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ABSTRACT 

In 2015, Cancer is the second leading cause of death worldwide. Genetic predisposition in 
familial cancer cases is largely unexplained. At the same time, rapid development in 
sequencing technology results in an unprecedented increase in the amount of whole exome- 
and whole genome sequencing data. The studies in this thesis take advantage of the technology 
and explore possibilities to identify genetic factors behind cancer development. 

In paper I, we identified 12 novel non-synonymous single nucleotide variants, which were 
shared among 5 affected members of a family with gastric- and rectal cancer. The mutations 
were found in 12 different genes; DZIP1L, PCOLCE2, IGSF10, SUCNR1, OR13C8, 
EPB41L4B, SEC16A, NOTCH1, TAS2R7, SF3A1, GAL3ST1, and TRIOBP. None of the 
mutations was suggested as a high penetrant mutation We propose this family, suggested to 
segregate dominant disease, could be an example of complex inheritance. 

In paper II, we identified a pathogenic variant in PTEN in a patient with a Cowden syndrome. 
We confirmed a pathogenic variant in PMS2 found in one of the samples suggested by another 
study. In addition, the study proposed 3 candidate missense variant in known cancer 
susceptibility genes (BMPR1A, BRIP1 and SRC), 3 truncating variants in possibly novel cancer 
genes (CLSPN, SEC24B and SSH2), 4 candidate missense variants (ACACA, NR2C2, INPP4A 
and DIDO1), and 5 possible autosomal recessive genes (ATP10B, PKHD1, UGGT2, MYH13 
and TFF3). 

The study in paper III was to provide a comprehensive local reference database of 1,000 whole 
genome sequenced Swedish individuals. The samples were selected by principal component 
analysis from the Swedish Twin Registry (n=942) and The Northern Sweden Population Health 
Study (n=58). The result illustrated that the genetic diversity within Sweden is substantial 
compared with the diversity among continental European populations, confirming the 
importance this database. 

The aim of paper IV was to identify combinations of both known and unknown cancer 
processes in humans based on the integration of base substitution-, copy number variation-, 
structural rearrangement- and microsatellite instability profile in 74 whole genome sequencing 
tumor-normal pairs from The Cancer Genome Atlas project (TCGA). The results illustrated 
correlated mutational structure both between and within mutation types, suggesting integrating 
profiles of several mutation types can enhance accuracy in mutational patterns discovery. 

In conclusion, advancement in sequencing- and computational technology demonstrated its 
capability in identifying cancer causative mutations, proposing candidate genes, providing 
infrastructure for medical research, as well as visualizing processes underlying cancer 
development.	  
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1 INTRODUCTION 

Deoxyribonucleic acid (DNA) is the hereditary material that contains all the necessary 
information to build and maintain an organism. This information can be inherited from one 
generation to the next. One of the basic mechanisms of DNA is that DNA is transcribed into 
messenger ribonucleic acid (mRNA), and then mRNA is translated in protein to perform its 
function in the cell. A recent study showed that 25.3% of DNA cannot be transcribed (Djebali 
et al., 2012), called intergenic regions. The transcribed regions consist of protein-coding genes 
or non-protein-coding genes (encoding RNA transcripts). 

During the transcription process of a protein-coding gene, the gene is transcribed, making a 
copy of itself in the form of precursor mRNA (pre-mRNA). Pre-mRNA is an immature single 
strand of mRNA. There are two segments in pre-mRNA, exons and introns. Introns are 
removed during splicing processes, while exons are retained in the final mRNA. Only 1.1% of 
human genome is protein-coding exons (Venter et al., 2001). 

The nucleotide sequence in the mRNA is read by ribosomes in a sequence of nucleotide triplets, 
called codons. A three-nucleotide codon in a nucleic acid sequence specifies a single amino 
acid. The translation starts at the start codon, a triplet of AUG, and keeps translating codons 
from the nucleic acid sequence until it reaches the stop codon, a triplet of either UAA, UAG, 
or UGA. 

Besides classification from a transcription perspective, the regions can also be classified based 
on regulatory effects. A promoter is a region located upstream near the transcription start site 
of a gene on the same strand. Its role is to initiate transcription of the gene. An enhancer is a 
region of DNA that can be bound by transcription activator to activate transcription of a gene 
and can be located on the same or on a different strand (Maston et al., 2006, Blackwood and 
Kadonaga, 1998). 

1.1 TYPE OF VARIANTS 

Genetic variation can be divided into three categories according to the size and type of the 
variation: small-scale sequence variation (less than 1Kbp), large-scale structural variation 
(more than 1Kbp) (Abbs et al., 2004), and numerical variation (whole chromosomes or 
genomes). 

Small-scale sequence variation can be divided into two sub-categories, single base-pair 
substitutions, and insertions or deletions (indel). The variants can be caused by translesion 
synthesis (Waters et al., 2009), defect DNA repair (Lieber, 2010), and mutagens 
(Papavramidou et al., 2010). A single base-pair substitution is a change in DNA sequence in 
which one base pair is altered. If the variant occurs in an exonic region, it can have direct effect 
on the coding protein downstream in many ways: missense, stop-gained, stop-lost, inframe 
indel or frameshift indel. A silent variant, or a synonymous variant, is a variant that doesn’t 
change the protein product but the variant can be pathogenic if the variant becomes a splicing 
motif promoting exon skipping or removes a splice site. A missense variant is a variant that 
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change the protein product but the length is preserved. A stop-gained variant, or a nonsense 
variant, is a change that results in a premature stop codon, leading to a shortened protein, and 
possibly resulting in nonsense-mediated mRNA decay. A stop-lost variant results in a change 
in at least one base of the stop codons, resulting in an abnormal elongated protein. An indel is 
a change in the nucleotides sequence, which can be an insertion- or a deletion of nucleotides. 
This results in a net change in total number of nucleotides. An inframe variant is a change in 
which triplets are gained or missing. It does not cause a disruption of the translational reading 
frame. A frameshift variant is a change in which the number of inserted- or deleted nucleotides 
is not a multiple of three. This causes a disruption of the translation reading frame. 

At a larger scale, variants can be divided into unbalanced and balanced events. Unbalanced 
events happen when the change in DNA content results in extra copies or missing DNA 
material. These events include structural duplication and structural deletion resulting in 
increasing or decreasing amounts of genetic material. This may increase or decrease activities 
at RNA and/or protein levels. On the other hand, balanced events result in the same amount of 
genetic material. These events include structural inversion and translocation. Fusion transcripts 
from such events may cause cancer e.g. lymphoma (Li et al., 1999, Streubel et al., 2003) and 
thyroid cancer (Klemke et al., 2011) 

1.2 MENDELIAN PEDIGREE PATTERNS 

Usually, the expression of any human phenotype depends on many genes and environmental 
factors. But it is also possible for a phenotype to be expressed with only a particular genotype 
at one locus, given the normal genetic and environmental background. These phenotypes are 
called mendelian. Common patterns include mono-allelic-, bi-allelic, and de novo disorder. 

Mono-allelic disorder is the simplest pattern, especially if it’s high penetrance rare disorder, 
usually with one of the parents carrying the disease allele and have the disease. There is a 50% 
probability for each of the affected sibling to have the disorder. 

Bi-allelic and de novo inheritance patterns are hard to be differentiated from the pedigree, for 
the high penetrance disorder, as none of the parents is affected. However, genetically, they are 
different. In bi-allelic, both of the parents carry the disease allele, while, in de novo, none of 
them has the allele. Mathematically, in bi-allelic cases, siblings of the affected has 25% 
probability to have the disease. In de novo, the risk is varied depending on when the pathogenic 
event was triggered. 

In cancer, if one of the parents carrying a pathogenic variant in a high-penetrance tumor 
suppressor gene, there is 50% risk for each of the children to inherit this variant. The child with 
the disease allele will have every cell in their body with this variant. If there is a seond-hit 
event, another pathogenic event triggered in the other allele of the same gene, the tumor 
suppressor mechanic will lose its function, thus cancer start to develop. 
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1.3 CHARACTERISTICS OF MENDELIAN INHERITANCE 

There are various complications that often disguise a basic Mendelian pattern. 

The penetrance of a phenotype is defined as the probability that a person who has the genotype 
will express the phenotype. From definition above, a dominant phenotype is expressed in a 
heterozygous individual, and should show 100% penetrance. In reality, 100% penetrance is the 
more unusual phenomenon. 

