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Nomenclature. 

𝑐1：Absolute inlet velocity of steam [m/s] 

𝑐1𝑤：Absolute velocity of droplet inlet[m/s] 

𝐶𝑝：constant specific heat of water [kJ/kgK] 

D：Turbine Diameter[m] 

f：Frequency[Hz] 

F：Steam force[N] 

ℎ0：Specific enthalpy of turbine inlet [kJ/kg] 

ℎ0′：Specific enthalpy of saturated liquid at turbine inlet pressure [kJ/kg] 

ℎ0′′：Specific enthalpy of saturated steam at turbine inlet pressure [kJ/kg] 

ℎ1: Specific enthalpy of turbine Outlet [kJ/kg] 

ℎ1′: Specific enthalpy of saturated water at outlet of turbine [kJ/kg] 

ℎ1′′: Specific enthalpy of saturated steam at turbine outlet [kJ/kg] 

⊿H：Hot water enthalpy difference at the heat exchanger [kJ/kg] 

𝑚𝑐：working fluid flow rate[kg/s] 

𝑚𝐻：Hot water flow rate[kg/s] 

N：Rotational speed [rpm] 

P: Output [kW] 

R：Steam gas constant [kJ/kgK] 

𝑠0：Specific entropy of fluid at turbine inlet [kJ/kg]  

𝑠1：Specific entropy of fluid at turbine outlet [kJ/kg] 

𝑠1′：Specific entropy of saturated water at turbine outlet pressure [kJ/kg] 

𝑠1′′：Specific entropy of saturated steam at turbine outlet pressure [kJ/kg] 

T：absolute temperature of the nozzle inlet steam [K] 

t：turbine torque [N.m] 

⊿T: Temperature difference between hot water at the inlet and outlet of the evaporator [K] 

�⃗⃗�：A side turbine peripheral speed [m/s] 

𝑤1⃗⃗ ⃗⃗ ⃗：Relative inlet velocity of steam [m/s] 

𝑤1𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗：Relative inlet velocity of droplet [m/s] 

𝑥0：dryness at turbine inlet [-] 

𝑥1：dryness at turbine outlet [-] 

𝛼１：absolute angle of steam at turbine inlet [deg] 

𝛽１：Relative angle of steam at turbine inlet [deg] 

𝜂𝐺：Cycle efficiency [%] 

𝜅：Specific heat ratio of steam [-] 

γ：optimization parameter [kJ/kg] 
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1. Preface 

1.1 Introduction and background 

 

Together with the rapid growth of the world population, the world global warming determined 

the trend of the world energy policy. While providing enough energy is necessary for our daily 

life, the consideration of the environmental impact of the produced energy should not be neglected. 

Limited ability to supply the non-renewable energy leads to the energy shortage in developing 

countries. To satisfy these requirements, the need to increase the production of renewable energy 

has become crucial. 

Recently the geothermal is one of the most desirable renewable energy sources. As shown in 

fig.1 Japan has the world’s third largest potential of geothermal resources (23,400MW), however 

has only 520MW (2.2%) to have been developed. The year production in 2010 was about 500 

MW, which represents half of a large nuclear power plants power production. The Ministry of the 

Environment has estimated that this fraction can be raised to 23.5. There are over 3,000 hot 

springs in Japan if exploited can generate 8,500 MW of electricity. 

 

 

Fig.1 Geothermal energy potential. 

 

Geothermal power generation plant can be divided into two main different types. Namely the 

flash steam geothermal power plant and the binary geothermal power plant as show in fig.2 below. 

Each type of geothermal power plant have a specific characteristic and they differ from each other 
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by the heat cycle system formation and flow. 

In the flash steam geothermal plant, the brine also known as the heat source which is a mixture 

of steam and liquid is taped from a production well and send to a steam-liquid separator where 

steam is separated from the rest of the mixture. The steam then expand through a turbine and 

power is generated. 

There is only one heat cycle which make the particularity of such a system. 

On the other hand, in the geothermal binary power generation plant there are two working fluid 

and or 2 heats cycle. The brine or heat source is taped from the production well and pumped to a 

heat exchanger where it supply heat to a secondary fluid known as the working fluid. In most 

cases the working fluid is an organic fluid which has a low boiling point and thus can evaporate 

even at a low temperature. The working fluid goes throw a turbine where it expanded and power 

is generated. 

Our research will be based on the binary geothermal power generation system. 

 

 

Fig2. Type of geothermal power plant 

 

In general, based on the design conception, the binary generation system can be divided into 2 

types which are the ways to recover the energy from the low temperature thermal sources, namely 

the two-phase turbine and steam-driven turbine. In the case of a steam driven turbine, only the 

steam drive the turbine while in two-phase turbine, a mixture of liquid and steam drive the turbine 

Fig.3 is a representation of both systems T-H diagram at the evaporator. Assuming the specific 

heat capacity of hot spring water is constant, the temperature changes linearly. For this reason, on 

a steam-driven turbine, there exists a point where the difference of temperature between the heat 

source and the working fluid is the lowest called the pinch. The pinch point imposes a constraint 
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on the heat recovering system, therefore, the outlet temperature of the hot water remains higher 

as observed in the T-H representation. Generally, this pinch point coincides with the boiling point 

of the working fluid.   

