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ABSTRACT 
Natural killer (NK) cells comprise a central role within the innate immune system, eliminating 

virally infected, foreign and transformed cells through their natural cytotoxic capacity. Release 

of their cytotoxic granules is tightly controlled through the balance of a large repertoire of 

inhibitory and activating receptors, and it is the unique combination of these receptors on 

individual cells that confers them their immense diversity both in phenotype and functionality. 

This thesis aimed to investigate the mechanisms sustaining NK cell homeostasis with the aim 

of translating these findings into more efficient NK cell-based immunotherapies against cancer.  

In paper I, we set out to define a transcriptional timeline for NK cell differentiation through 

the use of single-cell RNA sequencing of unique differentiation subsets ranging from CD56bright 

to adaptive NKG2C+CD56dim NK cells. Transcriptional differentiation was concentrated within 

the surprisingly diverse CD56bright subset which gradually transitioned into CD56dim NK cells 

before terminal differentiation into adaptive CD56dim NK cells.  

The vastly diverse yet unique NK cell repertoire within an individual is surprisingly stable over 

time considering the constant renewal of these cells at steady state. In paper II, we performed 

an in-depth analysis of homeostatic proliferation in human NK cells. We identified a high 

degree of intra-lineage plasticity combined with transcriptional reprogramming associated with 

the acquired phenotype as the underlying mechanisms maintaining repertoire stability at steady 

state.  

In paper III, we examined the role of NK cells in a setting of perturbed homeostasis, namely 

patients with high-risk myelodysplastic syndrome undergoing immunomodulatory treatment 

with 5-azacytidine. We identified a role for 5-azacytidine in modifying the global NK cell 

repertoire, as uptake of the drug by proliferating NK cells resulted in increased expression of 

killer cell immunoglobulin-like receptors (KIR) and improved functionality.  

In paper IV we identified a dose-dependent cytokine addiction in IL-15 expanded NK cells, 

leading to the induction of apoptosis upon cytokine withdrawal. A proliferation-dependent 

induction of the short splice variant of BIM, combined with an altered BCL-2/BIM ratio 

resulted in sensitization to cell death post withdrawal.  

This thesis provides new insights into the dynamic nature of NK cell homeostasis, from 

understanding NK cell differentiation at the transcriptional level to perturbations after cytokine 

stimulation and immunomodulatory therapies.   
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1 INTRODUCTION 
Every day we are exposed to countless attacks by pathogens, but thanks to our immune system 

we are blissfully unaware. Well most of the time. We experience symptoms when our immune 

system is activated, such as fever or a runny nose, but it is only in the rare instances when our 

immune system fails that we have to deal with the serious consequences. The army of cells 

protecting us from bacteria, viruses, fungi, protozoa, prions and cells that have gone rogue are 

termed leukocytes or white blood cells.  

Our immune system can be divided into two main arms, termed the innate and the adaptive 

immune system. The innate immune system is our body’s first line of defence against any new 

pathogen and it achieves this through its arsenal of defences, ranging from physical and 

chemical barriers to its own army of specialized cells. Innate immune cells include mast cells, 

phagocytes (macrophages, dendritic cells (DC) and neutrophils), basophils, eosinophils, gd T 

cells, innate lymphoid cells (ILC) and natural killer cells. Together they identify and eliminate 

foreign substances that have entered the body, providing the main line of defence against any 

pathogen our body has never encountered before. Additionally, they train the adaptive immune 

system to remember this newly encountered pathogen. This allows the adaptive immune cells, 

comprised of T and B lymphocytes, to respond faster and more efficiently after any subsequent 

encounter with the same pathogen1.  

1.1 BASIC CONCEPTS OF NK CELL BIOLOGY 
In the early 1970s a new granular cell type capable of killing tumor cells was described and 

aptly named natural killer (NK) cell2–5. True to their name, NK cells can unleash their stored 

cytotoxic potential to kill foreign, transformed or infected cells. Compared to other cytotoxic 

cells, NK cells are not restricted by the need for prior sensitization and furthermore have the 

ability to orchestrate the early phase of the adaptive immune response. These characteristics 

result in NK cells playing a key role in the innate immune system.  

The frequency of NK cells in the blood of healthy adult humans is 5-20% of all lymphocytes. 

Within tissues, the frequency varies depending on tissue type, with NK cells found in 

significant numbers in the bone marrow, liver, lymphoid organs, lung and uterus6. In humans, 

NK cells are characterized by the expression of CD56 and lack of CD3 expression. Based on 

the surface density of CD56, they are further divided into CD56bright and CD56dim NK cells. 

The ratio of CD56bright to CD56dim NK cells varies depending on their location, with CD56bright 

NK cells predominantly found in secondary lymphoid organs and tissues, while CD56dim NK 

cells account for the majority (90%) of peripheral blood NK cells7.  
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1.1.1 NK cell development 
Our understanding of NK cell development has increased in recent years, updating the initial 

four stage model to include a 5th stage of development8–11. NK cell progenitors (stage 1) 

develop into pre-NK cells (stage 2), become immature NK cells (stage 3), followed by 

CD56bright NK cells (stage 4a) that acquire NKp80 expression (stage 4b) and eventually 

differentiate into CD56dim NK cells (stage 5)11.  

NK cells develop from CD34+ hematopoietic stem cells (HSC) and the common lymphoid 

progenitor (CLP) in the bone marrow, which also gives rise to other ILCs, as well as T and B 

cells12. Identification of NK cell precursors outside the bone marrow, namely fetal thymocytes 

(CD34+CD3-CD4-CD8-) and fetal liver cells (CD34+CD38+) has put into question whether their 

development is in fact restricted to the bone marrow13,14. Commitment to the NK cell lineage 

requires the transcription factors ID2 and E4BP4 along with IL-15 signaling15–20. The search 

for an NK cell restricted precursor cell has identified 

CD34+CD38+CD45RA+CD7+CD10+CD123-CD127- cells which can give rise to T-bet+ and 

Eomes+ NK cells, two transcription factors comprising a central checkpoint for NK cell 

maturation in mice21,22. Expression of these two transcription factors induces CD122 (encoded 

by IL2RB) expression on NK cells, a component of both the IL-2 and IL-15 receptor allowing 

for survival and effector function signaling to occur22,23. The importance of IL-15 signaling in 

NK cell development is best observed through mutations in the receptor components (CD122, 

CD132) which, together with mutations in the downstream signaling molecules JAK3, present 

as immunodeficiencies characterized by a lack of NK cells24–27.  

1.1.2 NK cell killing  

Upon target cell recognition, NK cells can exert their cytotoxic potential by forming an immune 

synapse and releasing their cytotoxic granules which contain pore-forming perforin and 

apoptosis-inducing granzymes. Target cell recognition can occur through direct recognition of 

the target cell mediated by activating and inhibitory receptors or through antibody-dependent 

cellular cytotoxicity (ADCC) mediated via ligation of the CD16 receptor expressed on CD56dim 

NK cells28. Additionally, NK cells can induce apoptosis of target cells via death receptor (DR) 

ligation through Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) 

expression28.   

NK cells largely exert their cytotoxic effect through the release of perforin and granzyme 

containing cytotoxic granules. Cytotoxic granules belong to the secretory lysosomes and are 

formed through the fusion of different vesicular structures29. The two main components of 

cytotoxic vesicles are perforin and granzyme B, although CD56dim NK cells can also produce 
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granzyme A and M, with CD56bright NK cells producing granzyme K30. Produced in the 

endoplasmic reticulum (ER), perforin is sorted into granules through the Golgi complex and 

then cleaved by cathepsin L to be activated31,32. Once released at the immune synapse, perforin 

attacks the target cell’s membrane, a process requiring calcium, and then oligomerizes, forming 

a pore for granzymes to enter the cell33,34. Within the cytotoxic granule, perforin is kept inactive 

through the pH and by binding to serglycin and calreticulin35,36. At the immune synapse, the 

NK cell’s plasma membrane is protected from released perforin through the protein LAMP-1 

(CD107a) which coats the membrane37. Formation of a pore in the target cell’s membrane 

allows for granzymes to enter and induce apoptosis, both in a caspase-dependent and 

independent manner, leading to production of reactive-oxygen species as well as DNA and 

mitochondrial damage38. Granzymes are sorted into the cytotoxic granules as pro-enzymes 

which need to undergo further cleavage by cathepsins to become fully functional39–42.  

The activating receptor CD16, encoded by FCERG3A, allows NK cells to bind to the Fc-

domain of IgG antibodies found on target cells while its intracellular tail can associate with 

FcRg and the CD3z chain containing immunoreceptor tyrosine-based activation motifs 

(ITAM)43. This killing mechanism is termed ADCC and allows NK cells to identify and 

eliminate opsonized cells mediated via antibody production from B cells, an example of the 

innate and adaptive immune system coordinating their efforts. This mechanism of cell killing 

can also be utilized to regulate inflammation-associated immune responses by eliminating 

antigen presenting cells and T cells44.  

