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Abstract: 
 
In this study, the relationship between average absolute telomere length and metformin use was 

examined. Human blood samples were obtained from 106 participants ranging from 42-100 

years old. Samples were split into four cohorts for analysis: non-type 2 diabetics not taking 

metformin (Cohort 1), type 2 diabetics taking metformin (Cohort 2), type 2 diabetics not taking 

metformin (Cohort 3), and non-type 2 diabetics taking metformin. DNA from blood samples 

were extracted and purified using an  and average absolute telomere length was measured using 

quantitative polymerase chain reaction (qPCR). The average absolute telomere length increased 

with age for Cohort 2 samples and decreased slightly with age for Cohort 1 samples. This led to 

the mean average absolute telomere length of Cohort 2 beginning as a lower value than Cohort 1 

and then matching and later surpassing the Cohort 1 levels with increased age. This trend was 

intriguing but showed no statistical significance between the mean average absolute telomere 

length for Cohort 1 and Cohort 2. Cohort 3, however, had a mean average absolute telomere 

length which was considerably lower than Cohort 1 and 2. The difference between Cohort 3 and 

1 and Cohort 3 and 2 was statistically significant between the ages of 71-80. This lower average 

absolute telomere length in Cohort 3 when compared to Cohort 2 indicates that metformin use 

may reduce telomere shortening in older adults. Overall, the findings provide further evidence of 

metformin’s geroprotective effects, and indicate the need for further, more in depth studies in the 

future with a larger sample size. 
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1: Literature Review/Introduction 
 
 For as long as humans have been aware of their own mortality, they have yearned for a 

greater understanding of the aging process and possible remedies for this invisible illness. 

Despite the fascination of many, the ’how’s’ and ’why’s’ of aging had remained a mystery for 

millennia. From Ponce de León’s epic voyage to the new world in search of the fabled ’Fountain 

of Youth’, to Countess Elisabeth Báthory’s macabre ritual of bathing in virgin blood with the 

aim of retaining her beauty and virility, mankind’s journey to cultivate a greater understanding of 

the aging process has been a long and storied one. With the dawn of the 20th century and the 

veritable Cambrian explosion of paradigm-shifting scientific discoveries that soon followed, 

humankind’s knowledge began to expand - if only modestly. It became well documented that the 

aging process had several intersecting etiologies, all with differing degree of impact from 

individual to individual. Later, genetics became well established as playing an important role in 

how one aged. However, knowledge about the impact of epigenetics and environmental factors 

were also found to be invaluable. 

 Pharmacological studies looking for methods of mitigating the effects of aging were also 

undertaken. Eventually, the antihyperglycemic drug, metformin, used primarily to treat 

symptoms of type 2 diabetes, was examined and was found to show promising anti-aging 

properties. Although this geroprotector may have initiated many studies to investigate its 

effectiveness at treating various diseases, little has been done to examine its role in preventing 

DNA degradation, particularly telomere reduction, that could lead to aging.  

This study aims to examine the role metformin has on human telomeres, the protective 

caps which protect DNA from degradation over time. It is conducted with the aim to continue in 
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furthering our knowledge of the aging process and potentially lead to notable revelations in the 

future.  

 

1.1 Use of metformin in type 2 diabetes therapy 
 
 Currently, metformin is the most widely prescribed drug to treat hyperglycemia for 

individuals with type 2 diabetes (1). It is estimated to be prescribed to over 120 million people 

worldwide (1). Type 2 diabetes, also referred to as non-insulin dependent diabetes or adult-onset 

diabetes, encompasses those who have insulin resistance and relative (as opposed to absolute) 

insulin deficiency (48). It is the most common form of diabetes, making up 90-95% of all cases 

(48). People with type 2 diabetes have elevated levels of blood glucose, and since they do not 

have insulin levels to match this increased amount of glucose, their insulin secretion is said to be 

defective and insufficient to compensate for insulin resistance (48). Metformin treats type 2 

diabetes by increasing sensitivity to insulin, specifically in the liver (46). It also functions as a 

caloric restrictor, reducing the amount of glucose taken in the body. 

 

1.2 Metformin development and history 
 

Metformin, also known as dimethylbiguanide (Figure 1), is an oral antihyperglycemia 

drug that has over recent decades become the primary treatment for type 2 diabetes. Origins of 

the drug begin with the precursor plant Galega officinalis L. which was a traditional herbal 

remedy used to treat worms, epilepsy (‘falling-sickness’), fever, and pestilence (49). The herb 

was eventually found to contain high concentrations of guanidine, a chemical that was soon 

realized to be effective in lowering blood glucose levels (49).  
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 In 1922, Werner and Bell chemically synthesized dimethylbiguanide (Figure 1), later 

called metformin (50). It was seven years later, in 1929, when its glucose-lowering properties 

were discovered (49). In the 1940s, metformin was discovered to be an effective treatment 

against malaria and influenza (49).  In 1957, Jean Sterne, a physician at Aron Laboratories in 

France investigated the effect metformin had on both type 1 and type 2 diabetics (49). He found 

that in some type 2 diabetics, metformin use would negate the need for insulin treatments, while 

lowering the necessary dosage requirements for other type 2 diabetic patients (49). However, 

these promising results were exclusive to type 2 diabetics, with type 1 diabetic patients still 

requiring insulin treatments (49). Metformin ultimately had relatively low prescription rates due 

to being weaker than other glucose-lowering biguanides (49). 

 However, by the 1970s many in the biguanide family, such as phenformin (Figure 1), 

were found to be linked to lactic acidosis and were discontinued from clinical use (49). Studies 

looking at the risk of lactic acidosis from metformin use found the incidence to be considerably 

lower than other biguanides and attributed most cases of lactic acidosis to contraindicated use 

(51, 52). Also, in some studies it was debatable whether incidences of lactic acidosis with 

metformin were greater than background rates for type 2 individuals (49). Although taking 

metformin was not found to be a significant risk for the development of lactic acidosis, the 

association with the notorious biguanide family resulted in plummeting prescription rates, 

driving metformin into relative obscurity (49).  
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Figure 1: The structure of biguanide and other related compounds including Metformin (49). 

 
 
 A resurgence of research in the 1980s and early 1990s resulted in the development of 

fixed-dose combinations of metformin with sulfonylureas, as well other classes of oral glucose-

lowering agents (49). The unique benefits and usefulness of metformin, discovered through this 

research, led to the drug being approved for therapeutic use in Canada in 1972 (53). In 1995 it 

received FDA approval for use in the United States (49). A long-term retrospective study in the 

UK in 1998 cemented metformin as the preferred initial therapy to manage type 2 diabetes-

related hyperglycaemia (49). The study noted that, alongside its glucose-lowering effects, 

metformin had the benefit of weight neutrality, low hypoglycemia risk, and reduced 

cardiovascular risk (49, 54). Because of these benefits, its extensive history of clinical use, and a 

possible reduction of cancer incidence, metformin is currently globally recognized as the first-

line of oral therapy treatment for type 2 diabetes (55, 56, 57, 58).  
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1.3 Metformin molecular action and effects 
 

Due to its similarity to other biguanides, yet uniqueness in being a considerably safer 

treatment, there has been a great deal of interest in deciphering the drug’s mechanism of action. 

Currently, researchers are still in the process of uncovering all the therapeutic biochemical 

mechanisms initiated by the drug. These processes are difficult to definitively attribute to 

metformin, as it passes through many regions of the mammalian anatomy and interacts with 

multiple biochemical pathways during the organism’s anatomical lifespan. Supra-pharmaceutical 

levels of metformin are required to achieve the desired therapeutic effects for type 2 diabetics, 

strongly supporting the notion that the therapeutic effects are not solely attributed to the 

modification of a single/specific protein target (55). 

The pathway of orally administered metformin passes through a number of organs within 

the body before its elimination (Figure 2). Orally administered metformin is absorbed by 

enterocytes in the apical membrane of the intestine via the plasma monoamine transporter 

(PMAT) and organic cation transporter 3 (OCT3) (59). It exits these cells via the organic cation 

transporter 1 (OCT1) molecule of the basolateral membrane (59). Next, metformin is delivered 

to the liver via the portal vein where it is taken up by the hepatocytes (59). It enters the 

hepatocytes via the OCT1/3 molecules and is excreted into the bloodstream and bile through the 

multidrug and toxin extrusion 1 (MATE 1) transporter molecule (59). Lastly, metformin reaches 

the kidneys, entering the renal epithelial cells through the organic cation transporter OCT2 

transporter molecule (59). It is eliminated from the renal epithelial cells unchanged via the 

MATE transporter molecules (59).  
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Figure 2: The path of orally administered metformin through the body and biochemical 
interactions (59). 

 
 

It is widely accepted that metformin is able to lower glucose levels in the body through 

the stimulation of adenosine monophosphate-activated protein kinase (AMPK), an essential 

cellular energy sensor and regulator (59). The AMPK is a multi-subunit enzyme that regulates 

lipid biosynthetic pathways through the phosphorylation and inactivation of various key enzymes 

such as acetyl-CoA carboxylase (ACC) enzyme (60). The AMPK’s regulatory effects are able to 

stimulate Adenosine Triphosphate (ATP)-producing catabolic pathways (glycolysis, fatty acid 

oxidation, and mitochondrial biogenesis) and to inhibit ATP-consuming anabolic processes 

(gluconeogenesis, glycogen, fatty acid, and protein synthesis). Metformin’s stimulation of 

AMPK can cause a reduction in glucose levels by promoting hepatic gluconeogenesis, increasing 

liver insulin sensitivity, increasing muscle glucose transport, decreasing the amount of plasma 

glucose and triglycerides, and increasing fatty acid oxidation in the adipose tissue (2, 21). The 

action of AMPK is also able to inhibit glycogen synthase, reducing the production of glycogen 

(21). 



15 
 

In the liver, AMPK is able to partially inhibit gluconeogenesis by phosphorylating the 

CREB-binding protein (CBP) (21). Protein kinase C initiates the dissociation of the 

gluconeogenic CREB-CBP (CREB binding protein)-TORC2 (transducer of regrulated CREB 2) 

transcriptional complex, resulting in a chain reaction that causes the transcriptional machinery to 

be disassembled and the enzyme genes essential for gluconeogenesis, phosphoenolpyruvate 

carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) to have their expression inhibited 

(21).  

 The activation of AMPK by metformin has also been shown to affect lipid and 

cholesterol synthesis in the liver, muscle and adipose tissues by decreasing both fatty acid 

synthase (FAS) expression and activating malonyl-CoA carboxylase (21). These desired results 

can be obtained indirectly by the inactivation of ACC and 3-hydroxy-3-methylglutaryl (HMG)-

Co reductase (21). Furthermore, the action of AMPK is able to inhibit adipogenesis through the 

inhibition of the activity of sterol regulatory element-binding protein-1c (SREBP-1c), a 

transcription factor that is essential for fatty acid synthesis (21). Stimulation of AMPK is also 

able to increase glucose uptake in the skeletal muscles by inducing the enzyme hexokinase II 

expression and upregulating the transcription of the GLUT4 (glucose transporter type 4) gene 

(21). 