 

However, it is demonstrated that when the two-phase flow turbine is adopted, the constraint does 

not exist and thus it becomes possible to recover a high amount of energy or to obtain a lower 

outlet temperature of the heat sources. A method of recovering the heat or lowering the outlet 

temperature is analyzed in this paper. 

 

 

Fig.3 pinch point constraint 

 

1.2 Research purpose 

 

In most binary power generation system, it has been observed the low boiling point organic 

substance such as ammonia, HCFC123, n-Pentane and PF5050 are used as working fluid, these 

cycle are called ORC or organic ranking cycle. It has been proven that most of the organic working 

fluid used has a high global warming potential or GWP and are currently facing a ban. Therefore 

to help address this concern Water was adopted as working fluid. As an advantage of water binary 

power generation system, although the thermodynamic performance might be low, the ability to 

meet climate protection initiatives can be mentioned. There is no ozone depletion potential (ODP) 

and there is no greenhouse gas emissions known as GHG. The system can be operated safely and 

the cost of installation, maintenance and operation are very low compare to complex superheated 

steam power generation plant.   
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It was found that in Steam driven turbine, the pinch point imposes a constraint on the heat 

recovering system therefore the outlet temperature of the hot spring water which is the heat source 

remains higher during the heat recovering process.  

A hot water binary power generation system that produce 10kW at the generating end output 

will be developed and analyzed by applying the heat from the hot spring water with temperature 

below 100 deg. Celsius. therefore the low temperature heat energy from hot spring water will be 

converted into mechanical work and the hot spring water Temperature will be lowered to 40℃ 

which is generally consider as the average bath temperature in japan.   

 

1.3 Ranking cycle 

Shown in fig.4 is the basic diagram of a ranking cycle. The Rankine cycle is a model used to 

predict the performance of steam turbine systems. The Rankine cycle closely describes the 

process by which steam-operated heat engines commonly found in thermal power generation 

plants generate power. 

Power depends on the temperature difference between a heat source and a cold source. The higher 

the difference, the more mechanical power can be efficiently extracted out of heat energy, as 

per Carnot's theorem.The heat sources used in these power plants are usually nuclear fission or 

the combustion of fossil fuels such as coal, natural gas, and oil, or concentrated solar power. The 

higher the temperature, the better the system performance. The efficiency of the Rankine cycle is 

limited by the high heat of vaporization of the working fluid. 

 

 

Fig.4 Ranking cycle of a binary cycle 

 

https://en.wikipedia.org/wiki/Steam_turbine
https://en.wikipedia.org/wiki/Heat_engine
https://en.wikipedia.org/wiki/Power_station
https://en.wikipedia.org/wiki/Power_station
https://en.wikipedia.org/wiki/Carnot%27s_theorem_(thermodynamics)
https://en.wikipedia.org/wiki/Nuclear_power
https://en.wikipedia.org/wiki/Coal
https://en.wikipedia.org/wiki/Natural_gas
https://en.wikipedia.org/wiki/Fuel_oil
https://en.wikipedia.org/wiki/Concentrated_solar_power
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1.3.1 Hot water binary power plant generation system T-S diagram 

 

Shown in fig.5 is the T-S diagram of the hot spring water binary power plant at turbine inlet 

pressure of 30.2kPa.the x-axis represent the entropy while y-axis represent the temperature 

variation. The incipient point coincide with the boiling point at the evaporator of the working 

fluid. The system output is delimitated by the area 012340. Where 4 represent the incipient point.  

 

 

Fig.5 T-S diagram of binary cycle 
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1.3.2 Hot water binary power plant generation system T-H diagram 

 

Shown in fig.6 is the T-H diagram of a water binary power generation system at the turbine inlet 

pressure of 30.2kPa. The red dot line represent the hot water line or heat source line while the 

blue dot line represent the cooling water line or the cold source line. The pinch point can be 

defined as the point where the hot water temperature and the working fluid temperature difference 

reach it minimum or smallest value.   

 

 

Fig.6 T-H diagram of a water binary power plant. 
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2. Hot water binary plant theoretical analysis 

 

2.1 Purpose 

 The steam table and design specification were used to determine the performance of a water 

binary power plant. Shown in fig7. Is the process flow diagram of the hot water binary system 

which can be divided into 4 different stages as describe in the table1 below. The number 0 in the 

diagram represents the turbine inlet, the number 1 represent the turbine outlet. The number 2 

represents the condenser outlet while the number 3 represents the evaporator inlet. 

 

 

 

Fig7. Process flow diagram 

 

Table1. Process flow diagram description 

Stage Location Description 

stage 1:  

3 to 0 

Evaporator Heat is supplied to the working fluid.  

Liquid ➡ vapor. the temperate rises and a vacuum is maintain in the steam 

line 

stage 2:  

0 to 1 

Turbine The steam expands as the temperature and pressure drop and mechanical 

work is being produced.  dry saturated steam ➡ wet steam 

stage 3:  

1 to 2 

Condenser Heat taken away and temperature drop. 