Late-onset diseases are particular important cases of reduced penetrance. The diseases are age-
related in the sense that the phenotype is not expressed until adult-life. The delayed effect might 
be caused by slow accumulation of somatic mutations. Good examples of inherited diseases 
with delayed onset are the familial cancer syndromes, where the affected individual inherits the 
variant from one of the parents and has the second hit later in life (Cavenee et al., 1983). 

Common recessive conditions can give a pseudo-dominant pedigree pattern. If a phenotype is 
common in the population, there is a high probability that it may be brought into the pedigree 
by two or more individuals independently. Consanguinity can cause the same phenomenon. 

There are also situations when individuals carrying the same genotype express a non-binary 
phenotype or different phenotypes (Konno and Silm, 2001). These situations are called variable 
expressivity. Other genes, environmental factors or pure chance may contribute to the 
variability of phenotypes. 

Certain human phenotypes are autosomal dominant but they are expressed only when the 
genotype is inherited from a parent of one particular sex. The genes that contribute to such 
effects are called imprinted genes. 

Male lethality may complicate X-linked pedigrees as the affected die before birth. Thus, the 
variants can only be passed to half of their daughters but none to their sons. 

De novo variants often complicate pedigree interpretation, and can be mosaic. A de novo 
variant is a variant that is present for the first time in a family. None of the parents are affected 
or carriers. An example of this is when a healthy couple with no relevant family history have a 
child with severe abnormalities. The mode of inheritance might be autosomal recessive, de 
novo autosomal dominant, X-linked recessive (if the child is male), or purely environmental 
factors. This makes it hard for the interpretation and for estimating the recurrence risk. 

Phenocopy is a phenotype that mimics the disease phenotype but is caused by other factors 
(Goldschmidt, 1949). If phenocopies cannot be identified before designing the study, they can 
lead to wrong hypotheses and, eventually, incorrect findings. 

1.4 GENETIC DISEASES 

Abnormalities in human genetics can manifest itself regardless of age, sex, family background. 
It can affect growth and childhood development (Byard, 1994, Bobadilla et al., 2002, Malt et 
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al., 2013). It can also be delayed and have the effect in adults, as in cancer (Cavenee et al., 
1983). 

1.4.1 Inherited colorectal cancer 

Colorectal cancer (CRC) is the third most common cancer type worldwide. The estimated risk 
for those, who have first-degree relatives diagnosed with CRC, is increased by two to four fold 
(Johns and Houlston, 2001). Around 7% of CRC cases are diagnosed at an age less than 50, 
while 20% of the cases have at least one first-degree relatives with CRC (Burt, 2000). However, 
less than 5% of familial cases are identified as known cancer syndromes (Syngal et al., 2005). 

1.4.2 Known CRC syndromes 

Lynch syndrome, which can also be called hereditary nonpolyposis colorectal cancer 
(HPNCC), is an inherited autosomal dominant cancer syndrome, that contributes to an 
increased risk of several types of cancers, including colorectal-, endometrial-, ovarian-, gastric-
, upper urinary tract-, and biliary tract cancer (Kohlmann and Gruber, 1993). The disease is 
caused by pathogenic variants in DNA mismatch repair (MMR) genes. There are four genes 
known to cause Lynch syndrome; MLH1, MSH2, MSH6, and PMS2, with life-time risk 46%, 
35%, 20%, and 10% respectively (Moller et al., 2015). Lynch syndrome is accounted for 1-3% 
of all colorectal cancer cases (Burt, 2007) 

Familial adenomatous polyposis (FAP) is an autosomal dominant disease, caused by a 
pathogenic variant in the adenomatous polyposis coli (APC) gene. In FAP, hundreds to 
thousands of adenomatous polyps form in the rectum and colon. The polyps are initially benign 
but they will be transformed into cancer if they are not identified and treated at an early stage 
(Half et al., 2009). FAP accounts for less 1% of CRC cases (Reed and Neel, 1955, Alm, 1975) 

MUTYH-associated polyposis (MAP) is an autosomal recessive form of inherited polyposis. It 
is caused by biallelic pathogenic variants in MUTYH (Nielsen et al., 2012). The number of 
polyps are between ten to a few hundred (Nielsen et al., 2011, Grover et al., 2012). If the polyps 
are not identified or left untreated, the lifetime risk of developing CRC is between 43% to 100% 
(Sampson et al., 2003, Sieber et al., 2003, Gismondi et al., 2004, Farrington et al., 2005, Lubbe 
et al., 2009). 

1.4.3 Pathways to colorectal cancer 

CRC can be caused by environmental factors, genetic changes or epigenetic alterations. 
Examples of environmental factors are obesity (Le Marchand et al., 1997, Slattery, 2004), and 
food (Agnoli et al., 2013). Genetic and epigenetic alteration can initiate the transformation of 
normal colon tissue into adenoma, and finally into cancer (Fearon and Vogelstein, 1990). 

1.4.3.1 Chromosomal instability pathway 

Most sporadic CRC cases fall into the chromosomal instability pathway category due to several 
loss of heterozygosis (Lin et al., 2003) and chromosomal aberrations (Leary et al., 2008). Most 
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of these tumours have somatic mutations in APC. APC not only controls how often a cell 
divides but also controls the number of chromosomes during cell division (Fodde et al., 2001, 
Powell et al., 1993). 

1.4.3.2 Microsatellite instability pathway 

One form of genomic instability is hypermutation caused by often caused by the inactivation 
of DNA mismatch repair (MMR) systems. The function of the MMR system is to identify 
mismatches in the DNA and to direct the repair machinery (Boland et al., 1998). The 
dysfunction of MMR system results in errors during DNA replication, which can be measured 
by analysis of different sizes of microsatellite alleles (Peltomaki et al., 2001), so-called 
microsatellite instability. Most CRC with MSI is caused by somatic methylation of the MLH1 
promoter and is associated with a CpG Island Methylator Phenotype (CIMP) (Cancer Genome 
Atlas, 2012). A well-known cancer syndrome caused by germline pathogenic variants in MMR 
genes is Lynch syndrome. 

1.4.3.3 Epigenetics alterations pathway 

Pathological epigenetic changes are emerging factors disrupting gene function (Egger et al., 
2004). The changes include histone modification, DNA hypo- and hyper methylation, and loss 
of imprinting. The changes lead to dysfunctions of cell cycle regulation, apoptosis, 
angiogenesis, DNA repair, invasion and adhesion. 

1.4.3.4 Other pathways 

MicroRNAs (miRNAs) play an important role in RNA silencing and post-transcriptional 
regulation of gene expression (Ambros, 2004, Bartel, 2004). Recent studies found that altered 
expression of 13 miRNAs may be associated with regulatory action in RAS pathway (Bandres 
et al., 2006) in CRC patients.  

1.5 METHODS 

1.5.1 Genetic linkage analysis 

Genetic linkage analysis is a powerful technique traditionally used in monogenic diseases to 
identify high-risk predisposing genes such as APC (Bodmer et al., 1987), MLH1 (Lindblom et 
al., 1993), and MSH2 (Peltomaki et al., 1993). It is based on the observation that alleles residing 
physically close on a chromosome tend to be inherited together during meiosis. This type of 
analysis requires a few large families with many small families believed to have the same 
phenotype suggesting the same causative gene. The result from the analysis is the logarithm of 
the odds (LOD) score. A LOD score of 3 or more is generally accepted as an indication that 2 
loci are linked. 

1.5.2 Association study 

Low-risk variants cannot be identified using linkage analysis since they rarely result in 
pedigrees with many affected (Risch and Merikangas, 1996). However, it can be done using 
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association studies using numerous samples. Recently, several new susceptibility loci have 
been discovered by various association studies, often including many thousands of cases and 
controls (Peters et al., 2015, Zhang et al., 2014, Wong et al., 2013). 

1.6 HIGH THROUGHPUT SEQUENCING ANALYSIS (MASSIVELY PARALLEL 

SEQUENCING) 

Cheaper and cheaper cost per reaction of DNA sequencing introduced by massively parallel 
sequencing (MPS) (Mardis, 2008) allows molecular research to be performed at base-pair 
resolution. The MPS applications include genome sequencing and resequencing, transcription 
profiling (RNA-Seq), DNA-protein interactions (ChIP-Seq), and epigenome sequencing (de 
Magalhaes et al., 2010). 