The final mechanism by which CD56dim NK cells can induce apoptosis in target cells is via 

death receptor (DR) ligation. NK cells can express TRAIL and FasL on their surface, with 

TRAIL being the corresponding ligand for DR4 and DR5, and FasL ligating the Fas receptor 

(CD95). TRAIL-induced apoptosis is dependent on caspase 8 activation while FasL induces 

apoptosis through formation of the death-inducing signaling complex45. Both TRAIL and FasL 

can be upregulated upon type I interferon (IFN) stimulation, an example of how the cytokine 

environment, mediated by secretion from other immune cells (T cells, DCs, macrophages), can 

shape the NK cell response46,47. While type I IFNs increase cytotoxicity, IL-2 and IL-15 

promote proliferation and survival in differentiated NK cells, with IL-12 and IL-18 enhancing 

IFNg production by NK cells44. Tissue and tumor cells can also influence NK cells through the 

release of IL-10 and TGFb, both of which suppress NK cell function44. Similarly, NK cells can 

produce cytokines, chemokines and even growth factors to influence their environment and 

direct the immune response. These include IFNg, MIP1a, MIP1b, RANTES, CCL3, CCL4, 

CCL5 and GM-CSF48,49.  
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1.1.3 NK cell receptors 
An NK cell’s response upon encountering another cell is based on the receptor mediated input 

received, or lack thereof (Figure 1). A combination of inhibitory and activating receptors 

expressed on their surface provide the necessary information to identify the encountered cell 

either as a healthy cell or a potential target. While the net signaling input determines the NK 

cell’s response, in order to maintain tolerance, inhibitory signals dominate over activating 

signals. Major histocompatibility complex (MHC) class I molecules function as ligands for 

inhibitory receptors, allowing NK cells to sense ‘self’, whereby the loss of MHC class I on the 

cell surface triggers NK cell activation. This is termed the ‘missing-self hypothesis’ and was 

proposed by Kärre and Ljunggren in the late 80s50. In order to evade T cell-mediated killing, 

transformed cells downregulate MHC class I, which in turn sensitizes them to NK cell-

mediated killing due to a lack of inhibitory signaling (Figure 1).  

 

Figure 1. Target cell interaction. Overview of different functional outcomes of an NK cell (blue) 

encountering potential target cells (green, red), based on receptor input received through activating and 
inhibitory receptors.  

1.1.3.1 Killer-cell immunoglobulin-like receptors 

Killer cell immunoglobulin-like receptors (KIR) constitute the main group of inhibitory 

receptors expressed on human NK cells. Located on chromosome 19, stochastic expression of 

the KIR genes is epigenetically controlled via the KIR promoter51. The KIR nomenclature is 

based on the length of the cytoplasmic tail, short (S) or long (L), and the number of extracellular 

Ig-like domains (2 or 3). While the long cytoplasmic tail receptors contain immunoreceptor 
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tyrosine-based inhibitory motifs (ITIM), the short tails contain immunoreceptor tyrosine-based 

activation motifs (ITAM) that aid in binding to the adaptor molecule DAP12 (Figure 2). 

Phosphorylation of ITIMs on inhibitory receptors results in the recruitment of tyrosine-

phosphatases which in turn dephosphorylate adaptor molecules associated with activating 

receptors52,53. This ensures inhibitory receptor signaling dominating over activating receptor 

signaling. KIR bind to specific allelic variants of human leukocyte antigen (HLA) A, B and C, 

the human equivalent of MHC class I proteins54. Non-classical HLA-F and HLA-G have also 

been identified as interacting with KIR receptors55–60. As the highly diverse KIR locus is both 

polygenic and polymorphic, many ligands for this large repertoire of KIR receptors still remain 

to be discovered61.  

 

Figure 2. NK cell receptors and ligands. Visualization of the inhibitory/activating receptors and their 
intracellular signaling components, as well as ligands expressed on CD56dim NK cells which are discussed 
in this thesis.  

For simplicity, two KIR haplotypes are used to group KIR genotypes within individuals62. 

Haplotype A contains a restricted number of inhibitory receptors and one activating receptor, 

KIR2DS4. The less common haplotype B includes a larger repertoire of both inhibitory and 

activating receptors61. On top of the stochastic expression via epigenetic regulation of the KIR 

gene promoter, variation in terms of KIR gene copy number furthers adds to the diversity63–65. 
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The three main inhibitory receptors commonly studied include KIR2DL1, KIR2DL3 and 

KIR3DL1. KIR2DL3 and KIR2DL1 bind to HLA-C allotypes with either an asparagine (C1) 

or lysine (C2) at position 80, respectively66. KIR3DL1 binds HLA-A and B with Bw4 at 

position 77-8367. Other notable KIR-ligand interactions include KIR3DL2 binding to HLA-

A3/A11 and HLA-F and the activator receptors KIR2DS1 binding to HLA-C2 and KIR3DS1 

binding to HLA-F56,68,69. Activating ligands, in particular, are still largely undiscovered.  

1.1.3.2 NKG2-receptors 

Within the C-type lectin NKG2-receptors, NKG2A-H exist and are located on chromosome 

1270,71. NKG2A and NKG2C both form a heterodimer with CD94 despite NKG2A being an 

inhibitory receptor containing ITIMs and NKG2C being an activating receptor associating with 

DAP12 for signaling (Figure 2)72,73. They share a common ligand, HLA-E, with 

CD94/NKG2A having higher binding affinity compared to CD94/NKG2C74. Most likely this 

is to ensure tolerance. While NKG2C is mainly expressed by adaptive NK cells, NKG2A 

expression is associated with naïve NK cells, but can also be upregulated in activated NK cells 

in response to viral infection75,76. NKG2D is another activating receptor found on NK cells and 

is one of the few homodimers within the NKG2-receptor family. Ligands for NKG2D include 

ULBP1-4 and MICA/B which are upregulated on target cells experiencing cellular stress77. 

This makes NKG2D an important activating receptor aiding in tumor surveillance. NKG2E, 

like NKG2A/C, forms a heterodimer with CD94 and like NKG2F, its function is still largely 

unknown. NKG2B and NKG2H, meanwhile, are splice variants of NKG2A and NKG2E 

respectively78.  

1.1.3.3 Activating receptors 

Along with NKG2C and NKG2D, a number of other activating receptors exist which play 

important roles in regulating the cytotoxic capability of NK cells. Notably these include CD16, 

DNAX accessory molecule-1 (DNAM-1) and the germ-line encoded natural cytotoxicity 

receptor (NCR) family consisting of NKp30, NKp44 and NKp46 (Figure 2). 

DNAM-1, also known as CD226, functions both as a coactivating receptor for NK cells and as 

an adhesion molecule binding to the poliovirus receptor (PVR, CD155) and Nectin-2 (CD112), 

a tumor ligand79. DNAM-1 expression correlates with education, as well as adaptive-like NK 

cells in mice80–82. In humans, DNAM-1 expression is coordinated with lymphocyte function-

associated antigen 1 (LFA-1) undergoing conformational changes, as they co-localize at the 

immune synapse80.  

NKp30 (NCR3) and NKp46 (NCR1) are ubiquitously expressed on resting NK cells in 

peripheral blood, while NKp44 (NCR2) is upregulated on activated NK cells in response to IL-
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2 stimulation83,84. NKp46, evolutionarily conserved in mammals, contains two extracellular Ig 

domains, similar to Ig-like receptors, while NKp30 and NKp44 only contain one domain each. 

All three receptors signal via coupling to adaptor molecules, either FceRIg and CD3z (NKp30, 

NKp46) or DAP12 (NKp44)73,78,85. B7-H6, the ligand for NKp30, is expressed on tumor cell 

lines as well as on neutrophils and monocytes after toll-like receptor and pro-inflammatory 

cytokine stimulation86. Similar to CD16, NKp30 also has immune-regulatory functions on top 

of its important role in immune surveillance86. The ligands for NKp44 and NKp46 have been 

suggested to be viral hemagglutinins87,88.  

1.1.4 NK cell differentiation 
A combination of phenotypic, functional and transcriptional studies identified immature 

CD56bright NK cells as precursors of CD56dim NK cells8,89–91. However, despite studies in mice 

lacking NK specific transcription factors, as well as lineage tracing in macaques and in humans 

with immunodeficiencies, it is still unclear how the numerous intermediate cell stages of NK 

cell differentiation are transcriptionally regulated and connected92. Although transcriptional 

NK cell studies are lagging behind, intermediate NK cell subsets have been well defined 

functionally (Figure 3).  

 

Figure 3. NK cell subsets. Overview of the distinct stages of NK cell differentiation based on phenotypic 
and functional properties.  

Immature CD56bright NK cells are highly responsive to cytokine priming and fulfill an 

immunoregulatory role. Expression of CCR7, CD62L, CXCR3, CCR5, CCR2 and CXCR4 

allows CD56bright NK cells to home to secondary lymphoid tissues, the liver, skin and the bone 

marrow, where they represent the dominant NK cell subset6,93–96.  Conversely, cytotoxic 

CD56dim NK cells, which prioritize activating and inhibitory receptor input over cytokine 

priming, mainly express CX3CR1 and CXCR195. CD56dim NK cells also have shorter telomers 

compared to CD56bright NK cells, evidence for having undergone more cell divisions97. In line 

with this conclusion, CD56bright NK cells have an increased proliferative capacity compared to 

CD56dim NK cells. It has been shown that CD56bright NK cells can acquire CD16 expression, 
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effectively transitioning into CD56dim NK cells97. This was corroborated by the identification 

of an intermediate functional stage of NK cells, namely CD16+CD56bright NK cells which can 

account for up to 30% of CD56bright NK cells in individual donors98. Furthermore, CD56bright 

NK cells are the first lymphocyte population to reconstitute after stem cell transplantation, with 

CD16 acquisition, decreased surface expression of CD56 and cytotoxic effector functions 

following at a later time point99–101. However, in response to cytokine stimulation CD56dim NK 

cells have also been observed to adopt a ‘bright-like’ phenotype via upregulation of CD56 

expression102.  

