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ABSTRACT 

As one of the most prevalent functional gastrointestinal disorders (FGIDs), irritable bowel 

syndrome (IBS) affects more than 10% of the general population worldwide with a higher 

prevalence in women. The primary clinical manifestation of IBS is chronic abdominal pain or 

discomfort associated with changes in stool frequency and appearance. IBS is the second 

leading cause of work absenteeism after colds and has remarkable effects on the socio-

economic system. The pathophysiology of IBS has not been fully clarified yet, including 

various peripheral and central mechanisms. 

From the late 1980s, genetic predisposition to IBS has been demonstrated by family and twin 

studies. Several candidate genes have been linked to IBS susceptibility including TNFSF15, 

NPSR1, SCN5A, TRPM8, and SI. Moreover, a few underpowered genome-wide association 

studies (GWAS) have been performed to investigate IBS genetics in population-based 

cohorts. However, to date, no unequivocal genetic factor has been confirmed yet.  

In this thesis, we aim to identify risk genes and variants associated with IBS and to 

characterize their functional roles. The first part focuses on the role of genetic variations in 

the sucrase-isomaltase (SI) gene and IBS susceptibility. In the second part, the hypothesis-

free GWAS approaches are implemented to detect IBS risk genes and variants in large-scale 

powered cohorts.  

In Paper I, we have exploited a two-step computational strategy to study the prevalence of SI 

rare pathogenic variants (SI-RPVs) in 2207 tertiary IBS patients. The prevalence of selected 

SI-RPVs in all IBS patients is 3.99%, which is significantly higher than the reference 

population (P=0.00049). This study has provided supporting evidence that links carrying SI-

RPVs to increased risk of IBS.  

Paper II has investigated the effects of SI functional variants in the response to dietary 

intervention in IBS patients. The genotypes of SI hypomorphic variants were obtained for a 

group of IBS-D patients previously treated with a low FODMAP diet in a clinical trial. After 

stratifying IBS patients into carriers and non-carriers of SI hypomorphic variants, we have 

observed significantly lower efficiency of low FODMAP diet in carriers compared to non-

carriers (P=0.031). These findings suggest that SI genotype data may contribute to identifying 

individuals with higher chances to benefit from such dietary interventions.  

In Paper III, we have performed a GWAS of self-reported IBS exploiting the large 

population-based UK Biobank. After quality control, the association analysis has been carried 



out in 9,576 IBS patients and 336,499 controls via logistic regression. Genome-wide 

significant signals have been identified on chromosome 9q31.2, and sex-stratified analysis 

suggests this locus is female-specific. This finding has been further supported by replication 

evidence from analyses in a pooled cohort with multi-national tertiary IBS cases and controls 

and a Swedish population-based cohort. 

In the end, IBS GWAS and their meta-analyses have been performed in large-scale multi-

national tertiary IBS cases and controls from European countries and the US in Paper IV. 

We have identified two novel genome-wide significant loci in IBS-D meta-analyses, and the 

results from functional annotation and PheWAS screening have suggested the association of 

these loci with altered metabolic and immune activities as well as psychiatric conditions. Ion 

channel biology was also highlighted as plausible pathways linked to IBS. 

Taken together, this thesis has provided new insight that improves current understanding of 

genetic predisposition to IBS. In the long run, the discovery of IBS predisposing genes and 

variants may have a significant impact on IBS management, since it is expected to allow 

patients stratification and therefore increase the specificity and efficacy of treatment. 
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1 BACKGROUND 

1.1 FUNCTIONAL GASTROINTESTINAL DISORDERS 

The functional gastrointestinal disorders (FGIDs) are described as a heterogeneous group of 

chronic functional conditions of the gastrointestinal (GI) system, as their symptoms manifest 

in the absence of identifiable structural or biochemical abnormalities.(1,2) The term 

"functional" generally refers to abnormal activities in the body such as changes in gut motility 

or visceral hypersensitivity. However, negative (non-disease) results are usually obtained 

from routine serological, imaging and endoscopic examinations.  

The definition of FGIDs has been changing over time, from non-organic diseases, psychiatric 

comorbidities to disorders of gut-brain interaction.(1) They encompass disorders with 

symptoms related to GI motility, visceral hypersensitivity, altered immune activities, 

dysbiosis, and changes in the central nervous system processing.(2) Recent studies have 

proposed that the FGIDs phenotypes result from the complex interactions between genetic, 

environmental, psychological and physiological factors.(3,4) The pathophysiology of FGIDs 

is illustrated in a biopsychosocial model as shown in Figure 1. 

FGIDs are the most common reasons for referral to a gastroenterologist worldwide, and many 

people do not consult a physician for their GI symptoms.(5) Despite the high prevalence, the 

etiology of FGIDs has not been clarified yet. To date, diagnosis and classification of FGIDs 

are established based on patients’ symptoms. The current most widely accepted diagnostic 

criteria for FGIDs are from Rome Foundation. Since the late 1980s, expert researchers and 

clinicians worldwide have gathered and assessed the characteristics, diagnostic and the 

therapeutic aspects of FGIDs. The Rome Foundation was set up in 1996, and since then, the 

foundation has played a key role in FGIDs research work.(1,2) Their collaborations have 

resulted in the criteria in FGIDs diagnosis, the so-called “Rome Criteria.” The latest Rome IV 

criteria comprise 33 adult and 20 pediatric FGIDs, which are classified into eight domains 

according to their anatomic locations.(2) A detailed list of adult FGIDs in Rome IV 

classification is shown in Figure 1. Nevertheless, the Rome IV criteria have just been 

released and not widely utilized yet in scientific literatures. Rome III criteria are still “golden 

standards” in most FGIDs studies and are what we refer to in this thesis.  

There are limitations to the application of Rome Criteria in clinical settings. First, the 

symptom-based criteria categorize individuals into patients and non-patient groups. Those 

who have similar symptoms are excluded if they do not fully meet the criteria. Second, Rome 

Criteria weight more on patients’ symptoms, while other dimensions of the patients’ 
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conditions (e.g., psychosocial, quality of life) are not fully taken into consideration. 

Therefore, a more integrated profile should be added to patients’ clinical manifestation when 

using Rome Criteria in clinical cares. Despite the limitations, Rome Criteria are still valuable 

instruments for research proposes.  

 

FIGURE 1. A biopsychosocial model for the conceptualization of FGIDs pathophysiology 

and Rome IV classification.  

 

1.2 IRRITABLE BOWEL SYNDROME 

1.2.1 Clinical characteristics 

Irritable bowel syndrome (IBS) is one of FGIDs with high population prevalence, with main 

clinical manifestations of chronic abdominal pain associated with bloating, gas, constipation 

or diarrhea.(6) IBS is defined as recurrent abdominal pain or discomfort (more than 3 

days/month in >3 months) based on Rome III criteria, together with at least two 

accompanying symptoms: 1) symptom remission after defecation, 2) symptom onset links to 

changes in bowel movements, 3) symptom onset associated with stool form changes.(1) 

Specific subtypes of IBS are established on patients’ bowel habits and the predominant 

pattern, including IBS-D (diarrhea), IBS-C (constipation), IBS-M (alternating diarrhea and 

constipation) or IBS-U (unclassified), as described in Figure 2. Given that IBS symptoms 
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can also be present in other GI diseases (primarily inflammatory bowel diseases and celiac 

disease), IBS often remains a diagnosis of exclusion in routine clinical practice. 

 

FIGURE 2. A two-dimensional figure illustrates the definition of IBS subtypes. According to 

the frequency of lumpy and watery stools, IBS patients can be classified into four subgroups: 

IBS-D (diarrhea), IBS-C (constipation), IBS-M (alternating diarrhea and constipation) or 

IBS-U (unclassified). Reprinted with permission from Enck, P. et al., Nat Rev Dis Primers. 

2016 Mar 24;2:16014. Copyright © 2016, Springer Nature. 

 

Although IBS is not a life-threatening condition, it seriously impacts patients’ quality of life 

and has significant impacts on the health and socio-economic system. As a chronic condition, 

IBS symptoms affect many patients for more than ten years,(7) hence IBS accounts for a 

large proportion of primary care and gastroenterology practice.(8,9) As the second leading 

cause of work absenteeism after colds, IBS costs translate approximately into 1600 Euros per 

patient per year, for an estimated 0.5% of the annual national healthcare budget in the 

US.(10) 

1.2.2 Epidemiology of IBS 

The prevalence of IBS ranges between 10% and 25% in individual community 

surveys,(8,11–17) Figure 3 shows the detailed population IBS prevalence worldwide.(18) A 
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meta-analysis has demonstrated a global IBS prevalence of 11.2% (95% CI: 9.8–

12.8),(19,20) while another recent literature review from the Rome Foundation working team 

described a significant degree of heterogeneity of IBS prevalence among different countries, 

ranging from 5.8% in the Middle East/Africa to 17.5% in Latin America.(21) The 

epidemiological data from most African countries and many Asian countries are not yet 

available, which may attribute to the inadequate attention paid to functional disorders. On the 

other hand, it is also noteworthy that the reported IBS prevalence in some developing 

countries is higher than developed countries, this may be due to the poorer life condition and 

a higher incidence of infectious diarrhea (mainly in tropical countries), their milder types 

could be misdiagnosed as IBS.    