There are also other AMPK-independent pathways that have been suggested as 

mechanisms of action of metformin, such as activating changes in the gut or intestinal 

microbiota. The intestines also play an important role in metformin’s glucose-lowering effect by 

facilitating uptake and utilization of glucose (3, 4). Metformin can also act on MAPK- and PKA-

dependent mechanisms as an alternative to mechanisms that utilize AMPK (22). Metformin’s 

ability to decrease cyclic adenosine monophosphate (cAMP) production inhibits catecholamine-
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stimulated lipolysis, reducing both MAPK- (Mitogen-Activated Protein Kinases -) and PKA- 

(Protein Kinase K-) dependent activities (21). In addition, adiponectin is also activated by 

metformin and can further stimulate AMPK to reduce hepatic lipid accumulation by both 

increasing β-oxidation and decreasing de novo synthesis of fatty acids (21). 

Together, these combined molecular effects are able to result in an overall slowing of the 

aging process and an extension of longevity. Every year, more and more knowledge is generated 

about metformin’s various biochemical mechanisms (Figure 3). Although a better understanding 

of how metformin affects the human body is beginning to take form, more research is still 

required to better understand the minutia of these internal biochemical processes.  

 

 
Figure 3: A visual summary of metformin’s antihyperglycemic effects (21). 

 

 

1.4 Alternate uses for metformin 
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Because comorbidity is frequently found with cancer and type 2 diabetes, there has been 

a great deal of research looking into metformin’s effect on various forms of cancer. Insulin and 

insulin-like growth factor 1 (IGF-1) play an important role in regulating cell survival and 

mitogenesis (61). Both these growth factors are present in cancers of the breast, liver, colon, 

pancreas, and skin, hinting at the possibility of metformin to reduce the cancerous growth 

patterns associated with these stimuli (62). This possibility is further supported by evidence 

showing that caloric restriction (CR) can reduce IGF-1 activity, simultaneously reducing the 

incidence of cancer in in vivo animal models (63). 

 Several studies have examined metformin’s effect on cancer, and the majority of 

evidence indicates that metformin treatments have the potential to reduce mortality rates and 

improve longevity for patients affected by breast, liver and ovarian/endometrial cancers (61, 66, 

67). Other studies have shown that metformin treatments may be beneficial for individuals with 

colorectal, pancreatic or prostate cancer (61, 64, 65). A comprehensive meta-analysis by 

Franciosi et al. (68) examined the relationship between metformin use and overall mortality and 

found that there was an overall 35% reduction in cancer mortality rates observed in  patients 

taking metformin. Furthermore, metformin has also shown to improve the effectiveness of 

chemotherapy while reducing some of the side effects (61, 69, 70). 

 Metformin has also been shown to be a useful preemptive treatment for individuals 

diagnosed with prediabetes (71). Alongside lifestyle changes, early metformin treatment was 

found to be effective in the prevention of type 2 diabetes (71). It should be noted that lifestyle 

changes were found to have a greater impact as a preventative measure than the metformin 

treatments (71). Similarly, metformin was also shown to be moderately beneficial for treating 

obesity, yet lifestyle changes were still found to be more effective overall (72). 
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 There have been many studies looking at the benefits of metformin therapy to treat 

polycystic ovary syndrome (PCOS) as insulin resistance and hyperinsulinemia have been shown 

to contribute to the condition (73). Hyperinsulinemia initiates hyperandrogenism, which leads to 

anovulation and infertility (73). It has been found that metformin is quite effective in reversing 

the metabolic abnormalities associated with PCOS leading to the establishment of regular 

menstrual cycles and improved fertility (73, 74).  

Metformin use has also been shown to be beneficial in improving cardiovascular health.  

Use of metformin has been shown to normalize blood pressure, improve the metabolic risk factor 

profile, and increase the fibrinolytic activity in individuals with hypertension (75). Overall, 

metformin therapy has been found to reduce the risk of cardiovascular-related morbidity and 

mortality (76).  

 

1.5 Metformin’s effect on lifespan in animal models 
 

Metformin’s wide range of health benefits and diverse biochemical pathway interactions 

has led to a great deal of interest in its effects on lifespan and the aging process(es). Currently, 

much of the aging research available on metformin has existed through studies of animal models.  

Metformin treatment increased lifespan in several mice studies. It improved health and 

lifespan in male mice, where long-term treatment with metformin (0.1% w/w in diet) starting at 

middle age was effective in increasing mean lifespan by around 6% (9). However, a higher dose 

(1% w/w diet) was toxic to the mice, shortening mean lifespan by 14% (9). This is likely due to 

lactic acidosis, as high doses of metformin have been associated with its development (10). Low 

doses of metformin gave the mice increased sensitivity to insulin, reduced low-density 

lipoprotein (LDL) and cholesterol levels without a decrease in caloric intake, and improved 
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physical performance. The lack of decrease in caloric intake is important because it shows that 

any results found were not a result of CR. These results mimic the benefits of CR, which suggest 

that metformin acts in a similar way with respect to its benefits in extending lifespan and health, 

and suggest that metformin prevents the onset of metabolic syndrome. At the molecular level, 

metformin increased antioxidant protection and AMPK activity, reducing chronic inflammation 

and overall oxidative damage accumulation (9). In the study by Martin-Montalvo et al. (9) the 

serum level of metformin was found to be one order of magnitude higher than what is found in 

diabetics on metformin, so the effects of this drug may be less pronounced in people taking 

metformin as they may not receive a high enough dose to realize the increased health and 

lifespan benefits (9). 

Metformin may need to be taken from a young age to fully realize its anti-aging effects. 

In a study done on female SHR mice, the mean lifespan of the mice was increased significantly 

when treatment with metformin was initiated at a young age, insignificantly at middle age, and 

not at all at an older age (11). The treatment that started at the age of three months increased 

mean lifespan by 14% and maximum lifespan by 1 month (11). The treatment started at 9 months 

only increased mean lifespan insignificantly by 6%, while the treatment started at 15 months 

failed to increase mean lifespan at all (11). If this mouse model holds true in humans, this 

suggests that treatment with metformin over a longer period of time can affect lifespan but would 

not be as effective if started later in life, which is often when most people begin to think about 

the consequences of aging (11). Another study performed on female SHR mice corroborated 

these results. Compared to control mice, mice receiving daily 100 mg/kg treatments of 

metformin had mean lifespan increase by 38%; the mean life span for the last 10% of survivors 

increased by 21%, and maximum life span increased by 2.8 months (+10%)(12). 
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Similarly, in two other studies done on female HER-2/neu mice, metformin increased 

mean lifespan by 4-8%, and increased the maximum lifespan by 1 month (13, 14). The increase 

in lifespan was attributed to the inhibition of mammary tumor development (13, 14). Metformin 

treatment was initiated at 2 months of age, which compared to the studies mentioned above is a 

relatively young age (13, 14).  

In a study done on 129/Sv mice given 100 mg/kg daily for 24 months, females had a 5% 

increase in mean lifespan while males had a 13% decrease (15). This was the first study that 

showed a difference in metformin’s effect on males versus females, which is an important factor 

as most of the mouse studies mentioned here were done on female mice. The authors suggested 

two possible reasons for this difference: fundamental differences in the mechanisms of aging in 

females and males and/or that the target of metformin is different in females versus males (15). 

Regardless of sex-related differences in mammalian response to metformin treatment 

metformin’s effects appear to apply to other animal clades as well. Metformin has been shown to 

increase health and extend median lifespan in C. elegans L. in a similar mechanism as CR, 

independent of the insulin-signaling pathway (16). Metformin slowed locomotory decline in 

nematodes, suggesting that metformin can promote or extend youthful physiology (16). The 

authors demonstrated that metformin acts as a CR mimetic by showing that in a nematode strain 

that induces CR, metformin does not further increase the benefits of a CR diet, but instead shows 

a negative impact on lifespan (16). This is likely due to both CR and metformin treatment 

together being too extreme to be beneficial. Also, metformin treatment showed delayed egg-

laying, decreased age pigment levels, reduced progeny production and decreased fat, all of which 

are indicators of CR (16). This study also investigated the biochemical roles of the energy sensor 

AMPK and the AMPK-activating kinase LKB1 (liver kinase B1), which were both activated by 
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metformin (16). Both AMPK and LKB1 were found to be essential for improving health benefits 

of C. elegans, suggesting a conserved metabolic loop across various phyla (16). The study also 

found that the transcription factor SKN-1 plays an essential role in the extension of health in C. 

elegans (16). SKN-1 functions in nematode sensory neurons to promote dietary restriction 

longevity benefits and in intestines, helping to improve resistance to oxidative stress (16). In 

order for metformin-mediated health expansion to occur, SKN-1 must be expressed in both the 

neurons and the intestines, lending support to the notion that that metformin functions as a 

middle-age geroprotector through the regulation of CR metabolism and anti-oxidant defenses 

(16). These revelations about SKN-1 can become pharmacologically important when applied to 

the orthologous nuclear respiratory factor (Nrf) mammalian transcription factors Nrf1 and Nrf2, 

which are able to activate genes encoding phase 2 detoxification enzymes (16). The Nrf2 confers 

several defensive health-promoting effects in mammals and may be able, through the use of 

metformin, to combat neurodegeneration, chronic inflammation, and cancer in mammals (16). 

Another study done by Cabreiro et al. (17) showed that metformin may slow aging in 

nematodes by regulating their gut microbial folate and methionine metabolism. This finding 

raises the possibility that metformin might therefore also influence mammals by affecting their 

microbial metabolism or composition by promoting a better balance of gut microbiota species 

(17). They found that metformin at doses of 25, 50, and 100 mM increased the mean lifespan of 

C. elegans by 18%, 36%, and 3%, respectively (17). Both studies above noted that metformin 

increases lifespan via AMPK-dependent activation of SKN-1, but the Cabreiro et al. (17) study 

concluded that this is because they promote resistance to biguanide toxicity (16, 17). Both 

studies noted that as the concentration of metformin is increased, there is a point in which the 

effects become detrimental and actually shorten lifespan, which is likely due to drug toxicity. 
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Both studies discovered that when a CR diet was induced, metformin had the opposite effect and 

shortened lifespan (16, 17). 

Overall, the research data on metformin gathered from animal models provides some 

intriguing revelations. It seems that the most animal models indicate the importance of biological 

sex as well as age of treatment initiation in determining metformin’s effect on aging and 

longevity. Interestingly, evidence may also indicate that a CR diet taken alongside metformin 

may negate some of the drug’s anti-aging properties. This is a point of interest as it has been 

demonstrated that lifestyle changes such as CR diets undertaken simultaneously with metformin 

treatments are the most effective for preventative treatment of type 2 diabetes (71). It has also 

been shown that metformin use, combined with a CR diet, led to additive health benefits as 

opposed to worsened outcomes (20). Perhaps this difference could be indicative of specific 

differences in the way metformin affects biochemical pathways. Other evidence that points to 

metformin’s diversity in biochemical influence comes from the fact that higher doses in mice 

models resulted in lifespan shortening, while in humans supra-pharmaceutical doses are required 

to be effective (9). The vastly different outcomes between mouse and human responses to large 

doses could be due to high doses of metformin in mice may cause lactic acidosis, while the risk 

for lactic acidosis in humans with high does is low (10, 49, 51, 52, 55). These findings indicate 

the delicate balance required to provide optimal therapeutic treatment with metformin.  