Within the CD56dim NK cell population, further distinctions of individual subsets based on 

phenotypic and functional characteristics can be made. Without a transcriptional basis, a 

defined differentiation path remains to be determined, with subsets instead being placed on a 

spectrum of maturation and functionality103. Cells expressing NKG2A are found on the 

immature end of the spectrum, in line with CD56bright cells being NKG2A+. Expression of KIR 

is associated with further differentiation, giving rise to educated and uneducated NK cells with 

varying functional potential. Generally, NKG2A and KIR are inversely expressed, but co-

expression does occur. CD57, a carbohydrate epitope of unknown binding, is associated with 

terminal maturation, reduced proliferative capacity and increased functional potential104. 

Although the combination of NKG2A, KIR and CD57 expression is commonly used to define 

NK cell subsets in humans, this is a simplified model considering that up to 100,000 unique 

subsets exist within healthy individuals105. At the mature end of the spectrum is a unique group 

of NK cells termed adaptive or memory-like NK cells106,107. Adaptive NK cells can be found 

in approximately 40% of cytomegalovirus (CMV) seropositive individuals, whereby CMV 

accelerates the generation of this mature and highly functional subset108–113. Due to its 

heightened cytotoxic capacity and its longevity, this subset is of great interest for adoptive cell 

therapy and has therefore been the focus of recent work114. They are characterized by single 

self-KIR expression, epigenetic downregulation of intracellular signaling molecules, 

expression of the activating receptor NKG2C and the terminal maturation marker CD57108. 

1.1.5 NK cell homeostasis 
For a long time, NK cells were assumed to be a population of cells with a short lifespan, high 

turnover and a stable phenotype and function. These beliefs have since been abandoned with 

new discoveries shedding light on their intricately regulated functionality and vast diversity. 

Although NK cells belong to the innate immune system, many aspects of T cell biology share 

a striking similarity with NK cells115.  

IL-15 is the main cytokine required for NK cell development, but also for survival, 

proliferation, metabolism and functionality. Immune cells, including DCs, monocytes and 
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other non-hematopoietic cells trans-present IL-15 on the IL-15Ra chain, which binds to the 

heterodimer consisting of IL2Rb (CD122) and the common g-chain (CD132) found on the NK 

cell’s surface. Downstream signaling is mediated via JAK1/3, allowing for recruitment and 

activation of the transcription factor STAT5, a survival signal for NK cells27. A downstream 

target of STAT5 is the cytokine induced SH2-containing protein (CIS, encoded by CISH), 

which functions as a negative feedback loop by inhibiting the upstream JAK1116. Cish-/- 

knockout mice presented with increased anti-tumor activity and proliferative capacity as a 

result of being hyper-responsive to IL-15 signaling116. In an attempt to better understand the 

impact of IL-15 receptor signaling on proliferation, mathematical modeling was implemented. 

Increasing the expression of IL-15Ra on the cell surface accelerated the formation of IL-15/IL-

15R complexes, particular at low IL-15 concentrations117. Once an IL-15 saturation level had 

been reached, no further augmentation of the proliferative response was achieved.   

However, it was unclear how a single cytokine, such as IL-15, could have such a broad and 

varying effect on NK cell homeostasis as a whole. The identification of the role metabolism 

plays in regulating activation and functionality of immune cells shed some light on the 

importance of IL-15 signaling. Mouse studies identified a dose-dependent downstream 

signaling pathway, where high dose IL-15 activated the mammalian target of rapamycin 

(mTOR) as well as STAT5. mTOR, a serine/threonine kinase consisting of the two complexes 

mTORC1 and mTORC2, is a master regulator in cells. mTORC1 senses the microenvironment 

for nutrients to control metabolism while mTORC2 is involved in controlling the cytoskeletal 

organization of the cell118–120.  

Metabolic reprogramming due to environmental cues has been identified as a key regulator 

mechanism behind immune cell differentiation and function in NK cells and other immune 

cells118–122. In mice, increased cytokine priming led to metabolic reprogramming, as the cells 

increased their metabolic activity, thereby switching their energy source from oxidative 

phosphorylation to glycolysis. An increase in metabolism allowed for IFNg and granzyme B 

production, conferring increased functionality which could be reversed through the use of 

rapamycin, an mTOR inhibitor119. These studies could be repeated in mice using murine CMV 

infection instead of IL-15 signaling, proving that viral infection could also activate mTOR 

leading to metabolic reprogramming122. In both studies, along with increased functionality, 

increased proliferation was also observed. In a tumor setting, a lack of available glucose due to 

high glycolytic activity by the tumor cells could lead to functional inhibition due to lack of 

mTOR activation119,123.  
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1.1.6 NK cell education 
NK cell education is the process whereby NK cells are functionally tuned via inhibitory 

interactions mediated between self-MHC and KIR or NKG2A. This is further fine-tuned by the 

signal strength determined by the number of inhibitory interactions57,124. As NK cells do not 

undergo positive or negative selection, it was initially assumed that they would express a 

minimum of one inhibitory receptor in order to maintain tolerance to self125. Disproven by the 

discovery of NKG2A-KIR- cells in mice and humans, this population of NK cells was found to 

circulate in a hypo-responsive state, thereby ensuring tolerance to self126–128. Furthermore, NK 

cells have the ability to undergo re-education after transfer from one MHC class I environment 

to another, further validating the need for sustained inhibitory interactions in order to retain 

functionality129,130.   

Despite education being a dynamic process that forms an important cornerstone in NK cell 

functionality, the intracellular mechanism underlying education remained elusive until 

recently. Multiple models were proposed, including the arming, the disarming and the rheostat 

model without a general consensus being reached57,131,132. Discriminating between educated 

and uneducated NK cells required a functional readout or sequencing of the HLA genes, as no 

phenotypic readout existed. Recent work from our lab identified granzyme B retention as a 

sensitive and specific phenotypic readout for education, putting the core cytolytic machinery 

itself in the spotlight in the search for a potential underlying mechanism behind NK cell 

education133. Transcriptionally, educated NK cells are identical to uneducated NK cells, but 

phenotypically they accumulate granzyme B in dense-core secretory lysosomes located close 

to the centrosome. After target cell interaction, these large granules containing granzyme B 

were released, in line with increased cytotoxicity compared to uneducated cells lacking these 

particular granules. Pharmacological inhibition of the protein kinase PIKfyve and genetic 

silencing of its downstream target, the lysosome-specific calcium channel TRPML1, suggested 

a model where unopposed activating receptor input leads to remodeling of the lysosomal 

compartment and loss of dense-core secretory lysosomes in cells that lack self-specific 

receptors. Downstream of such morphological changes, signaling from acidic calcium stores 

may fine-tune the cell’s functional potential through inter-organelle communication with the 

endoplasmic reticulum.  

In addition to mediating NK cell functionality via modulation of the cellular metabolism 

leading to increased granzyme B expression, mTOR may serve as a functional rheostat during 

NK cell education118,134. Educated NK cells exhibited higher basal mTOR activity, which was 

further increased upon activating receptor ligation and also correlated with the number of 

inhibitory receptors expressed. Expression of SHP-1, a phosphatase required to convert 
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inhibitory receptor input into functional responsiveness, was required for increased mTOR 

activity in educated cells135. Conversely, continuous activating receptor input in the absence of 

inhibitor input dampened mTOR activity. Although education is not transcriptionally regulated 

in human NK cells, mTOR activity is dependent on its localization to the lysosomal 

compartment which in turn can be negatively regulated by TRPML1136,137. 

1.2 NK CELLS IN THE DISEASE SETTING 

1.2.1 Myelodysplastic syndrome 
Myelodysplastic syndrome (MDS) is a group of clonal stem cell disorders characterized by 

aberrant HSC differentiation within the bone marrow (BM) (Figure 4). As a result, MDS 

patients develop various cytopenias depending on the exact differentiation block, leading to an 

increased risk of disease progression to acute myeloid leukemia (AML). MDS progresses to 

AML in approximately one third of patients. Although cigarette smoke, benzene exposure and 

previous chemo- or radiotherapy treatment can cause MDS, it generally occurs as an age-

related disease, with the average age of onset being 76 years138–140.  

 

Figure 4. Hematopoietic stem cell differentiation. Simplified overview of the main differentiation steps 

from a hematopoietic stem cell (HSC) to the common myeloid progenitor (CMP) and common lymphoid 
progenitor (CLP) as well as the immune subsets they give rise to within the periphery. MDS arises due to a 

differentiation block downstream of the CMP whereby patients develop various cytopenias depending on the 
exact location of the block.  