 

FIGURE 3. IBS prevalence in population studies around the world. Reprinted with 

permission from Enck, P. et al., Nat Rev Dis Primers. 2016 Mar 24;2:16014. Copyright © 

2016, Springer Nature. 

 

A few factors have been demonstrated to be associated with IBS, including sex, age, 

socioeconomic status, and family clustering. In most studies, IBS rates were reported to be 

higher in women than men,(9) and a meta-analysis estimated a 67% increase of odds in 

females.(20) While the specific mechanisms accounting for sex differences in IBS remain to 

be fully understood. Individuals from all age groups can be affected by IBS. Pooled analyses 

showed that IBS prevalence decreased with increasing age, especially in the age group above 

50 years’ old, but none of the difference was statistically significant.(20,22) Another study 
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revealed milder abdominal pain in older IBS patients, but worse quality of life was found 

compared with younger groups.(23) Some studies have reported IBS is more frequent in 

individuals with lower socioeconomic status,(13) although other independent studies failed in 

replicating this observation. Increased risk of IBS has been reported in individuals with a 

family history.(24,25) Genetic, environmental factors, as well as social learning, have been 

considered to play a role in the IBS family aggregations. The genetic predisposition of IBS 

will be discussed in detail in Section 1.3. 

Recent studies have demonstrated the association between GI infections and IBS. The 

estimated odds ratio for developing IBS is 5.86 (95% CI: 3.60–9.54) in individuals after their 

gastroenteritis,(26) The mechanism of post-infectious IBS is not yet clarified, low-grade 

intestinal inflammation and increased infiltration of mast cells may involve in the generation 

of GI symptoms. However, there is no consensus on whether infections from specific 

pathogens are linked to IBS.  

1.2.3 Current understanding of IBS pathophysiology  

Although the etiology of IBS is still poorly understood, there are extensive studies on the 

roles of central and peripheral mechanisms in IBS pathophysiology.(27–29) There is 

accumulating evidence suggesting the involvement of intestinal immunity, disordered gut-

brain communication, visceral hypersensitivity and dysbiosis in the generation of IBS 

symptoms in different individuals.(30,31) However, given the heterogeneity of IBS 

phenotypes and their different response rates to treatments, there may be no uniform 

mechanism for all IBS patients even when they share the same clinical manifestations.(30) In 

this section, some of the well-documented potential mechanisms and aetiological factors will 

be discussed in detail.  

Brain-gut axis: For a long time, IBS has been known as a brain-gut disorder as the central 

nervous system can influence GI functions (e.g., GI motility, intestinal permeability, immune 

activity, secretion, and microbiota composition) through the autonomic nervous system 

(ANS) and hypothalamic-pituitary-adrenal (HPA) axis. However, in about half of the IBS 

patients, their GI symptoms originate from the gut rather than the brain, as the psychological 

conditions occur after the diagnosis of IBS.(32) A gut-to-brain pathway is also supported by 

the fact that signal processing in the CNS can be affected by the use of probiotics.(33) Some 

of the above intestinal peripheral alterations may lead to the structural and functional changes 

in the brain, which further suggests a bi-directional regulatory network (Figure 4). Moreover, 

the brain plays a vital role in the central processing of interoceptive information from 
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peripheral sensory receptors. Some psychosocial disturbances may modify the normal way of 

central processing and amplify the sensory information (such as visceral pain). In a study 

testing coping model of catastrophizing in IBS patients, catastrophizing was found to be 

strongly associated with severity of pain syndrome.(34)  

 

FIGURE 4.  A schematic diagram to summarize the current understanding of IBS 

pathophysiology. Some key central and peripheral mechanisms, genetic and environmental 

factors are highlighted in IBS development.  

 

Psychological factors: Coexisting psychological conditions (particularly anxiety, and 

depression) have been well-documented to exacerbate IBS symptoms.(35,36) In IBS patients, 

a higher level of corticotropin releasing factor (CRF) was found to associate with excessive 

stress.(37) However, the therapeutic attempts of using CRF receptor antagonists failed in 

restoring colonic transits in female IBS-D patients.(38) Studies also suggest the association of 

early adverse life events (EALs) history with IBS susceptibility.(39) The imaging studies of 

the brain have shown associations of structural and functional alterations with EALs,(40) 

which can affect brain activities in IBS patients.(41) EALs have also been reported to affect 

gene expression regulation in brain via DNA methylation,(42–44) which may, together with 

alterations in brain networks, affect the risk of IBS development.     

Epithelial barrier: The intestinal epithelium serves as an interface for complex interactions 

between the intestinal environment, microbiota, and the gut mucosa. The mechanisms for gut 
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mucosal barrier dysfunction remain unknown, while many factors are considered to play a 

role including genetic variations, infections, altered microbiota composition, and food 

allergies.(45) Increased intestinal permeability has been known to be an important 

contributing factor to IBS, which could result in low-grade inflammation and altered immune 

activities in the intestinal mucosa.(45) Electron microscopic studies have identified enlarged 

epithelial cell spaces in gut mucosa biopsies from IBS-D patients.(46) Other structural defects 

of the gut barrier in IBS patients were also observed.(47) Besides, the role of tight junction 

proteins have been highlighted in increased intestinal permeability, the protein expression 

levels of zonula occludens-1 and occludin were found lower in IBS patients compared with 

controls.(48) A recent study has also demonstrated that miRNAs (miR-16 and miR-125b) can 

affect barrier function in IBS-D patients by regulating the expression of tight junction 

proteins claudin-2 and cingulin.(49)  

Altered immune response: Low-grade mucosal inflammation has been demonstrated to 

contribute to the generation of IBS symptoms from numerous studies.(50) Increased immune 

activities (such as increased inflammatory cells and levels of inflammatory markers) in the 

gut have been detected in IBS patients, pointing to an immune-mediated mechanism in at 

least subsets of IBS.(51) IBS-like symptoms can be manifested in around 33% of 

inflammatory bowel disease (IBD) patients in remission, which supports the role of the 

intestinal immunity in IBS pathophysiology.(52) However, negative results were obtained 

when testing the therapeutic effects of an anti-inflammatory agent (mesalazine) in IBS 

patients from two clinical trials.(53,54) Several studies have linked mast cells to the low-

grade immune activation in IBS, as higher amounts of mast cells and their mediators 

(protease, histamine) were found in colonic biopsies from IBS patients than control 

samples.(55,56) Moreover, IBS patients also showed higher serum levels of interleukin-6, 

interleukin-1-β and tumor necrosis factor-α (TNF-α) compared with healthy controls.(57) Of 

note, a recent study has highlighted the role of self-maintaining gut macrophages in intestinal 

homeostasis. Depletion of these macrophages may lead to several GI abnormalities including 

reduced intestinal motility and loss of enteric neurons, which further support the link of 

altered GI immune activities to the generation of IBS symptoms.(58)     

Bile acid malabsorption: Bile acids are substances synthesized in the liver and stored in the 

gallbladder, which are primarily responsible for digestion of fat in the small intestine. They 

recirculate between the liver and small intestine, and normally only a small portion will 

escape the circulation and enter the colon. Bile acids malabsorption (BAM) will result in 

excess amounts of bile acids entering the colon, and lead to GI symptoms.(59) A systematic 
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review reported a pooled prevalence of 28.1% (95% CI: 22.6–34%) for BAM in IBS-D.(60) 

Increased levels of serum C4 (7α-Hydroxy-4-cholesten-3-one, a product in bile acid 

synthesis) and fibroblast growth factor 19 (FGF19) have been linked to altered colonic transit 

time in IBS.(61,62) Also, genetic polymorphism in TGR5 (G-protein-coupled bile acid 

receptor 1) gene was shown to affect the regulation of colonic transit time in IBS-D 

patients.(63)  

Microbiota: The GI microbiota inhabits the entire digestive tract and includes around 400 

species. The commensal microbiota has a complex impact on human health, playing a vital 

role in the development of the intestinal immune system.(64,65) The gut microbiota 

composition is affected by many factors, above all, for instance diet and the use of 

antibiotics.(66,67) Although the associations between microbiota profiles and IBS have been 

extensively investigated and altered microbiota diversity has been highlighted,(65) the 

causative role of individual taxa and/or species is still unclear in IBS pathophysiology. 