 

1.6 Metformin mimics caloric restriction 
 

Metformin has been described as a geroprotector, which is a drug that decreases the rate 

of aging and therefore extends lifespan. The main explanation for metformin’s lifespan 

increasing benefits is that it is a CR mimetic (5). Caloric restriction is simply restriction of food 
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intake, which results in a restriction in the intake of energy. Caloric Restriction extends lifespan 

by delaying or slowing the aging process (5). Specifically, evidence suggests that maximum 

lifespan can be increased through CR and, therefore, through metformin usage as can be seen in 

the Drosophilia melanogaster L. model (24). 

Excessive caloric intake can lead to obesity that in turn can increase the instance of age-

related ailments such as diabetes, atherosclerosis, thrombosis, hypertension, various forms of 

cancer, coronary heart disease, stroke, osteoporosis, and Alzheimer’s disease (23). Since caloric 

intake is so closely related to age-related diseases, it can be logically concluded that drugs that 

mimic CR could in turn regulate the aging process (23). 

Caloric Restriction has shown health benefits in flies, rodents, monkeys, and humans. In 

many animal models, it has been shown to extend mean and/or maximum lifespan, as well as 

delay age-related physiological changes or age-related diseases such as type 2 diabetes. It has 

been shown to have effects on the insulin and IGF-1 signaling systems, as well as altering the 

activity of transcription factors such as AMPK and TOR (target of rapamycin) (6). The 

insulin/IGF-like signaling (IIS) and nutrient response pathways, which are defined by the 

mechanistic target of rapamycin (mTOR), control aging and age-associated pathology in worms, 

insects, yeast, and mammals (7, 8).  

Further benefits have also been shown by implementing additional CR alongside use of 

metformin (20). In a study examining male OLETF rats with initial ages of 20 weeks, subjects 

were given daily doses of 300 mg/kg for 12 weeks (20). Both metformin treatment and CR diets 

were found to cause decreased adiposity in the rats (20). The combination of CR and metformin 

treatment provided more effective post-challenge glucose tolerance (20). The combination 

treatment also reduced levels of serum alanine aminotransferases, resulting in lowered liver 
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triglyceride levels which could lead to improved conditions for nonalcoholic fatty liver disease 

(NAFLD) (12). The combination treatment of CR and metformin reduced the levels of the 

hepatic lipogenesic ACC and stearoyl-CoA desaturase-1 (SCD-1) (20) and increased the amount 

of hepatic mitochondrial activity (shown through the increased levels of β-hydroxyacyl CoA 

dehydrogenase (β-HAD)) (20). Overall, this indicates that therapeutic metformin treatment and 

CR independently improve glycemic control and NAFLD outcomes and likely act via different 

biochemical pathways (20). 

 

 

1.7 Metformin may reduce oxidative damage 
 

Through the body’s use of oxygen, potentially deleterious reactive oxygen metabolites, 

such as superoxide, ozone and hydrogen peroxide (H2O2) are generated (24). An overabundance 

of these oxygen molecules can lead to an aging process known as oxidative stress (24). Over 

time, the imbalance between prooxidants and antioxidants will result in enough oxidative stress 

to produce oxidative damage in molecules such as carbohydrates, nucleic acids, lipids, and 

proteins and thus alter their structure and impair their functions (24, 75). The degree of oxidative 

damage increases with age and is believed to be the major cause of cellular senescence and is 

considered to be one of the modalities of aging (24). 

Many studies have shown that oxidative damage can be mediated via CR, further 

suggesting that CR can counteract the aging process (24). Caloric Restriction reduced the 

metabolic rate of Fischer rats if CR treatments were started at 6 months of age (25). These results 

were also replicated in mice, with their resting temperature dropping by 13ο C (24). The body 
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temperature in rats was also shown to drop due to CR, but only by 2ο C (26). This indicates that 

CR decreased oxygen consumption and subsequently reduced oxidative damage (28). 

There is also evidence that metformin’s CR mimicking action can mediate the reduction 

of harmful oxidants in humans. The generalized action of CR has been found to be responsible 

for reducing oxidative damage in the body, increasing maximal life span and indicating overall 

anti-aging benefits (27). 

For example, one study by Rabbani et al. examined how metformin affects oxidative 

damage in apolipoprotein B100 of LDL particles in blood (28). High levels of LDL particles in 

blood are a strong indicator of type 2 diabetes-related cardiovascular disease as it indicates 

ineffectual LDL clearance from LDL receptors and hepatic over-secretion of apolipoprotein 

B100 (28). Along with oxidation of apolipoprotein B100, protein glycosylation and nitration also 

contribute to high LDL particles levels (28). Venous plasma LDL composition from type 2 

diabetics and healthy control patients was analyzed through stable isotopic dilution analysis 

tandem mass spectrometry (28). The results indicated that metformin decreased the amount of 

arginine-derived advanced glycation end products and oxidative damage in apolipoprotein B100 

of LDL (28). 

In addition to its role in reducing oxidative stress-related CR in type 2 diabetes, 

metformin also reduces oxidation of other biomolecules. For example, another study by Algire et 

al. (29) elucidated the beneficial effects metformin can have on DNA damage caused by 

oxidative stress. The study looked at reactive oxygen species (ROS) related to DNA damage and 

mutations. Several AMPK+/+ and AMPK-/- mouse embryonic fibroblast (MEF) cell cultures were 

created and exposed to varying conditions that typically increase the amount of ROS. Metformin 

reduced paraquat-induced, but not H2O2-induced, elevations of ROS in an AMPK-independent 
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manner (29). This indicated metformin’s effectiveness in reducing endogenous ROS production 

(29). In paraquat-exposed cells, metformin reduced DNA double strand breaks and somatic cell 

mutation rates while also improving mouse survival (29).  

Multiple studies have looked at metformin’s ability to treat neurological ailments and 

ameliorate oxidative damage located in the brain and collectively suggest an extension of neural 

longevity. There are multiple benefits to metformin-mediated amelioration of neural oxidative 

stress including preventing apoptotic cell death, memory impairment, cerebral ischemia and 

epileptic seizures (30, 32, 33, 34). A study by Zhao et al. (30) on male C57BL/6 mice found that 

metformin treatments were able to mitigate neural oxidative stress and cognitive impairment 

associated with seizures and epilepsy. Another study by El-Mir et al. (31) examined diabetes-

related neuronal disorders and the effect metformin treatments might have on longevity found 

that oxidative stress can increase instances of etoposide-induced cell death on primary cortical 

neurons taken from rats.  

Through further exploration of this topic by researchers, more effective metformin-based 

treatments can possibly be developed to produce more optimal patient outcomes. Collectively, 

the majority of research findings indicate the effectiveness of metformin treatment in type 2 

diabetics to reduce the overall aging effects due to oxidative damage (29). 

 

 

1.8 Effects on telomere length 
 

Telomere length is another model of aging that is becoming more frequently used to 

measure longevity. Telomeres are specific sequences of non-coding DNA that ’cap’ the coding 

region of linear chromosomes, protecting it from degradation or enzymatic modification through 
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nucleolytic resection or fusion (35, 36). Structurally, telomeres are nucleoprotein complexes that 

include guanidine-rich repeated sequences within the DNA (36). The repeat sequence is the 

hexamer TTAGGG (35, 83). 

 

 
Figure 4: Location and structure of the telomere on a human chromosome (83). 

 

Telomeres have been shown to shorten with each cell division for many human tissues, 

disappearing completely after enough successive divisions (37). This is caused by a phenomenon 

known as the ’end-replication problem’, in which, due to the unidirectional 5’→3’ synthesis of 

DNA, some bases on the 3’ end remain uncopied after replication in the S phase (39). In the 

absence of telomeres, the DNA sequence can undergo degradation and the chromosome ends can 

become fused and destabilized. As a consequence, the cell will no longer be able to replicate, and 

enters a state of senescence in which the cell will cease to divide further (37).   

Limits to human cell division were first observed by Leonard Hayflick (35) who 

experimented with human tissue cells that were repeatedly cultured. Although Hayflick was able 
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to categorize the type of growth that occurred into three phases, with “Phase 3” displaying 

senescence, it was unknown at the time what caused this outcome (36). Senescence has since 

been shown to have many possible causes, many of which are environmental stresses (36). 

However, even in a stress-free environment, senescence is still inevitable (36). An accumulation 

of senescent cells in human tissue can result in the expression of the senescence-associated 

secretory phenotype (SASP) (119). Cellular senescence caused by a SASP has been shown to 

produce pro-inflammatory cytokines, chemokines, growth factors and proteases, leading to a 

damage in tissue structure and function that is characteristic of aging (119). 

The phenomenon of cellular senescence was first posited to be attributed to the gradual 

loss of telomeric DNA in the cells by Olovnikov in 1973 (122, 123). In 1992, Harley et al. built 

upon this concept, proposing that telomere length is shortened to a predetermined size in where a 

“genetic check-point” is reached, and the Hayflick limit is consequently initiated, halting cellular 

division (123). This phenomenon of progressive shortening with age was observed both in vivo 

and in vitro for somatic cells by Harley et al (123, 124). Gametes, such as sperm cells, do not 

display this, and their telomeres remain long without decreasing with age (123). This retention of 

telomere length is due to the presence of telomerase, which is active predominantly during 

gametogenesis (120, 123) 

Telomerase is a guanidine-rich ribonucleoprotein enzyme that can be used to synthesize 

the repeated TTAGGG/CCCTAA sequences of which telomeres comprise (38, 45). Telomerase 

acts similarly to a reverse transcriptase, and it is essential for complete replication of telomeres 

within DNA. It should be noted that, in humans, most somatic cells, such as fibroblasts, 

epithelial cells, melanocytes, endothelial cells, and astrocytes, do not express the telomerase 

enzyme and will thus eventually senesce (119, 45, 121). 
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Because of telomerase’s inactivation in somatic cell replication, as well as its noted 

activity in cancer cells, several studies developed ways to better understand the nature of this 

enzyme (18, 80, 120, 125, 126). Five independent research groups were able to concurrently 

clone human telomerase reverse transcriptase (hTERT), a subunit of telomerase (18, 80, 120, 

125, 126). Through the examination of hTERT reactivation, these studies were able to conclude 

that hTERT functions as the catalytic domain of telomerase and its expression is essential for the 

telomerase-mediate reverse transcription of human telomeres (18, 80, 120, 125, 126). 

In 1998, the researchers from the Geron Corperation were able to establish a causal 

relationship between the process of telomere shortening and in vitro cellular senescence (45). 

They demonstrated telomerase’s ability to extend the replicative ability of normal human somatic 

cells while maintaining their diploid status, growth characteristics, and expected gene expression 

pattern (45). Another study from the same year, by Vaziri and Benchimol, demonstrated similar 

findings, showing how the rejuvenation of telomerase activity in vivo was able to extend cellular 

life span through the increase in telomere length (19). 

Due to the natural shortening of telomeres in somatic cell with each cellular division, it 

can be logically assumed that there is a correlation between telomere length and aging. Many 

studies have confirmed this assumption, demonstrating strong correlations (40) (Figure 5). 

Therefore, telomere length could be used as effective biomarker for aging (41).  
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Figure 5: The rate of telomere shortening from early adulthood to old age using DNA samples 
extracted from whole blood (77). 

