some out-of-the-box
functionalities (such as keylogging and DDoS) for the
base tool besides the existing ones. Following that, we
could implement some resilience and auto-replication
techniques, resorting to, for example, the exploit of
any known software vulnerability.

Also, the security functionalities of the botnet
could be improved, like, for example, the implementa-
tion of self-defense mechanisms against third-parties.

WICSPIT 2017 - Special Session on Innovative CyberSecurity and Privacy for Internet of Things: Strategies, Technologies, and
Implementations

468

Given the nature of this tool it would be interesting
to improve the whole setup of the environment to ease
the user (developer or researcher) experience. This
can be accomplished with, for example, the favor of
addition of new functionalities in a framework-like
way and the possibility of personalize every setting in
the core tool.

REFERENCES

Abraham, S. and Chengalur-Smith, I. (2010). An overview
of social engineering malware: Trends, tactics, and
implications. Technology in Society, 32(3):183 – 196.

Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., and
Werthimer, D. (2002). Seti@home: An experiment in
public-resource computing. Commun. ACM, 45(11):56–
61.

Barford, P. and Yegneswaran, V. (2007). An Inside Look at
Botnets, pages 171–191. Springer US, Boston, MA.

Bächer, P., Holz, T., Kötter, M., and Wicherski, G. (2005).
Know your enemy: Tracking botnets.

Bertino, E. and Islam, N. (2017). Botnets and internet of
things security. Computer, 50(2):76–79.

Choi, H., Lee, H., Lee, H., and Kim, H. (2007). Botnet
detection by monitoring group activities in dns traffic.
In 7th IEEE International Conference on Computer
and Information Technology (CIT 2007), pages 715–
720.

Cole, A., Mellor, M., and Noyes, D. (2007). Botnets: The
rise of the machines. In Proceedings on the 6th Annual
Security Conference, pages 1–14.

Cooke, E., Jahanian, F., and McPherson, D. (2005). The zom-
bie roundup: Understanding, detecting, and disrupting
botnets. SRUTI, 5:6–6.

Dittrich, D. and Dietrich, S. (2008). P2p as botnet command
and control: A deeper insight. In 2008 3rd Internatio-
nal Conference on Malicious and Unwanted Software
(MALWARE), pages 41–48.

DSLReports.com (2009). What is a botnet trojan?
Feily, M., Shahrestani, A., and Ramadass, S. (2009). A

survey of botnet and botnet detection. In 2009 Third
International Conference on Emerging Security Infor-
mation, Systems and Technologies, pages 268–273.

Foundation, P. S. (2015). Python programming language.
Grizzard, J. B., Sharma, V., Nunnery, C., Kang, B. B., and

Dagon, D. (2007). Peer-to-peer botnets: Overview and
case study. HotBots, 7:1–1.

Gu, G., Perdisci, R., Zhang, J., Lee, W., et al. (2008a). Botmi-
ner: Clustering analysis of network traffic for protocol-
and structure-independent botnet detection. In USENIX
Security Symposium, volume 5, pages 139–154.

Gu, G., Zhang, J., and Lee, W. (2008b). Botsniffer: De-
tecting botnet command and control channels in net-
work traffic.

Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and
Jones, L. (1928). Socks protocol version 5.

Li, C., Jiang, W., and Zou, X. (2009a). Botnet: Survey and
case study. In 2009 Fourth International Conference

on Innovative Computing, Information and Control
(ICICIC), pages 1184–1187.

Li, C., Jiang, W., and Zou, X. (2009b). Botnet: Survey and
case study. In innovative computing, information and
control (icicic), 2009 fourth international conference
on, pages 1184–1187. IEEE.

Mirkovic, J. and Reiher, P. (2004). A taxonomy of ddos at-
tack and ddos defense mechanisms. SIGCOMM Com-
put. Commun. Rev., 34(2):39–53.

Ollmann, G. (2009). Botnet communication topologies -
understanding the intricacies of botnet command-and-
control.

Rataj, M. (2014). Simulation of Botnet C&C Channels.
PhD thesis, Ph. D Dissertation, Faculty of Electrical
Engineering-Department of Computer Science and En-
gineering, Czech Technical University in Prague.

R.L. Rivest, A. S. and Adleman, L. (1978). A method for
obtaining digital signatures and public-key cryptosys-
tems.

Room, S. I. R. (2003). Bots & botnet: An overview.
Seenivasan, D. and Shanthi, K. (2014). Categories of botnet:

a survey. Int. J. Comput. Control Quantum Inf. Eng,
8(9):1589–1592.

Sharma, S., Garg, S., Karodiya, A., and Gupta, H. (2016).
Distributed denial of service attack. 4.

Tanwar, G. S. and Goar, V. (2014). Tools, techniques &
analysis of botnet. In Proceedings of the 2014 Interna-
tional Conference on Information and Communication
Technology for Competitive Strategies, ICTCS ’14, pa-
ges 92:1–92:5, New York, NY, USA. ACM.

Team, I.-H. D. (2015). Ircd-hybrid.
Wyke, J. (2012). The zeroaccess botnet: Mining and fraud

for massive financial gain. Sophos Technical Paper.

A Hands-on Approach on Botnets for Behavior Exploration

469