Recent studies have shown significant differences in fecal microbiota composition between 

IBS patients and controls, and among IBS subtypes.(68–73) However, these studies were 

performed in small cohorts, and therefore require replication in independent larger surveys. 

Fecal samples are commonly used in microbiota researches as they are easily obtainable, but 

the location information is missing comparing with mucosal biopsies.  

1.2.4 Food components in IBS 

Dietary factors have been demonstrated to be involved in the development of IBS by several 

mechanisms. Firstly, the poorly absorbed components in the diet, particularly fermentable 

oligosaccharides, monosaccharides, disaccharides and polyols (FODMAPs), could result in 

GI symptoms due to their osmotic effect and colonic fermentation.(74) Secondly, some 

molecules in the food components (e.g., bioactive food molecules) and products from 

digestion may activate the receptors on GI tracts. These receptors include taste, nutrient, and 

fatty acids, and their activation will result in the release of various neurotransmitters and 

hormones affecting gut function. Studies also reveal that some food can activate mast cell 

directly and induce immune activities in the gut.(75) Last but not least, the interplays between 

diet and gut microbiota composition also play a vital role in IBS pathogenesis. Dietary 

changes have been reported to influence the gut microbial composition.(66) The dysbiosis in 

the gut can affect GI functions and involve in IBS pathogenesis in many ways, some of which 

have been discussed in Section 1.2.3. The complex network between the brain-gut axis and 

microbiota may be affected by diet-induced dysbiosis, and thus influence ENS function, gut 

motility, and sensation.(33)  
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Many IBS sufferers believe certain foods trigger their symptoms, and avoiding such foods is 

a common strategy they often self-implement.(76) Although food is complex and dietary 

components vary significantly from person to person, researchers have attempted to identify 

specific food components that induce GI symptoms. Once the role of any specific component 

in IBS pathogenesis is well clarified, dietary interventions can be designed to target certain 

subgroups of IBS patients. Several food components have been proposed to associate with 

IBS including carbohydrates, proteins and bioactive food chemicals.(74,77) Dietary proteins, 

especially gluten in wheat, may involve in the pathophysiology of IBS. Gluten has been 

implicated as the key contributing factor in celiac disease.(78) While nonceliac gluten 

sensitivity (NCGS) has also reported in other individuals and a gluten-free diet has shown to 

be beneficial for their IBS-like symptoms.(79)  

Latest researches have focused on poorly absorbed carbohydrates of relevance to IBS. 

Certain types of carbohydrates cannot be digested (oligosaccharides and non-starch 

polysaccharides) or slowly digested (fructose and polyols) in the small intestine. Moreover, 

the capability of carbohydrates digestion in GI tract could be affected by lack of hydrolases or 

reduced enzymatic activities, such as lactose intolerance caused by LCT (lactase) gene 

variations. Genetic variations in SI gene can result in congenital sucrase-isomaltase 

deficiency (CSID) which leads to malabsorption of sucrose and starch and a series of GI 

symptoms. The association of SI variants with IBS will be discussed in Section 1.3.1 and 

Paper I & II. The accumulation of all these mal-absorbed carbohydrates (FODMAPs) in the 

small intestine can cause increased water retention due to their osmotic effects.(80,81) 

Moreover, their colonic fermentation by gut microbiota may lead to overproduction of gas 

and the production of SCFAs. Both pain sensation and intestinal motility can be affected, 

leading to the generation of IBS symptoms.(82–84) An overview summarizing the role of 

FODMAPs in IBS pathogenesis is shown in Figure 5.  

Several strategies have been designed to target specific dietary alterations, such as lactose- or 

fructose-restricted diet. Their specific contents and nutritional risks have been summarized in 

a review article, there is lack of evidence for their long-term beneficial effects in IBS 

patients.(74) An Australian group has first proposed the low FODMAP diet in 2004 which 

recommends restricting intake of multiple mal-absorbed carbohydrates.(85) Since then, the 

supporting evidence for its benefits in IBS management has been accumulating and it has 

been recommended for IBS patients as a promising therapeutic approach.(86–88) There is 

evidence supporting that limiting dietary intake of FODMAPs helps the remission of 

symptoms in IBS patients.(89–91) 
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FIGURE 5. The description of FODMAPs contents and the proposed mechanism for their 

involvements in IBS pathogenesis. The schematic diagram which shows gut lumen on the top 

has been reused with permission from Staudacher HM. et al. Gut. 2017 Aug;66(8):1517-

1527. Copyright © 2017, BMJ Publishing Group Ltd.  

 

Moreover, a recent review article has shown that 50-80% of IBS patients benefit from low 

FODMAP diet for their GI symptoms.(92) A clinical trial has compared low FODMAP diet 

with modified guidance from the National Institute for Health and Care Excellence (mNICE) 

diet in IBS-D patients and reported a significantly higher symptom relief rate in low 

FODMAP diet treated group.(93) However, another study has reported no significant 

difference in the efficacy of IBS treatment between low FODMAP diet and other traditional 
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dietary practice.(94) There is also criticism for low FODMAP diet including potential 

deficiency of calcium intake(90) and altered microbiota composition in patients.(90,95) 

Further high-quality studies are warranted to validate the therapeutic effects of low FODMAP 

diet in IBS patients. 

1.2.5 Therapeutic intervention 

Multiple mechanisms have been implicated in IBS pathogenesis. The IBS phenotypes 

encompass subgroups with different predominant symptoms, the incomplete 

pathophysiological picture has added the difficulties in designing an overall therapeutic 

strategy that fits all IBS patients. So far, the therapeutic options for IBS have been limited, 

hampered by the poor understanding of IBS pathogenesis. Most of the interventions aim at 

remission of symptoms and sometimes may result in an unsatisfactory endpoint. An 

integrated management approach has been proposed, which incorporates diet, drugs, 

education, and psychotherapy.(96)   

Apart from the dietary intervention being discussed in Section 1.2.4, pharmacotherapy is 

usually applied to relieve GI symptoms in IBS (primarily altered intestinal transit time and 

visceral pain). The proposed pharmaceuticals for IBS cover a wide range of drug species, 

including antispasmodic drugs (e.g., dicyclomine),(97) intestinal motility accelerants (e.g., 

lubiprostone(98) and 5-HT4 receptor agonist prucalopride(99)), antidiarrheals (e.g., 

loperamide(100) and 5-HT3 receptor antagonists alosetron(101)), and probiotics.(102–104) 

Clinical trials have evaluated the efficacy of these drugs in IBS treatment. Many of them 

reported low quality of evidence, as summarized in a review article.(31)  

Genetic studies in IBS may open new gates for therapeutic interventions in at least a subset of 

IBS patients. The best example for their applications is in the candidate gene study of ion 

channel gene SCN5A (described in Section 1.3.1). It has been demonstrated that a chronic 

IBS-C female patient with a functional-damaging SCN5A mutation responded well with the 

administration of mexiletine, a compound known to rescue Nav 1.5 expression defects, as 

shown in Figure 6.  
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FIGURE 6. Treatment with mexiletine improved stool frequencies in an IBS-C patient 

carrying an SCN5A mutation. Complete spontaneous and small hard bowel movements are 

shown in dark and light grey shading, respectively. Reprinted with permission from Beyder et 

al., Gastroenterology. 2014 Jun; 146(7): 1659–1668. Copyright © 2014, Elsevier. 

 

1.3 GENETIC PREDISPOSITION TO IBS 

Genetic predisposition to IBS has been poorly investigated, although a heritable component 

has been demonstrated by a series of family and twin studies.(105–107) The heritability 

estimates of IBS reported from twin studies range from 0-57% (108–112) as described in 

Table 1. Despite the large variation, IBS heritability has been demonstrated in two large 

cohort twin studies (N=12,700 in Norway and N=16,961 in Sweden). 

 

TABLE 1. Summary of twin studies in IBS. 

Author 
(year) 

Cohort 
Number of study 

twins 
Heritability (%) 

Morris-Yates 
et al. 

(1998)(108) 
Australian Twin Study 688 57 

Mohammed et 
al. 

(2005)(109) 
British Twin Study 4,480  0 

Bengtson et 
al. 

(2006)(112) 
Norwegian Twin Study 12,700  48 

Lembo et al. 
(2007)(110) 

Minnesota Twin Study 986 22 
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Svedberg et 
al. 