 

One preclinical study took a multimodal approach to examine metformin’s effects on 

longevity in prediabetic patients by examining several aging-related parameters (42). Gene 

transcription levels and protein levels of mTOR, p53, p66Shc, and sirtuin-1 (SIRT1) were 

examined in both individuals taking metformin and those assigned a placebo (42). SIRT1 activity 

as well as AMPK activation, telomere length, peripheral blood mononuclear cell (PBMC) levels 

and N-glycan levels were also studied in both individuals taking metformin and those assigned a 

placebo (42).  Out of 38 prediabetic patients, 19 were assigned to take 3x500 mg metformin 

tablets daily for two months, while the remaining 19 received the placebo treatment (42). The 

results found that some effectors of longevity pathways were modified (43). Metformin was 

found to moderately increase SIRT1 expression, reduce p70S6K phosphorylation, and favorably 

modified the plasma N-glycan profile (42). Telomere lengths of PBMCs were found to have 

increased significantly from the baseline levels after metformin treatments and did not increase 
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with placebo treatments (42). However the degree of change from the baseline  for both groups 

was not significantly different from each other (42). 

 The effect of metformin on reducing disease risk can be difficult to determine due to the 

complex etiology of many age-related human diseases. One study looked at potential links 

between type 2 diabetes, oxidative damage and colorectal carcinoma by measuring telomere 

length (43). While some of the study participants were taking metformin treatments, the efficacy 

of the drug was not tested (43). In addition to those participants undergoing treatments of 

metformin alone, others were prescribed treatments of sulfonylureas, both metformin and 

sulfonylureas in combination, and subcutaneous insulin (43). Overall, results indicated that mean 

colonic epithelial telomere length in participants with type 2 diabetes was not significantly 

different from the control values (43). Therefore, no link was found between telomere shortening 

due to type 2 diabetes and colorectal carcinoma. 

  Further colorectal cancer research examined how metformin affects telomeres in human 

colon carcinoma cells by studying the drug’s effects on the proliferation of SW-480 cells (44). 

Telomerase activity was examined through telomeric repeat amplification protocol (TRAP) 

silver staining (44). It was found that metformin treatments were able to decrease telomerase 

activity, inhibiting the growth of SW-480 cells (44).  

 Endometrial cancer cell proliferation was also examined in a study by Cantrell et al. (46) 

which investigated the effects metformin treatments had on human telomerase reverse 

transcriptase (hTERT) activity. The hTERT is an essential catalytic subunit of telomerase which 

is a guanidine-rich ribonucleoprotein enzyme that can be used to synthesize the 

TTAGGG/CCCTAA sequences in human telomeres (38, 45). Telomerase acts similarly to a 

reverse transcriptase, and it is essential for complete replication of telomeres, eliminating the 
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end-replication problem that would normally degrade the entire telomere sequence over time 

(45). qPCR was used on endometrial cell lines to measure hTERT gene expression (46). It was 

found that, within 24 hours of treatment with metformin, hTERT mRNA expression was 

decreased (46). As hTERT expression is considered a rate-limiting step in the production of 

telomerase and telomerase is needed for telomere extension, it appears that, in endometrial cells, 

metformin treatments will reduce telomere length. A reduction in telomere length could indicate 

a decrease in longevity for this particular cell type. Hanna and Zhou (47) further built upon this 

research to find that a combination treatment of metformin and paclitaxel may be more effective 

at maintaining telomere length. This potentiating effect seems to derive from metformin’s ability 

to inhibit cell proliferation while simultaneously modulating the mTOR pathway (47). 

1.8.1 Health conditions related to telomere length 
 

Damage to the chromosomal sequence can lead to many adverse health outcomes as well 

as increased mortality. Shortening of telomeres has been linked to atherosclerosis, dementia, 

post-stroke mortality, cognitive decline, diabetes, and cardiovascular disease (40, 86, 87, 88). 

Prevalence for these pathologies has been shown to increase as the telomere length decrease (40, 

86, 87, 88). 

The opposite is found in studies looking at telomere shortening and cancer. Many types 

of cancer have been found to increase in prevalence with longer telomere lengths. Telomerase 

has been shown to be active in tumorous tissues, leading to the prevention of telomere shortening 

(89). This immortalization of tissue results in oncogenesis and out of control cell growth (89).  

 

1.8.2  Lifestyle factors related to telomere length 
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There are also several lifestyle factors that have been shown to correlate with telomere 

length. Oxidative stress has been shown to increase the rate of telomere shortening and the 

characteristic cellular senescence (90). Antioxidants will work contrary to this type of 

shortening, preventing telomere shortening (90). Life stressors, dietary differences, or childhood 

trauma have also been shown to correlate with telomere shortening (91, 92). 

 

1.8.3 Demographic factors related to telomere length 
 

Demographic factors such as gender and biogeographic ancestry also correlate with 

telomere length (14). Males, on average, have shorter telomeres than females and Caucasians, on 

average, have shorter telomeres than other biogeographical groups (40). 

 

1.9 Methods of measuring telomere length 
 

There is currently a diverse array of techniques that are being utilized to a high degree of 

effectiveness to measure telomere length. Southern blotting methods, widely considered to be the 

’gold standard’ technique for telomere length measurement, are but one way to accurately 

measure telomere length (93, 94). Quantitative PCR, quantitative fluorescence in-situ 

hybridization (q-FISH), Single Telomere length analysis (STELA) and other methods are also 

effective, each having their own unique set of advantages and limitations (93, 94). 

The Southern blot technique for measuring telomere length was originally developed by 

Kimura et al. (94) for examining leukocyte telomere length (LTL) in epidemiological studies. 

The procedure begins with genomic digestion with a ’cocktail’ of frequent cutting restriction 

enzymes (lacking telomeric and subtelomeric recognition sites) (94). The technique then makes 
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use of gel electrophoresis, followed by labeled probe hybridization for telomere sequencing (95). 

The different telomere lengths will be visualized through gel imaging, presenting as a smear to 

which the size and intensity can being assessed via comparison to a DNA ladder (93, 96). This 

method is also known as terminal restriction fragmentation, with the unit of measurement for the 

telomere length being telomere restriction fragments (TRFs) (94). 

Due to the frequency of use of the Southern Blot technique, the majority of literature 

contains the length of TRFs, allowing for more opportunities of direct comparison to occur (94). 

This method is also relatively cheap, with high reproducibility (93, 94). It also allows for the 

possible determination of telomere length distribution, however this is rarely completed in 

epidemiological studies due to difficulty in obtaining accurate gel measurements (93). One 

disadvantage is that the Southern blot method generally requires a substantial amount of DNA (3 

μg per sample) (93). It also requires the measurement of both the telomeric and sub-telomeric 

regions (93). Problems can also arise if the sub-telomeric regions lead to artificial inflation (93). 

There can also be variations in the TRF values if a different cocktail of restriction enzymes is 

used (97).  

Quantitative PCR is another method that is becoming more and more prevalent in the 

measurement of telomeres. Richard M. Cawthon (97) was the first to propose a method of 

measuring telomere length via qPCR. This method analyzes the relative telomere length per 

DNA sample (97). It compares the factor by which the sample differed from reference DNA and 

its ratio of telomere repeat copy number to single gene copy number (97). The ratio used is 

proportional to the average telomere length (97). Two serial dilutions are made with reference 

DNA (97). One serial dilution is completed with amplifications of the telomere repeat sequence 

for the reference DNA sample, and the other is completed with the amplification of a single copy 
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gene for the reference DNA sample (97). Once they have been amplified through the Real Time 

PCR thermocycler, the resultant Cq (equivalent to Ct, or cycle threshold) values for the serial 

dilutions can be plotted against the logarithmic values of their corresponding copy numbers in a 

standard curve. The tested sample can be compared to both serial dilutions to find the telomere 

repeat copy number and single gene copy number respectively (97). Relative telomere length is 

obtained by dividing the telomere copy number by the single gene copy number (T/S) (97). 

Cawthon’s qPCR method can produce results from more minute quantities of the initial sample 

than the Southern blot method (97). It also has the benefit of being able to provide a high-

throughput performance (93, 35).  

The Cawthon method was modified by Nathan J O’Callaghan and Michael Fenech to 

include an oligomer standard, allowing for the measurement of absolute telomere length instead 

of relative telomere length (35, 98). Absolute telomere length can be a direct comparison of 

results between other experimental values from other labs (35).  

In general, qPCR is able to produce results from more minute quantities of initial sample 

than the Southern Blot method because of this, buccal sampling, or any other low-quantity 

sampling, would be compatible with this methodology (93, 97). It also has the benefit of being 

able to provide a high-throughput performance, increasing the ease, amenability and speed of the 

analysis (93, 94, 35). One limitation of qPCR telomere analysis is that it has a high variance of 

between 5 and 10%, making it more difficult to notice differences between samples and control 

(93). Like the Southern blot techniques, qPCR-based techniques require high-quality, non-

compromised DNA samples (94). Also, the choice of the reference gene used can cause variance 

in the data due to differences in stability (93). Reference genes, such as 36B4, albumin and β-

globin, are common, yet there is no standard gene that is universally used (93).  
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The Southern blot and qPCR methods are also limited in that they can only determine the 

average telomere length of the specimen being evaluated, and do not provide information that 

specifically applies to the individual telomere lengths within a chromosome (94). The STELA 

method is a unique telomere measuring technique that does allow for the analysis of a single 

chromosome (37). This ligation-based method, originally developed by Baird et al. (37), targets 

the amplification of the telomeric portion of a single chromosomal end, by using primers that 

bind to the specific sub-telomeric sequences of a single chromosome. This procedure is only 

valid for measuring a small subset of chromosomes (Xp, Yp, 2p, 11q, 12q and 17p) (99). Also, 

differences in the rate at which specific telomeres shorten might render this technique ineffective 

in recognizing critically short telomeres (100).  

A modified method, referred to as the universal STELA technique, solves this problem 

by allowing any critically short telomere to be detected regardless of its location on the 

chromosome (100). This method involves three main steps digestion, ligation and amplification 

(100). The DNA of interest is first digested by a selection of restriction endonucleases, and then 

a ligation step allows for the suppression of the amplification of the intra-genomic fragment 

(100). Lastly, the samples are sequentially ligated and then amplified for the short telomeric 

regions (100). 

Both the original and modified STELA methods are able to detect telomeres in a single 

chromosome from very low-quantity samples (94). However, both methods are limited in that 

they are unable to measure telomeres having long lengths (over 8kb) (100). This could mean that 

these methods might be misleading in samples from cancer cells or from very young individuals 

(101, 89).  
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Fluorescence in situ hybridization (FISH) has frequently been incorporated in many 

methods that measure telomere length. Quantitative fluorescence in situ hybridization is one of 

these methods, measuring the length of the telomeric repeats (94). It was first developed Peter 

Lansdorp and colleagues and, shortly after, adapted by Krejci and Koch (102, 103). The q-FISH 

method differs from TRF and PCR-based assays by using cells as the substrate rather than the 

DNA itself (94). This method is accomplished by assessing the metaphase chromosomes or 

interphase nuclei following fluorescent labeling with a (CCCTAA)3 probe (94). Any remaining 

chromatin on the chromosome is visualized by a nonspecific DNA stain (such as 4',6-diamidino-

2-phenylindole [DAPI] or propidiumiodide (102). The probe typically chosen for the assay is a 

synthetic peptide nucleic acid (PNA) probe (94). This is because the probe has a neutral 

backbone, causing it to produce more efficient hybridization than DNA probes (104). The q-

FISH method is able to estimate the size of each of the 92 telomeres and it is not limited to 

measuring average or small-size telomeres (94). Another benefit is that this method can also 

recognize the ends of a chromosome that would typically be too small to adequately hybridize 

(94). The q-FISH method has been optimized for a variety of conditions and samples for 

biological testing (106). It has also been shown to be useful for measuring the telomere length in 

rare cells such as CD34+ cells in bone marrow from individuals suffering from dyskeratosis 

congenita (105). The main weakness of the metaphase q-FISH technique is its inability to 

measure telomeres in cells that are not actively undergoing mitosis (such as terminally senescent 

cells) (94). Its functionality is also limited in specimens with very slow proliferation rates (94). 