Wet steam ➡ Saturated liquid steam 

stage 4:  

2 to 3 

Pump Liquid low pressure and temperature to high pressure and  

low temperature, pump work received 
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Table2 represent the design specification of the system. Theoretical analysis will be carried out 

base on the design specification as described in the table. 

 

Table2. Design specification. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output [kW] 10 

Hot water inlet temperature [℃] 85 

Cooling water inlet temperature in condenser [℃] 15 

Cooling water outlet temperature in condenser [℃] 25 

Pinch point temperature difference [K] 3 

Hot water pressure loss in evaporator [kPa] 5 

Cooling water pressure loss in condenser [kPa] 0.6 

Turbine efficiency [-] 0.8 

Pump efficiency [-] 0.4 

Machine efficiency [-] 0.92 
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2-2 Method 

Based on the design specification, the steam table was used to determine the performance and 

efficiency of a water binary power system. Parameters such as turbine inlet and outlet temperature, 

pressure and turbine efficiency were used in the calculation. The turbine efficiency was kept 

constant during the entire calculation and analysis at 0.8 while other parameters where changed 

according to a specific and defined purpose in order to obtain the system must accurate 

characteristics. 

 

2.3 Results analysis 

2.3.1 Turbine Inlet steam pressure effect 

Shown in fig.8 is the binary T-H diagram at turbine inlet pressure of 30.2kPa. The temperature 

variation of hot spring water and cooling water are included. The outlet temperature of hot water 

is limited at 75℃ due to the pinch point constraint. 

 

 

 

Fig.8 T-h diagram with pinch point. 

 

Considering 1 kg of working fluid, since the system efficiency is the ratio of the generator output 

to the heat energy received, it can be obtained from the following equation (1) 

 

𝜂 =
𝑊𝑇−𝑊𝑃

ℎ0−ℎ3
                                          (1) 

 

Where, WT is the turbine power produced, WP the pump received power, h0-h3 is the enthalpy 

difference at the evaporator. The working fluid flow rate 𝑚𝑐 necessary to generate [10kw] of 
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power is given by the following equation (2).  

 

𝑚𝑐 =
10

𝑊𝑇−𝑊𝑝
                                               (2) 

Assuming that the change in the turbine is isentropic change, the entropy of the turbine inlet and 

the entrance of the turbine are equal, and since the working fluid at the turbine outlet is wet steam 

 

𝑠0 = 𝑠1 = 𝑠1
′ + 𝑥1(𝑠1

′′ − 𝑠1′)                                              (3) 

 

Here,𝑠1
′ , 𝑠1

′′are the specific entropy of saturated water and saturated steam at the turbine outlet 

respectively, and 𝑥1 is the steam dryness . 

 From the equation (3), the dryness 𝑥1 at the exit of the turbine in case of isentropic change can 

be obtained by the following equation. 

𝑥1 =
𝑠0−𝑠1′

𝑠1
′′−𝑠1′

                                                           (4) 

 

Thus, the enthalpy of the turbine exit at isentropic change can be obtained by the following 

equation. 

 

ℎ1 = ℎ1
′ + 𝑥1(ℎ1

′′ − ℎ1′)  [kJ/kg]                                          (5) 

 

Where ℎ1
′ , ℎ1

′′ are the specific enthalpy of saturated and saturated steam at the turbine outlet.  

The turbine work produced WT is enthalpy difference between turbine inlet and outlet, 

 

∆h = ℎ0 − ℎ1                                                        (6) 

By considering the turbine efficiency 𝜂𝑇,the actual worked can be given as 

 

∆ℎ𝑇 = 𝜂𝑇(ℎ0 − ℎ1) = 𝜂𝑇∆h                                            (7) 

Base on the system heat balance between the heat source and the working fluid the following 

equation can be obtain. 

𝑚𝐻 =
𝑚𝑐(ℎ0−ℎ3)

∆ℎ𝐻
                                                      (8) 

 

Analytical result shows that the hot spring water outlet temperature dropped as the turbine inlet 

pressure decreases. Fig.9 is a representation of the system T-H diagram, when the turbine inlet 

pressure is maintain at a pressure of 20kPa and 30.2kPa the pressure drops, the pinch point 
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temperature decreases causing the hot spring water temperature slope to be steep, as a result its 

became possible to obtain a low outlet temperature of hot spring water. 

 

 

Fig.9 T-h diagram at different pressure 

 

 

The pressure variation does not only affect the hot spring water temperature, calculation base on 

equation (2) showed the hot spring water flow rate changes as the pressure drops. Fig 10 shows 

the effect of the turbine inlet pressure on the system. As the turbine inlet pressure drops, the hot 

water outlet temperature also decreases monotonously. However, when the turbine inlet pressure 

drops, the hot water flow rate also decreases and reach a minimum at an inlet pressure of 15kPa. 