1.2.1.1 Prognosis, risk groups and treatment 

MDS is a very heterogenous disease as its manifestation is influenced by a variety of mutations 

leading to varying differentiation blocks, hence resulting in very variable outcomes for 
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patients141. The revised-international prognostic scoring system (IPSS-R) groups patients into 

risk groups based on their predicted outcome142,143. This is based on five parameters, namely 

hemoglobin, platelet count, neutrophil count, BM blast percentage and cytogenetics, creating 

four risk groups142. Treatment options are based on these risk groups, whereby the two lower 

risk groups, referred to as low-risk MDS (LR-MDS), are grouped together and the two higher 

risk groups, high-risk MDS (HR-MDS), are grouped together. LR-MDS patients usually 

present with various cytopenias, which are treated with either growth factors or lenalidomide,  

depending on the genetic mutations144,145. HR-MDS patients have a poor prognosis as the 

median survival is less than one year if the disease goes untreated142,146. Treatment consists of 

hypomethylating agents (HMA), with the aim of delaying the onset of AML and thereby 

prolonging survival time147. The only available cure for HR-MDS patients is an allogeneic 

hematopoietic stem cell transplant (HSCT), but due to the late age of onset, other comorbidities 

and the risks associated with a HSCT, many patients do not qualify148–150. For many HR-MDS 

patients, HMAs are therefore the standard treatment, which consist of either 5-azacytidine (5-

aza) or decitabine151. 5-aza has been shown to increase survival by 9.5 months on average, but 

only 50% of patients are responding to this treatment151,152. Furthermore, failure after HMA 

treatment is common, and although switching to a different HMA or to lenalidomide is being 

investigated, no good standard treatment options remain for these patients153–157.  

1.2.1.2 5-azacytidine 

Although 5-aza is commonly used to treat HR-MDS patients, its exact mechanism of action 

remains elusive158. 5-aza is a cytidine analogue lacking a methylation site that can incorporate 

during replication in RNA and DNA. Additionally, it has cytotoxic properties and can therefore 

directly affect malignant cells. MDS patients often have silenced tumor suppressor gene 

promotors through hypermethylation of important CpG sites of these genes. Hence, 5-aza’s 

hypomethylating properties are assumed to be the main mechanism of action in the MDS 

setting159,160. 

It has been proposed that 5-aza may also directly affect the immune system, allowing for better 

immunological control of the malignant clones161. Here NK cells are of particular interest, 

considering their cytotoxic capabilities, high turnover and methylation-sensitive regulation of 

their effector function via inhibitory and activating receptor input. Methylation has been shown 

to inhibit ligand expression for activation receptors on NK cells, such as NKG2D162. 

Furthermore, KIR genes are expressed in their de-methylated state, as the KIR promoter is 

epigenetically regulated163. Hence NK cell mediated control of the malignant clone may be a 

contributing mechanism of action of 5-aza considering their high turnover in vivo, allowing for 

uptake of the drug, resulting in a potentially modified NK cell repertoire.   
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1.2.2 Adoptive NK cell therapy 
In 1909 Paul Ehrlich first proposed his hypothesis of cancer immunosurveillance, a hypothesis 

that would not be proven until many years later164,165. Mouse studies cast light on the power 

the immune system possesses in eliminating cancerous cells, whereby mice lacking immune 

cells showed increased susceptibility to chemically induced tumors165. From these initial 

ground-breaking studies, the concept of immunotherapy was developed, which has exploded 

in recent years, from being recognized as the ‘Breakthrough of the Year’ in 2013 by Science 

magazine, to James P. Allison and Tasuku Honjo being awarded the Nobel Prize in Medicine 

in 2018 for their work on immune checkpoint inhibitors.  

1.2.2.1 The concept of immunoediting 

Constant interactions between immune cells and potential malignant cells allow these threats 

to be eliminated before they can overpower the body in the form of cancer. This process is 

termed immunoediting and consists of three phases, immunosurveillance, equilibrium and 

escape166. During immunosurveillance, immunogenetic tumors, tumors that are sensitive to 

immune cell killing, are eliminated. In the equilibrium phase, non-immunogenic tumors co-

exist with immune cells which are constantly exerting a selective pressure on the tumor cells. 

This allows the survival of immune escape variants, which during the escape phase can further 

develop to form a cancerous tumor by evading detection166. Mouse studies have identified a 

central role for NK cells in immunosurveillance. Compared to RAG2-/- mice lacking adaptive 

immune cells, RAG2-/- x gc-/- mice which also lacked NK cells developed chemically induced 

sarcomas more rapidly167.  

1.2.2.2 NK cells and the tumor microenvironment 

The tumor microenvironment is a hostile place. Cells within this environment, including 

fibroblasts and infiltrating immune cells, are remodeled to aid in tumor development and 

reduce immune cell function168. Myeloid-derived suppressor cells and Tregs, as well as the 

release of TGFb, adenosine, prostaglandin E2 and IDO are all able to dampen NK cell 

cytotoxicity at the tumor site168–175. Furthermore, NK cells first need to home to the tumor 

microenvironment, a challenge in itself. Together, this results in poor NK cell infiltration in 

many solid tumors176. Hematological malignancies and settings of metastasis provide a more 

favorable environment for NK cells to exert their cytotoxic potential177. In particular, NK cells 

have great potential in eliminating minimal residual disease, characterized by quiescent cancer-

stem cells which are resistant to standard treatments178.  
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1.2.2.3 NK cells in HSCT and adoptive cell therapy 

In the setting of hematological malignancies where patients are treated with HSCT, NK cells 

are the first lymphocyte population that can be detected following engraftment179. Their ability 

to mediate graft-versus-leukemia (GVL) effects is vital for elimination of residual disease, as 

increased number of NK cells after transplantation result in better treatment outcome180,181. 

Insights into the specificity of NK cell alloreactivity, determined by specific combinations of 

KIR and HLA, paved the way for the ground-breaking discovery of a potential role of NK cells 

in mediating GVL in haploidentical HSCT against AML61,177. Studies aiming at harnessing NK 

cell alloreactivity in the context of HSCT have recently been reviewed182,183. The indication 

that NK cells may deliver a potent GVL effect in the setting of HSCT inspired the whole NK 

cell community to develop adoptive NK cell therapy based on transfer of ‘KIR ligand 

mismatched’ NK cells across HLA barriers to promote missing self-recognition. Whereas 

many studies did not find a beneficial effect of genetic KIR ligand mismatch, calculation of the 

functional dose of KIR ligand mismatched NK cells was associated with less relapse after NK 

cell therapy against AML184–186. Currently there are 397 open clinical trials exploring different 

types of NK cell products for a variety of diseases (clinicaltrials.gov). 

NK cells utilized for adoptive cell-based therapies are usually cytokine-primed and often 

expanded to ensure activation of effector functions and to obtain the required cell numbers. A 

variety of activation and expansion protocols have been proposed and tried in clinical settings, 

usually relying on supra-physiological levels of cytokines, include any combination of IL-2, 

IL-15, IL-12 and IL-18187,188. One negative effect of stimulation with high levels of cytokines 

is the reduction the cells experience in cytokine concentration upon infusion, as severe side-

effects prevent patients from being treated with the same cytokines189–192. Studies in non-

human primates given daily doses of in vivo human IL-15 treatment resulted in an initial 

expansion of NK cells starting on day 8 and peaking at day 13-15. However, after IL-15 

treatment was stopped on day 12, NK cell numbers quickly diminished back to baseline by day 

22193. In line with these findings, one major bottleneck with adoptive NK cell therapy has been 

ensuring persistence after infusion to create a time-window long enough for the activated NK 

cells to eliminate their targets194. Another downside of using cytokines to drastically induce 

NK cell proliferation is the naïve phenotype achieved by these expansion protocols114. 

Proliferation capacity decreases with NK cell maturation and correlates inversely with 

functionality103. Furthermore, highly expanded NK cells have reduced metabolic activity, 

further affecting their functionality118. Focus has now shifted towards guided-expansion 

protocols and genetically modified NK cells, not only resulting in large cell numbers but also 

in specific phenotypes and functional properties114.  
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1.2.2.4 Modulating NK cells to enhance anti-tumor functionality 

A number of different methods, other than cytokine priming, are currently being investigated 

to increase NK cell anti-tumor functionality in adoptive cell therapy. These range from the use 

of monoclonal antibodies (mAb) to chimeric antigen receptors (CAR) to bi- and tri-specific 

killer engagers (BiKE, TriKE)195,196. mAbs, such as trastuzumab, cetuximab and rituximab, are 

already used in the clinic to successfully treat a variety of tumors197. Treatment effect is 

mediated by the Fab fragment inhibiting surface receptors on the tumor itself, which are 

important for survival, while the Fc portion is able to bind to CD16 on NK cells, resulting in 

ADCC198. In lymphoma patients treated with rituximab, a mAb against CD20 expressed on B 

cells, treatment outcome correlated with increased NK cell numbers in the blood199. Another 

use of mAbs has been to block the inhibitory NKG2A receptor on NK cells. Many tumor types 

upregulate HLA-E expression, the ligand for NKG2A on NK cells200. This can result in NK 

cell inhibition whereby blocking would help unleash their cytotoxic potential, which has been 

demonstrated in clinical trials using monalizumab201.  

CARs, originally developed for T cells, have been applied to NK cells for redirecting their 

cytotoxic capacity towards specific tumor targets. Compared to T cells, NK cells have the 

advantage that they are short-lived, avoiding the need for a suicide gene, and that they can 

recognize targets having downregulated MHC class I202,203. On the other hand, NK cells have 

proven to be difficult to transfect and the half-life of the CAR has also been a limiting factor in 

utilizing this treatment effectively in the clinic204,205.  

Another recent development is the design of BiKEs, and more recently TriKEs206. BiKEs 

consist of fusing the Fv portions of mAbs recognizing a tumor specific antigen, such as CD133, 

to CD16207. TriKEs, which have shown increased ADCC and cytokine release compared to 

BiKEs, utilize IL-15 to link the two Fv domains208. These small molecules allow for redirected 

lysis of tumor cells by directly cross-linking CD16 on NK cells and have shown promising 

results in in vitro models and in vivo196.  