 (2008)(111) 
Swedish Twin Study 16,961 25 

 

Since the late 1980s, the epidemiological studies have demonstrated an increased risk of IBS 

among relatives of patients. The evidence of IBS familial aggregation is summarized in 

Table 2. Among them, the strongest evidence is shown in a large Swedish national study 

with more than 50,000 individuals where increased IBS risk has been found among first-, 

second- and third-degree relatives. Of note, a higher odd ratio for IBS was observed in closer 

kinship with IBS patients, e.g. an OR of 1.90 in parent, 1.27 in niece/nephew and 1.11 in 

cousins.(113)  

 

TABLE 2. Summary of familial aggregation studies in IBS. Reformulated from Makker, J. et 

al. (2015). Genetic epidemiology of irritable bowel syndrome. World J Gastroenterol. Oct 28, 

2015; 21(40): 11353-11361.(114) Copyright ©The Author(s) 2015. Creative Commons 

Attribution Non Commercial (CC BY-NC 4.0) license 

(https://creativecommons.org/licenses/by-nc/4.0/) 

Authors 
(Year) 

Size of study 
cohort 

Findings 

Whorwell et 
al. 

(1986)(115) 
100 

Family history of IBS has been detected in one-
third of the studied IBS patients. 

Levy et al. 
(2000)(116) 

631 
Children with IBS parents have more health care 

visits for their GI symptoms 

Locke et al. 
(2000)(24) 

643 
Higher prevalence of IBS was reported in 

individuals whose first-degree relatives were with a 
history of bowel symptoms. 

Kalantar et al. 
(2003)(117) 

355 
Relatives of IBS patients’ parents reported a higher 

IBS prevalence than relatives of IBS patients’ 
spouses. 

Saito et al. 
(2008)(118) 

202 
Higher prevalence of IBS was observed in IBS 
patients’ relatives (21%) than controls (4%). 

Saito et al. 
(2010)(119) 

477 50% of IBS cases reported family history. 

Waehrens et 
al. 

(2015)(113) 
51,952 

The IBS risk is increased in first-, second- and even 
third-degree relatives.   
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It is believed that IBS is a complex genetic disorder with multiple factors being involved. The 

majority of IBS phenotypes may result from interactions between the genetic susceptibility 

background and environmental contributors. Moreover, IBS phenotypes may cover both 

complex genetic conditions and rare monogenic forms, and this implies different strategic 

approaches need to be adopted to identify causative factors in IBS genetic predisposition.   

1.3.1 Candidate gene approaches  

Numerous studies have explored the genetic predisposition to IBS in the past years, mostly 

based on candidate gene approaches and concentrating on single biological pathways such as 

serotonin signaling pathways due to the connection between the brain-gut axis and IBS.(120) 

Other genes involved in the control of intestinal immune activities, bile acid metabolism, and 

secretion have also been investigated. Some 60 genes or more have been tested over the years 

for their potential to contribute to the genetic predisposition of IBS and its clinical subtypes. 

However, these studies are mostly performed on small sample size and lacked replication in 

independent cohorts. Hence they may be of value from a historical perspective but poorly 

indicative of true genetic findings. The only exceptions may be represented by a few genes 

recently been reported by our research group to affect IBS risk across several independent 

cohorts such as NPSR1, TNFSF15, SCN5A, TRPM8, and SI.(121–126)  

NPSR1: NPSR1 encodes for neuropeptide S (NPS) receptor, which belongs to the G protein-

coupled receptor family. The NPSR1-NPS system is known to play a role in the HPA axis, 

modulating central signaling processing.(127) NPS-NPSR1 signaling pathway and NPSR1 

polymorphisms have been reported to be involved in the pathogenesis of a few conditions 

including asthma, IBD, rheumatoid arthritis, and panic disorders.(128–131) Our group has 

investigated NPSR1 polymorphism and its correlation with GI functions in IBS patients and 

identified several NPSR1 variants significantly associated with GI motility and 

sensation.(121) Physiological data from animal models were consistent with the findings that 

NPS receptors had noticeable effects on GI motility in mice.(132) Furthermore, another study 

from our group has demonstrated that NPSR1 polymorphisms also associated with recurrent 

abdominal pain in 1744 children from the Swedish birth cohort BAMSE.(124)  

TNFSF15: The TNFSF15 (tumor necrosis factor ligand superfamily member 15) gene was 

initially described as a genetic risk factor associated with Crohn's disease.(133) Its genetic 

polymorphisms were later found to be involved in the pathogenesis of other conditions 

including leprosy and spondyloarthritis.(134–136) In order to investigate the role of immune-

related genes and their polymorphisms in the pathophysiology of IBS,(51,137) our group has 
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selected 30 risk loci from Crohn's disease associations and tested their associations with IBS 

in two independent Swedish and American cohorts. Among all the variants, SNP rs4263839 

in the TNFSF15 gene was significantly associated with IBS risk (P=2.2×10−5), an even 

stronger signal was shown in individuals with constipation-predominant IBS (P 

=8.7×10−7).(122) These findings were later replicated by a UK study,(138) a study in a 

US/Canada cohort(139) and a meta-analysis,(140) suggesting TNFSF15 may be a true IBS 

genetic factor.  

SCN5A: Ion channels represent potential pathophysiologic and therapeutic targets in IBS 

because they are directly involved in both GI motility and visceral pain.(141) In collaboration 

with the Mayo Clinic, we tested the hypothesis that ion channelopathies might be involved in 

IBS pathophysiology by screening patients for SCN5A (Nav 1.5 voltage-dependent sodium 

channel) mutations. These mutations are often found in Brugada syndrome patients who 

report bowel symptoms more often than the general population.(123) The results showed that 

rare SCN5A mutations were present in 2.2% of IBS subjects from a cohort including 584 IBS 

patients and 1380 asymptomatic controls, and the majority of these (77%) were demonstrated 

to be functionally disruptive. Moreover, both common and rare variants in SCN5A gene were 

found to be associated with IBS risk in our IBS GWAS of a Swedish general population 

cohort(142) and tertiary IBS case-control cohorts from three European countries and the US, 

which further confirmed the correlations between SCN5A variants and IBS genetic 

predisposition. SCN5A findings support the notion that there may be subsets of IBS patients 

with rare genetic abnormalities, hence studies on these genetic variants may provide novel 

therapeutic targets and personalized treatment options for a subset of IBS phenotypes. More 

recently, another study has replicated the SCN5A findings in an IBS case-control cohort from 

US. SCN5A mutations were present in 2% of IBS patients (N=252) but none of the healthy 

controls (N=377).(143)  

TRPM8: In order to further explore the role of ion channel genes in IBS pathophysiology, we 

selected 27 ion channel genes contributing to GI motility and sensory function as additional 

candidates to affect IBS risk. Among these, nominal association signals were detected in our 

previous IBS GWAS(142) for four channels, namely the transient receptor potential channels 

TRPV3 and TRPM8, and the calcium voltage-gated channels CACNA1A and CACNA1E, 

which were selected for replication. In a Swedish multicenter study of Rome III defined IBS 

patients (N=386) together with asymptomatic healthy controls (N=357), several SNPs in the 

promoter region of TRPM8 gene showed significant replications. Furthermore, subtype 
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analyses revealed that TRPM8 SNPs affect IBS risk exclusively in the IBS-C patients, and 

correlate with harder stools in a general population sample.(125)  

Sucrase-isomaltase (SI): Congenital sucrase-isomaltase deficiency (CSID) is a rare genetic 

condition caused by malabsorption of carbohydrates. It is characterized primarily by diarrhea 

associated with bloating, gas and pain, which shares clinical symptoms with diarrhea-

predominant IBS forms. The SI enzyme is a disaccharidase that hydrolyzes sucrose (and 

starch) into glucose and fructose, and its functional defects lead to increased amounts of 

undigested carbohydrates in the colon, with luminal osmotic changes, fermentation and the 

generation of bowel symptoms and diarrhea. CSID manifestations vary in severity from 

patient to patient,(144) and CSID patients misdiagnosed with IBS have also been 

reported.(145,146) Hence, we hypothesized that SI dysfunctional polymorphisms may 

associate with IBS susceptibility, and tested four CSID mutations in three independent 

tertiary IBS case-control cohorts from Sweden, Italy, and the USA. We detected a suggestive 

association of carrying a CSID mutation with increased IBS risk (p=0.074, OR=1.84). In 

addition, we also demonstrated a relatively common variant in SI gene (rs9290264, 

p.Val15Phe) that was associated with reduced SI enzymatic activity in vitro. Its 15Phe variant 

was also linked to increased risks of IBS, especially IBS subtypes with diarrhea (IBS-D and 

IBS-M combined p=0.00012, OR=1.36). These findings may contribute to novel strategies 

for stratification and individualized treatment in IBS patients.(126) 

More recently, we have investigated the associations between the 15Phe variant of 

rs9290264, carbohydrate consumption and microbiota composition in two general population 

cohorts from Germany, PopGen (N=639) and FoCus (N=759).(147) The prevalence of IBS in 

15Phe carriers (3.69%) was significantly higher than in non-carriers (1.84%). After 

stratifying the individuals based on their daily consumption of starch, the strongest 

association between 15Phe and IBS susceptibility was detected in the group of individuals 

with low intake of daily starch (IBS prevalence 7.8% in carriers vs. 1.9% in non-carriers; 

P=0.029, OR=4.17). Moreover, the analysis of microbiota data from fecal samples of IBS 

patients reported an increased abundance of Blautia compared with controls (P=0.00035). 