It can be predicted that for the area below the minimum pressure value, there is a need for a high 

amount of energy for the system to perform accurately as the system efficiency is too low. 
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Fig10. Pressure variation effect on flow rate and temperature 

 

Given that a high amount of energy is required when the turbine inlet pressure is low, analytical 

result base on the power generated per kilogram of hot water was carried out. From Fig.11 it is 

shown that the turbine inlet pressure dropped lowered the efficiency. As proven previously, the 

hot spring water flow rate mH  reach a minimum at 15 kPa. Thus, a high amount of energy is 

required. For this reason, the power generated per 1 kg of hot spring water Gn reach a peaks at a 

pressure of 15 kPa. It can be concluded that at this point most of the heat energy held by the hot 

spring water is totally converted into power.  
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Fig.11 Pressure variation effect on efficiency and generation 

 

Base on fig.12 the flow rate of working fluid increases with decreasing steam pressure.  

This can be explained by the fact that the enthalpy difference of the turbine inlet and outlet of the 

working fluid decreases as the steam pressure decreases and a high amount of working fluid flow 

rate is necessary to obtain the power generation amount of 10 kW.  

In addition, the hot spring water flow rate decreases as the steam pressure decreases and reach a 

minimum at steam pressure P0 = 15 kPa. It can be predicted that when the pressure falls within 

the range of 40 kPa to 15 kPa, the outlet temperature of the working fluid in the evaporator 

decreases therefore, the inlet-outlet temperature difference of the working fluid also decreases.  

However, on the hot spring water side the outlet temperature rises and the inlet-outlet 

temperature difference Increases. Consequently a less amount of hot spring water flow rate is 

required. The hot spring water flow rate further increased in the low-pressure region below 15 

kPa. This can be explained by the fact that the turbine inlet-outlet enthalpy difference of the 

working fluid becomes considerably small and the necessary flow rate of the working fluid to 

drive the turbine rapidly increases and the flow rate of the working fluid passing through the 

evaporator also increases rapidly. It became then necessary to further increase the hot spring water 

flow regardless of the enthalpy difference of the working fluid side and hot spring water side of 

the evaporator. 
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Fig.12 Turbine inlet pressure effect on flow rate. 

 

2.3.2 Turbine Inlet steam quality effect 

 

It has also been proven that another way of lowering the turbine outlet temperature is by 

decreasing the steam quality (steam dryness). In this case, the pinch point remained fixed while 

the enthalpy difference of the evaporator is reduced, in order word, the gradient of hot spring 

water per enthalpy increases and thus lowered the outlet temperature. 

Since the pinch point constraint does not exist when the quality is around 0, it become possible to 

lower the hot spring water temperature up to a temperature equal to the sum of the pinch point 

temperature difference (3℃) and the cooling water inlet temperature. 

It was shown that when the proportion of liquid in the steam-liquid 2 phase mixture at the inlet 

of the turbine increases, the turbine is not only driven by steam but also by water. In this case, it 

is assumed that the turbine inlet flow velocity decreases as liquid proportion increases and thus 

the rotation speed also decreases.  

In addition, it can be predicted that the turbine efficiency will also decreases due to an increase 

in the proportion of liquid in steam-liquid 2 phase mixture. However, this fact had not been taken 

into consideration when carrying out analytical result as the turbine efficiency was kept constant. 

Fig.13 shows a comparison between turbine inlet quality x0 = 1 and x0 = 0.4. It can be observe 

that by decreasing the quality, the hot spring water temperature gradient becomes steep and thus 

the outlet temperature can be lowered. 
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Fig.13 Effect of the steam dryness 
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As shown in fig.14, when the quality decreases, the hot spring water outlet temperature Tout 

decreases and the flow rate 𝑚𝐻  slowly decreases. The hot spring water outlet temperature and 

flow rate rapidly decreases when the quality is around 0.2. When the quality is 0, the pinch point 

constraint does not exist, under this condition, the flow 𝑚𝐻  slowly rises. 

 

 

Fig.14 Turbine inlet quality effect on flow and temperature 

 

 

 

Shown in fig.15 is the effect of turbine inlet quality on the generation Gn and cycle efficiency. 

As can be observed, when the steam dryness is less than 0.2 the efficiency falls while the power 

generated per kg of hot water rose. When the quality decreases just below 0.2 the efficiency 

rapidly decreases however since the decrease in hot spring water outlet temperature is larger, the 

hot spring water flow rate 𝑚𝐻  decreases without reaching the minimum value. For this reason, 

the amount of electricity generation Gn per 1 kg of hot spring water increases and reaches a peak 

just before the quality becomes zero. This peak is caused by the non-existence of the pinch point 

constraint which then allow the hot water flow rate 𝑚𝐻  to slightly rise. As the steam quality 

decreases, the efficiency and power generated per kilogram of hot water remain constant.  
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Fig.15 Turbine inlet steam quality effect on efficiency and generation. 

 

From the above analysis decreasing the steam pressure or quality of the turbine inlet steam, the 

system efficiency decreases, however, the amount of power generation per kg of hot spring water 

increases and reach its maximum value. Therefore by considering the limited amount of hot spring 

water, it is necessary to pay attention to the amount of electricity generated per kg of hot spring 

water rather than the conventional efficiency. However, since the turbine efficiency is kept 

constant in this study, it has to be taken into consideration in future experiment for a more accurate 

pressure-efficiency and quality-efficiency relation definition. 