Although NK cell immunotherapy has made a huge leap forward in the past decade, better 

understanding NK cell biology in a homeostatic setting will provide knowledge that can be 

implemented to improve current therapies and develop future treatment strategies.  
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2 AIMS 
This thesis aimed to gain insights into the fundamental mechanisms that shape human NK cell 

homeostasis and to understand how NK cell repertoire diversity influences outcomes of 

immunomodulatory therapies. 

Paper I. NK cell diversity stems from a combination of differentiation, homeostatic 

interactions and adaptive responses to the environment. In paper I we aimed to identify the 

regulatory gene-circuits driving functional diversification and specialization during NK cell 

differentiation.  

Paper II. An individual’s NK cell repertoire is made up of a unique combination of subsets 

and is stable over time. In paper II we set out to identify how NK cell repertoire diversity is 

maintained during homeostatic proliferation by delineating cellular and molecular programs 

involved. 

Paper III. A standard treatment for high-risk myelodysplastic patients is 5-azacytidine, a 

hypomethylating agent with an unknown mechanism of action. NK cells have a high-turnover 

in vivo and KIR expression on NK cells is epigenetically regulated via methylation of the 

promoter regions. This paper aimed to investigate if in vivo cellular uptake of 5-azacytidine 

could be monitored in NK cells through repertoire changes and determine the functional 

consequences of in vitro uptake in proliferating NK cells. 

Paper IV. Protocols used for adoptive NK cell therapy often involve supra-physiological levels 

of IL-15 to induce large-scale expansion. Upon transfer into patients, the cytokine-dependent 

cells undergo sudden cytokine withdrawal resulting in the induction of apoptosis. In this paper 

we set out to study the molecular mechanisms of IL-15 withdrawal in NK cells.   
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3 RESULTS AND DISCUSSION 
3.1 NK CELL DIFFERENTIATION 
Classification of individual NK cell subsets is based on phenotypic and functional 

characteristics with the exact differentiation pathway still under debate. Clear functional and 

phenotypic differences between CD56bright and CD56dim NK cells identified these as the two 

main NK cell subsets10,97,209. Further characterization of CD56bright NK cells identified them as 

the probable immature precursor to CD56dim NK cells8,89–91. Despite being commonly accepted, 

this has not been proven to date. A study in macaques using NK cell lineage tracing attempted 

to challenge this assumption, stating that CD56bright and CD56dim NK cells represent two 

distinctly separate lineages92. Due to rather large differences in the NK cell biology between 

macaques and humans, including receptor repertoires and definition of CD56bright and CD56dim 

subsets, these results need to be interpreted with caution.  

3.1.1 The regulome of human NK cell differentiation as we knew it 
Transcriptionally, NK cell differentiation has not been as well described. Although mouse 

studies have identified the importance of T-bet and Eomes in the differentiation step from 

immature CD27+CD11b- to mature CD27-CD11b+ NK cells, the downstream signaling 

pathway remains to be characterized22. Other transcription factors involved in NK cell 

differentiation include ZBTB32, IRF2 and IKZF3 which were identified through mouse 

models210–212. Bulk sequencing, combined with ChIP sequencing, of human CD56bright and 

CD56dim NK cells identified the TCF1-LEF-MYC axis within the CD56bright population and 

the PRDM1-MAF-ZEB2 axis within CD56dim NK cells213. The recent rise in single-cell 

technologies also saw the commercialization of single-cell RNA sequencing (scRNA-seq). The 

first scRNA-seq study in human NK cells was focused on characterizing the heterogeneity 

within peripheral blood and organs in both mice and humans, without going in detail into NK 

cell differentiation214. In paper I we generated a unique scRNA-seq dataset to delineate the 

temporal transcriptional regulation of human NK cell differentiation.  

3.1.2 A temporal transcriptional map of NK cell differentiation 
Healthy donor buffy coats were screened for education status and the presence of adaptive NK 

cells. From each donor we FACS sorted six populations from freshly isolated NK cells, namely 

CD56+ (bulk), CD56bright, NKG2A+CD56dim, self KIR+CD56dim (educated), non-self 

KIR+CD56dim (uneducated) and either adaptive NK cells or self KIR+CD57+CD56dim NK cells 

depending on the donor. Transcriptionally, the five sorted NK cell subsets covered the entire 

transcriptional landscape of bulk CD56+ NK cells. We therefore focused our analysis on the 
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individual subset samples which provided equal cell numbers for analysis, which was vital for 

the CD56bright NK cells as they are found only in low frequencies within the blood. Confirming 

phenotypic and functional studies, we identified two main transcriptional islands which 

corresponded to the CD56bright and CD56dim NK cell populations. Intriguingly, they were 

connected by a narrow bridge which, based on RNA velocity analysis (BOX 1), identified a 

transition from the CD56bright to CD56dim island215. This was further corroborated by 

pseudotime analysis (BOX 1) which provided a time component to the expression patterns of 

individual genes216.  

 

Surprisingly, CD56bright NK cells dominated the transcriptional timeline, whereby two out of 

three transcriptional checkpoints occurred within this small population. These transcriptional 

checkpoints represent a stage in differentiation where gene expression is tightly controlled, 

potentially mediated by important transcription factors to progress to the next stage of 

differentiation (Figure 5). Global gene trends identified increased variation in the late stage of 

pseudotime, corresponding with CD56dim differentiation, as CD56dim specific gene trends were 

to a certain degree uncoupled from CD56bright dominating global trends. Furthermore, despite 

having only sorted NK cells with very high CD56 expression for the CD56bright subset, we could 

identify two unique transcriptional clusters within this population while CD56dim NK cells 

distributed over only three clusters despite the larger phenotypic and functional diversity within 

this second population. Transitioning from cluster 1 (early CD56bright) to 2 (late CD56bright) was 

associated with a decrease in gene expression, while cluster 3 and 4 within the conventional 

CD56dim population were similar in transcription, with one cluster representing an activated 

version of the other. Adaptive cells formed a third CD56dim cluster which also contained the 

terminal cell identified by pseudotime analysis.  

BOX 1. Single-cell RNA sequencing analysis 
RNA velocity 
Single-cell RNA sequencing data only provides a snapshot in time, but the amount of spliced and unspliced 
mRNA of individual genes within cells is indicative of the rate at which gene splicing and degradation is 
occurring. The ratio between spliced and unspliced mRNA can therefore be used to calculate a high-
dimensional vector termed RNA velocity, which provides the time derivative of expression states of individual 
genes. RNA velocity can therefore be implemented to predict the future state of each cell in terms of time, 
adding directionality to a traditional t-SNE plot to help identify cell lineages.  
 
Pseudotime 
Since differentiation is asynchronous, single-cell RNA sequencing provides a snapshot of cells at different 
differentiation stages. These cells can then be ordered along differentiation trajectories based on their gene 
expression, which is termed pseudotime. The Palantir algorithm orders cells in pseudotime based on 
possible identified differentiation trajectories, whereby the probability of each cell to differentiate into each 
terminal state is identified. This provides the relative distance of each cell from the initially identified starting 
cell.  
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Figure 5. Summary of paper I. A clock model of NK cell differentiation, denoting the transcriptional 

clusters in time along with the differentiation checkpoints. The arms of the clock indicate the three 

transcriptional checkpoints, the color coding refers to the transcriptional clusters and the ‘time’ is indicative 
of pseudotime.   

3.1.3 The bridge connecting CD56bright to CD56dim NK cells 
We identified a substantial proportion of NKG2A+CD56dim NK cells exhibiting a CD56bright 

transcriptional profile. These unique cells were concentrated near the bridge but could also be 

identified within the early CD56bright cluster in pseudotime. Although we cannot exclude that a 

small fraction of NKG2A+CD56bright NK cells contaminated this sample based on the sorting 

gate, the low frequency of CD56bright NK cells within the total NK cell population prior to 

sorting cannot account for this observation. Examination of the most proximal cells on each 

side of the bridge region identified a significant proportion of sorted NKG2A+CD56dim NK 

cells prior to the transition. The bridge transition itself was therefore transcriptionally ‘non-

dramatic’ with major transcriptional changes occurring just prior to this region as identified by 

RNA velocity.  
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3.1.4 Formation of the functional template for education 
In line with previous reports in mice and human, stratification of NK cells based on education, 

e.g. the expression of self or non-self KIRs, did not reveal any transcriptional differences 

between the two subsets133. Our lab recently described that inhibitory interactions during 

education are associated with non-transcriptional remodeling of the lysosomal compartment, 

which accounted for the increased functionality in educated NK cells through the accumulation 

of dense-core secretory granules. These findings led us to perform a global analysis of genes 

associated with lysosomal biogenesis, expression of which was increased within the CD56dim 

transcriptional island, with a gradual increase from early to late CD56bright NK cells. 

Furthermore, genes important for vesicle formation and trafficking, such as RAB27A, were 

higher expressed within the CD56dim population, with highest expression identified in the 

activated CD56dim cluster. Mutations in RAB27A cause Griscelli syndrome type 2, resulting in 

a degranulation effect217, as Rab27a is recruited to the lytic granules by LFA-1 stimulation, 

aiding the granule in docking to the plasma membrane218,219. Hence, CD56dim NK cells are 

poised for modulation of the lysosomal compartment mediated via inhibitory and activating 

receptor input received at the cell surface, resulting in fine tuning of their functionality.  