After stratification by Val15Phe genotypes, we only observed the significantly increased 

abundance of Blautia in 15Phe-carrier IBS group (P=0.00041) but not in non-carriers. This 

study provides evidence that links the complex interaction between SI variants, carbohydrates 

intake and gut microbiota to IBS risk. 
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1.3.2 Genome-wide association studies for IBS  

Genome-wide association studies (GWAS) and their meta-analyses are powerful hypothesis-

free approaches for identifying polygenetic risk factors in complex disease.(148) Although 

the conventional methodology of GWAS has been well established, to date, very few GWAS 

efforts have been made to investigate IBS genetic predisposition. It is believed that the 

genetic susceptibility in the majority of IBS phenotypes is composed of a combination of 

genetic effects from low-penetrance common variants. Unequivocal IBS risk loci can thus 

only be identified through the analysis of exceptionally large sample sizes, likely coming 

from multinational global efforts.   

Recently, our group has proposed that a powerful approach to gene-hunting efforts in IBS 

may come from the study of general populations and biobank-scale samples exploiting the 

existing genotypic data and phenotypic information, resulting in a considerable gain in 

sample size and homogeneity.(107) Informative phenotypic data in the general population 

cohorts including Rome-criteria from questionnaires and International Classification of 

Diseases (ICD) codes from electronic medical records (EMR) can be applied to identify IBS 

cases and asymptomatic controls.   

The very first pilot IBS GWAS has been performed by our group on genotype data from 

5466 singletons (534 cases and 4932 controls) from the Swedish population-based Screening 

Across the Lifespan Twin (SALT) study, which includes questionnaires modules of 

gastrointestinal symptoms similar to Rome II criteria. Replication of findings confirmed 

evidence of a risk locus on chromosome 7p22.1 in 1,718 IBS cases and 1,793 healthy 

controls from 6 independent international cohorts.(142) This study provided 

experimental/methodological supports to our hypothesis that general population cohorts are 

ideal data sources for large-scale genetic studies in IBS.  

We then expanded the GWAS study in other four European population-based cohorts 

(LifeLines-DEEP, SHIP-Trend, TwinsUK, and NFBC1966) adapting the similar 

approach,(149) resulting in a total of 1335 IBS cases and 9768 controls in meta-analysis. We 

have identified seven additional genomic regions, mapping to 64 suggestive genes associated 

with IBS risk. Ion channel biology has been highlighted as a plausible pathway linked to IBS 

by functional annotation of all mapped genes. 

Despite previous GWAS efforts in IBS, so far, no genome-wide significant locus has been 

identified. It may be due to the limited statistical power of current studies. For example, to 

obtain a statistical power larger than 80%, around 10,000 cases and 10,000 controls are 
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needed to detect a genome-wide significant association (P<5.0×10-8) for a variant with 20% 

minor allele frequency (MAF) and genotype relative risk 1.15 (calculated by GAS Power 

Calculator, https://csg.sph.umich.edu/abecasis/gas_power_calculator/index.html). Powerful 

GWASs with an adequate sample size of IBS are expected to discover true unequivocal IBS 

risk factors. Meanwhile, clinically-relevant well-characterized IBS cases and controls are the 

most suitable material for validation and replication purposes in genetic studies. The large-

scale GWA studies with these samples will rely on international collaborations from 

multicenter studies.   

In summary, there are significant challenges in identifying IBS risk genes and variants. Given 

the heterogeneity of the IBS phenotype, various strategies may be necessary including 

candidate gene approaches and GWAS on large-scale cohorts to capture rare and common 

risk variants, respectively. Genetic research in IBS may contribute to the identification of 

pathophysiological mechanisms, a molecular re-classification of this condition, and hence 

ultimately provide novel therapeutic targets.   
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2 AIM OF THE THESIS 

2.1 OVERALL AIMS 

The overarching aim included in this thesis is to identify predisposing genes and risk variants 

of IBS and to characterize their functional roles. The ultimate goal of our IBS genetic studies 

is to identify important physiological pathways being involved in IBS pathogenesis, which 

will contribute to revealing novel targets for therapeutic development.  

2.2 SPECIFIC RESEARCH QUESTIONS 

In the first two studies of the thesis, we have adopted a candidate gene approach to further 

investigate the pathogenic role of functional variants of the SI gene in IBS patients. As 

described in Section 1.3.1, our previous study has demonstrated the significant associations 

between SI dysfunctional (hypomorphic) variants and increased risk of IBS. In this thesis, our 

further efforts were aimed at addressing the following research questions: 

 Is IBS risk affected also by hypomorphic SI variants other than rare CSID mutations? 

(Paper I) 

 Does SI genotype (hypomorphic variants carriership) affect the response to a low 

FODMAP diet in IBS patients? (Paper II) 

In the later large-scale studies, we have exploited a hypothesis-free GWAS approach to 

answer the research question:  

 Can true (genome-wide significant) IBS risk loci and genes be identified by applying 

large scale GWAS approaches in population-based and case-control cohorts? (Paper 

III & IV) 
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3 MATERIALS AND METHODS 

The data source of all cohorts and detailed description of methodology in each study have 

been included in the constitute papers of the thesis. Figure 7 shows an overview of the 

research questions and the overall framework.  

 

FIGURE 7. A conceptual framework describing the research questions addressed by this 

thesis, including data sources in each study, corresponding constitute papers, and research 

topics. 
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4 RESULTS AND DISCUSSION 

4.1 SI RARE PATHOGENIC VARIANTS AND IBS SUSCEPTIBILITY 

Mutations on the SI gene are reported to affect enzymatic activities and lead to congenital 

sucrase-isomaltase deficiency (CSID).(150,151) Given that CSID shares similar 

manifestations with IBS-D (primarily abdominal pain and diarrhea), some milder types of 

CSID can be misdiagnosed with IBS. In a recent study, we have investigated the pathogenic 

mechanism of SI functional variants in IBS symptom’s generation and demonstrated one 

common variant, as well as four mutations, are associated with increased risk of IBS.(126) In 

order to investigate the prevalence of other rare functional variants in IBS patients, we have 

implemented a two-step computational strategy in Paper I to first identify SI rare pathogenic 

variants (SI-RPVs) and then test their associations with IBS risk exploiting genotype data of 

2,207 IBS patients from multi-national tertiary centers.  

The working flow for SI-RPVs’ selection is summarized in a schematic diagram as shown in 

Figure 8.  

  

FIGURE 8. A schematic diagram to demonstrate the computational strategy and results of 

SI-RPVs’ selection. 
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A total 2,146 rare variants (MAF<1%) within the SI gene region were identified after 

screening the dbSNP database. Among them, 880 variants were predicted to be pathogenic 

based on their Mendelian Clinically Applicable Pathogenicity (M-CAP) and Combined 

Annotation-Dependent Depletion (CADD) scores. QCed genotype data was available for 46 

such variants in IBS patients. And 17 SI-RPVs could be tested based on the possibility of at 

least one IBS patients and available reference data from ancestry-matched The Exome 

Aggregation Consortium (ExAC).  

We identified 88 risk allele carriers out of 2207 IBS patients for the 17 selected SI-RPVs. A 

higher frequency was observed for most SI-RPVs when comparing IBS patients with the 

ExAC reference panel. And the cumulative χ2 test revealed that their overall prevalence in 

IBS patients (3.99%) is significantly higher than the controls (ancestry-matched ExAC 

reference population, P=0.00049, OR=1.45). Subtype stratified analyses in IBS patients 

showed consistent associations in IBS-C (prevalence 4.51%, P=0.0055, OR=1.65) and IBS-D 

(prevalence 4.20%, P=0.0045, OR=1.53).  

This study represents a significant follow-up to our previous work on SI functional variants in 

IBS patients,(126) in which the prevalence of 2.1% for the four most common CSID 

mutations was reported. We have detected a higher prevalence of SI-RPVs in a large group of 

tertiary IBS patients compared to reference allele frequencies from the general population, 

which further supports the association of SI rare and dysfunctional mutations with IBS 

susceptibility.  

The reference population from ExAC has been exploited as our source of controls, which 

constitutes one of the limitations in our study as these individuals were not screened for IBS 

symptoms. Given the high prevalence of IBS in the general population, there may be 

individuals with GI symptoms being included in the controls. However, a worse scenario, in 

this case, is a type II error, which would mean we underestimate the genetic risk of SI-RPVs 

in IBS patients.  