 In the conventional cycle efficiency-oriented method, since it is not possible to lower the hot 

spring water temperature, it was necessary to cool the hot spring water after the power generation 

for bathing or secondary usage. The method shown in this report is convenient for effectively 

using hot spring water for secondary usage. 
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3. Hot water binary plant experimental analysis 

 

3.1 Low pressure hot water binary plant experiment  

3.1.1 Purpose 

The hot water binary power generation system will be run and operated under certain condition 

and load in order to determine the system performance and characteristics. Shown in fig.16 is the 

system general process flow diagram representation with both heat cycle and major components. 

Trial or test of the generation system will be carried out in order to reach the system steady state 

condition.  

 

 

 

Fig.16 General Process flow diagram 
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3.1.2 Experiment equipment 

Fig.17 represent the experiment general arrangement showing the main components and their 

location on the site. 

 

Fig.17 Experimental equipment general arrangement. 
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Fig.18 turbine blade 

 

As shown in fig.18 the turbine used is the radial turbine. A turbine in which the flow of 

the working fluid is radial to the shaft. This flow is smoothly orientated perpendicular to the 

rotation axis as a result, there is less mechanical stress (and less thermal stress, in case of hot 

working fluids) which enables a radial turbine to be simpler, more robust, and more efficient (in 

a similar power range) when compared to axial turbines. 

 

https://en.wikipedia.org/wiki/Turbine
https://en.wikipedia.org/wiki/Working_fluid
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Fig.19 Turbine blade and nozzle 



24 

 

 

Fig.20 Electricity load 

Shown in fig.20 is the electric load. The load was set up and program in 4 different blocks. Each 

block having 3 rows of light bulb.   

 

 

 

Fig21. Cooling tower 
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Fig.22 Boiler 
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The main features of this experimental apparatus will be described 

  

Table.2 Highlights table of boiler 

Hot water boiler 

 

1.description 

 

Type Reflux hot water heater 

Maker Miura Kogyo Co., Ltd. 

Model number UT－200H(outdoor specification) 

2.specification 

 

Heat output 233 kW 

Maximum head pressure 0.98 MPa(maximum) 

Burner model forced pushing ventilation source mixed fuel system 

Used fuel oil City gas (13 A) 

Usable temperature 150℃(maximum) 
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Table.3 Highlights table of evaporator 

Evaporator 

 

１.description 

 

Type Type Plate Heat Exchanger 

maker Manufacturer Alpha Laval Co., Ltd 

Model M10－BFM 

2. Specification 

 

Maximum flow rate 2.3 ㎥/min 

Maximum working pressure 1.0 

MPa 

1.0 MPa 

Operating temperature -25℃～140℃ 

Adaptation standard ISO ISO 

 

 

 

Table.4 Highlights table of working fluid pump 

Working fluid pump 

 

1.description 

 

type small size magnet pump 

maker Iwaki Co.,Ltd 

model MD－70RZ 

2.specification 

 

Working fluid flow 40 L/min (Max) 

Total head 14.3 m 
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Table.5 Highlights table of lubricating oil pump 

Lubricating Working fluid pump 

1.description 

 

model Small magnet pump 

manufacturer Inc. Iwaki 

Model number MD－70RZ 

2.Specification 

 

Working fluid flow 40 L/min(maximum) 

maximum head 14.3 m 

 

 

Table.6 Highlights table of turbine 

Turbine (Twin entry turbine) 

1. Description 

 

Model Twin entry radial Turbine 

Manufacturer Inc. ARCHIVE WORKS 

2.Specification 

 

Rotor blade outside diameter 244 mm 

Design rotational speed 36000 rpm 

Working fluid flow rate 20 L/min (Maximum) 

Maximum pressure 1 MPa 

Maximum Temperature 150℃ 
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Table.7 Highlights table of generator 

 

 

Table.8 Highlights table of condenser 

Condenser 

 

1.Description 

 

Model Plate type heat exchanger 

Manufacturer De Laval 

Model number TS20－MFM 

2.Specification 

 

Maximum Flow rate 10 ㎥/min 

Maximum pressure 2.1 MPa 

Operating temperature -25℃～140℃ 

Adaptation standard ISO 

 

 

 

 

 

 

Generator 

 

1.description 

 

model concentrated winding permanent 

magnet synchronous generator 

manufacturer Inc. ARCHIVE WORKS 

2.Specification 

 

Rated Output 10 kW 

Rated speed 36000 rpm 

Type of power supply 3 phases 

    Rated voltage 200 V 

Rated current 29 A 

Heat-resistant class H of insulator H Type 

Insulation class H type 

Running time continuous continuous 
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Table.9 Highlights table of hot water pump 

Hot water pump 

 

1.Description 

 

type Centrifugal pump 

manufacturer Co., Ltd. Terada Pump Manufactory 

Co., Ltd. 