3.1.5 Methodological considerations for scRNA-seq analysis 
Our scRNA-seq dataset allowed us to identify a transcriptional timeline for NK cell 

differentiation which only partially overlapped with the phenotypic model. Most importantly, 

the data highlighted the heterogeneity and the important contribution of CD56bright NK cells to 

the differentiation process. Sorting of individual subsets prior to sequencing combined with the 

single-cell resolution was essential in making these observations, but also provided some 

challenges. Compared to other immune cells, resting NK cells are transcriptionally inactive. 

Furthermore, the 10X Genomics single-cell sequencing platform we used in this study is less 

sensitive in terms of gene transcripts detected per cell when compared to other platforms such 

as Smart-seq2 which generates full-length cDNA libraries220. The combination of these two 

results in many zero values in the obtained data, which are difficult to deal with, as it is not 

obvious whether these represent missing values or actual zero expression of the genes. With 

the recent rise in scRNA-seq datasets being generated, the bioinformatic pipelines dealing with 

the downstream analysis of these immense datasets are rapidly developing and improving. In 

particular, algorithms aimed at inferring missing values within scRNA-seq datasets due to 

technical limitations of the sequencing have being developed221.  
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We implemented the Markov affinity-based graph imputation of cells (MAGIC) algorithm 

(BOX 2) in order to be able to visualize gene expression across the t-distributed stochastic 

neighbor embedding (t-SNE) map generated222. While MAGIC and other similar algorithms 

are immensely valuable by reducing the number of gene dropouts due to missing values within 

individual cells, data generated by them needs to be interpreted with caution. We did observe 

differences in expression of NK cell associated genes between our donors, which could be due 

to false imputations by MAGIC. It is important to point out that this only concerned a small 

subset of genes investigated, with the majority showing identical expression patterns. 

Furthermore, t-SNE analysis, PhenoGraph-based clustering (BOX 2), differential gene 

expression analysis by SCDE (BOX 2), RNA velocity and calculation of pseudotime by 

Palantir downstream of choosing the starting cell was performed without MAGIC 

imputation215,216,222–224. Lastly, we are validating the MAGIC imputed gene expression through 

bulk RNA sequencing results, allowing us to discriminate between true zero expression genes 

and falsely imputed values.  

 

3.2 NK CELL HOMEOSTASIS 
At the donor level, the NK cell repertoire is vastly diverse and unique105. However, once the 

NK cell repertoire has fully formed, it is well-maintained over time considering the rather rapid 

turnover of the cells108,225. Proliferation therefore plays an important role in replenishing the 

NK cell pool at steady state and in maintaining a stable repertoire. How homeostatic NK cell 

proliferation leads to subset repertoire stability was investigated in paper II. We examined the 

perturbed NK cell homeostasis in a cohort of MDS patients undergoing immunomodulatory 

treatment in paper III, characterizing how proliferation in combination with 5-azacytidine 

BOX 2. Analysis algorithms 
MAGIC 
A computational method for identifying gene expression within individual cells in scRNA-seq that was lost in 
the sequencing process due to drop-out. MAGIC utilizes information gained from neighboring cells to restore 
gene expression successfully through imputation, effectively maintaining original cluster structures while 
restoring two- and three-dimensional gene interactions. 
 
PhenoGraph 
PhenoGraph identifies cellular populations within single cell data, taking the high-dimensionality of the 
dataset into account. Compared to dimensionality reduction algorithms reducing single-cell data to two-
dimensions, PhenoGraph instead implements a graph-based method to identify densely-connected nodes 
representing individual populations.  
 
SCDE 
A statistical method, based on the Bayesian interpretation of probability, to identify differential gene 
expression within single-cell RNA sequencing data. SCDE effectively reduces the background noise typical 
of scRNA-seq data by fitting error models to individual data points, thereby improving identification of 
differential gene expression between cell groups.  
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modulated the NK cell repertoire. In paper IV we examined the implications of cytokine 

stimulation for immunotherapeutic purposes. 

3.2.1 Subset repertoire stability 
Proliferation has mainly been examined in the viral or disease setting, despite being one of the 

essential processes NK cells undergo regularly225. Recent interest in NK cell expansion 

protocols for adoptive cell therapy have shone a spotlight on the importance of understanding 

this fundamental process. In paper II we asked the question of how proliferation is able to 

maintain stable NK cell repertoires at steady state. We hypothesized that the observed stability 

was either the result of self-renewal from an immature pool of progenitor cells followed by 

differentiation or the result of intra-lineage plasticity. Intra-lineage plasticity (BOX 3), defined 

as phenotypic and functional changes occurring within a given cell lineage, has been observed 

in other immune cells226,227. Although environmental influences on NK cell functionality, such 

as cytokines, chemokines, growth factors and immunosuppressive molecules, are well known, 

NK cell plasticity has largely remained unexplored228.  

 

In paper II we combined high-resolution flow cytometry and fluorescence-activated cell 

sorting (FACS) with scRNA-seq to delineate the cellular and molecular changes occurring at 

the single cell level during homeostatic proliferation. 16-color flow cytometry provided a 

population-based readout with single-cell resolution allowing for high-dimensional assessment 

of phenotype, functionality, division state and intra-cellular signaling. Furthermore, we utilized 

scRNA-seq (10X Genomics) to identify transcriptional changes associated with varying 

proliferation kinetics in a defined subset of NK cells and compared these to baseline 

transcriptional signatures of individual NK cell subsets.  

3.2.1.1 An in vitro model for homeostatic NK cell proliferation 

We developed a simple model with minimal external influences in order to generate robust data 

allowing us to interpret the role IL-15 plays in inducing NK cell proliferation. Purified NK cells 

obtained from isolated peripheral blood mononuclear cells (PBMC) from healthy blood donors 

were cultured in the presence of low-dose IL-15. IL-15 was chosen due to its central role in 

regulating NK cell homeostasis. All components of the cell culture protocol were optimized, 

BOX 3. Cellular plasticity 
Plasticity refers to phenotypic and functional changes occurring within populations of cells. Intra-lineage 
plasticity, also known as functional plasticity, refers to cells of a given lineage adapting to their surroundings 
in response to cytokine or receptor input which is translated into transcriptional changes resulting in an 
altered phenotype and modified functionality. An example of this is macrophages transition between an M1 
and M2 phenotype, T cells transitioning from Th to Treg phenotype or ILC subsets transitioning between ILC1-
3 phenotypes.  
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including dose and dosing schedule of IL-15, starting cell concentration, medium source and 

replenishment schedule, as well as the presence or absence of feeder cells to induce a linear 

onset of proliferation with maximal subset retention to mimic homeostatic proliferation. This 

was as opposed to inflammation-induced or lymphopenia-induced proliferation, which is 

associated with rapid cell turnover resulting in subset skewing towards naïve NK cells with 

higher proliferative potential114. We implemented a cell tracking dye to monitor the onset of 

proliferation and subsequent cell divisions, allowing us to stratify our readouts by the number 

of divisions a cell had undergone.  

3.2.1.2 Subset retention through intra-lineage plasticity 

In order to induce proliferation in both naïve and terminally mature NK cell subsets, daily 

addition of 5ng/mL IL-15 was required. 5ng/mL was low enough to prevent excessive 

proliferation of naïve NKG2A+ NK cells, but high enough to induce mTOR activation as well 

as linear cell proliferation at the rate of one division per 24 hours, after the initial onset on day 

3. Interestingly, 10ng/mL every two days did not yield the same results, evidence of IL-15 

being tightly regulated in vivo. While subset distribution at the bulk population level only 

minimally changed over the course of 7 days, we did observe subset-specific proliferation 

kinetics which correlated with mTOR activation. IL-15-induced mTORC1 upregulation prior 

to proliferation onset could predict downstream proliferation three days later at both the donor 

and subset level. Repeated sampling of the same blood donors over time confirmed stable NK 

cell repertoires, but also an intrinsic metabolic set point determining the level of mTOR 

activation in response to IL-15 stimulation, accounting for the donor-specific proliferation 

kinetics observed.  

Despite subset-specific proliferation kinetics, the actual subset frequencies at the population 

level remained largely stable. This suggested that the repertoires were maintained through 

intra-lineage plasticity during homeostatic proliferation in vitro (BOX 3)226,227. Indeed, adding 

an additional step of sorting individual NK cell subsets prior to our proliferation protocol 

revealed a surprising degree of cellular plasticity in both naïve and mature subsets. Further 

analysis identified functional changes associated with the acquisition of NKG2A and CD57, 

whereby NKG2A acquisition was associated with increased proliferative potential and 

decreased functionality, while the reverse was true for CD57 acquisition. Surprisingly, even 

previously assumed terminally differentiated CD57+ NK cells could acquire a naïve phenotype 

(NKG2A+) and start proliferating, provided that CD57 expression was lost. This functional 

dichotomy between NKG2A+ and CD57+ cells skewed the subset distribution within individual 

generations. The functional CD57+ cells predominantly identified as slowly cycling cells (0-1 

cell divisions after 5 days) while NKG2A+ cells identified as rapidly cycling cells (³2 cell 



 

24 

divisions after 5 days). Rapidly cycling cells therefore exhibited lower cytotoxic potential 

compared to slowly cycling cells. It is important to remember that this is a pure cytokine 

stimulatory environment, effectively priming the cells but lacking all receptor-based input from 

other cells. CD56bright NK cells are very cytokine receptive but poorly cytotoxic, while 

cytotoxic CD56dim NK cells require activating and inhibitory receptor input. Hence, rapidly 

cycling cells may acquire functional potential through further receptor input. In our setting, 

rapidly cycling educated NK cells underwent transcriptional reprogramming, resulting in a 

more immature signature, while slowly cycling educated NK cells acquired a more mature 

signature when compared with baseline subsets.  