There are two main categories of q-FISH: metaphase q-FISH and interphase q-FISH (94). 

Metaphase q-FISH studies are useful for obtaining information about differences in telomere 

length between different chromosomes, and also for providing information about the frequency 
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of chromosomal instability associated with chromosomes with very short unhybridizable 

telomeres (107). This form of q-FISH is not suitable for large epidemiological studies due to it 

being labor intensive, expensive, and technically demanding (requiring experience with 

chromosomal banding patterns) (94). 

Interphase q-FISH was developed to overcome some of these limitations associated with 

metaphase q-FISH (94) utilizing interphase cells and its chromosomes rather than metaphase 

chromosomes. Interphase q-FISH is also able to assess telomere lengths in nuclei from a variety 

of different specimen types (94). Often in interphase q-FISH, a fluorescent signal obtained from 

a telomere-specific probe is compared to a centromeric probe or a differing coloured fluorophore 

(94). Next a ratio of signal intensity between the targeted sequences can be calculated (107). 

Interphase q-FISH is beneficial in telomere length analysis because it allows for the concurrent 

collection of information regarding telomere length and information about the tissue sample (94). 

It is also less labor intensive than metaphase q-FISH (94). This information can be used 

alongside immunostaining techniques to localize specific cells of interest in a process that is 

sometimes referred to as telomapping (108). A limitation of the interphase q-FISH technique is 

that it does not allow for the recognition of specific telomeres, or for the detection of 

chromosomal ends with very short unhybridizable telomeres (94). Also, the data is usually 

measurable in terms of a mean value for all 92 telomeres (94) and can be automated in a form 

known specifically as high throughput q-FISH (HT q-FISH) (101). This method was developed 

to maintain accuracy and improve efficiency in q-FISH, allowing for these methods to be used in 

larger epidemiological studies (93, 94, 101). The HT q-FISH method can also improve the 

efficiency of flow cytometry plus traditional FISH techniques (93). 
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Another method, flow cytometry plus FISH technique, was developed by Baerlocher et 

al. (109), in order to measure the mean telomere length with metaphase staining. Flow-FISH 

methodology also utilizes the (CCCTAA)3 PNA probe for quantification of the mean amount of 

fluorescence in the cells, and the average telomere length for that cellular population (110). This 

method could be used to measure from any subpopulation of circulating peripheral cells due to 

the initial flow cytometry step (109). Consequently, flow cytometry plus FISH was able to 

determine the telomere length for individual cells of a distinct cell type and the distribution of 

telomere lengths of that cell type (93). Furthermore, this method utilizes an internal reference 

control and highly specific nucleic acid probes to hybridize to the telomeric repeats, greatly 

improving the accuracy (93). Flow cytometry plus q-FISH is the first of the telomere assays to be 

used as a clinical diagnostic tool, assisting with the recognition of congenital dyskeratosis (111). 

This method can also allow for the inference of a three-dimensional distribution of telomeric 

signals in cells (112). Despite providing more information than other methods, flow cytometry 

plus FISH is quite expensive, highly inefficient, and requires a high degree of technical expertise 

that could limit its use in epidemiologic research (93).  

 The primed in situ (PRINS) method of measuring telomeres utilizes fluorescently tagged 

nucleotides and PCR techniques with telomeric primers which label the telomeric sequences in 

situ on metaphase chromosomes or interphase nuclei (113). This method is used in lieu of a PNA 

probe to label the telomeres in preparation for analysis using q-FISH methods (113). Therefore, 

the sample benefits and limitations of that method apply to PRINS techniques (93).  

The hybridization protection assay (HPA) involves the comparison of telomeric to Alu 

repeats present in a specimen (114). This method was designed to be faster and easier to read 

than the traditional Southern blot technique, improving the overall accuracy of the results (114). 
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This method involves adding the sample to a hybridization solution containing acridinium ester-

labeled probe, followed by a differential hydrolyzation with the unhybridized probe. The 

chemiluminescence results are then measured through imaging (114). Along with its speed 

(around 45 minutes), this technique does not require high quality DNA, or even large quantities 

(94). However, one limitation is that it is difficult to interpret the ratio values due to variation in 

the Alu repeat sequences between samples (93). Only a mean value of telomere length, with no 

cell- or chromosome-specific data is generated (93).  

Alternate methods also exist which quantify the length of the telomeric 3’overhang 

instead of the full telomeric length. Some techniques that follow this approach include 

telomereoligo (oligoneucleotide) length assistance (T-OLA), G-tail HPA, overhang protection 

assay (OPA), single-strand electron microscopy, primer-extension nick translation (PENT) and 

double-strand specific nuclease (94, 115, 116, 117, 118). These techniques have important 

biological applications and usually produce more focused outcomes (94).  

After considering the limitations and advantages of the telomere measurement methods 

above, as well as the equipment available in our lab, we chose to use qPCR in our study. Prior 

professional experience and success with this method as well as low processing time were 

deciding factors for choosing this method. Additionally, the relatively low cost of qPCR analysis 

allowed for this project to be economically feasible. 

1.10 Summary and future prospects 
 
 Currently, there are many studies examining the benefits of metformin treatment when 

prescribed for both its approved treatment of type 2 diabetes and off-label as a geroprotectant. 

Currently, more and more evidence supports the notion that metformin has geroprotective 

properties. With further information about the exact nature of metformin’s effects, and deeper 



41 
 

insight into its various interactions with biochemical pathways in the human body, therapeutic 

treatments can possibly be further developed.  

Prior to its approval as a geroprotectant, more research should be done on metformin’s 

effectiveness on preserving telomere length. Although studies have found that metformin can 

increase the length of telomeres and delay shortening, further human studies are needed because 

evidence indicates that metformin use may be more beneficial with more prolonged treatments. It 

would be valuable to have clinical trials that measure possible benefits of long-lasting metformin 

therapies. Future studies examining the specific benefits of the drug at all stages of life would 

also be useful. As well as subcategorizing subjects by age cohorts, it would also be useful to 

separate data based on biological sex due to the noted differences in health outcomes between 

men and women. Standardization of telomere length measurement methods is also needed to 

more easily compare treatment effects between studies, so that telomere measurements and 

general patterns and revelations from these prospective metformin studies can be replicated via 

differing telomere-measuring methods such as the Southern blot method, STELA or the q-FISH.  

With additional examination into this relatively novel area of research, further 

understanding of the effects metformin has on aging and longevity can be determined, with the 

potential for more refined and effective metformin therapies being developed as a result.  
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2: Materials and methods 

2.1  Ethics approval and sample collection 
 
 All protocols were approved by the Lakehead University Research Ethics Board (Project 

#067 16-17). Primary patient recruitment was through the Curans Heart Centre, an outpatient 

cardiac clinic located in Thunder Bay, Ontario. Patients were recruited either through posters and 

pamphlets advertising the study or directly, where individuals taking metformin and/or who have 

type 2 diabetes, were informed about the study by their nurse practitioners and asked if they 

would be interested in participating in the study. All participants’ results of their telomere 

analysis (once the research has been published) along with a contextual comparison to the 

population average for their age cohort were emailed to each participant. 

 All participants were required to complete a consent form which included a brief 

questionnaire and a space to provide their email should they desire access to the results. The 

questionnaire asked the participant’s age, biological sex, whether they had type 2 diabetes, and if 

they were currently taking metformin. Once the consent form was completed, the nurse 

practitioner collected it and inputted the answers to the questionnaire and the patient’s personal 

information into a Microsoft Excel spreadsheet that was saved to a secure server. Each 

participant’s sample was assigned a random sample number and this number was recorded on the 

Excel spreadsheet along with their information. The Excel spreadsheet was only provided to the 

researcher once the data had been collected, analyzed, and tabulated for each random sample 

number, allowing the study to remain blind. Once all the information has been collected, the 

nurse practitioner took the blood with a 22 gauge needle and a 5 mL syringe. The blood was then 

deposited into a 3 mL Greiner Bio-One Hematology K3 EDTA Evacuated Tube. 
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2.2 Sample storage 
 

Blood samples were stored in a 2° C fridge temporarily (1-7 days). The samples were 

collected weekly from Curans Heart Centre and brought to the laboratory at Lakehead 

University. There, the samples were centrifuged at 13,000 rpm for 10 minutes. Afterward, the 

blood in the sample tube was separated into three components: the red blood cells at the bottom, 

the buffy layer containing the white blood cells in the center and the plasma at the top. An 

aliquot, 200 µL of the central buffy layer was removed via a micropipette and deposited into a 2 

mL microcentrifuge tube and labeled with the sample number. All lab work was conducted in a 

biosafety cabinet. All purified sample DNA solutions were stored in a -20° C freezer for up to 2 

months. 

 

2.3 DNA extraction and purification 
 

All DNA from the blood samples was extracted and purified using the 

Invitrogen PureLink Genomic DNA Mini Kit. All procedures followed the steps outlined in the 

PureLink Genomic DNA Kit user manual on pages 17, 23 and 24, which outline the protocol for 

a blood lysate DNA extraction and purification (76). In part 2 of the blood lysate extraction 

protocol (page 17), a suggested alternative to the default extraction procedure was implemented 

with 100 µL of the blood lysate sample used alongside 100 µL of phosphate buffered saline 

(PBS) (76). During the ’Eluting DNA’ step (page 24), 75 μL of the Genomic Elution Buffer was 

added to the washed DNA spin columns to produce purified DNA of a moderate concentration 

(as outlined on page 13). The newly purified DNA samples were stored in a -20° C freezer for up 

to 1 month. 
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2.4 DNA quantification 
 
 Dyed master-mix solutions consisting of 198 µL of Tris-EDTA (TE) buffer, 0.5 μL 

QuantiFluor dsDNA dye and 2 µL of the purified sample were made and vortexed thoroughly. 

All samples were then quantified with a Promega Quantus fluorometer in triplicate. The 

concentration of the DNA solution was displayed through the Quantus software installed on an 

HP laptop computer. Data was then exported to Microsoft Excel, and the average concentration 

for each purified sample was determined. Quantifications of the telomere and 36B4 standards 

were also completed and would be necessary for the qPCR calculations in part 2.5. 