Model number CMP6－52.2R 

2.specification 

 

Flow rate 800 L/min(maximum) 

Total head height 14 m 

 

 

Table.10 Highlights table of flow-control valve 

Medium circulation flow control valve 

 

1.Description 

 

Type Floating ball valve 

Manufacturer Co., Ltd. Kitz 

Model type RDH124 

2.Specification 

 

Maximum pressure 2.1 MPa 

 

 

Table.11 Highlights table of cooling water pump 

Cold water pump 

 

1.description 

 

type Centrifugal Pump 

Manufacturer Co., Ltd. Terada Pump Manufactory Co., Ltd 

Type model CMP6－52.2R 

2.Specification 

 

Flow rate 800 L/min(Maximum) 

Total head height 14 m 
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Table.12 Highlights table of pressure sensor 

Pressure sensor 

 

1.description 

 

Type Absolute Pressure Transmitter 

Maker Huba Control 

Model Type 680 series 

2.Specification 

 

Maximum pressure 25 bar 

Maximum temperature 150℃ 

 

 

 

Table.13 Highlights table of pressure sensor 

Pressure sensor 

 

1.Description 

 

Type High precision electronic pressure sensor with digital display 

Manufacturer convum 

Model type MPS－33 series 

2.Specification 

 

Maximum pressure 0.8 MPa 

 

 

Table.14 Highlights table of temperature sensor 

Temperature sensor 

 

1.description 

 

model Thermistor 

Manufacturer Fuji Electric Co., Ltd 

Type model FTNA1HE3－A11Y 

2.specification 

 

Measurement range 0～150℃ 
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Table.15 Highlights table of flow meter 

Hot water flow meter 

 cold water flow meter 

 

1.Description 

 

Type Electromagnetic non-wetted type 2 wire type 

electromagnetic type flow rate 
 

Wetted part material: alumina ceramic, SUS 316 L, 

FKM (standard · explosion proof type) 

Manufacturer KEYENCE 

Type model FD－UH80H 

2.Specification 

 

Maximum pressure 1 MPa 

Maximum temperature 100℃ 

Measurement range 3015.9 L/min (Maximum) 

Flange standard JIS10K 

Response time 0.5 s minimum 
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Table.16 Highlights table of measurement control device 

Measurement control device  

 

1.Description 

 

Type Cloud data retractable remote control type 
 

Control computer: Aldino 
 

Analog / digital method 

Name Name Water binary generator Operation 

measurement control device 

Manufacturer Inc. ARCHIVE WORKS 

2.Specification 

 

capacity 4 Mb, main computer · 500 Mb 

Temperature measurement thermistor · SUS tube enclosed 

Pressure measurement 

 

Power power, voltage, current measurement 

Rotational speed rotation sensor 

Power absorption three-phase 200 V · 200 W bulbs · Number 

switching type 

3. Control method 

 

generated power control l Remote switching control of the number of light 

bulbs 

Rotation speed control pump rotation speed control 
 

Generated power (number of bulbs) control 

combined use  

 

 

 

 

 

 

 

 

 

 

Table.17 Highlights table of data communication unit 

Data trans device 
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1.Description 

 

Type Wireless LAN system 

name IoT_M & C Remote Monitoring Device 

manufacturer Inc. ARCHIVE WORKS 

2.Specification 

 

configuration LAN + main control computer 

speed communication speed · 1 control / set it to about 5 seconds 

 

Shown in fig.23 is the system test section side view. The evaporator and the condenser are 

represented in blue. The twin turbine is located in between them. Two working fluid tanks are 

used to carry out the experiments accurately.    

 

 

Fig.23 Test section side view 
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Fig.24 test section top view 

 

3.1.3 Method 

The aim of the current experiment is to acquire the data of each element that constitute the hot 

water binary power system.  

Experiments were carried out by the following procedure. 

① First of all a vacuum is maintain within the working fluid line by the use a vacuum pump. 

② the boiler is started and hot water is pump to the evaporator where it supply heat to the working 

fluid. 

③ Next, working fluid pump is run and the working fluid is pump to evaporator where it receive 

heat and evaporate even at a low temperature as a vacuum is maintain within the working fluid 

line though out the entire process. The flow rate is determined by the pump output and 

unfortunately could not be adjusted automatically due to the system conception. When needed the 

flow rate is changed manually using flow rate adjustment tools. 

④Load is applied to the system to generate electricity. Load is divided into four stages. 

3.2 Result analysis 

3.2.1 Data frame description and cleanup process 
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Shown in table18. Is the summery of the dataset. Couple of experiment were carry-out in order 

to reach the steady state condition.as describe in the table, for each experiments carried out, some 

trouble were encountered. In some cases immediate solutions were applied to instantly solve the 

trouble and complete the experiments. Our analysis and discussion will be based on the 

experiments made on December 26 2018 as the data recorded were so far the most reliable and 

accurate compare to the other datasets. 

 

Table18. Datasets description 

 

 

Due to the turbine inlet pressure variation and temperature instability, the steady state condition 

had not been reached. Shown in the fig.25 and fig.26 below, is the temperature variation and the 

pressure variation respectively.   
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Fig.25 Inlet temperature Data instability observation. 