 

Figure 6. Summary of paper II. The functional dichotomy between proliferation and cytotoxicity observed 
during IL-15-induced homeostatic proliferation.  

Our simplified in vitro homeostatic NK cell proliferation model allowed us to examine the 

central role IL-15 plays in maintaining NK cell homeostasis (Figure 6). The balance between 

strength and timing of the IL-15 signal determined the responsive subsets, whereby the degree 

of downstream mTOR activation dictated the proliferative response. CD57 expression 

negatively influenced mTOR activation and proliferation. Although it is used as a main marker 

for subset discrimination in NK cells, the function of CD57 remains unknown104,229. It is not a 
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receptor or protein in itself, but rather a carbohydrate epitope created by an enzyme called 

B3GAT1 on other cell surface proteins. In neural cells, CD57 has mainly been associated with 

adhesion proteins, while binding to the IL-6 receptor has also been proposed230. It would be 

interesting to further delineate how CD57 is associated with these cellular changes, whether it 

plays a functional role by inhibiting or activating another surface protein, or if it is simply a 

surrogate marker for other ongoing cellular modifications.  

In addition to the differential mTOR activation in distinct NK cell subsets, we also identified a 

donor intrinsic component which was stable over time and thus contributed to the stability in 

terms of subset repertoires observed within individuals. Identifying the mechanism behind this 

intrinsic component would be of great value for understanding and modulating the proliferative 

capacity of NK cells. This is particularly true in the setting of adoptive cell therapy, where the 

choice of suitable HLA-matched donors is almost always limited and cellular expansion to 

obtain sufficient cell numbers is a necessity.  

Lastly, although our readouts in this study allowed us to examine NK cell proliferation at the 

single-cell level, we were not able to visually observe cellular division or functional 

interactions with target cells. This would be of particular interest considering the asymmetric 

PI3K and mTOR activity post-cell division observed in T cells and its role in controlling their 

differentiation fate231–236. Based on the induced transcriptional signature in rapidly cycling 

cells, which included both RNA-modifying metabolic genes and actin filament organization 

genes, the loss of functionality in rapidly cycling cells may be due to underlying deficits at the 

immune synapse. Conjugate formation experiments combined with F-actin staining at the site 

of the immune synapse would further shed light on the loss of functionality observed.  

3.2.2 Perturbations in the disease setting 

Differences in terms of proliferation speed, phenotype and functionality between homeostatic 

and spontaneous proliferation have been investigated in murine T cells237–239. Spontaneous 

proliferation, occurring in severely lymphopenic mice, was characterized by a rapid onset of 

cell division which was cytokine-independent. Homeostatic proliferation, on the other hand, 

occurred in mildly lymphopenic mice at a slower division rate and required both cytokine and 

T cell receptor (TCR) stimulation. The proliferation-induced phenotype was reverted after 

removal of the proliferation cues and cytotoxic capacity of CD8+ T cells was lost during the 

initial phase of intense proliferation (12 days)237–239.  

In humans, one disease associated with various cytopenias is MDS, which has the potential to 

progress to AML. 5-aza is able to induce a clinical response in 50% of the patients, which has 

mainly been attributed to its demethylating effects of previously methylation-silenced 
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genes159,160. However, 5-aza can also be considered an immunomodulatory drug leading to 

immunological control of the malignant clone and thereby delaying disease progression240. 5-

aza requires uptake by the cells in order to exert its hypomethylating effects which is achieved 

via incorporation into DNA and RNA during cell division241,242. NK cells can kill stressed and 

malignant cells, have a relatively high turnover rate in vivo and possess epigenetically regulated 

inhibitory receptors, namely KIR, which are important in fine-tuning their function. This makes 

them an interesting immune cell to further investigate to decipher the mechanism by which 5-

aza can mediate immunological control of malignant clones in MDS.  

3.2.2.1 KIR induction partially restores altered NK cell repertoires in MDS patients 

In paper III we monitored the KIR repertoire pre- and post-5-aza treatment in a cohort of high-

risk MDS patients. We hypothesized that NK cells could be used to determine in vivo uptake 

of the drug through modulation of their KIR repertoire mediated by 5-aza. This was 

complemented by in vitro functional studies, replicating the 5-aza treatment regimen and using 

IL-2 stimulation to mimic the cytopenic environment in vivo and induce proliferation.  

High-risk MDS patients presented with perturbed NK cell repertoires characterized by higher 

frequencies of naïve NK cells within the CD56dim compartment, in line with lower KIR 

expression and increased proliferation. Notably, after five days of 5-aza treatment, the 

frequency of Ki-67+ NK cells returned to baseline levels as observed in healthy controls. 5-aza 

treatment induced KIR expression, particularly KIR2DL3 and KIR3DL1, as well as co-

expression of multiple KIRs which was most evident in proliferating cells, many of which were 

NKG2A+CD57-. 5-aza therefore could partly restore the mature NK cell repertoire in MDS 

patients. Our in vitro studies confirmed KIR upregulation, particularly in NKG2A+CD57- 

proliferating cells. This is in line with 5-aza needing to be incorporated into DNA through cell 

division for it to mediate its hypomethylating effects243.  

3.2.2.2 Increased NK cell functionality post-5-aza treatment 

In addition to demethylating effects on the malignant clone, 5-aza also modulates the NK cell 

repertoire which is perturbed in MDS patients, characterized by higher proliferation compared 

to healthy controls. In agreement with our functional results in paper II, cells having 

undergone multiple rounds of cell division after six days of IL-2 stimulation exhibited lower 

degranulation (CD107a) and IFNg production. Intriguingly, this loss of functionality was 

reversed with the addition of 5-aza. This can be partially attributed to the reduced proliferation 

observed in 5-aza treated cells and the phenotypic maturation of the cells through acquisition 

of KIR (Figure 7). However, the increase in functionality is most likely a direct result of 

demethylation of genes mediating effector function. Identification of the NK cell specific 



 

 27 

targets of 5-aza through assay for transposase-accessible chromatin (ATAC) sequencing would 

provide important information on how to boost NK cell functionality in proliferating cells. This 

would have important functional implications for expansion protocols prior to adoptive cell 

therapy, which has been identified as a potential treatment option for HR-MDS patients having 

failed HMA treatment. An adoptive NK cell therapy trial in HR-MDS patients showed the 

potential of NK cells to control the malignant clones after lymphodepletion treatment185. 

Importantly, patients entering remission, despite multiple rounds of failed standard therapy, 

could be bridged to a HSCT, the only cure currently available for MDS. This highlights the 

potential NK cells have at controlling MDS given the correct microenvironment, as well as 

cellular activation level and state.  

 

Figure 7. Summary of paper III. The effect of 5-aza treatment on the NK cell repertoire, resulting in 
decreased proliferation and increased KIR expression and functionality.  

3.2.3 Implications for immunotherapy 
In both paper II and paper III, cytokine-driven proliferation is associated with dramatic 

phenotypic and functional changes to the NK cell repertoire. In the setting of immunotherapy, 

this is of particular interest considering the current expansion protocols utilized to generate 

adoptive NK cell products for therapy. Expansion protocols for therapy often include supra-

physiological levels of cytokines, including IL-15, to achieve the required target cell 

numbers188. However, this results in severe and acute cytokine deprivation post-infusion as 

continued stimulation through IL-15 injections are not feasible due to severe side-effects. 

Considering how tightly IL-15 is controlled, made evident in paper II, this is not surprising. It 

does however lead to poor cell persistence in the treated patient, often resulting in a time 

window that is too short to mediate the maximum or even desired effect. In paper IV, we set 
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out to characterize the mechanism behind IL-15 addiction and withdrawal in expanded NK 

cells.  

3.2.3.1 An in vitro model to study cytokine-dependence 

The backbone of this study was to implement the proliferation model developed in paper II 

and adapt it to study effects of cytokine withdrawal post IL-15 induced proliferation/activation. 

We first wanted to see if NK cells could become addicted to cytokine stimulation (BOX 4) and 

if this was dependent on the dose of IL-15 used for priming. 1ng/mL of IL-15 was sufficient to 

provide a survival signal and even induced very low levels of proliferation and was therefore 

chosen as the low-dose. For the high-dose, 10ng/mL of IL-15 was chosen, which induced rapid 

proliferation resulting in subset skewing towards a naïve phenotype as predicted. Compared to 

paper II, IL-15 was administered only every 48 hours together with complete renewal of the 

medium. These rather minor modifications induced large phenotypic changes at the subset 

level, again highlighting how minor changes in IL-15 alone can have profound effects on NK 

cells in culture. In line with the increase in KIR expression observed in cytokine-induced 

proliferation, combined with the acquisition of NKG2A in proliferating cells, a dramatic 

increase in the NKG2A+KIR+CD57- subset was observed.  

 

To identify if six days of IL-15 stimulation was sufficient to induce cytokine dependence, we 

cultured the cells for an additional 48 hours after complete cytokine removal and compared this 

to a control arm receiving continued cytokine stimulation. Addiction, translating to a decrease 

in cell number due to the induction of apoptosis (as measured by the induction of caspase-3 

expression), was observed in the cells having undergone withdrawal and this was dose-

dependent. Cells addicted to high-dose IL-15 exhibited the biggest drop in cell number, which 

correlated with proliferation, whereby subsets expressing NKG2A were most affected.  