 

2.5 Preparation of samples, standards and primers for qPCR 
 
 Using the average concentration of each purified sample, the amount of double distilled 

water (ddH2O) required to dilute the sample to a concentration of 5 ng/µL was calculated (see 

Appendix A) (35). A 100 μM stock solution was created for both standards and both sets of 

primers (see Appendix B). Primers were further diluted with ddH2O by a factor of 10 into 1/10 

working primer solutions. Standards were also diluted with ddH2O into serial dilutions. Two sets 

of standards were created: a synthetic telomere standard to serve as a positive control reference 

for the amount of telomere hexomeric repeat sequences amplified per sample and a 36B4 

standard which encodes for the acidic ribosomal phosphoprotein P0 that serves as a positive 

control for the number of single gene copies (SCGs) amplified per sample (35). Both standards 

had 105, 106, and 107 serial dilutions included in each qPCR run. Based on the DNA 

concentrations quantified in part 2.4 by the Quantus fluorometer, the number of telomeres and 

SGCs were calculated for the telomere and the 36B4 standards respectively. These calculations 
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were completed according to O’Callaghan et al. (35) and the calculation steps can be seen in 

Appendix A. 

 

2.6 qPCR 
 
 All PCR runs were completed by first creating two qPCR master mixes (one for each 

primer set), which both consisted of 10 µL of PerfeCTa SYBR Green Supermix, 1 µL of the 

forward primer, 1 µL reverse primer, and 4 µL ddH2O (35). Each qPCR reaction had a master 

mix total volume of 16 µL added to 4 µL of the DNA sample (at a concentration of 5 ng/μL) 

(35). The qPCR master mix solution was added to each well of a 96 well PCR plate. Each 

sample, as well as the serial dilutions for both standards, were then added, in triplicate, to the 

master mix solution in each well. 

Once all the samples were added, the plate was then sealed and placed inside a Bio-Rad 

CFX96 Optics Module Real Time System C1000 Thermocycler. The thermocycler was set using 

the Bio-Rad CFX manager software. The cycling conditions were set to be 10 minutes at 95° C, 

followed by 40 cycles of 95° C for 15 seconds, 60° C for 1 minute, followed by a dissociation (or 

melt) curve. Once the qPCR was completed, the data were exported to a USB memory device 

and examined later with Microsoft Excel. 

 

2.7  Data analysis 
 

The results were analyzed using the Biorad CFX manager software and Microsoft Excel. 

The amplification curves were analyzed, and non-sigmoidal curves excluded from analysis. The 

Cq values were plotted against the known telomere quantities (in units of kb) and the SGC 
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numbers for both the telomere and 36B4 standard curve respectively. The Cq values from the 

samples amplified with the telomere primers were then compared to the telomere standard curve 

to elucidate the quantity of telomeres (in units of kb). All Cq readings were completed in 

triplicate and were averaged.  

Any outlier Cq values were eliminated before analysing the results. First the appearance 

of the amplification curves for each triplicated amplification runs was visually compared with 

one another. If one of the three curves appeared markedly shorter or steeper than the other two, 

with more than a 25% difference in height, the Cq value corresponding to that curve was 

eliminated. If any curve did not display the characteristic sigmoidal shape of a logarithmic 

amplification, it would be eliminated as well. All triplicated Cq values were also examined based 

on their numerical values. If a Cq value was markedly different than the other 2, with a percent 

difference of 25% or greater, it would be eliminated. If all Cq values were reasonably evenly 

dispersed, then all three values would have been calculated to determine the average 

The Cq values from the samples amplified with the 36B4 primers were also compared to 

the 36B4 standard curve to find the number of SGCs. The absolute telomere length per genome 

was determined by dividing the quantity of telomere by the SGC number. This number was 

further divided by 46 to determine the average absolute telomere length per chromosome. These 

calculations and a data sample are shown in Appendix C. 

Data was arranged into one of four possible cohort groups: Samples from non-type 2 

diabetic who did not take metformin (referred to as Cohort 1), samples from type 2 diabetics who 

did take metformin (referred to as Cohort 2), samples from type 2 diabetics who did not take 

metformin (referred to as Cohort 3), and samples from non-type 2 diabetics who did take 

metformin (referred to as Cohort 4). When analyzed, cohorts were not further subdivided into 
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ethnic origin, education, health/activity, or socio-economic status due to the limitations of the 

sample size. No information was taken about the dosage of the metformin or the treatment 

duration.  

The data was truncated to only include average absolute telomere lengths from samples 

of individuals 41 and older. This was because the data from participants under the age range of 

41-50 was homogenous, all belonging to Cohort 1. This information has limited use as it cannot 

be compared to other cohort groups within similar age ranges. Truncation of this data is useful as 

it allows the cohort groups to be more accurately compared and reduces the potential for the 

Cohort 1 data to be skewed due to having a large amount of younger samples. 

The final average absolute telomere length values were determined to be outliers if they 

were over 15 kb/chromosome or less than 0.1 kb/chromosome. Since it has been demonstrated 

through the literature that newborn telomere lengths typically fall between 15 and 20 

kb/chromosome, final average absolute telomere lengths over 15 kb/chromosome were 

considered to be outliers and were not included in the final analysis (78). Similarly, since 

average absolute telomere lengths under 0.1 kb/chromosome can be approximated to zero, any 

values below this threshold were also deigned to be outliers and were eliminated as well. 

2.8  Statistical analysis 
 
Regression analysis was first completed for all cohorts using IBM SPSS Statistics Data Editor. 

Next, t-tests were completed in Microsoft Excel 2016, which compared the data of Cohort 1 and 

Cohort 2, Cohort 1 and Cohort 3, and Cohort 2 and Cohort 3. Lastly, GraphPad Prism 7.05 was 

used to generate a one-way ANOVA test which compared Cohorts 1, Cohort 2, and Cohort 3. 
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3: Results 
 

 

The four cohort groups are referenced as such: Cohort 1, Cohort 2, Cohort 3, and Cohort 

4. Cohort 1 contains participants equating to the non-type II diabetic and non-metformin 

samples, Cohort 2 equating to the type II diabetic and metformin samples, Cohort 3 equating to 

the type II diabetic and non-metformin samples, and Cohort 4 equating to the non-type II 

diabetic and metformin samples. 

 

3.1: Telomere length measurements 
 

Telomere length is provided in two forms for all samples: absolute telomere length per 

genome and average absolute telomere length per chromosome this allows for a more direct 

comparison to literature values. These measurements will be presented as mean values in units of 

mean average absolute. The telomere lengths were calculated (see example in Appendix A) and a 

compilation of all telomere length data obtained from separate qPCR amplifications (Table 1). 

Relevant, anonymized participant information is also presented here for direct comparison. The 

sex, age, diabetic status, and metformin use were all obtained from Curans Heart Centre and 

provided to the researchers after final calculations of telomere length. Samples from individuals 

over the age of 41 years were included in the analysis and interpretation. However all data is 

included here to provide a comprehensive list and support the validation of the qPCR results. 
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Table 1: A compilation of all quantified telomere lengths for the anonymized samples that were 
analyzed through qPCR amplification.  
 

Participant 
Number: Sex: Age: Diabetic Status: 

Metformin 
Use: 

Absolute 
telomere 
Length per 
genome (kb) 

Average 
absolute 
Telomere 
length per 
chromosome 
(kb) 

Cohort 
Group: 

87 F 19 Non-Diabetic No 219.7747297 4.777711515 Cohort 1 

89 M 19 Non-Diabetic  No 174.7469764 3.798847312 Cohort 1 

91 F 19 Non-Diabetic  No 173.8538493 3.779431506 Cohort 1 

76 M 20 Non-Diabetic No 31.3279346 0.681042056 Cohort 1 

77 M 20 Non-Diabetic No 185.2797512 4.027820677 Cohort 1 

88 F 20 Non-Diabetic No 111.8700451 2.431957502 Cohort 1 

172 F 20 non-Diabetic No 13.41411709 0.291611241 Cohort 1 

10 F 21 Non-Diabetic No 870.5679517 18.92539025 Cohort 1 

15 M 22 Non-Diabetic No 182.5106574 3.967622986 Cohort 1 

155 F 23 non-Diabetic No 19.97200011 0.434173915 Cohort 1 

169 F 23 non-Diabetic No 162.3344055 3.529008815 Cohort 1 

84 M 24 Non-Diabetic No 182.4098576 3.965431686 Cohort 1 

175 M 24 non-Diabetic No 278.334279 6.050745195 Cohort 1 

1 F 25 Non-Diabetic No 128.6298684 2.796301487 Cohort 1 

92 F 25 Non-Diabetic  No 343.9382361 7.476918176 Cohort 1 

161 F 25 non-Diabetic No 328.4164295 7.139487599 Cohort 1 

7 F 26 Non-Diabetic No 208.2728414 4.527670466 Cohort 1 

160 M 26 non-Diabetic No 97.95116803 2.129373218 Cohort 1 

162 F 26 non-Diabetic No 286.0970147 6.21950032 Cohort 1 

40 F 27 Non-Diabetic No 443.2590608 9.636066539 Cohort 1 

115 F 27 Non-Diabetic  No 48.17006445 1.047175314 Cohort 1 

23 F 28 Non-Diabetic No 68.17244989 1.48200978 Cohort 1 

156 M 28 non-Diabetic No 75.62698996 1.644064999 Cohort 1 

157 F 28 non-Diabetic No 3.157556279 0.068642528 Cohort 1 

159 M 28 non-Diabetic No 154.4473124 3.357550271 Cohort 1 

170 M 28 non-Diabetic No 36.08898464 0.784543144 Cohort 1 

176 M 29 non-Diabetic No 1637.260978 35.59262996 Cohort 1 

14 F 30 Non-Diabetic No 248.1199084 5.393911051 Cohort 1 

2 F 35 Non-Diabetic No 3.191125551 0.069372295 Cohort 1 

13 M 35 Non-Diabetic No 160.8193517 3.496072864 Cohort 1 

8 F 36 Non-Diabetic No 4.660159858 0.101307823 Cohort 1 

9 M 39 Non-Diabetic No 0.377880114 0.008214785 Cohort 1 

42 F 39 Non-Diabetic No 67.3373124 1.463854617 Cohort 1 

22 F 42 Non-Diabetic No 153.324347 3.333137979 Cohort 1 

151 M 42 Type 2 Diabetes Yes 183.5970094 3.991239336 Cohort 2 

167 F 45 non-Diabetic No 26.84531477 0.583593799 Cohort 1 
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28 F 46 Non-Diabetic No 44.1599349 0.959998585 Cohort 1 