 

 

 

Fig.26 instability of pressure. 
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Base on the dataset that were recorded so far, some incorrect or unwanted data must be 

eliminated for accurate analysis and discussion. Shown in fig.27 and fig.28 is the cleanup data 

representation in the case of the turbine inlet temperature and working fluid flow rate.  

 

Fig.27 Before cleanup of temperature 

 

 

 

Fig.28 After cleanup of the temperature 
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3.2.2 Load observation.  

 

The hot water binary power plant was run and operated under certain condition or form of load 

to determine the system performance. Four different form of load were applied to the system for 

analysis characteristic. Shown in fig.29 is the load observation.   

 

 

Fig.29 Load observation. 

 

As shown in the fig.29 above, there 4 different forms of load have different characteristics.table19.  

Shows the load description of all 4 cases. 

Table19 load characteristic 

 
Load 

p-load0 0 

p-load1 3 rows 

p-load2 6 rows 

p-load3 9 rows 

p-load4 12 rows 

 

The rows number denote the number of active light. Generally, the different form of load can be 

separated in 3 major group namely the light load, the medium load and the full load with the light 

load having the smaller number of active load and the full load have the highest number.  
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3.2.3 Turbine output and rotational speed relation 

Base on the load observations above, the system output was analyzed. As shown in fig.30 below, 

for each form of load there is a specific line representation. The diagram was obtain after the 

cleanup of the original datasets. The unnecessary data were eliminated to have the best possible 

presentation. It can be predicted that for a water binary system the output is a function of the 

turbine revolution. However, for the same rotational speed there are different value of output, this 

can be explained by the difference of load that was applied on the system. Each line slope differ 

from each other due to flow rate variation or difference.  

 

 

Fig.30 the turbine output increase with the rotational speed 

 

The Rotational Speed-Output relation can be represented by the equation (9) and (10) below 

where F is the force applied on the turbine, R is the turbine Radius, t is turbine torque, the turbine 

output is P and N represents the rotational speed. An increase in turbine rotational speed lead to 

an increase in turbine output.Fig.31 show the action of the torque on the turbine.  

 

t = F×R                                                                  (9) 

P = N×F×R                                                              (10)   
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Fig.31 Torque Acting on the turbine. 

 

3.2.4 Turbine flow rate and output  

Analysis made on the flow rate showed that it a very important parameters amount other to 

describe the system functionality. As shown in fig.32 below, as the flow rate increases, the output 

also increase. Explicit observation made on load 4 representation indicated that the output start 

falling when the flow rate reaches certain value. This can be explained by the formation of a two-

phase flow called as entrainment or carryover. It has been proven that the liquid phase of the 

steam-liquid mixture hit the back of the rotational turbine and thus slow down the turbine rotation.  

  

 

Fig.32 flow rate variation with output. 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5 6 7 8 9

O
u

tp
u

t[
W

]

Flow rate[L/min]

P load4 P load3 P load2 P load1 P load0



42 

 

Given that the system Output increase with increasing flow rate, analysis were made on the 

system cycle efficiency as shown in the fig.33 below. The system cycle generally increase with 

the increasing flow rate. However, just above certain value of the flow rate, the system efficiency 

start falling. This can be explained by the formation of a two-phase flow as mentioned previously.    

 

 

Fig.33 flow rate and efficiency 

 the cycle efficiency ηgiven in equation (11) is the ratio of the output P to the enthalpy 

differenceΔH of the hot water at the evaporator.ΔH is consider as the total heat energy apply to 

the system and p the output at the generation end.  

𝜂 =
𝑃

𝛥𝐻
                                               (11) 

Analysis were also made concerning the effect of the system rotational speed on the cycle 

efficiency in order to predict the most accurate rotational speed at which the binary power 

generation system should be operated. As shown in fig.34 an increase in the rotational speed lead 

to high efficiency system.it was observed that under the load p4 the rotation stops increase when 

it reaches certain value, this can be explained by the weight of the load on the system. When the 

system is switched to a full load a high amount of power or momentum is required for the system 

to perform under the describe condition. Given that a high amount of momentum is required, the 

rotational speed does not increase due to the heavy load on the system.    
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Fig.34 Rotational speed and Efficiency relation. 

 

3.2.5 Efficiency and optimization parameter 

From the analysis and discussion above, the Output-Flow rate ration called γ is very important 

element to determine the system general performance. The Ration Output-Flow rate can be 

considered as the hot water binary power plant optimization parameter. Shown in fig.35 below is 

the variation of the system efficiency and the Optimization parameter. The system efficiency 

increases with the increasing optimization parameters. The optimization parameter represents the 

proportion of energy in a kg of working fluid.   

 

 

Fig.35 optimization parameter and efficiency 
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3.2.6 Working fluid pump effect.  

Observation made on the working fluid pump pressure shows that it can be a qualitative 

parameter to describe the functionality of a binary power plant. As shown in fig.36  

 

 

Fig.36 working fluid pump pressure and flow rate 

 

The working fluid pump pressure not only affect the turbine inlet pressure but also the working 

fluid flow rate.fig.37 analysis indicated that On phase 2 the drop-in pressure can be explained by 

the formation of a 2-phase flow. 