3.2.3.2 The balance between pro- and anti-apoptotic molecules 

Numerous pro- and anti-apoptotic genes make up the apoptosis network and it is the fine 

balance between these two opposing forces that dictates the outcome of the cell during various 

types of stimulations244. Within resting NK cells, BCL-2 has been identified as an important 

anti-apoptotic protein which can be further upregulated through IL-15 stimulation, leading to 

downstream STAT5, but not mTOR activation118,194. In actively proliferating NK cells,     

BOX 4. Cellular addiction 
Cytokine priming results in intracellular signaling changes occurring within cells. Continuous stimulation with 
non-physiological cytokine levels can result in an altered cellular state, which requires further cytokine 
stimulation to support survival. This can be referred to as cytokine-dependence or addiction, whereby 
cytokine withdrawal can lead to detrimental consequences to the cell.  
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MCL-1 expression is vital in maintaining viability245. BIM is a pro-apoptotic molecule and its 

downstream target BAX is directly inhibited by BCL-2246. In murine effector CD8+ T cells, 

increased BIM levels are balanced by increased BCL-2 levels, expression of which dictates the 

amount of BIM that can be tolerated247. Similarly, in murine NK cells, the BCL-2/BIM ratio 

was influenced by IL-15 stimulation and withdrawal, whereby changes in the ratio could render 

the cells sensitive to cell death247–249. In line with these mouse studies, we observed an IL-15 

dose-dependent increase in BCL-2, MCL-1 and also BIM expression. BCL-2 and MCL-1 were 

both crucial for survival in NK cells stimulated with high-dose IL-15 as shown through 

blocking experiments.  

After cytokine withdrawal, the expression of anti-apoptotic proteins decreased over 48 hours, 

leading to an altered BCL-2/BIM ratio due to a less substantial decrease in BIM expression. 

Further investigation into the splice variants of BIM revealed preferential upregulation of the 

BIM short (BIM S) splice variant with IL-15 stimulation, one of the potent apoptosis-inducing 

splice variants250,251. BIM S was preferentially upregulated in proliferating cells stimulated with 

high-dose IL-15 and remained highly expressed until 24 hours after cytokine withdrawal. 

When compared to BCL-2 levels, which halved 24 hours after cytokine withdrawal, this 

severely altered the pro/anti-apoptotic ratio, exposing rapidly cycling cells to high levels of 

toxic BIM S within 24 hours after cytokine withdrawal (Figure 8).  

 

Figure 8. Summary of paper IV. The mechanism by which apoptosis is induced in cycling NK cells after 
IL-15 induced cytokine dependence and subsequent withdrawal. The curves represent expression of BIM 
short (red) and BCL-2 (blue) over culture time.  
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In paper IV we identified a mechanism by which apoptosis is induced within 48 hours in IL-

15 stimulated rapidly cycling NK cells undergoing cytokine withdrawal (Figure 8). This has 

potentially important implications for current cell therapy protocols in which NK cells are 

expanded with high levels of IL-15 prior to infusion into the patient. As in paper II, this study 

used purified NK cell cultures with only cytokine stimulation. While we did not evaluate the 

inclusion of feeder cells on the BCL-2 and BIM expression levels, studies based in mice 

observed similar upregulation of these apoptotic proteins in response to cytokine simulation in 

vivo248. Irrespective of the culturing conditions, it may be helpful to monitor the levels of BCL-

2 and BIM in expansion protocols to avoid the induction of apoptosis upon transfer into the 

patient.  

3.2.3.3 A metabolically optimized NK cell activation protocol for adoptive cell therapy 

Our group has previously completed a Phase I/II clinical trial where patients with primary 

chemotherapy-refractory MDS, secondary AML (MDS/AML) and de novo AML were infused 

with short-term IL-2 activated haploidentical NK cells185. Of the 16 patients infused, a 

complete remission (CR), marrow CR, or partial remission was observed in six patients. 

Infusion of the NK cell product allowed for five patients to be bridged to an allogeneic HSCT, 

with three patients still remaining disease free more than five years after treatment. This study 

identified MDS as a promising target for adoptive NK cell therapy, as five of the six patients 

responding to treatment had refractory or secondary MDS. Unfortunately, we could not achieve 

an expansion of infused NK cells which has been shown to correlate with disease clearance in 

AML184,252. Limited NK-cell chimerism could be observed in all evaluable responders but was 

only evident in 50% of non-responders. Hence, improving NK cell persistence post-infusion 

could potentially lead to improved clinical outcome.  

Based on the findings in paper II and paper IV, this led us to develop and validate an IL-15 

based clinical activation protocol designed to induce proliferation without leading to cytokine 

dependence. We hypothesize that by infusing NK cells undergoing homeostatic proliferation, 

they would be able to continue proliferating within the patient, leading to better persistence and 

functional outcome.  

By stimulating NK cells daily for two days with 4 ng/mL IL-15, we were able to induce 

homeostatic proliferation. In order to avoid IL-15 dependence and decreased functional 

potential through transcriptional reprogramming in rapidly cycling cells, the amount of IL-15 

was reduced to 2 ng/mL on day 3, followed by two more days of culture without any additional 

cytokine addition. The cells would then be harvested on day 6 and infused into the patient. This 

protocol induced steady proliferation which was maintained during the final two days without 

extra cytokine addition. We also did not observe a decrease in functionality without additional 
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cytokine stimulation in the final two days. It is important to point out that this was not a setting 

of cytokine withdrawal, as the medium was not refreshed. Residual amounts of IL-15 still 

present in the media most likely provided the necessary survival cues to the proliferating cells. 

This is a more physiologically relevant environment for the product prior to infusion and 

yielded sufficient NK cells numbers to be used for treatment. We have completed the GMP 

validation runs and are hoping to treat the first high-risk MDS patient in the near future.  
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4 CONCLUDING REMARKS 
This thesis provides new insights into the dynamic nature of NK cell homeostasis, from 

understanding NK cell differentiation at the transcriptional level to perturbations after cytokine 

stimulation and immunomodulatory therapies. Listed below is a summary of the key findings 

from each of the four papers.   

o CD56bright NK cells consist of two distinct transcriptional populations dominating the 

transcriptional timeline of NK cell differentiation, including two out of three 

transcriptional checkpoints identified (paper I).  

o Transcriptionally CD56bright NK cells gradually transition into CD56dim NK cell which 

undergo a further transcriptional checkpoint prior to terminal maturation into adaptive 

NK cells (paper I).  

o Global repertoire diversity is maintained through a high degree of intra-lineage subset 

plasticity during IL-15-driven homeostatic proliferation in vitro, whereby subset-

specific proliferation kinetics correlate with mTOR activation (paper II).  

o Subset plasticity at the phenotypic level is tightly linked to the functional fate of the 

cell and associated with transcriptional reprogramming defining the acquired 

phenotype (paper II). 

o In vitro 5-aza treatment has profound and replication-dependent effects on KIR 

expression and NK cell functionality towards tumor target cells (paper III).  

o Increased frequencies of KIR+ NK cells in MDS patients undergoing 5-aza treatment 

indicates drug uptake during in vivo cell division (paper III).  

o In vitro expansion of human NK cells with IL-15 leads to a dose-dependent addiction, 

resulting in caspase-3 induced apoptosis due to a dysregulated BCL-2/BIM ratio 

following IL-15 withdrawal (paper IV).  

o Withdrawal-induced apoptosis in IL-15 activated NK cells was linked to a 

proliferation-dependent induction of BIM short, a pro-apoptotic splice variant of BIM 

(paper IV).  
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5 FUTURE OUTLOOK 
NK cells circulate in a pre-primed state full of effector molecules, such as granzyme B and 

perforin, and have a natural ability to kill cancer cells. Based on their cytotoxic capacity they 

hold great potential in the clinic as a cancer treatment, made evident by the number of ongoing 

clinical trials. However, to date most completed and ongoing clinical trials are based on the 

transfer of cytokine-activated polyclonal NK cell populations from donors with very variable 

NK cell repertoires. To fully harness the clinical potential of NK cells, future trials need to be 

founded on recent breakthroughs in our understanding of the vast repertoire diversity and the 

fundamental mechanisms that govern the intrinsic functional potential of distinct NK cell 

subsets at steady state and following cytokine stimulation.  

The vast heterogeneity of NK cells at steady state within individuals has become evident 

through the use of single-cell technologies, such as multi-parameter flow cytometry, mass 

cytometry and scRNA-seq. Understanding how NK cells repertoires are formed, maintained 

over time and what functional roles individual cell subsets perform at steady state are important 

for generating the ideal NK cell product. This could either involve modifying existing cells to 

improve functionality, expanding highly cytotoxic subsets while ensuring retention of 

functionality or designing a ‘synthetic’ genetically engineered killer cell from induced 

pluripotent stem cells. 

Furthermore, we need to understand how NK cells are functionally shaped by their 

surroundings. The soluble factors, metabolic cues, fluctuations in oxygen levels and pH 

encountered by an NK cell in the tumor microenvironment are very different from steady state 

and their impact on NK cell function and persistence cannot be underestimated. This is 

particularly difficult to study in the human setting, with mouse models only providing an 

approximation.  

By understanding the basic biology, from development to differentiation to receptor and 

cytokine input, we will build up our tool kit which can then be applied to design and develop 

effective treatment strategies. After all, the ‘natural’ killing capacity is there, we just need to 

understand how to harness it. 
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