82 M 46 Non-Diabetic No 66.80082356 1.452191816 Cohort 1 

74 F 47 Non-Diabetic No 539.9246413 11.7374922 Cohort 1 

120 M 47 Type 2 Diabetes Yes 95.12266713 2.067884068 Cohort 2 

12 F 48 Non-Diabetic No 115.8060353 2.517522507 Cohort 1 

27 F 49 Non-Diabetic No 363.5195346 7.902598578 Cohort 1 

93 M 50 Non-Diabetic Yes 36.51424011 0.793787829 Cohort 4 

83 F 50 Non-Diabetic No 191.5011221 4.163067872 Cohort 1 

18 F 52 Non-Diabetic No 373.4086342 8.117579005 Cohort 1 

39 F 52 Non-Diabetic No 51.38008919 1.116958461 Cohort 1 

47 M 52 Type 2  Diabetic Yes 768.3027229 16.70223311 Cohort 2 

72 M 52 Non-Diabetic No 0.864973028 0.018803761 Cohort 1 

43 F 53 Non-Diabetic No 183.9980517 3.999957646 Cohort 1 

94 F 53 Non-Diabetic  No 202.6719279 4.405911476 Cohort 1 

154 F 53 non-Diabetic No 17.93962722 0.389991896 Cohort 1 

158 M 53 non-Diabetic No 196.9434107 4.281378494 Cohort 1 

73 M 54 Non-Diabetic No 142.5270775 3.098414728 Cohort 1 

168 M 54 Type 2 Diabetic  Yes 92.0612333 2.001331159 Cohort 2 

37 M 55 Type 2 Diabetic  Yes 86.11113817 1.871981265 Cohort 2 

111 F 55 Type 2 Diabetic  Yes 133.0713687 2.892855841 Cohort 2 

21 F 56 Non-Diabetic No 55.86321062 1.214417622 Cohort 1 

122 M 57 Type 2 Diabetic  Yes 138.2169058 3.004715344 Cohort 2 

31 M 58 Pre-Diabetic Yes 448.0842999 9.740963041 Cohort 4 

104 M 58 Type 2 Diabetic  Yes 4.436496225 0.09644557 Cohort 2 

164 F 58 Type 2 Diabetic Yes 35.04300608 0.76180448 Cohort 2 

5 F 59 Non-Diabetic No 31.11776644 0.676473183 Cohort 1 

34 M 59 Type 1 Diabetic No 50.06741188 1.088421997 Cohort 1 

61 F 61 Non-Diabetic No 868.1334798 18.87246695 Cohort 1 

121 F 61 Type 2 Diabetic Yes 74.97369122 1.629862853 Cohort 2 

173 F 61 non-Diabetic No 72.93751661 1.585598187 Cohort 1 

66 F 62 Non-Diabetic No 83.74502165 1.820543949 Cohort 1 

67 F 63 Non-Diabetic No 468.9488756 10.19454077 Cohort 1 

79 F 63 Non-Diabetic No 21.03565628 0.457296876 Cohort 1 

52 M 64 Type 2 Diabetic  No 82.44886038 1.79236653 Cohort 3 

55 F 64 Pre-Diabetic No 251.7377374 5.472559508 Cohort 1 

65 M 64 Type 2 Diabetic  Yes 256.449296 5.574984696 Cohort 2 

95 F 64 Non-Diabetic  No 57.26476292 1.244886151 Cohort 1 

152 F 64 Type 2 Diabetic Yes 74.84560351 1.627078337 Cohort 2 

51 F 65 Non-Diabetic No 108.7300275 2.363696249 Cohort 1 

117 M 65 Type 2 Diabetic  Yes 293.6872739 6.384505954 Cohort 2 

44 F 66 Type 2 Diabetic Yes 38.72528021 0.841853918 Cohort 2 

78 F 66 Type 2 Diabetic  Yes 140.423793 3.052691152 Cohort 2 

86 F 66 Non-Diabetic No 161.2458322 3.505344178 Cohort 1 

101 M 66 Type 2 Diabetic No 9.543999645 0.207478253 Cohort 3 
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106 F 66 Type 2 Diabetic  Yes 99.52963571 2.163687733 Cohort 2 

50 F 67 Type 2 Diabetic  Yes 517.951234 11.25980944 Cohort 2 

53 M 67 Non-Diabetic No 103.8222068 2.257004496 Cohort 1 

109 M 67 Type 2 Diabetic  Yes 201.7766782 4.386449527 Cohort 2 

110 M 67 Non-Diabetic  No 46.36347555 1.007901642 Cohort 1 

48 F 68 Non-Diabetic No 1077.345597 23.42055646 Cohort 1 

99 M 68 Type 2 Diabetic  No 14.80875453 0.321929446 Cohort 3 

153 M 68 Type 2 Diabetic  Yes 75.31167564 1.63721034 Cohort 2 

171 M 68 Type 2 Diabetic  Yes 82.37271764 1.790711253 Cohort 2 

29 F 69 Type 1 Diabetic No 185.001943 4.02178137 Cohort 1 

35 F 69 Type 2 Diabetic Yes 58.99903793 1.282587781 Cohort 2 

38 M 69 Type 2 Diabetic  Yes 104.7606194 2.277404769 Cohort 2 

54 M 69 Non-Diabetic No 150.4813062 3.271332744 Cohort 1 

25 F 70 Non-Diabetic No 294.6918761 6.406345132 Cohort 1 

33 F 70 Type 2 Diabetic  Yes 382.8984708 8.3238798 Cohort 2 

85 F 70 Non-Diabetic No 74.30824255 1.615396577 Cohort 1 

113 F 70 Type 2 Diabetic  No 67.98111663 1.477850362 Cohort 3 

6 F 71 Non-Diabetic No 3.30541E-09 7.18568E-11 Cohort 1 

36 M 71 Type 2 Diabetic  Yes 433.0382444 9.413874879 Cohort 2 

45 F 71 Type 2 Diabetic Yes 818.0051539 17.78272074 Cohort 2 

71 M 71 Type 2 Diabetic  Yes 114.5484176 2.490182991 Cohort 2 

81 F 71 Non-Diabetic No 47.08717353 1.023634207 Cohort 1 

102 M 71 Type 2 Diabetic  Yes 10.29310794 0.223763216 Cohort 2 

112 F 71 Type 2 Diabetic  No 37.79951042 0.821728487 Cohort 3 

16 F 72 Type 2 Diabetic  Yes 89.76080684 1.951321888 Cohort 2 

26 F 72 Type 2 Diabetic Yes 50.07815337 1.088655508 Cohort 2 

49 M 72 Type 2 Diabetic No 2987.608101 64.9480022 Cohort 3 

62 F 72 Non-Diabetic No 203.4573999 4.422986953 Cohort 1 

64 M 73 Non-Diabetic No 52.98366356 1.151818773 Cohort 1 

69 M 73 Type 2 Diabetic Yes 12.54978856 0.27282149 Cohort 3 

75 M 73 Type 1 Diabetic No 224.6667548 4.884059887 Cohort 1 

80 M 73 Type 2 Diabetic  Yes 69.47639843 1.510356488 Cohort 2 

163 F 73 Type 2 Diabetes Yes 375.9627401 8.173103045 Cohort 2 

24 M 74 Type 2 Diabetic Yes 161.120055 3.502609891 Cohort 2 

57 F 74 Type 2 Diabetic Yes 482.1800237 10.48217443 Cohort 2 

107 F 74 Type 2 Diabetic  No 118.1317075 2.568080598 Cohort 3 

116 M 74 Type 2 Diabetic  Yes 85.0948733 1.84988855 Cohort 2 

41 F 75 Non-Diabetic No 157.7306675 3.428927555 Cohort 1 

46 M 75 Non-Diabetic No 579.3427487 12.59440758 Cohort 1 

60 M 75 Non-Diabetic No 72.66859806 1.579752132 Cohort 1 

90 M 75 Non-Diabetic  No 294.1991839 6.395634433 Cohort 1 

119 M 75 Type 2 Diabetes  Yes 649.2852523 14.11489679 Cohort 2 

165 F 75 Type 2 Diabetic  Yes 154.0802046 3.349569665 Cohort 2 

32 M 76 Type 2 Diabetic  No 370.4981972 8.054308634 Cohort 3 
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59 F 77 Non-Diabetic No 475.7960225 10.34339179 Cohort 1 

70 M 77 Non-Diabetic No 144.178518 3.134315609 Cohort 1 

63 M 78 Non-Diabetic No 24.35716339 0.529503552 Cohort 1 

96 F 78 Type 2 Diabetic Yes 2.371553332 0.051555507 Cohort 2 

105 M 78 Type 2 Diabetic  Yes 211.2817328 4.593081149 Cohort 2 

114 M 79 Type 2 Diabetes No 56.49806174 1.228218733 Cohort 3 

118 M 79 Type 2 Diabetes Yes 74.36530997 1.616637173 Cohort 2 

97 M 80 Type 2 Diabetic No 25.12856177 0.546273082 Cohort 3 

98 M 80 Type 2 Diabetic  Yes 137.2505418 2.98370743 Cohort 2 

30 F 81 Type 2 Diabetic Yes 1121.045761 24.37056001 Cohort 2 

56 M 81 Non-Diabetic No 72.63126282 1.578940496 Cohort 1 

19 F 82 Non-Diabetic No 127.3287525 2.768016359 Cohort 1 

174 m 83 Type 2 Diabetic  Yes 266.584888 5.795323652 Cohort 2 

58 M 87 Type 2 Diabetic  Yes 177.4161674 3.856873204 Cohort 2 

108 M 88 Type 2 Diabetic  Yes 13.35216114 0.290264373 Cohort 2 

20 M 96 Non-Diabetic No 55.66117932 1.210025637 Cohort 1 

17 F 100 Type 2 Diabetic  Yes 209.9047454 4.563146639 Cohort 2 

 
 

 

3.2 Comparison of age cohorts 
 

Comparison of the mean standard deviation, n-value, and coefficient of variation for the 

average absolute telomere length in each cohort over the various age ranges for participants over 

the age of 41 is presented to test our hypothesis. The distribution data necessary for statistical 

analysis (see Appendix 4) is included in the following three tables (Table 2, 3, and 4). These 

tables provide the mean standard deviation, n-value, and coefficient of variation for the average 

absolute telomere length values of Cohort 1 (Table 2), Cohort 2 (Table 3) and Cohort 3 (Table 4) 

across the ages of 41 to 100. Cohort 4 is not included as there were only two values, both falling 

within differing age ranges. 

The data pertaining to Cohort 1 across defined age ranges shows fluctuating values of 

mean average absolute telomere length per chromosome, starting with a relatively high value in 



53 
 

the age range of 41-50, decreasing across the 51-60 and 61-70 age range, increasing to its highest 

mean at the age range of 71-80, and then, finally decreasing in the final two age ranges (Table 2). 

The standard deviation is quite high for all age ranges, decreasing slightly during the 81-90 age 

range (Table 2). The coefficient of variation, which compares the standard deviation to the mean 

stays constant throughout the majority of the age ranges, only decreasing a great deal between 

the age range of 81-90 (Table 2). The number of individuals between 41 and 80 years of age are 

all high, ranging from 8 to 14 samples (Table 2). The number of individuals drop considerably 

after this, with only two data points between the 81-90 age range and a single data point between 

the 91-100 age range (Table 2). 

Table 2:  
 
Table 2: The sample distribution details for the average absolute telomere length per 
chromosome of the Cohort 1 samples over various age ranges. 

Age Range 
(Years) 41-50 51-60 61-70 71-80 81-90 91-100 
Mean 4.08120 2.8389505 3.2303020 4.4989484 2.1734784 1.2100256 
Standard 
Deviation 3.87520 2.4303078 2.6295446 3.9244354 0.8408036 N/A 
number 8 10 14 11 2 1 
Coefficient of 
Variation 0.949524 0.8560585 0.8140244 0.8723006 0.3868470 N/A 

 

 

The data pertaining to Cohort 2 across defined age ranges also shows to have fluctuating 

values of mean average absolute telomere length per chromosome, with the values beginning 

moderately, followed by them reaching their peak between the 71-80 age range and then 

decreasing down to moderate levels between the ages of 81 and 90 (Table 3). The mean value for 

the age range of 91-100 appears to be the highest, however, it is not a true mean value as it 

represents only one data point (Table 3). The standard deviation is high for most age ranges, with 

the first two age ranges having the lowest values (Table 3). The coefficient of variation displayed 
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a similar trend, with the first two age ranges having the lowest values. n values were low in the 

41-50, 81-90, and 91-100 age ranges, moderate in the 51-60 age range, and high in the 61-70 and 

71-80 age ranges (Table 3). 

