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SUMMARY  ��

YidC/Alb3/Oxa1 family proteins are involved in the insertion and assembly of membrane proteins. The  ��

core five transmembrane regions of YidC, which are conserved in the protein family, form a positively  ��

charged cavity open to the cytoplasmic side. The cavity plays an important role in membrane protein  ��

insertion. In all reported structural studies of YidC, the second cytoplasmic loop (C2 loop) was disordered,  ��

limiting the understanding of its role. Here, we determined the crystal structure of YidC including the C2  	�

loop at 2.8 Å resolution with R/Rfree = 21.8/27.5. This structure and subsequent molecular dynamics  
�

simulation indicated that the intrinsic flexible C2 loop covered the positively charged cavity. This crystal  ��

structure provides the coordinates of the complete core region including the C2 loop, which is valuable ���

for further analyses of YidC. � �

  ���
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INTRODUCTION ���

 Membrane proteins are translated by ribosomes and properly integrated into the membrane, ���

which is a fundamental mechanism conserved in all organisms [1]. The bacterial membrane protein YidC, ���

an essential factor for cell growth, is involved in the integration of membrane proteins [2]. YidC proteins ���

are conserved in the mitochondria and thylakoid as Oxa1 and Alb3, respectively [3, 4]. Recently, �	�

YidC-like proteins were identified in the endoplasmic reticulum membrane [5] and archaea [6]. YidC has �
�

been proposed to function as an insertase for membrane protein biogenesis and chaperon promoting the ���

proper folding of membrane proteins in the membrane. During membrane protein integration via the ���

SecYEG complex, the protein-conducting channel YidC cooperates with SecYEG to assist with folding � �

of newly synthesized proteins in the membrane. The translating ribosome directly interacts with SecYEG ���

[7-9] or YidC [10], enabling co-current protein translation and integration into the membrane. ���

 Conserved regions of YidC/Oxa1/Alb3 family proteins contain five transmembrane (TM) ���

regions. Based on currently available high-resolution structures, Bacillus halodurans YidC (BhYidC) at ���

2.4 Å [11], Escherichia coli YidC (EcYidC) at 3.2 Å [12], and Thermotoga maritima YidC (TmYidC) at ���

3.8 Å resolutions [13], the architectures of the core five TM helixes are essentially identical (Fig. 1B). �	�

The core TMs form a positively charged cavity open to the membrane and cytoplasmic side. The �
�

conserved Arg is positioned in the cavity. In contrast, loops of the cytoplasmic region 1 (C1) in the crystal ���

structures of EcYidC and BhYidC show different orientations, but the C1 loop in TmYidC is disordered. ���

The C2 loop is completely disordered in all avertable structures. Hence, the C1 and C2 loops appear to � �

have intrinsically high mobility. Only YidCs from gram-negative bacteria possess the additional TM1 and ���

periplasm region (P1), when compared to other YidC orthologs. TM1 and P1 are not crucial for protein ���

activity [14], which is consistent with the non-identical architecture of the P1 domains in EcYidC and ���

TmYidC. Additionally, TM1 is disordered in each crystal structure. TM1 may be extremely flexible in the ���

membrane and may function as an anchor to the membrane or signal peptide for targeting the membrane. ���

In Bacillus subtilis, Arg in the cavity is essential for membrane integration of MifM, a substrate of YidC, �	�

and cell growth [11]. In contrast, this residue is not essential for E. coli viability [15], but shows a �
�
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conditional defect in cell growth [12]. Together with molecular dynamics (MD) simulation results, this ���

cavity provides a hydrophilic environment and appears to always be filled by water molecules [11, 16]. ���

Mutations that reduce the hydrophilicity of the cavity caused defects in membrane insertion by YidC [17]. � �

Additionally, the cavity cross-linked to MifM provides insight into the insertion model of single spanning ���

membrane proteins by YidC [11]. Other studies of cross-linking showed that YidC interacts with the ���

SecYEG and SecDF complex [18, 19]. YidC complexed with SecYEG and SecDF was shown to form a ���

Sec holo translocon complex [20, 21].  ���

 Currently, some information exists regarding the function of YidC, which can be used to ���

perform functional analyses. However, the available structures lack information for the C2 loop, which is �	�

important for interacting with ribosomes [22], making evaluation of its molecular mechanism difficult. In �
�

this study, we determined the 2.8 Å crystal structure of EcYidC including the C2 loop and conducted MD ���

simulation, which revealed the flexibility of the C2 loop. The complete structure of the core YidC region ���

provides a structural basis for further analysis. � �

 ���

Results and Discussion ���

2.8 Å-crystal structure of YidC ���

 We used the Helical Data Collection Method at beamline BL32XU at SPring-8 with a ���

microbeam (Hirata 2013) by using more than 100 crystals to determine the crystal structure of YidC at ���

higher resolution than the previous 3.2 Å resolution structure, which was determined using a single �	�

crystal [12]. The YidC model was refined to 2.8 Å resolution with R/Rfree = 21.8/27.5 (Fig. 1A, Table 1). �
�

Gram-negative bacterial YidC consists of a periplasm domain (P1), cytoplasmic loops (C1 and C2), and ���

six TM helices (TM1–M6). One of these helices, TM1, could not be assigned even in the 2.8 Å structure. 	��

Comparison of the 2.8 Å structure with the 3.2 Å structure showed that the overall structures had nearly 	 �

the same RMSD value of 0.49 Å for Cα atoms, whereas the 2.8 A structure revealed the previously 	��

disordered regions of 49–55 and 204–215 in the P1 region and C2 loop (480–492) (Table 1 and Figure 	��

S1). The C2 loop is thought to be important for interacting with the ribosome [22], while the P1 region is 	��
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not essential [14]. Collectively, the 2.8 Å resolution structure completely revealed the core region of 	��

YidC. Figure 1B and Sup. Fig. 1 show summaries of the core regions of the crystal structures of YidC, 	��

clearly demonstrating that the C2 loop was modeled only this study. Previous structural studies, including 		�

MD simulations and surface representations, did not adequately take into account the C2 loop structure. 	
�

Although the positively charged cavity of YidC possessing the conserved Arg366 has been proposed to 	��

be open to the cytoplasm and membrane interior based on previous structures [11, 12, 15], our results 
��

showed that the C2 loop is at the cytoplasmic entrance of the cavity and appears to restrict exceeding 
 �

exposure of the cavity. We modeled the C2 loop but the average B-factor of the C2 loop (133) in the 
��

structure is higher than that of the overall structure (57.5) and even that of the C1 loop (85.6), suggesting 
��

that the C2 loop is considerably more flexible than other core regions (Fig. 2a,b). Because crystal 
��

structures represent snapshots of stable conformations, the C2 loop may be at the entrance in the resting 
��

state of YidC and become dislocated when YidC is in an active form. The interaction between the 
��

ribosome and C2 loop may trigger dislocation of the C2 loop.  
	�

 

�

Flexible C2 loop covers the positively charged cavity 
��

 Next, we performed a 100-ns MD simulation of YidC embedded in a POPC bilayer using the ���

complete model of the core region, residues 325–532. The root mean square deviation (RMSD) plot for � �

Cα atoms in the MD simulation (Fig. 2a red line) showed that TM2, 3, 4, and 6 retained the starting ���

model with approximately <1.5 Å and that the C1 loop fluctuated, corresponding to the results of ���

previous MD simulations [11, 16]; residues in the C2 loop modeled in this structural study showed high ���

RMSDs. Comparison of the B-factors of Cα atoms in the crystal structure with the RMSD in the MD ���

simulation showed a good correlation between the fluctuation patterns of these plots (Fig. 2a). The ���

regions with high values for the B-factor and RMSD contained near the position of the 400th residue in �	�

the C1 loop and near the position of the 490th residues in the C2 loop and cytoplasmic side of TM5. The �
�

TM5 helix lacks a hydrogen bond because of Pro499 positioned in the middle, which is considered to ���

cause the high mobility of the cytoplasmic side (residues 486–498). In accordance with the C2 loop  ���
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fluctuation, the cytoplasmic region of TM5 underwent significant structural changes during simulation. In  � �

contrast, although conserved Pro371 and Pro 431 in the middle of TM2 and TM3, respectively, cannot  ���

form hydrogen bonds to generate an α-helix, fluctuations such as in TM5 were not observed in MD  ���

simulation. Because TM5 is located outermost and has fewer intermolecular interactions than other  ���

α-helices, TM5 showed the highest mobility. The C2 loop covers the hydrophilic cavity in the crystal  ���

structure and initial model in MD simulation, but after 40 ns of MD simulation, the cytoplasmic side of  ���

TM5 was dislocated by 3 Å to open the cavity and the C1 loop was shifted 4 Å towards the outside (Fig.  �	�

2a,d). To quantify the degree of cavity opening, we measured and plotted the distance between the Cα  �
�

atoms of Pro371 in TM2 and Pro419 in TM3 as well as Cα atom of Asp488 (Fig. 2c,d). The results  ���

showed that the values for 371–488 and 419–488 at 43.84 ns, one of largest points, were 35.3 and 21.3 Å,   ��

which are significantly larger than the values of 28.7 and 15.3 Å found in the crystal structure,    �

respectively. In contrast, the minimum values were 27.9 and 14.9 Å at 6.56 ns, which are even lower than   ��

those in the crystal structure. During 100-ns MD simulation, we observed entrance fluctuation of the   ��

cavity (Sup Movie. 1), which protects and exposes the hydrophobic cavity containing conserved the   ��

important residue Arg366 depending on the situation. For example, when a substrate of YidC interacts   ��

with the C1 and/or C2 loops during the insertion process, the loops may shift outwards to open the cavity   ��

induced by a trigger, including ribosome binding to YidC; this causes the cavity to enables substrate   	�

interactions with the inside of YidC.    
�

 In this study, we solved the 2.8 Å structure of all core regions of YidC, including the C2 loop.   ��

The C2 loop may cover the cavity, but the cavity does not always open to the cytoplasm as previously  ���

reported. The structure provides highly accurate information of E. coli YidC, which is the most studied  � �

member of the YidC/Alb3/Oxa1 family. These findings can facilitate the functional analyses and MD  ���

simulations of YidC at the amino acid residue level.  ���

  ���

Figure Legends  ���

Figure 1 | Crystal structures of YidC  ���
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(a) 2.8 Å crystal structure of EcYidC. P1, TM2, C1, TM3, TM4, and TM5 are colored in blue, light blue,  �	�

green, yellow, orange, pink, and red, respectively. Magnified views of the C2 area (right panels) including  �
�

the 2Fo-Fc electron density map at 1.0 σ (blue) and with omitting the map at 1.7 σ (green). (b)  ���

Comparison of the 2.8 Å crystal structure with previously reported structures, PDB ID 3WVF, 3WO6,  ���

and 5Y83. The structures are represented as surface models and colored as in A. Each conserved Arg  � �

residue is colored in purple.  ���

  ���

Figure 2 | MD simulation of EcYidC  ���

(a) Plots of B-factor (blue) in the crystal structure and Cα RMSD in 100-ns MD simulation (red) with the  ���

residue number of EcYidC core region. The lines are the moving average (p, 3) respectively. (b) The  ���

cartoon representation of the crystal structure of EcYidC colored by B-factor value; high (red) to low  �	�

(blue). (c) Plots of changing Cα distances between residues 371 and 488 (blue); and residues 419–488  �
�

(red) versus time. (d) The 2.8 Å crystal structure and MD structure snapshots of the core region at 6.56  ���

and 43.84 ns.  ���

  � �

Figure S1 | 2.8 Å crystal structure of YidC elucidates its C2 loop.  ���

(a) Superimposition of 2.8 Å structure of EcYidC on BhYidC (PDB ID 3WO6) and TmYidC (PDB ID  ���

5Y83). (b) 2.8 Å structure of EcYidC. (c) 3.2 Å structure of EcYidC (PDB ID 3WVF).  ���

  ���

  ���

Material and Methods  �	�

Data collection and structure determination  �
�

The X-ray diffraction datasets of YidC crystals were collected at 100 K at beamlines BL32XU at  ���

SPring-8 using X-ray wavelength of 1.00 Å. The complete datasets were obtained by merging multiple  ���

small-wedge (10° each, Δφ = 0.500°) datasets collected from single crystal, and was all data were  � �
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collected automatically by the Zoo system. The collected diffraction images were processed using KAMO  ���

[23] with XDS [24]. The cluster of all datasets resulted in the best merging result consisting of 97 datasets.  ���

The initial phase was calculated by molecular replacement using PHASER [25] with the previously  ���

determined YidC from Escherichia coli structure (PDB ID 3WVF) [12]. The structural model of YidC  ���

was stepwise-refined using COOT [26] and PHENIX [27, 28] to Rwork/Rfree = 0.218/0.275 with space  ���

group P1 at 2.8 Å resolution. A Ramachandran plot was constructed using Molprobity [28] and molecular  �	�

graphics were generated using CueMol2 (http://www.cuemol.org/).  �
�

  ���

Molecular dynamics (MD) simulations  ���

Simulation was carried out using GROMACS version 2016.4 simulation suite [29]. The simulation was  � �

started from the 2.8 Å crystal structure of the core region of EcYidC described in this article. The  ���

Charmm36 force field [30] was applied. A monomer of the protein was embedded into a POPC bilayer  ���

generated by The CHARMM-GUI Membrane Builder [31, 32] and solvated in a 80 × 80 × 120 Å3 box of  ���

the simple point charge model [33] water molecules. The water molecules were replaced with Na+ and Cl-  ���

ions to neutralize the simulation system. The simulations were performed with minimization of 50,000  ���

steps for a target Fmax of no greater than 1000, 500, 100, 50, and 20 kJ mol-1 nm-1. Next, the simulations  �	�

were performed with an equilibrium of 100 ps in the NVT ensemble and 1 ns in the NPT ensemble. MD  �
�

simulations were carried out for 100 ns (0.002 ps × 50,000,000 steps) for the core region of YidC and  ���

lipid bilayer in water. The results were analyzed by GROMACS analysis and a movie was generated  	��

using PyMOL (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC, Portland, OR,  	 �
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USA) [34].   	��

   	��



2.8 Å-crystal structure of E. coli YidC                                                   Tanaka et al. 

�  ��

Table 1. Data collection and refinement statistics.  	��

 
E. coli YidC 

Data collection  

Wavelength 1.00 

Resolution range 41.84 - 2.8 (2.9 - 2.8) 

Space group P1 
Unit cell  
� � a, b, c� (Å) 
� � α�β�γ (˚) 

42.91, 76.19, 91.95  

78.03, 82.61, 78.05 

Total reflections 228455 (23403) 

Unique reflections 27282 (2707) 

Multiplicity 8.4 (8.6) 

Redundancy (%) 99.69 (99.74) 

Mean I/σ(I) 5.64 (1.26) 

Wilson B-factor 45.28 

R-merge 0.3327 (1.48) 

R-pim 0.1198 (0.529) 

CC1/2 0.977 (0.729) 

  

Refinement  

No. Reflections 27242 (2702) 

Reflections used for R-free 1995 (197) 

Rwork / Rfree 0.218/0.275 (0.298/0.356) 

  Number of atoms 7650 

  Protein 7626 

  Monoolein 19 

  solvent 5 

Ramachandran favored (%) 
Ramachandran allowed (%) 
Ramachandran outliers (%) 

96.35 

3.54 

0.1 

Average B-factor 59.46 

  Protein 59.41 

  Monoolein 84.2 

  solvent 37.5 
R.m.s. derivations 
  Bond lengths (Å) 
  Bond angles (˚) 

0.004 

1.02 

PDB ID 6AL2 

   	��
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