Resequencing is DNA sequencing in an organism for which a reference genome is available 
and used. In human genome resequencing studies, whole genome- or targeted sequencing can 
be performed. Whole genome sequencing (WGS) denotes the sequencing of the entire genome, 
while targeted-, sometimes called capture-based, only focuses on specific regions, such as 
coding regions, gene panels, or custom regions (Grody et al., 2013). 

The obvious advantage of WGS over the targeted approach is the amount of data: entire 
genome is sequenced compared to only protein coding regions, which is around 1% of the 
genome. Moreover, WGS approach gives higher SNP detection sensitivity (Meynert et al., 
2014) (Fang et al., 2014). On the other hand, the targeted approach has economic advantages, 
not only for the sequencing, but also regarding the storage, and computational resources, thus 
ability to sequence more deeply for low fraction mosaic variants in e.g. tumor material. 

The targeted approach that focuses on coding regions, usually called whole exome sequencing, 
has been used to identify and confirm various novel disease candidate genes in CRC studies, 
such as EIF2AK4 (Zhang et al., 2015), MLL3 (Li et al., 2013), NTHL1 (Weren et al., 2015), 
FAN1 (Segui et al., 2015), CDKN1B, XRCC4, EPHX1, NFKBIZ, SMARCA4, BARD1 (Esteban-
Jurado et al., 2015), and in POLD1 and POLE genes (Chubb et al., 2015, Valle et al., 2014). 

A typical workflow consists of library preparation, then sequencing by the instrument, followed 
by quality control, alignment & variant detection, and then data analysis. 

1.6.1 Library preparation 

In general, the library preparation steps involve shearing the DNA sequence into small 
fragments, with insert size varying between 100 base-pairs to several kilo base-pairs, depending 
on amount of input DNA, technology and the preparation protocol. Then, the fragments are 
ligated with adaptors at 5’ and 3’. Now, the ligated fragments are ready for cluster generation 
and sequencing. 
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1.6.2 Quality control 

Ideally, researchers would expect to have sequencing data with exactly the same content as the 
human DNA, having reads mapping evenly and having 50/50 paternal/maternal alleles. 
Unfortunately, there are several factors influencing the quality of the data, for example, 
contamination, DNA quality, limitation caused by the technology, and technical errors. In order 
to evaluate the reliability of the data, quality control of sequencing reads has to be performed. 

1.6.2.1 Average depth 

Average depth, sometimes called depth of coverage, is defined by summing depth of all target 
sequencing bases and then dividing by the number of bases. At one base position, higher depth 
means higher statistical significance of base calling. 

1.6.2.2 Percentage of mapping with at least X depth 

This assessment usually comes together with calculating average depth. As the name “average 
depth” imply, not all the target DNA is covered evenly. One reason is that there are low 
complexity or non-unique regions in the DNA that is difficult to map or unmappable (Figure 
1). Percentage of mapping with at least X depth, when X represent number of depths with good 
enough statistical significance, can report of the sequencing data with reliable base calling 
quality. 

 

Figure 1. Illustration of unmappability. If there are two regions in the DNA (D) that are 
identical and size of F is far smaller than D, during read mapping steps, reads that cannot be 
uniquely mapped to the reference genome is not guarantee to be mapped evenly. In the worst 
case, it’s possible 100% of these reads will be mapped to only one D leaving the other D with 
no mapping at all. Thus, one D with two times average and zero depth in the other. 

1.6.2.3 GC content 

Base calling error has been shown to not be equally distributed with all base substitutions. 
Moreover, the error rate become higher toward the end of the reads (Dohm et al., 2008). 
Statistically, the errors are frequently preceded by base G. The most common error is A > C 
substitution and the least is C > G substitution. Unusual distribution of GC content can suggest 
sequencing bias during library preparation and base calling. 

D D

R R

F

DNA fragment

Reference Genome

D = low complexity region
F = DNA fragment
R = sequencing read
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1.6.2.4 Duplicate reads 

Traditionally, PCR amplification is required as one part of the library preparation. However, 
this step can introduce PCR duplicates, sequencing reads with exactly the same DNA fragment. 
The PCR duplicates can result in false detection of copy number variation. Moreover, if there 
are errors in the reads, they may propagate and result artefact during variant calling process. 

1.6.3 Alignment and variant detection. 

The goal of this step is to convert sequencing reads into a list of variants. In general, this step 
involves read alignment and variant calling. Additional steps can be included to improve the 
quality of variant detection, such as MarkDuplicate, Indel recalibration, Variant recalibration, 
and variant quality score recalibration (DePristo et al., 2011, Van der Auwera et al., 2013). 
Types of variants that can be detected include base substitution, small insertion, small deletion, 
copy number variation, and structural rearrangement. 

1.6.3.1 Read alignment 

Read alignment is a group of processes to correctly align reads back to the human reference 
genome. The Genome Reference Consortium (GRC) the human reference genome, and several 
organizations provide interfaces and additional resources, e.g. the University of Santa Cruz 
(UCSC) (Raney et al., 2011, Rosenbloom et al., 2012). The alignment processes involved 
encompass read mapping, indel realignment, and base recalibration. Read mapping is to map 
raw read data to the reference. There are many bioinformatics software available to do this task, 
including Bowtie2 (Langmead and Salzberg, 2012), BWA (Li and Durbin, 2009, Li and 
Durbin, 2010), YOABS (Galinsky, 2012), CUSHAW2 (Liu and Schmidt, 2012), SOAP (Li et 
al., 2009b, Luo et al., 2013), and Stampy (Lunter and Goodson, 2011). They have different 
strengths based on different criteria, which are processing time, memory usage, read size, 
sequencing instrument, license type, and multi-threading. The next step after mapping reads is 
to realign indels. Identification of indels based on independently mapped reads may lead to 
incorrect indels and SNPs, especially if indels are at the end of the reads. The indel realign 
process is to use previously mapped reads altogether to determine indels. Among available 
tools, Genome Analysis Toolkit (GATK) is one of the most widely accepted (Van der Auwera 
et al., 2013, DePristo et al., 2011, McKenna et al., 2010). The final step of reads alignment is 
base recalibration. Quality scores of individual bases in the reads heavily influence the 
algorithm in variants calling and the estimated scores provided by the sequencing machines are 
subject to various sources of systematic technical errors. The role of base recalibration is to 
adjust the quality scores based on the data and known variants. 

1.6.3.2 Single nucleotide variant and small insertion-deletion calling 

The greatest challenge in this step is to minimize the number of false positives and false 
negatives. In general, the information that germline variant callers use to identify the zygosities 
are base quality scores and base ratios. Several software programs have been developed, such 
as GATK (McKenna et al., 2010), BCFtools (Li et al., 2009a), FreeBayes (Erik Garrison, 
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2012), MuTect2 (Cibulskis et al., 2013), VarScan2 (Koboldt et al., 2012), ExScalibur (Bao et 
al., 2015), Fermikit (Li, 2015), BAYSIC (Cantarel et al., 2014), FAVR (Pope et al., 2013), and 
VarDict (Lai et al., 2016). Their differences are size of called indels, computational time, 
memory usage, multi-threading, accuracy, platform specific, and read-depth. 

1.6.3.3 Copy number variant calling 

There are a few computational ways to detect copy number events. One way is to use paired 
reads or split reads as evidence. For example, if a paired read is mapped to a coordinate far 
apart from the position expected given insertion size, it can be used as an evidence suggesting 
structural deletion. The tools with this method include TIDDIT (Eisfeldt et al., 2017) and 
MANTA (Chen et al., 2015). Another is to use sequencing coverage across the genome. This 
assumes that the depth is roughly equal across the genome. Any regions with average depth 
significant lower or higher than expected suggest structural deletion and structural duplication 
events respectively. The tool employing this method include CNVnator (Abyzov et al., 2011). 
For exome sequencing data, where the depth is uneven, CNV detection can be done using 
another sample, or a collection of samples, as a reference. The tools that use this method include 
ExomeDepth (Plagnol et al., 2012) and XHMM (Fromer et al., 2012). 