Furthermore, we also evaluated the genetic risk effect of other SI-RPVs without a risk allele 

carrier in IBS patients. One million times’ simulation has been run to randomly sample the 

reference population with the same size of IBS patients (N=2,207), and we have calculated 

the number of carriers for all 46 SI-RPVs in each simulation. Figure 9 shows the simulation 

results including the distribution of numbers of carriers in controls. We have observed a 

significantly low P-value (P=0.005713) for obtaining the same carriers’ number as in IBS 

patients (N=88) in control samples.   
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FIGURE 9. Distribution of the number of SI-RPVs carriers from one million simulations of 

sampling control population (N=2,207). The red line represents the number of SI-RPVs 

carriers in IBS patients (N=88). Reformulated from original work of Koldo Garcia 

Etxebarria. 

 

To sum up, our study has provided supporting evidence that carrying any of SI-RPVs could 

affect IBS susceptibility and lead to 45% higher odds of getting IBS than an ethnically 

matched reference population.  

4.2 SI GENOTYPE AFFECTS RESPONSE TO A LOW FODMAP DIET IN IBS 
PATIENTS 

The pathogenic role of SI functional variants in IBS susceptibility has been documented in 

previous studies and Paper I.(126) Carrying SI risk allele(s) could affect the function of SI 

enzyme, leading to accumulation of undigested sucrose and starch hydrolysis products 

(disaccharides) in the gut lumen, and their osmotic effect and fermentation may result in 

bowel symptoms (e.g., diarrhea, pain). These findings may contribute to better stratification 

of IBS patients based on their SI genotype for improved therapeutic strategies (e.g., specific 

dietary intervention). 

There may be potential nutrigenetic effects in terms of response to dietary intervention. 

Because a low FODMAP diet has been shown to exert beneficial effects in IBS patients, we 

elect to study SI genotype in relation to this therapeutic approach. Considering sucrose and 
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starch intakes are not restricted according to the standard low FODMAP diet, we hypothesize 

the individuals carrying effective SI variants would not benefit from a low FODMAP diet as 

much as non-carriers. To test our hypothesis, in Paper II we exploited the IBS-D cohort 

(N=85) which was included in a published clinical trial comparing the efficacy between low 

FODMAP and mNICE diets.(93)  

A similar strategy has been adopted as described in Paper I, we identified three SI-RPVs and 

the common SI variant Val15Phe (rs9290264) whose genotype data was available for IBS-D 

patients previously being included in a low FODMAP dietary intervention trial.  

IBS patients were treated with two different dietary interventions in the original study, low 

FODMAP diet (N=46) and mNICE diet (N=39). Their responses to dietary treatment were 

represented by overall symptom relief (≥50%) and pain response (≥30% reduction in 

abdominal pain score). We stratified the IBS patients according to their SI genotypes and 

performed an age/sex/BMI/Race-adjusted one-tailed logistic regression analysis to compare 

the endpoints between carriers and non-carriers.  

In low FODMAP diet-treated individuals, SI hypomorphic variants carriers reported a 

significant lower symptom relief rate than non-carriers (P=0.0308 and OR=4.66, Figure 10). 

Although no significant result was obtained in pain response, we observed a similar trend in 

the comparison (47.8% in carriers vs. 52.2% in non-carriers). We have also compared both 

endpoints in mNICE diet group, although the analyses showed no significant difference, 

lower response rates were detected in SI hypomorphic carriers compared with non-carriers 

from all comparisons. 

 

FIGURE 10. Symptom relief rates after treatment with low FODMAP diet in IBS-D patients 

stratified based on their genotypes of SI hypomorphic variants (carriers vs. non-carriers).  
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To further explore whether the number of SI hypomorphic variants is also relevant to the 

response to low FODMAP diet (as carrying more SI hypomorphic variants may lead to a 

higher reduction of SI enzymatic activity), we stratified the IBS-D patients according to the 

number of SI hypomorphic variants they carried. The efficacy of the diet in terms of symptom 

relief and pain response was evaluated in three subgroups of IBS-D patients: double SI 

carriers based on the genotype of SI hypomorphic variants, single carriers and non-carriers. 

We first performed the analysis combining all IBS-D patients from two diet treatments (low 

FODMAP and mNICE), as shown in Figure 11, the age/sex/BMI/Race-adjusted one-tailed 

logistic regression analysis revealed a significant decrease of positive response rates to 

symptom relief as the SI hypomorphic copy numbers increase (P=0.0039). We also observed 

a similar trend in pain response although with a non-significant P-value (P=0.092).  

 

FIGURE 11. The associations between copy numbers of SI hypomorphic variants and 

response rate to endpoints (symptom relief and pain response) in all IBS-D patients 

combining two diet groups (low FODMAP and mNICE). Statistical analyses were performed 

by one-tailed logistic regression adjusting for gender, age, BMI and race groups. 

 

This study represents a significant step forward in the analysis of SI gene’s role in IBS 

management. The importance of carrying SI hypomorphic variants in relation to IBS risk 

have already been demonstrated in Paper I. Now Paper II also demonstrated that SI 

genotype can be informative when it comes to expected individual response to a low 

FODMAP diet. This opens up new lines of investigation, and it promises to provide 

opportunities for improving the efficacy and specificity of dietary interventions based on 

patients’ genotype (personalizing therapy). However, this study has been performed in a 

small cohort and the reduced SI enzymatic activities have not been validated in IBS-D 
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patients by biopsies and experimental measurements, follow-up studies with large sample 

size are warranted. 

In summary, we have shown that the efficacy of low FODMAP diet treatment was reduced in 

IBS patients carrying SI hypomorphic variants. Our findings suggest that screening for SI 

dysfunctional variants may be relative to inform patients’ stratification and improve the 

efficacy of dietary intervention in IBS patients.   

4.3 IBS RISK FACTORS IDENTIFIED VIA GWAS IN LARGE COHORTS 

We have discussed genetic predisposition to IBS in Section 1.3. Powered genetic studies with 

adequate sample size are lacking, and no genome-wide significant signal has been identified 

prior to this thesis. In Paper III and Paper IV, we explored IBS GWAS to identify genuine 

IBS risk factors through the analyses of large population-based and case-control cohorts.  

4.3.1 The female-specific IBS locus on chromosome 9q31.2 

UK Biobank (UKB) is a large population-based cohort from the UK with genotype data and 

rich phenotype information (demographics and health-related data) available for around 

500,000 individuals. In Paper III, we have exploited this resource for a GWAS comparing 

participants reporting a doctor's diagnosis of IBS with the remainder of the cohort. 

After quality control (QC) per sample and per marker, association analysis was performed on 

7,287,191 high-quality SNP markers from a total 9,576 IBS cases and 336,499 controls using 

logistic regression correcting for gender, age, genotyping array and top 10 PCs (principal 

components). We identified a genome-wide significant locus on chromosome 9q31.2 (tag 

SNP rs10512344, P=3.57×10-8) and 13 suggestive loci (P<5.0×10-6), harbouring a total of 93 

genes based on physical and regulatory elements mapping (Figure 12).  

Interestingly, the 9q31.2 locus was previously associated with age at menarche (AAM) in 

other GWASs.(152,153) Given the epidemiological evidence that IBS is more prevalent in 

females than males,(21) we further investigated the potential sex differences of the genetic 

effect of 9q31.2 association. Sex-stratified analysis showed a striking result, in that the 

9q31.2 finding appeared to be female-specific (rs10512344, P=4.29×10-10) and no association 

was found in the male subset (rs10512344, P=0.79) (Figure 12).  
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FIGURE 12. The Manhattan plot of IBS GWAS in UK Biobank and regional plots for the 

genome-wide significant locus 9q31.2 (all samples and sex-stratified). In the Manhattan plot, 

genome-wide significant (P=5.0×10-8) and suggestive (P=5.0×10-6) thresholds are shown by 

horizontal dashed lines (red and blue, respectively). Each suggestive locus (P<5.0×10-6) is 

highlighted and labelled by the closest gene mapped to the locus, and the number of 

additional mapped genes is shown in the following bracket. In the regional plots, the dash 
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lines represent the genome-wide significant threshold (P=5.0×10-8), and the color labels of 

each variant show their degrees of linkage disequilibrium (r2) with tag SNP rs10512344. 

Reprinted with permission from Paper III.(154) Copyright © 2018, Elsevier. 

The fact that 9q31.2 locus is associated with both AAM and female IBS raise the question of 

whether the associations are independent. A recent study in UKB demonstrated that early 

AAM is associated with IBS.(155) We applied three parallel approaches to address this 

question using full AAM summary statistics from a GWAS meta-analysis,(152) where 

rs10156597 is the most significant 9q31.2 marker associated with AAM (P=4.29×10-10, 

Beta=0.245). First, we performed a haplotype analysis combining rs10156597 and 

rs10512344 (tag SNP of IBS): the two markers show very low linkage disequilibrium 

(r2=0.04) and the haplotype was significantly associated with IBS only at the presence of risk 

allele “C” in rs10512344 (Figure 13A). Second, no reduction of the association signals was 

detected when conditioning on AAM (Figure 13B). Last, approximate Bayes factor 

colocalization analysis demonstrated that IBS and AAM were associated with 9q31.2 locus 

via different casual genetic risk factors (posterior probability H3=99.98%).  