 

 

 

Fig.37 Output and working fluid pump relation 

  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Fl
o

w
 R

at
e[

kg
/s

]

Pump pressure[MPa]



45 

 

 

3.2.7 The formation of two phase flow and the effect on the turbine output 

 

 From the above analysis it was predicted that there is a formation of a two-phase flow when 

turbine speed reaches a certain value. The liquid formation can be explained by two main factors, 

the first factor of formation is during the heat exchange process. A high flow rate of the working 

fluid slower the formation of steam within the heat exchange therefore there is formation of carry-

over or entrainment.  

  The second factor of formation of a 2-phase flow can be explained by a phenomena that occur 

within a heat exchanger as the basis for the presence of droplets. As shown in Fig.38 from Florine 

Giraud et al. 'S paper, the working fluid surface ripple as its passes through the heat exchanger 

and small bubbles are generated. From this phenomenon, it is inferred that micro droplets may be 

carry over to the turbine together with the generated bubbles and thus a formation of a two-phase 

flow.  

 

 

Fig.38 droplet formation. 

 

 

Considering the influence of droplets contain in the steam-liquid mixture, Although it is difficult 

to accurately calculate the velocity of the droplet, from the steam turbine outline book, this value 

can be estimated to 1/10 of the steam velocity. Fig.39 shows the velocity triangle in case of a two-
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phase flow. The turbine peripheral speed is represented by vector u [m / s], the absolute velocity 

𝑐1 , and the relative velocity 𝑤1. From fig. 39, the vector of the relative velocity 𝑤𝑤1 of the 

droplet has a component in the direction opposite to the circumferential velocity, and it is observed 

that the droplet hit in the direction of the back of the turbine blade. The turbine inlet absolute 

velocity 𝑐1 of the steam at any time was obtained from the equation (12). An example of the 

velocity triangle at a given point is explained. 

 The presence of liquid in the two-phase flow or the formation of steam-liquid two phase flow 

also affect the turbine inlet angle. The turbine inlet steam angle was calculated as describe below. 

firstly，nozzle outlet absolute velocity 𝑐1 is evaluated. Specific heat ratio of wet steam κ is 1.02，

the steam gas constant R is 0.4615 kJ/kg.K，the nozzle inlet temperature T 

 

𝑐1＝√𝜅𝑅𝑇                                            (12) 

 

Turbine inlet relative velocity is obtain from equation (13) 

𝑤1⃗⃗ ⃗⃗ ⃗ = 𝑐1 − �⃗⃗�                                                               (13)   

 

From the formula below, absolute inlet angle and relative inlet angle is given by equation (14)      

𝑤1⃗⃗ ⃗⃗ ⃗ =
𝑐1 cos 𝛼1−�⃗⃗⃗�

cos 𝛽1
                                                            (14)                       

Peripheral velocity is obtained by  

 

�⃗⃗� =
𝑁

60
𝜋𝐷                                                               (15)    

 

Turbine inlet relative velocity angle 𝛽１ is given by  

𝛽1 = tan−1 𝐶1 sin 𝛼1

𝐶1 cos 𝛼1−𝑢
                                                      (16) 

Where nozzle angle 𝛼1=27.5 deg 

The speed of the liquid phase of the two-phase flow is 1/10 of the speed, the absolute velocity at 

the turbine inlet 𝑐1𝑤 

𝑐1𝑤 =
1

10
× 𝑐1                                                             (17) 
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Fig.39 droplet effect on turbine rotational speed 
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4. Conclusion 

 

A power generation system using the heat source from hot spring water was proposed. For the 

environmental safety, the working fluid is low pressure water instead of the low boiling point 

organic substance. The analysis indicated the amount of power generation per kg of hot spring 

water rose while the cycle efficiency dropped as the turbine inlet pressure or quality decreased. 

 

 Decreasing the steam pressure or quality of the turbine inlet steam, the system efficiency 

decreases, however, the amount of power generation per kg of hot spring water increases and 

reach its maximum value. Therefore, by considering the limited amount of hot spring water, it is 

necessary to pay attention to the amount of electricity generated per kg of hot spring water rather 

than the conventional efficiency. However, since the turbine efficiency is kept constant in this 

study, it will be taken into consideration for future experiment. 

 

In the conventional cycle efficiency-oriented method, since it is not possible to lower the hot 

spring water temperature, it was necessary to cool the hot spring water after the power generation 

for bathing or secondary usage. The method shown in this report is convenient for effectively 

using hot spring water for secondary usage. 

 

Currently, many binary power generations use polymer organic substance as working fluid 

instead of water. In general, since the global warming potentials (compared to carbon dioxide) of 

these organic substances is very high, the water binary power generation can be a suitable 

alternative solution. 

 

The Experimental analysis indicated that:  

Flow rate-Power relation is necessary to operated and run the water binary plant efficiently.an 

increase in flow rate lead to a carry-over or entrainment which slower the turbine revolution and 

thus the output of the system. 

The system average efficiency 5% and the maximum output 7.0[kW] different from the expected 

10[kW] this can be explained by loss in energy such as friction etc. 
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