1.6.3.4 Structural rearrangement 

The method detecting structural rearrangement include paired reads as an evidence. Thus, 
TIDDIT (Eisfeldt et al., 2017) and MANTA (Chen et al., 2015), employing this method in 
CNV detection, can also detect structural rearrangement. 

1.6.4 Data analysis processes 

To make list of variants become actionable knowledge, variant need to be annotated to provide 
their biological significance, which helps in filtering and prioritizing disease-causing variants. 
The information that can be annotated to the variants includes, frequency-, structural-, 
prediction- and evidence-based data. Besides annotation, visualization plays an important role 
in the interpretation of the result as it turns the information in computer readable format into a 
human readable visual representation. 

Typically, an exome sequencing in one sample can identify up to 30,000 variants (Kassahn et 
al., 2014). To narrow them down to a list of a few candidate variants, variant annotation is 
performed to integrate evidences from different sources to predict variant significance. There 
are commercial software solutions that are packaged with sequencing instruments, such as 
VariantStudio (Illumina), IonReporter (Life Technologies), Geneticist Assistant (Softgenetics), 
and Expressionist (GeneData). Open-source software, such as ANNOVAR (Wang et al., 2010), 
the Ensembl Variant Effect Predictor (McLaren et al., 2016), and snpEff (Cingolani et al., 
2012), can add basic information, gene name, transcripts, and regulatory regions, to the 
variants. PFAM (Xu and Dunbrack, 2012) and SMART (Letunic et al., 2012) can predict 
functional significance with respect to known protein domains. It is important to keep in mind 
that silent variants, which don’t change the translated protein downstream, sometimes can alter 
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splicing (Arnold et al., 2009). Non-coding variants, regulatory regions, and splice sites, can be 
annotated by SPIDEX (Jagadeesh et al., 2019), ENCODE (Fratkin et al., 2012), and FANTOM 
(Kawaji et al., 2009, Kawaji et al., 2011). In silico pathogenicity prediction is used to predict 
the probability of a sequence alteration to affect protein function. The predictors were 
developed based on three strategies, evolutionary conservation, structural or biophysical 
properties, and machine learning techniques. Some popular predictors are SIFT (Kumar et al., 
2009, Sim et al., 2012), PolyPhen2 (Adzhubei et al., 2010), LRT (Chun and Fay, 2009), 
MutationTaster (Schwarz et al., 2010), Phylop (Cooper et al., 2005), GERP++ ++ (Davydov et 
al., 2010), and CADD (Kircher et al., 2014). 

There are several databases that host previous findings and clinical evidence. The Single 
Nucleotide Polymorphism Database (dbSNP) (Sherry et al., 2001) contains a range of 
molecular variation: SNPs, indels, microsatellites, multinucleotide polymorphisms (MNPs), 
heterozygous sequences, and named variants. DGV and dbVar (Lappalainen et al., 2013) 
contain genomic structural variations. The database of Genotypes and Phenotypes (dbGaP) 
(Mailman et al., 2007, Tryka et al., 2014) archives and distributes the data and results from 
studies that have investigated the interaction of genotype and phenotype in Humans. OMIM 
(Hamosh et al., 2005) has knowledge-based information of human gene and genetic disorders. 
The NHLBI Exome Sequencing Project (ESP) contains exome sequencing data and related 
phenotype data from populations of heart-, lung- and blood disorders. HGMD (Stenson et al., 
2014) is a database of known gene lesions responsible for human inherited disease. Leiden 
Open Variation Database (LOVD) (Aartsma-Rus et al., 2006) is a tool for Gene-centered 
collection and display of DNA variations. ClinVar aggregates information about genomic 
variation and its relationship to human health (Landrum et al., 2018). InSiGHT houses and 
curates the most comprehensive database of DNA variants re-sequenced in the genes that 
contribute to gastrointestinal cancer (Thompson et al., 2014). ENIGMA is an international 
consortium of investigators focused on curating sequence variants in BRCA1, BRCA2 and 
other known or suspected breast cancer genes. The curated genetics information from InSiGHT 
and ENIGMA have been routinely incorporated into ClinVar. COSMIC (Forbes et al., 2017) 
stores and displays somatic variant information. The Cancer Genome Atlas (TCGA) project 
has applied high throughput technologies to sequence human tumors, and human healthy 
tissues at the DNA, RNA, protein and epigenetic levels. The Genome Aggregation Database 
(gnomAD) aggregates and harmonizes exome sequencing data from a wide variety of large-
scale sequencing projects (Lek et al., 2016). 

Visualization is a very crucial step in high-throughput data analysis as it turns information from 
computer format that require computer skill to understand into friendly visual presentation. 
Comma-separated values (CSV) and tab-separated values (TSV) can be exported from most of 
the annotator software and, then, can be imported to any spreadsheet viewer. The Ensembl 
Genome Browser (Spudich and Fernandez-Suarez, 2010) and the University of Santa Cruz 
(UCSC) Human Genome Browser (Kent et al., 2002, Speir et al., 2016) are web-based 
browsers that integrate various sources of annotations. Integrative genomics Viewer (IGV) 
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(Robinson et al., 2011) is a stand-alone browser that support array-based and massively parallel 
sequencing data, and genomic annotations 

1.6.5 File formats 

Communication between each process in high throughput sequencing analysis has been done 
in file formats accepted by scientific community. 

1.6.5.1 FASTA 

A file in FASTA format is a texted-based file with the purpose to store nucleotide sequences 
or protein sequences. Common usage of FASTA files in Human DNA analysis is for storing 
human reference sequencing, for example, GRCh37 and GRCh38. The reference FASTA files 
are used by almost all processes in DNA sequencing analysis. 

1.6.5.2 FASTQ 

A file in FASTQ format a texted-based file with the purpose to store nucleotide sequences 
together with its corresponding quality scores. Each sequence represents a sequencing read. 
Normally, in a FASTQ file, there are 4 lines for one read. The first line is the read’s ID. The 
second line is the nucleotide sequence. The third line starts with “+” and is followed by optional 
sequence information. And the fourth line is the quality scores. In paired-end sequencing, there 
usually is a pair of FASTQ files for one sample with equal amount of reads in both files. 
Sequences with the same ID represent a pair of reads. Generally, files in FASTQ format are 
considered as complete products from sequencers. The files are then used by an alignment tool 
to align with a reference genome. 

1.6.5.3 SAM 

A file in SAM format is texted-based file for storing nucleotide sequences, from the 
corresponding FASTA files, aligned to a reference genome. The files are the output of an 
alignment tool. A file in SAM format have a header and an alignment section. The header 
contains overall information of the file or the sample, such as the genome reference used during 
the alignment process. The alignment section contains the alignment details. Each line has 11 
mandatory tab-limited fields. One line represents one alignment. 

1.6.5.4 BAM 

A file in BAM format is the binary/compressed version of a SAM file. After an alignment 
process, a SAM file is then compressed into a BAM file. Files in BAM format are the most 
common intermediate files used in sequencing analysis. Alignments in the file can be 
visualized using IGV (Robinson et al., 2011). All of the recalibration processes to improve 
alignment quality take input in BAM format and also output in BAM format (DePristo et al., 
2011). Most of SV callers need input in BAM format (Chen et al., 2015, Abyzov et al., 2011, 
Eisfeldt et al., 2017). All SNV callers need input in BAM format (DePristo et al., 2011, Li et 
al., 2009a). 
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1.6.5.5 VCF 

A file in VCF format is a text-based file for storing genetic variations. The file is an output of 
all SNV callers and some SV callers (Chen et al., 2015, Eisfeldt et al., 2017). The file consists 
of a header section and a variant section. The header section contains overall information of 
the file, such as the samples name, format of the genotyping data, and format of the annotation 
data. The last line of the header section is the columns name of the variant section. Each line 
in the variant section is in tab-limited format. One line represents one variant. Number of 
columns in the variant section are varied depending on number of samples in the file. Many 
annotation tools (Wang et al., 2010, Cingolani et al., 2012, McLaren et al., 2016) have an option 
to output in VCF format. 

1.6.5.6 TSV 

A TSV file is a tab-limited text-based file with “tab” as an intent for tabular structure, which 
later can be imported in to Excel. A few variant callers can output in TSV format (Wang et al., 
2010, Abyzov et al., 2011). Even though the TSV file format has its strength in its multi-
purpose and its readability compared to VCF, they are not commonly used for storing genetic 
variations mainly because of their size and their inefficiency in storing complex information, 
such as multiallelic variants or variant with multiple transcripts. 