To validate the female-specific findings in 9q31.2 locus, we further tested the association in 

independent follow-up cohorts, including a multi-national tertiary IBS case-control cohort 

(2045 cases and 7955 controls) and a Swedish Population-based colonoscopy study (Popcol, 

N=249). In line with the results in UKB, the significant association was replicated for tag 

SNP rs10512344 (P=0.015, Beta=0.383) in female IBS-C patients from case-control cohort. 

A consistent finding was also observed in females Popcol participants, as the risk allele C of 

rs10512344 was associated with harder stools. (P=0.0012, Beta=-1.105) There was no 

significant association in analyses of male samples from both follow-up cohorts.   
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FIGURE 13. Haplotype association and conditional analysis suggest IBS genetic effects in 

9q31.2 locus are independent of AAM. A. Summary statistics from haplotype association 

analysis between AAM and IBS tag SNPs. B. Regional plot of associations in 9q31.2 locus 

after conditioning on AAM summary statistics. The horizontal dash line represents the 

genome-wide significant threshold (P=5.0×10-8). Reprinted with permission from Paper 

III.(154) Copyright © 2018, Elsevier. 

 

In this study, we performed a GWAS of IBS in UKB cohort including 9,576 cases and 

336,499 controls, which is so far the only reasonable powered study to explore IBS genetics. 

We have identified the first genome-wide significant locus on chromosome 9q31.2, together 

with other 13 suggestive loci. The main strengths of this study include the large sample size, 

ideal replication materials (tertiary IBS case-control cohorts) and stringent QC pipeline on 

genotype data. While the IBS cases were defined by self-reported diagnosis in this study, the 

lack of direct clinical evidence constitutes the major limitation. Despite this, the application 

of self-reported traits enables us to gain a remarkable sample size for IBS genetic studies.  
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Our results have demonstrated that AAM and IBS associations are due to independent genetic 

effects, although both were located within 9q31.2 genomic region. Several traits have 

previously been linked to this locus including BMI, male’ voice breaking and waist 

circumference. Interestingly, sex hormones are known to play a key role in 

pathophysiological mechanisms of almost all these traits. Moreover, sex is also associated 

with different IBS prevalence, predominant clinical signs, and responses to 

treatment.(156,157) Females have been shown to report slower transit time than males as 

well as more frequent constipation episodes,(158,159) which is consistent with our results in 

follow-up replication analyses whether the risk allele of rs10512344 was associated with IBS-

C and harder stools. Sex hormones may be involved in the regulation of the brain-gut axis, 

affecting intestinal functions (motility, sensory, permeability, and immune activities) directly 

or through other hormones.(160,161) The GI symptoms in females have reported to vary 

according to the menstrual cycle.(160,162) Furthermore, exacerbated bowel symptoms have 

been observed in female IBS patients during their menstrual period compared with healthy 

controls.(163,164)  

Eight genes were mapped to the 9q31.2 locus based on chromatin interaction data. Among 

them, we proposed ELP1 (elongator complex protein 1, or IKBKAP) as the most likely 

causative gene within the locus. Autonomic dysfunction has been linked to IBS,(167) and 

mutations in the ELP1 gene, notably, lead to familial dysautonomia, an autonomic nervous 

system condition affecting the neuron’s development in sensory, sympathetic and 

parasympathetic nerves. Familial dysautonomia patients usually suffer from impaired pain 

sensitivity, altered intestinal motility, and temperature sensation.(165) Moreover, delayed 

AAM and premenstrual symptoms are often manifested in female familial dysautonomia 

patients.(166)  

4.3.2 Two genome-wide significant loci associated with IBS-D 

Well-characterized IBS patients diagnosed at specialized (neuro)gastroenterology clinics 

represent the best material to study IBS genetics and validate previous genetic findings linked 

to IBS. Individual cohorts from clinics are certainly underpowered for large-scale GWAS 

studies. Through multinational collaborations, our group has gathered IBS material from 

more than 20 tertiary centers from Europe and North America which enabled us to perform 

an unprecedented GWAS meta-analysis in tertiary IBS cases and controls (Paper IV). 

We have applied a robust GWAS pipeline to perform quality control and imputation on the 

original genotype data, resulting in 5,387,366 high-quality markers for 2,304 IBS cases and 
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14,614 controls from European pooled dataset, and 5,162,024 markers for 1,077 IBS cases 

and 10,502 controls from US dataset, respectively. The individual GWASs were carried out 

via a linear mixed model adjusting for sex, age and top 10 PCs, followed by the Z-score 

based meta-analysis.      

The meta-analyses results revealed a total of 38 suggestive loci linked to IBS and its 

subtypes. Two genome-wide significant loci were identified in IBS-D meta-analysis, one on 

chromosome 9p21 (tag SNP rs10970019, P=4.9×10-8) and the other on 19q13.11 (tag SNP 

rs1260633, P=4.1×10-8). Of note, the most significant locus on chromosome 6q21 in IBS-C 

meta-analysis also showed an association close to genome-wide significance (tag SNP 

rs74742584, P=5.69×10-8). The Manhattan plots of GWAS meta-analyses are shown in 

Figure 14.  

 

FIGURE 14. Manhattan plots summarizing GWAS meta-analyses results of IBS and each 

subtype. Genome-wide significant (P=5.0×10-8) and suggestive (P=5.0×10-6) thresholds are 

shown by horizontal lines (red and blue, respectively). Genome-wide significant loci are 

highlighted as red and bold. The closest mapping gene to the lead SNP is reported for each 

association signal, the number of additional mapped genes from the same locus is shown in 

brackets. 

 

Functional annotation (via FUMA) of identified suggestive loci mapped 138 genes via 

physical locations and regulatory elements (eQTL and chromatin interaction) in meta-

analysis of IBS-ALL (and 108 genes in IBS-C, 72 in IBS-D, 131 in IBS-M respectively). 
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Gene-sets enrichment analyses highlighted several pathways associated with IBS or their 

subgroups, including ion channel activities (IBS-C & IBS-M). A summary of significantly 

enriched pathways from each meta-analysis is presented in Figure 15. The most significant 

enriched pathways were from IBS-C meta-analysis, including sensory perception of chemical 

stimulus (adjusted P=2.02×10-14), olfactory receptor activity (adjusted P=1.31×10-11) and G 

protein coupled receptor activity (adjusted P=2.82×10-9). 

 

FIGURE 15. Significant findings in gene-sets enrichment analyses by mapping genes from 

each IBS meta-analyses (all samples and each subtype). 

 

The genome-wide significant loci in IBS-D meta-analysis have not been previously 

described. LSM14A (MRNA Processing Body Assembly Factor) gene was physically mapped 

to locus 19q13.11. Other 19 genes were mapped to the same locus via their associations with 

eQTL or chromatin interaction. The tag SNP rs10970019 for another genome-wide 

significant locus 9p21 was located at an intergenic region. Thus no physical mapping gene 

was identified. LINGO2, ACO1, NDUFB6, and GVQW1 genes were mapped via regulatory 

elements. The near genome-wide significant locus 6q21 associated with IBS-C contained six 

mapped genes (MARCKS, TUBE1, WISP3, LAMA4, RFPL4B, and FAM229B). In order to 

gain insight into the putative biology and align these associations, we searched the GWAS 
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Catalog and other repositories for evidence or associations of these genes with other 

conditions (PheWAS). The results are summarized in Figure 16, candidate genes who were 

mostly associated also to metabolic, immunological and psychiatric domains.   

 

FIGURE 16. PheWAS associations of top significant loci and their mapped genes in IBS 

meta-analyses. Only the genome-wide significant associations (P<5.0×10-8) are shown. N 

represents the sample size of each publish GWAS.  

 

As this is the largest case-control genetic study of IBS so far, we sought to assess previously 

reported associations in our GWAS meta-analyses. Out of the 15 tested genes, some evidence 

of replication was detected for 12 genes including TNFSF15, NPSR1, SI (Paper I & II), 

SCN5A and KDELR2/GRID2IP locus. The female-specific locus 9q31.2 being highlighted in 

Paper III was also investigated in this study via sex-stratified meta-analyses. We observed a 

similar trend for the tag SNP rs10512344, as a significant association was detected in female 

IBS-C meta-analysis (P=0.034), but not in analysis with male IBS-C patients (P=0.25).  This 

finding is as expected given that the majority of tertiary IBS case-control samples have 

already been exploited as replication material in Paper III.   