1.6.5.7 CSV 

A CSV file is a comma-limited text-based file with the same intent as TSV to be used as tabular 
structure. However, it’s not popular due to its non-standardized format. Errors can be 
introduced if there are commas or new lines in its content. The file is sometimes used as an 
exported intermediate to be imported into Excel. 

1.7 CANCER SIGNATURES AND DNA DAMAGE PATTERNS 

DNA damage accumulated in our cells results from a combination of exposure to damaging 
processes and losing the related repair mechanisms. Source of the damage can be either 
exogenous, such as radiation or chemicals, or endogenous, such as replication errors or routine 
processes in the cell. Our cells have evolved to have repair mechanisms to handle each type of 
DNA damage. 
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Figure 2. DNA damage and corresponding mechanism. BER, base excision repair; HR, 
homologous recombination; NER, nucleotide excision repair; NHEJ, nonhomologous end-
joining; MMR, mismatch repair; ROS, reactive oxygen species; TLS, translesion synthesis; 
SAC, spindle assembly checkpoint. [Permission obtained from Elsevier to reuse parts of figure 
2 from López-Otín et al. (Lopez-Otin et al., 2013)] 

Conventional cancer studies have their focus mainly on identifying cancer-related genes by 
targeting driver mutation in tumors. Identifying driver mutations can be comparable to “finding 
a needle in a haystack” as the majority of mutations in tumors are passenger mutations. 
However, this “haystack” has been shown to be a rich source of information revealing cancer-
related mechanisms (Rubin and Green, 2009). Thus, patterns of passenger mutations can be 
potentially used as a proxy of the mutational processes. 

There are studies that have revealed the footprint of cancer mutational processes. For example, 
in UV light-associated skin cancer, there are patterns of CC:GG > TT:AA double nucleotide 
substitutions (Pfeifer et al., 2005). In smoking-associated lung cancer, there are patterns of C:G 
> A:T transversions (Hainaut and Pfeifer, 2001). Biallelic mismatch repair deficiency in POLE-
mutated cells results in ultra-hypermutated tumors with TCT > TAT and TTT > TGT mutations 
(Shlien et al., 2015). 

1.7.1 Pattern analysis methods 

With an exploding amount of whole exome and whole genome sequencing data, together with 
advances in machine learning technology, a computational approach to characterize tumors 
based on their base-substitution profile was initiated, capturing mutation signatures 
(Alexandrov et al., 2013). 

Machine learning is a computational technique that lets a computer mimic human behaviour. 
Known machine learning applications that have been integrated in human daily life include 
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voice recognition, finger-print recognition, hand-writing recognition, face recognition, and 
language translation. The strength of machine learning is in its almost-human ability to 
recognize patterns. It can associate large numbers of observed variables with a set of labels or 
outcomes that are not necessary exactly the same. With this strength, a machine learning 
method can easily take advantage of the large amount of passenger mutations and identify 
associated mutational processes.  

1.7.1.1 Supervised learning 

Supervised learning is a branch of machine learning that needs pairs of observed variables and 
outcomes (or sample labelling). The goal of supervised learning is to develop a predictor model. 
Real life applications include face recognition and finger-print recognition. A known genetics 
application that used this approach is HRDetect (Davies et al., 2017), which can identify 
BRCA1/BRCA2-deficient tumors with 98.7% sensitivity. 

1.7.1.2 Unsupervised learning 

This is another branch of machine learning that only needs set observed variables (without 
labels). One of the goals is to cluster samples with a similar pattern. This approach is especially 
useful when we do not know the number of expected clusters. By being clustered, the additional 
profit of unsupervised learning is in its visualization that the model reduces the number of 
observed variables down to a level that can be visualized. Real life applications include any 
application that can suggest similarity, for example, Facebook that can suggest photo tagging 
or friend adding. Unsupervised learning can identify tumors with similar patterns regardless of 
if the patterns are already known (Alexandrov et al., 2013) or unknown. 
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2 MATERIALS AND METHODS 

2.1 COHORTS 

The cohorts in paper I and paper II were Swedish colorectal and breast cancer patients recruited 
through 14 different hospitals from central Sweden. In paper I, the cases from family 242 and 
the cohort of 98 familial colorectal cancer patients were collected through the Karolinska 
Hospital, Stockholm, Sweden. In paper II, the 51 colorectal cancer patients with age of onset 
less than 40 without family history were recruited through the Department of Clinical Genetics, 
Karolinska University Hospital Solna or recruited in a nation-wide study, the Swedish Low-
risk Colorectal Cancer Study. The familial breast cancer patients, used as a comparison group, 
in paper I and II were recruited through the Department of Clinical Genetics, Karolinska 
University Hospital Solna. 

For family 242, the family segregates early onset rectal- and gastric cancer over three 
generations suggesting a dominant inherited predisposition. In total there were six cases with 
early-onset rectal cancer and in total at least four cases with gastric cancer. Some family 
members were affected also with other cancer types; two men had prostate cancer and both 
died from their disease, one woman had head-neck cancer and died from the disease and 
another woman had lymphoma and died because of that. Many family members had presented 
with tubular adenomas and hyperplastic polyps under surveillance. In particular, four family 
members had lesions, which could be used for coding of affected status in our study. One 
woman (Co-652) had three large tubulovillous adenomas (TVA), her sister (Co-692) had four 
tubular adenomas (TA) and 8 hyperplastic polyps (HP), and another sister (Co-657) had 5 large 
HP. One man (Co-771), whose mother (Co-666) had died from rectal cancer, had rectal cancer. 
They were all coded as affected in the first linkage analysis, another study before the study in 
family 242 (Picelli et al., 2008). One woman with gastric cancer (Co-441) and two relatives 
with rectal cancer (Co-666 and Co-771) were used for the initial exome sequencing study 
(Figure 3) (Thutkawkorapin et al., 2016). 
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Figure 3. Pedigree of family 242. Ga: Gastric cancer, Re: Rectal cancer, Pr: Prostate cancer, 
HN: Head and neck cancer, Ly: Lymphoma, TA: Tubular adenomas, TVA: tubulovillous 
adenomas, HP: Hyperplastic polyps. 

In paper III, the cohorts were recruited through the Swedish Twin Registry and the Northern 
Sweden Population Health Study. 

In paper IV, the cohorts of 8 colorectal- and 66 breast cancer patients were recruited through 
various studies as parts of The Cancer Genome Atlas project. 

2.2 MASSIVELY PARALLEL SEQUENCING 

In paper I, II and III, the sequencing samples were only germline DNA from the patients. In 
paper IV, the data were from both germline and tumor DNA from the patients. 

The first 3 patients, one with gastric cancer and two with rectal cancer, from family 242 have 
been sequenced together with 30 patients from the family breast cancer cohort. They were 
whole exome sequenced using the SureSelect XT Human All Exon 50 Mb kit on Illumina 
HiSeq 2000. 

The 98 CRC patients from paper I, the 51 early-onset CRC patients from paper II, and the rest 
of familial breast cancer patients were whole exome sequenced using the TruSeq PE Cluster 
Kit v3 on Illumina HiSeq 2000. 

In paper III, the 1000 samples were whole genomes sequenced using TruSeq DNA PCR free 
sample preparation kit on Illumina Hiseq X. 

In paper IV, the 74 cases were whole genome sequenced on Illumina platform and whole 
exome sequenced on Roche and Applied Biosystems platform. 

2.3 DATA PREPROCESSING METHODS 

All of the data used in these studies were whole genome and whole exome sequencing data. 
Thus, some of the data were pre-processed in a similar way. The following were methods used 
in chronological order. 