These GWAS meta-analyses represent the current largest efforts in the study of IBS 

susceptibility in well-characterized tertiary IBS patients, including a total 3,381 IBS cases and 

25,116 controls. Different from our GWAS study in Paper III focusing on self-reported IBS 

(lack of direct clinical diagnoses), this study aims to capture IBS genetic risks exploiting 
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smaller numbers but well-characterized IBS phenotypes. A robust GWAS pipeline has been 

implemented on the multinational data sources to control for potential population 

stratifications including using the linear mixed model in the association tests. Among the 

limitations of the study, it is the fact that controls samples have not been recruited at the same 

sites as cases and IBS symptoms were not screened. 

Two novel genome-wide significant loci have been identified to associate with IBS-D, the tag 

SNP rs1260633 of locus 19q13.11 is situated in gene LSM14A, which encodes molecules as a 

component of the mRNA processing body (P-body). LSM14A has been reported to be 

involved in antiviral responses and IFN pathways.(168) Of note, LSM14A is also associated 

with chronic inflammatory diseases (including Crohn’s disease and Ulcerative colitis),(169) 

which suggests it may contribute to GI symptoms by disturbing antiviral immune activities in 

the gut. No physical mapping gene has been identified for the other locus 9p21. Interestingly, 

genes mapped to this locus based on chromatin-interactions have been reported to associate 

with immune activities (NDUFB6, ACO1) and neuroticism (LINGO2). This finding is 

noteworthy as neuroticism has been demonstrated to be psychiatric comorbidity of IBS and 

affect IBS risk.(170–172) PheWAS results including all genes mapped to genome-wide 

significant loci indicate that they may contribute to the generation of IBS symptoms via 

altered metabolic and immune activities, and/or psychiatric conditions. 

This study also provides initial evidence of the genetic differences among IBS subtypes. The 

association patterns from meta-analyses results are entirely different between IBS-C and IBS-

D, with no shared identified risk loci or mapped genes. The downstream functional 

annotation also suggests different biological pathways in the two IBS subtypes. Ion channel 

activities have been significantly enriched with IBS-C mapped genes. Instead, PheWAS 

results have linked disordered metabolic and immune activities to IBS-D. These findings may 

help elucidate pathophysiological mechanisms among IBS subtypes. 

4.3.3 Ion channel activities as plausible pathways contributing to IBS risk  

One of the most striking results to emerge is that ion channel pathways have been highlighted 

in gene-sets enrichment analyses from both Paper III & IV.  Ion channels are membrane 

proteins presenting in all excitable cells that respond to signals and control ion flows across 

the cell membrane. These proteins are widely expressed across the gut, particularly in 

interstitial cells of Cajal (ICCs) and smooth muscle cells (SMCs), playing vital roles in 

controlling intestinal motility, sensation and fluid secretion.(141,173) Mutations of ion 
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channel genes may lead to malfunctions of these transmembrane molecules (channelopathies) 

and contribute to the IBS pathogenesis.(174)  

The role of genetic variations in ion channel genes in IBS susceptibility is discussed in 

Section 1.3.1, in which genetic polymorphism in SCN5A and TRPM8 have been 

demonstrated to associate with IBS risk. Remarkably, there is additional evidence supporting 

the role of ion channel activities in IBS pathophysiology including the results from the two 

previous GWAS and meta-analyses of Rome criteria defined IBS(149) and stool 

frequency(175), respectively. Our results further support these observations, highlight the link 

of ion channel activities to IBS pathophysiology, and pinpoint genes being involved in ion 

channel activities (CLCA1, CLCA2, CLCA4, ANO3, TRPA1, CNGA4, KCNK2, and 

KCNMB2) as important candidates warranting independent follow-ups.  
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5 CONCLUDING REMARKS 

This thesis contributes to improving our understanding of genetic predisposition to IBS and 

adds new knowledge to IBS pathophysiology. In these genetic studies, we have evaluated and 

validated some predisposing genes and risk variants linked to IBS susceptibility, and 

identified some novel IBS risk factors warranting further investigation.   

Back to the specific research questions in Section 2.2, this thesis attempts to provide 

preliminary answers: 

Is IBS risk affected also by hypomorphic SI variants other than rare CSID mutations? 

In Paper I, after screening the genotypes of SI-RPVs in 2207 tertiary IBS patients, we have 

observed a prevalence 3.99% of SI-RPVs in all IBS patients (and 4.51% in IBS-C, 4.20% in 

IBS-D respectively), which are significantly higher than the reference population (2.78 % in 

ExAC). The odds of getting IBS is 45% higher in SI-RPVs carriers than non-carriers.  

Does SI genotype (hypomorphic variants carriership) affect the response to a low 

FODMAP diet in IBS patients? 

Paper II has evaluated the response rates in a group of IBS-D patients treated with low 

FODMAP or mNICE diet after stratification based on genotype data for SI hypomorphic 

variants. Our results have demonstrated that carrying SI hypomorphic variants reduces by 3-4 

folds the chances of benefiting from a low FODMAP diet. 

Can true (genome-wide significant) IBS risk loci and genes be identified by applying 

large scale GWAS approaches in population-based and case-control cohorts? 

We have exploited a population-based cohort in the UK in Paper III and multi-national 

tertiary IBS cases and controls in Paper IV to study IBS genetics.  

In Paper III, we have identified a female-specific genome-wide significant association at 

chromosome 9q31.2. This finding has been consolidated by the replication evidence in 

tertiary IBS case-control cohorts and a Swedish population-based cohort (Popcol). Two more 

genome-wide association loci have been detected in Paper IV from the IBS-D meta-analysis 

combining European and US datasets. Of note, the ion channel activities have been 

highlighted in both studies from the gene-sets enrichment analyses, which is in line with a 

series of our previous findings that link ion channel biology to IBS. Follow-up studies in 

independent cohorts are needed to confirm these findings and clarify their biological 

mechanisms in IBS pathophysiology.   
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Additionally, Paper III and Paper IV have also addressed the following research questions: 

Are there sex-specific genetic effects in IBS?  

The sex-stratified analyses of the genome-wide significant locus 9q31.2 in Paper III revealed 

that the association was absent in males and entirely derived from the female group. This 

female-specific locus may be involved in IBS pathogenesis via the action of sex hormones, 

which could partially account for the different IBS prevalence and clinical manifestations 

between female and male groups.  

Are there different genetic characteristics of IBS subtypes? 

In Paper IV, we have provided preliminary evidence for the genetic comparisons between 

IBS-C and IBS-D. No common suggestive locus or mapped gene was identified from the 

tertiary IBS GWAS meta-analyses. Moreover, functional annotation of their GWAS results 

has highlighted different biological pathways, suggesting different genetic architecture and 

underlying molecular mechanisms in the two IBS subgroups.  

Are previously reported IBS associations confirmed in larger scale GWAS studies? 

We have inspected the association signals for previously reported IBS risk genes and loci in 

Paper IV. 12 out of 15 tested genes have been validated in the GWAS meta-analyses 

exploiting tertiary IBS cases and controls including TNFSF15, NPSR1, SI, SCN5A, and 

KDELR2/GRID2IP locus. The supporting evidence may help prioritize candidate genes for 

investigating their causative role in IBS pathophysiology.  

To sum up, this thesis has validated the role of SI functional variants in IBS susceptibility and 

identified new genetic factors predisposing to IBS. These results may contribute to the 

identification of pathophysiological mechanisms that can help explain the etiology of IBS and 

may ultimately provide novel therapeutic targets.  

The current definition of IBS may correspond to a constellation of various conditions. Even 

within the same IBS phenotype, the underlying molecular mechanism can vary significantly 

from patient to patient. Our genetic studies may contribute to a better classification system for 

IBS patients in two ways. On the one hand, for a small subset of IBS patients, their GI 

symptoms may be accounted for by the dysfunctional variations in single genes, such as 

channelopathies (SCN5A, TRPM8) and carbohydrate malabsorption (SI). These “organic” 

conditions can be treated with specific interventions including ion channel blockers for 

channelopathies or dietary intervention for carbohydrate malabsorption (one successful 
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example of channelopathies treatment has already been discussed in Section 1.2.5). On the 

other hand, the majority of IBS phenotypes result from the interactions between 

environmental factors and the polygenetic background. Large-scale genetic studies are 

powerful tools to capture their polygenetic risk factors, contributing to a better stratification 

of IBS patients based on their polygenic risk scores (PRS) and pathways from biological 

annotations. Figure 17 shows the application of two genetic approaches in re-classification 

and designing personal therapeutic strategies for IBS patients.  

 

FIGURE 17. Potential interpretation of genetic information (obtained in this thesis and 

elsewhere) for patients stratification and precision medicine in IBS. Original work designed 

by Mauro D’Amato, reformulated and print with permission.   
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