2.3.1 Alignment and variant calling 

In paper I, II and III, the alignment and variant calling processes were performed according to 
GATK best practice (Van der Auwera et al., 2013). The processes started with aligning raw 
reads to GRCh37 version of human reference using BWA-MEM (Li and Durbin, 2009). The 
aligned reads were sorted and indexed using samtools (Li et al., 2009a). Then, duplicated reads 
were marked using Picard (broadinstitute.github.io/picard). The indels were realigned using 
GATK RealignerTargetCreator and IndelRealigner. Base quality scores were recalibrated 
using GATK BaseRecalibrator. These processes produced a bam file for each sample. GATK 
HaplotypeCaller were used for creating gVCF files. And the joint VCF files were produced 
using GATK CombineGVCFs and GATK GenotypeGVCF. 
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In paper IV, the alignment and variant calling were processed as a part of TCGA project. The 
BAM files used in the study were whole genome sequencing data, aligned to GRCh37. The 
VCF files were called from whole exome sequencing data, aligned to GRCh38, using MuTect2 
(Cibulskis et al., 2013). Both bam and VCF files were downloaded from 
https://portal.gdc.cancer.gov, with a permission obtained from dbGaP 

2.3.2 Variant annotation 

In paper I and II, the merged VCF files were annotated using ANNOVAR (cite). The 
annotation databases included RefSeq gene annotation (O'Leary et al., 2016), dbSNP (Sherry 
et al., 2001), ClinVar (Landrum et al., 2018), ExAC conservative constraint (Lek et al., 2016). 
Background allele frequencies are from SweGen (Ameur et al., 2017), ExAC (Lek et al., 2016), 
gnomAD (Lek et al., 2016), and 1000 Genomes Project allele frequencies (1000 Genomes 
Project Consortium, 2012), 200Danes (Y.  Li et al., 2010), and 249Swedes 
(http://neotek.scilifelab.se/hbvdb/)). In silico predictors used for predicting pathogenic effects 
include SIFT (Kumar, Henikoff, & Ng, 2009), PolyPhen2 (Adzhubei et al., 2010), Phylop 
(Cooper et al., 2005), LRT (Chun & Fay, 2009), Mutation Taster (Schwarz, Rodelsperger, 
Schuelke, & Seelow, 2010), Mutation Assessor (Reva, Antipin, & Sander, 2011), FATHMM 
(Shihab et al., 2015), GERP++ (Davydov et al., 2010), and CADD (Kircher et al., 2014). 

2.3.3 Maximum minor allele frequency (MMAF) 

In paper II, maximum allele frequencies from 21 population (SweGen, ExAC, gnomAD, 
1000Genomes, 200Danes and 249 Swedes) were used for filtering. 

2.3.4 Sanger sequencing 

The PCR primers used in paper I and II were designed using Primer3web (Untergasser et al., 
2012) and SimGene Primer3 (Rozen and Skaletsky, 2000). The sequences were visualized and 
analyzed using FinchTV (http://www.geospiza.com/Products/finchtv.shtml) and CodonCode 
Aligner (http://www.codoncode.com/aligner/index.htm). 

2.3.5 Structural variant calling 

In paper IV, the SV calling for both tumor and germline WGS data were done using FindSV 
(https://github.com/J35P312/FindSV), encapsulating TIDDIT (Eisfeldt et al., 2017) and 
CNVnator (Abyzov et al., 2011). The subtraction SVs, or somatic SVs, were called using 
TIDDIT. 

2.3.6 Mutation profiles 

In paper IV, mutations were classified into groups based on known mechanisms of cancer-
related genes, which are base substitution, structural rearrangement, copy number variation, 
and microsatellite instability. 
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2.3.6.1 Base substitution 

Data used for generating base substitution profile were somatic mutation in VCF format. Single 
base changes were first classified into six subtypes; C:G > A:T, C:G > G:C, C:G > T:A, T:A > 
A:T, T:A > C:G, and T:A > G:C. Then, the changes were further subclassified by including the 
sequence context of the mutation, which are 5’ and 3’. In total, there were 96 mutation types 
(6 types of substitution x 4 types of 5’ base x 4 types of 3’ base). 

2.3.6.2 Structural rearrangement and copy number variation 

Data used in generating SV profiles were the subtraction SV calling performed in an earlier 
stage. The structural variants were primarily classified into four groups, which are duplication, 
deletion, inversion, and translocation. Then, they were subclassified based on their 
approximated size in log10 (size between 100-1Kbp, 1K-10K, 10K-100K, 100K-1M, 1M-
10M, 10M-100M, 100M-1000M, and whole chromosome). In total, there were 32 mutation 
types (4 types of variation x 8 length groups). 

2.3.6.3 Microsatellite instability 

Primary data used in generating the profile were WGS tumor-normal pairs in BAM format. 
Detection of MSI loci were called by msisensor (Niu et al., 2014). The mutations were 
classified based on size- and unique composition of repeat unit (A, C, AC, AG, AT, CG, AAC, 
AAG, AAT, ACC, ACG, ACT, AGC, AGG, ATC, CCG, Repeat_unit_length_4, 
Repeat_unit_length_5). 

2.4 DATA ANALYSIS AND VISUALIZATION 

2.4.1 Paper I 

After data preparation, an analysis of the whole exome was performed (Figure 4). The result 
variants were then verified with additional 5 members, 2 with rectal cancer, one with 3 TVA, 
one with 4 TA, and one with 8 HP using sanger sequencing. Then, a segregation in another 
cohort of 98 familial cancer was performed using the genes with variant found to be segregated 
in 5 affected members (Figure 5) 
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Figure 4. The workflow used for finding variants segregated in the three affected 
members of family 242. 

 

Figure 5. The workflow of segregation analysis in a cohort of 98 familial CRC patients. 

2.4.2 Paper II 

There were 4 sub studies in this paper. The first one was to look for pathogenic variants in 
cancer-related genes (Figure 6). The second and the third were to look for possible novel cancer 
genes using truncating-variant and missense-variant strategies respectively (Figure 7, 8). The 
fourth was to look for rare monogenic autosomal recessive and less common risk genes (Figure 
9) (Thutkawkorapin et al., 2019). 

Allele frequency in 1000Genomes (ALL population)
less than 20%

Exonic or splice-sites variants

Non-silent variants

shared among the three member of family 242

Not found in the cohort of 30 breast cancer cases

Allele frequency in 1000Genomes (ALL population)
less than 20%

Exonic or splice-sites variants

Allele frequency in 1000Genomes (ALL population)
less than allele frequency in the 98 familial CRC dataset

Non-silent variants

Segregation check if a variant segregated in a family

29



 

 20 

 

Figure 6. Autosomal dominant and autosomal recessive analysis in cancer susceptibility 
gene list. [Permission obtained from Wiley to reuse parts of figure 1 from Thutkawkorapin et 
al. (Thutkawkorapin et al., 2019)] 

 

Figure 7. Truncating variant analysis. [Permission obtained from Wiley to reuse parts of 
figure 2 from Thutkawkorapin et al. (Thutkawkorapin et al., 2019)] 

 

Figure 8. Missense variant analysis. [Permission obtained from Wiley to reuse parts of figure 
3 from Thutkawkorapin et al. (Thutkawkorapin et al., 2019)] 

Exome data of 51 early-onset CRC cases

Variants filtering
- Variants presenting in an in silico cancer gene list modified from (Vogelstein et al., 2013)
- Variants with MMAF less than
     - 0.1% if the gene is an autosomal-dominant cancer gene
     - 1% if the gene is an autosomal-recessive cancer gene
- Variants with MMAF less than the prevalence of cancer syndrome suggested by the gene

Variants classification
- American College of Medical Genetics and Genomics and the Association for Molecular Pathology 
(ACMG-AMP) guidelines criteria (Richards et al., 2015)

Exome data of 51 early-onset CRC cases

Variants filtering
- Frameshift variants, nonsense variants, or splicing variants 
- Variants with MMAF less than
     - 0.1% for autosomal-dominant variants
     - 1% for autosomal-recessive variants

Exome data of 51 early-onset CRC cases

Variants filtering
- Missense variants
- Variants with MMAF less than 0.1%
- Variants with CADD (Kircher et al., 2014) score >30
- Variants with ExAC Z-score (Lek et al., 2016) > 3
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Figure 9. Autosomal recessive gene analysis. [Permission obtained from Wiley to reuse parts 
of figure 4 from Thutkawkorapin et al. (Thutkawkorapin et al., 2019)] 

2.4.3 Paper III 

Principal component analysis was performed on SNP array data of samples from STR and 
NSPHS together with samples from 1000Genomes in order to visualize geographical 
distribution. After that, the selected 1000 samples were whole genome sequenced. The WGS 
samples were made publicly available. The allele frequency VCF file was downloadable at 
https://swefreq.nbis.se/dataset/SweGen. The genome browser of the dataset was developed 
using software from ExAC (Lek et al., 2016). 

2.4.4 Paper IV 

The first part of the analysis in this paper was to build up a mutation profile for each sample. 
the mutation profile consists of a fixed percentage of mutation types from each mutation group. 
Base substitution accounted for 70% of the profile. Copy number variation (duplication + 
deletion), structural inversion, and structural rearrangement, together, accounted for 20% of 
the profile. And the rest 10% of the profile was for microsatellite instability. Within each 
mutation group, the profile of each mutation type is the relative percentage of the mutation type 
within the group. For example, if there are 10 events of “C > G” mutation, where both the 5’ 
and 3’ bases are A, and the total number of base substitution events are 100, the percentage of 
this variable would be 70% x 10/100, which would be 7%. 

The next step was to find similar patterns underlying the profiles. This was done using a 
clustering method called non-negative matrix factorization (NMF) to decipher matrix P from 
given input matrix M, where M » P x E. Matrix M represents fraction of each mutation type, 
the mutation profile, in each sample, each column for one sample and each row for one 
mutation type. Matrix P represents fraction of mutation type in each cancer process, each 
column for one cancer signature process and each row for one mutation type. Matrix E 

Exome data of 51 early-onset CRC cases and 56 familial BRC samples

Variants filtering
- Splicing- and non-silent variants
- Variants with MMAF less than 20%
- Variants predicted to be pathogenic in more than 4 out of 9 in silico predictors

Filtering genes with possible bi-allelic variants
- At least two CRC cases have homozygous variants or possible compound heterozygous variants in the gene
- Familial breast cancer cohort have no homozygous variants or possible compound heterozygous variants in the gene
- The possible compound heterozygous variants were considered to be on the same allele and were removed if
     - Any two variants always had a similar MAF among population allele frequency databases
     - The variants showed up together in multiple samples
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represents fraction of cancer signature process in each sample, each column for one sample and 
each row for one cancer signature process. 

The last step was to visualize the reconstructed profile, matrix newM, when P x E -> newM, 
together with the original profile and the percentage of the mutational signature components. 
The purpose was to see the underlying mutational patterns of each samples. 
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3 RESULTS AND DISCUSSION 

3.1 PAPER I 

We identified 12 novel non-synonymous single nucleotide variants shared among 5 members 
with rectal cancer. The mutations were found in 12 different genes; DZIP1L, PCOLCE2, 
IGSF10, SUCNR1, OR13C8, EPB41L4B, SEC16A, NOTCH1, TAS2R7, SF3A1, GAL3ST1 and 
TRIOBP. 

To find a support for as being a high-penetrant gene, we performed a segregation analysis in 
another cohort of 98 familial colorectal cancer cases (Figure 5). We searched for other 
mutations in the 12 genes. After this, 36 variants among 11 genes remained. No additional 
mutation was seen in SUCNR1. The result showed that there was a variant in the gene IGSF10 
was shared between two affected relatives in a family. However, the same variant was also 
found in three other families where it did not segregate with disease. Therefore, none of the 
genes was suggested as a high penetrant gene. 

Considering family members, if we included the member with 3 large tubulovillous adenomas 
as an affected, three genes, OR13C8, EPB41L4B and TAS2R7, will be excluded. And if we 
included the member with had 4 tubular adenomas and 8 hyperplastic polyps, another two 
genes, DZIP1L and PCOLCE2, will be excluded. And if we included the member with 5 large 
hyperplastic polyps, three more genes, SF3A1, GAL3ST1 and TRIOBP, will be excluded. We 
could have used the wrong individuals for our first experiment. In the case one of the three is 
actually a phenocopy, or if there are two traits, one with high-penetrant gastric cancer and one 
with high-penetrant rectal cancer, it would have been missed in the analysis. It’s also possible 
that there are two different low-penetrant genes, one for gastric cancer and one for rectal cancer, 
with the same or different modifying genes among family members. 

Based on known functions, DZIP1L, IGSF10, NOTCH1, SF3A1 and GAL3ST1, were proposed 
to be the candidates. The most likely candidate was NOTCH1 as it is the best-known gene. 

One strong hypothesis in this study was that there was a molecular process involving the risk 
of developing gastric- and colorectal cancer in this family. The weakness of this hypothesis is 
that if one, or more, of the 5 affected samples have a phenocopy, causing by different cancer 
processes, or if the gastric cancer was developed from cancer process different from those of 
the colorectal cancer, there would be several different combinations to mark the family 
members as affected. Thus, the study is likely to miss the candidate mutation.  

In paper IV, we developed a tool to visualize molecular profile of a tumor. The tool will be 
useful in defining hypothesis for this family to identify samples with the same molecular 
profile, suggesting the same underlying cancer processes. 
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3.2 PAPER II 

In this study, we used a cohort of 51 CRC cases with an age of onset less than 40 year to search 
for (1) Rare autosomal dominant and autosomal recessive mutations in candidate cancer 
susceptibility genes (2) Novel monogenic cancer genes that cause a rare autosomal dominant 
or autosomal recessive colorectal cancer syndrome in exome data (3) rare monogenic and less 
common risk genes in exome data. 

In (1), we have identified a pathogenic variant in PTEN. The patient was subsequently 
confirmed to have a hereditary hamartoma tumor syndrome. Beside PTEN, we found other 7 
heterozygous variants in 7 candidate genes. Among them, the variants in BMPR1A, BRIP1 and 
SRC, have never been reported in healthy individuals, making them more likely than the others. 
In a separate study, immunohistochemistry of mismatch repair genes was performed on one of 
the patients. His tumor showed loss of PMS2 protein. After that, target sequencing, using nested 
PCR, has confirmed the finding with a variant NM_000535.5:c.2113G>A, p.Glu705Lys. The 
variant was known to be pathogenic and has been reported as causative in many families. The 
variant in PMS2 was missed in the study because the sequencing region was not unique 
resulting in variant with low quality, thus, excluded from the study. 

In (2), we used truncating-variants approach and missense-variants approach. In truncating-
variants approach, in addition to PTEN, the study identified 10 candidate truncating variants in 
10 genes. Among this, 7 never been seen in public population. CLSPN is the mostly likely 
based on its function involving DNA damage checkpoint (Chini and Chen, 2003) and DNA 
damage repair (Azenha et al., 2017). To date, no studies have implicated, SEC24B, or SSH2 in 
CRC or cancer development. As the variants in SEC24B and SSH2 have never been reported 
in the normal population databases, they are also possible candidate genes.  

In missense-variants approach, using MMAF less than 0.1% alone reduced number of variants 
down to 3,800 variants. In order to reduce them to a manageable number, we have used ExAC 
missense z-score more than 3 and CADD score more than 30 as filtering criteria. And finally, 
we filtered variants that never been seen in public population. These resulted in 8 candidate 
variants. Considering their functions, ACACA, NR2C2, INPP4A, and DIDO1 were the 
proposed candidates. INPP4A has been shown to inhibit cell proliferation and promote 
apoptosis in bladder and pancreatic cancer cells (Wang et al., 2017). Inhibition of ACACA can 
lead to either decreased apoptosis (Keenan et al., 2015) or decreased cell proliferation (Jones 
et al., 2017, Singh et al., 2015). The inhibition can also lead to increased risk of 
metastasis/tumor recurrence (in mice) (Rios Garcia et al., 2017). The inhibition of NR2C2 
induces cell death (McNew et al., 2016, Singh et al., 2012). DIDO1 is upregulated in colorectal 
tumors (Braig and Bosserhoff, 2013, Sillars-Hardebol et al., 2012). However, this filtering 
approach was not optimal. List of genes suggested by ExAC z-score to have number of 
missense mutations less than expected, z-score > 3, will miss candidate genes, for example 
POLE with z-score 1.57. CADD score also showed discrepancies with expert classification 
from InSiGHT (van der Velde et al., 2015). A recent study, aimed at evaluating the specificity 
of in silico predictors using common variants (allele frequency > 1% and < 25%) from ExAC 
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database, showed that the performances vary widely, from 63.4% to 95.5% (Niroula and 
Vihinen, 2019). 

In (3), there were no rare biallelic variants in any known cancer genes found. Then, we searched 
the whole exome for more common possible biallelic variants, we have listed 16 candidate 
genes. Among these, 6 of them, ATP10B, PKHD1, PTPRQ, UGGT2, MYH13 and TFF3, were 
more likely based on their MMAF < 5% and observed frequency 20 times higher than the 
expected likelihood of the two variants occurring together. To search for possible biallelic 
variants, we used a cohort of 56 breast cancer cases as a comparison group. This may not be a 
good approach because it can overlook genes predisposing to both colorectal- and breast 
cancer. However, to search for possible biallelic variants, we need to know the complete 
genotyping information. One strong advantage of using this inhouse cohort is in its ability to 
remove platform errors. The breast-cancer cohort is from Swedish population, the same as the 
CRC. Moreover, the DNA from both cohorts has been collected and processed in the same 
way. Thus, it can eliminate the artifacts caused by the differences in populations and the 
difference in platforms 
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3.3 PAPER III 

The goal of this study was to provide a local reference database of 1,000 Swedish individuals 
to the public. DNA samples in this study were from the Swedish Twin Registry (STR) 
(n=10,000) and Northern Sweden Population Health Study (NSPHS) (n=1,033). In order to 
select samples that can represent Swedish population geographically, this study has performed 
principal component analysis (PCA) using SNP array data of STR and NSPHS samples 
together with SNVs extracted from 1000 Genomes project phase 3 (Figure 9). The result 
showed that genetic structure and STR and NSPHS is likely to represent Swedish individuals 
who have been living in Sweden for at least one generation. Using PCA, 942 STR samples and 
58 NSPHS samples were selected for whole genome sequencing. 

 

Figure 10. Principal analysis of SNP array data. STR: the Swedish Twin Registry, NSPHS1 
and NSPHS2: the Northern Sweden Population Health Study (collected in two different 
phases), CEU: Utah Residents with Northern and Western Ancestry, FIN: Finnish in Finland, 
GBR: British in England and Scotland, IBS: Iberian Population in Spain, TSI: Toscani in Italia. 
[Permission obtained from SpringerNature to reuse parts of figure 1 from Ameur et al. (Ameur 
et al., 2017)] 

In order to evaluate this whole genome sequencing dataset, this study has performed an 
overview of SNVs and indels. This study revealed 8.9 million SNVs and 1.0 million indels not 
presenting in dbSNP (version 147). Of this, 23,396 SNVs and 3239 indels were found to have 
consequence in amino acid change. This indicated that a large number of genetic variants not 
currently reported in dbSNP of Swedish population could have a direct effect on protein. 

In order to evaluate the WGS data in relation to other populations, this study has performed 
another PCA using SNVs extracted from the WGS data, excluding 58 NSPHS samples due to 
their higher degree of relatedness, and 1000 genomes phase 3 (Figure 11). The analysis showed 
that the STR cohort is genetically close to the European population in 1000 Genomes (Figure 
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11a). Among European samples, the study showed that the STR samples are intermixed with 
the Finnish samples (Figure 11b). This supported the finding of a high degree of genetic 
diversity of the selected Swedish samples. 

 

Figure 11. Genetic variation of the 942 Swegen STR samples in relation to 1000 Genomes 
populations. (a) PCA result in comparison with 1000 Genomes global sub-populations 
(AFR=African, AMR=Ad Mixed American, EAS=East Asian, EUR=European, SAS=South 
Asian). (b) PCA result in comparison with 1000 Genomes European sub-populations (CEU: 
Utah Residents with Northern and Western Ancestry, FIN: Finnish in Finland, GBR: British in 
England and Scotland, IBS: Iberian Population in Spain, TSI: Toscani in Italia). [Permission 
obtained from SpringerNature to reuse parts of figure 1 from Ameur et al. (Ameur et al., 2017)] 

This study has made the variant frequency database of 1,000 Swedish individuals available at 
https://swefreq.nbis.se/dataset/SweGen/browser. The genome browser was developed using 
software from ExAC. My contribution in this project was to incorporate genetic variation found 
in this study into the browser platform, as it was not optimized for whole genome sequencing 
data. 

This local reference database of Swedish population has proved to be very useful. To date, it 
has been cited by 30 articles, including the paper II in this thesis. As demonstrated in the study, 
there is a large proportion of genetic variation found in this study unique to Swedish population. 
Including this database as another filtering criteria, as done in paper II, will help removing local 
common variants, otherwise interpreted as rare. Interestingly, a recent study showed that some 
of in silico predictors have poor specificity in predicting benign effect of variants common in 
one population but unique in all other population (AF > 1% but < 25%) (Niroula and Vihinen, 
2019). They tended to annotate the variants as disease-causing or benign based on dbSNP, 
1000Genomes and ClinVar. This local database will exclude the false positive bias reported by 
these tools.	  
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3.4 PAPER IV 

The aim of this study is to use an unsupervised learning approach to identify combinations of 
both known and unknown cancer processes in humans based on the integration of base 
substitution profile, copy number variation profile, structural rearrangement profile and 
microsatellite instability profile in 74 whole genome sequencing tumor-normal pairs from The 
Cancer Genome Atlas project (TCGA). The cohort consists of 68 breast- and 8 colorectal 
cancer cases. 

The results identified 12 patterns, both known as well as novel, of underlying cancer processes 
and suggested associations between different types of DNA damage. 9 signatures were unique 
to the breast cancer cohort and 2 signatures were unique to colorectal cancer cohort (Figure 5). 
There was only one process associated with both cancer type suggesting the mutational 
processes in cancer were not completely random. 

 

Figure 5. 12 profile patterns found in 74 samples from TCGA. Signature A, C, D, F, G, H 
J, K and L were associated only with breast cancer cases while Signature B and E were 
associated with only colorectal cancer cases. Only Signature I was associated with both cancer 
types. 

Signature B was associated with two colorectal cancer samples suggested by msisensor (Niu 
et al., 2014) to have microsatellite instability. Signature E was associated with two colorectal 
cancer samples with somatic mutation in POLE. For breast cancer samples, 3 out of 4 samples 
with somatic mutation in BRCA1 have similar structural variation profiles and have the same 
biggest 2 signatures.  

In samples with high SV burden, which was described as having high number of structural 
events, the highest 10 breast cancer samples were associated with variety of signatures, C(n=1), 
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D(n=4), F(n=4), and H(n=1). However, if we looked at only the structural variation profiles, 
they shared one similarity. Their SV profiles were dominated by: deletion events with size 
between 10K – 100K; inversion events with size between 1K – 10K; and duplication events 
with size between 10K – 100K. In other words, total amount of these 3 mutation events always 
represented more than 80% of their SV profile. 

The conclusion from the study so far is that including multiple variant types allowed the model 
to identify underlying patterns connecting these data types. It suggested that there was a 
connection between mutation types as in POLE and MSI cases. But that was not always correct, 
as seen in SV burden cases, in which the unclear pattern in base substitution profile may have 
diluted the performance of pattern finding. Currently, the profile extraction method has a bias 
toward base substitution, 70% of the profile weight. This is because there are 96 mutation types 
for base substitution compared to 32 mutation types of SV and 14 of MSI. The result from this 
study shares similar conclusions with a recent study by (Funnell et al., 2019) which emphasize 
that integrating multiple variant types can reveal corelated structures both within and between 
the data types and increase the accuracy of discovering mutational patterns. 

The original intent of this study was to analyse all WGS tumor-normal pairs from TCGA 
(n=503) with an aim to discover underlying mutational patterns, similar to 
https://cancer.sanger.ac.uk/cosmic/signatures, by integrating multiple variant types. However, 
the total data size is really big and it take very long time for downloading the data. The study 
done here served as a feasibility study to prove that integrating more variant types can reveal 
more mutational structures and reveal more association between mutation types. 

The strength of unsupervised methods is in its un-bias toward any predefined hypothesis (e.g. 
a monogenic disease, a gene-related disease, a pathway-related disease). Its aim is to find 
similarity between samples. However, the result from this may not be usable right away, as 
there is no sample labelling in the input. Additional steps are required in order to make the 
result usable. Etiological study for each sample is needed to truly confirm if the sample is 
caused by a monogenic disease, or a pathway-related disease. The results from the etiological 
study will label the sample. The pattern identified by this model and the correct labelling can 
be further used in a supervised learning model to develop a predictor that can predict the 
correlation between the mutational profile and the clinical phenotype or to predict the 
correlation between the mutational profile and the clinical outcome
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