 

Table 3: The sample distribution details for the average absolute telomere length per 
chromosome of the Cohort 2 samples over various age ranges. 

Age Range (Years) 41-50 51-60 61-70 71-80 81-90 91-100 
Mean 3.02956 2.1065376 3.3698779 4.2260403 3.3141537 4.5631466 
Standard Deviation 1.36002 0.9082142 3.0595772 4.0979523 2.7923696 N/A 
number 2 5 16 16 3 1 
Coefficient of Variation 0.44892 0.4311407 0.9079193 0.9696908 0.8425588 N/A 

 

The statistical data for Cohort 3 represents the data of two age ranges: 61-70 and 71-80 

(Table 4). The mean, standard deviation and number of individuals are both higher in the 71-80 

age range than the 61-70 age range (Table 4). However the Coefficient of Variation for both age 

groups is fairly similar (Table 4). 

 

Table 4: The sample distribution details for the average absolute telomere length per 
chromosome of the Cohort 3 samples over various age ranges. 

Age Range (Years) 61-70 71-80 
Mean 0.7739247 2.643721907 
Standard Deviation 0.883851 3.122609933 
number 3 5 
Coefficient of Variation 1.1420373 1.181141604 

 

3.3 Comparison of telomere lengths between cohorts 
 

The difference in mean average absolute telomere length for each of the four cohorts 

between the ages of 41 and 100 were compared (Figure 6). The error bars visually display the 

standard deviation of each sample set (Figure 6). The ‘A’ and ‘B’ values denote p-values 
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obtained from a t-test (Appendix D). Cohort 4, and anything belonging to the age range of 91-

100 do not have error bars because they are single data points (Figure 6). They were included for 

the sake of completeness, but do not indicate any trends due to the number of individuals. The 

Cohort 1 mean is noticeably higher than that of Cohort 2 for the first two age ranges (both have 

B p-values). In the age ranges of 61-70 and 71-80, the means are nearly identical, and both have 

p-values classified as ‘A’. In the age range of 81-90, the mean value of Cohort 2 is noticeably 

greater than that of Cohort 1. Through the age ranges of 61-70 and 71-80, Cohort 3 has a much 

smaller mean value than both Cohorts 1 and 2. 

 

 
Figure 6: The mean average absolute telomere length per chromosome of Cohort 1, Cohort 2, 
Cohort 3 and Cohort 4 over time (as shown by age ranges of 10 years).  
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The legend at the right describes which cohort group corresponds to which bar (Figure 6). T-tests 

were completed to determine the differences between the mean average absolute telomere length 

of the Cohort 1and Cohort 2 samples. The ‘A’ indicates a p-value between 0.4 and 0.5 and a ‘B’ 

indicates a p-value between 0.2 and 0.3 (Figure 6). Error bars indicating standard deviation were 

included for the Cohort 1 and Cohort 2 samples (Figure 6). Error bars were not generated for 

Cohort 1 and Cohort 2 samples which fell into the age range of 91-100, as there was only one 

data point for each (Figure 6). Similarly, error bars were not included for the Cohort 4 samples as 

there was only a single data point in two separate age ranges (Figure 6). 

 

3.4 Statistical Analysis 
 

 Statistical analyses were completed to test for statistically significant differences in the 

sets of average absolute telomere length data between cohort groups.  

Linear regression analysis was completed using IBM SPSS Statistics Data Editor for 

Cohort 1 (Table 5), Cohort 2 (Table 6), and Cohort 3 (Table 7) to determine if age impacted the 

average absolute telomere length for these cohort groups. It was found that, through the analysis 

of all three linear regression models, age does not have a statistically significant impact (a p-

value greater than 0.05) on the average absolute telomere length. Because of this, age was not 

determined to be a covariant factor, and an ANCOVA test was not completed for the data. 
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Table 5: The model summary for the regression model analysis showing the impact age has on 

average absolute telomere length in the Cohort 1 data set. 

Model Summaryb 

Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .006a .000 -.023 3.128669 .000 .002 1 44 .967 

a. Predictors: (Constant), Age 

b. Dependent Variable: Average Absolute Telomere Length per Chromosome 
 

The regression analysis between age and average absolute telomere length for Cohort 1 (Table 5) 

shows that age does not have a significant impact on that average absolute telomere length, 

giving a p-value of 0.967 (a value higher than 0.05). Both the R Square value and the adjusted R 

Square value show that 0% of the variance in the average absolute telomere length is determined 

by the age.  

 

 

Table 6: The model summary for the regression model analysis showing the impact age has on 

average absolute telomere length in the Cohort 2 data set. 

Model Summaryb 

Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .139a .019 -.005 3.2184465 .019 .806 1 41 .375 

a. Predictors: (Constant), Age (years) 

b. Dependent Variable: Average Absolute Telomere Length per Chromosome 
 

The regression analysis between age and average absolute telomere length for Cohort 2 (Table 6) 

shows that age does not have a significant impact on that average absolute telomere length, 
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giving a p-value of 0.375 (a value higher than 0.05). The R Square value indicates that 1.9% of 

the variance in the average absolute telomere length is determined by the age. The adjusted R 

Square value indicates that 0% of the variance in the average absolute telomere length is 

determined by the age. 

 

 

Table 7: The model summary for the regression model analysis showing the impact age has on 

average absolute telomere length in the Cohort 3 data set. 

Model Summaryb 

Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .265a .070 -.085 2.702135336001004 .070 .453 1 6 .526 

a. Predictors: (Constant), Age (Years) 

b. Dependent Variable: Average Absolute Telomere Length per Chromosome 
 

The regression analysis between age and average absolute telomere length for Cohort 3 (Table 7) 

shows that age does not have a significant impact on that average absolute telomere length, 

giving a p-value of 0.526 (a value higher than 0.05). The R Square value indicates that 7% of the 

variance in the average absolute telomere length is determined by the age. The adjusted R Square 

value indicates that 0% of the variance in the average absolute telomere length is determined by 

the age 

 

Two-tailed t-tests were completed using Microsoft Excel 2016 to test for a statistically 

significant difference between the average absolute telomere length data in each cohort group.  
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Table 8: T-Test analysis comparing the statistical difference of the average absolute telomere 
length between Cohort 1 and Cohort 2. 

Age range p-values 
41-50 0.276919834 
51-60 0.207630726 
61-70 0.447034948 
71-80 0.431576712 
81-90 0.281522037 

91-100 N/A 
 
 
The t-test analysis comparing Cohort 1 and Cohort 2 values (Table 8) did not generate any p-

values below 0.05, indicating no statistically significant difference between these sets of data. 

 
 
Table 9: T-Test analysis comparing the statistical difference of the average absolute telomere 
length between Cohort 1 and Cohort 3. 

Age Range p-values 
61-70 0.008344497 
71-80 0.167591622 

 
The t-test analysis comparing Cohort 1 and Cohort 3 values between the age ranges of 61-70 and 

71-80 (Table 9) showed a p-value less than 0.05 for the age range of 61-70. This potentially 

indicates a statistically significant difference between these two cohorts for that age range. The 

p-value for these two cohorts between the age range of 71-80 was greater than 0.05, indicating 

no statistically significant difference between the data sets for this age range. 

 
Table 10: T-Test analysis comparing the statistical difference of the average absolute telomere 
length between Cohort 2 and Cohort 3. 

Age Range p-values 
61-70 0.007374206 
71-80 0.192657552 
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The t-test analysis comparing Cohort 2 and Cohort 3 between the ages of 61-70 and 71-80 (Table 

9) displays a p-value less than 0.05 for the age range of 61-70. This could indicate a statistically 

significant difference between these two cohorts for that age range. Conversely, the p-value for 

these two cohorts between the ages of 71-80 was greater than 0.05, indicating no statistically 

significant difference between the cohort groups for this age range. 

 

Table 11: A one-way ANOVA test comparing the statistical difference of the average absolute 
telomere length between Cohort 1, Cohort 2 and Cohort 3. 

ANOVA summary   
F 0.008366 
P value 0.9917 
P value summary ns 
Significant diff. among means (P < 
0.05)? No 
R square 0.0005574 

 

The ANOVA test summarized in Table 11 was created using GraphPad Prism 7.05. The p-value 

obtained was 0.9917 (larger than 0.05), indicating the absence of a statistical difference for the 

average absolute telomere lengths between Cohort 1, Cohort 2 and Cohort 3.  

 

3.5 Method Verification 
 
The methods were evaluated using controls, standards and quantification. All controls and 

standards were run with every qPCR. If any of the extraction negative and qPCR negative 

controls were deemed compromised the analysis was repeated. The standards used for 

calculation purposes were amplified on the same plate at the test samples so that a standard curve 

could be determined for every run since there is the possibility for inter-run variability. All 

extractions were quantified to ensure the appropriate amount of DNA was added to each reaction 
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as optimized. Some of the samples were randomly checked for inter-run variability by replication 

(Table 5). For example the average absolute telomere length for the same sample across two 

separate qPCR amplifications (Table 5). The values run on both dates are both very similar. 

 

 

 

Table 12: A comparison of qPCR results for the same unknown sample extracted and purified 
separately and analyzed through separate qPCR amplifications. 

Sample 

Absolute telomere 
length per  genome 
(kb/genome) 

Average absolute telomere 
length per chromosome 
(kb/chromosome) Date Run 

58 177.4161674 3.856873204 
August 5, 
2018 

58 172.7206381 3.75479648 
August 24, 
2018 

 

 

  

The average absolute telomere lengths for both analyses of sample 58 (on August 5th, 2018 and 

August 24, 2018) were quite similar to one another, having a percent difference of only 2.89% 

(Table 12). 
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4 Discussion 

4.1 Precision and accuracy of results 
 

There were relatively high standard deviations in this data when comparing the 

coefficient of variation to their means (Table 2-4 and Figure 6). This indicates a large spread of 

data points and low precision for most of the age ranges of the data. This result is likely due to 

the complexity and number of factors that affect the rate of telomere shortening. Due to the 

limited sample size, the results were organized by age ranges of ten years and were not further 

subdivided by sex, ethnic origin, health, caloric intake, lifestyle, duration of treatment, or 

treatment dose even though there is evidence that all these factors affect telomere shortening (77, 

85, 84, 11, 9). The varying combinations of these factors in the tested individuals is what could 

have led to this large standard deviation. This, along with some slight variability of the qPCR 

method could have been the reason for the diverse range in data. 

Although the methodology is consistent with other studies, it would have contributed to 

some degree of imprecision, as telomere analysis via qPCR has a variability between 5-10% 

(50). This effect, however, seems to be minimal as repeated analysis of the same unknown 

sample led to very highly similar results (Table 5). 

 Comparing the data generated in this study to literature values can assist in determining 

accuracy of the data itself. The mean average absolute telomere length for Cohort 1 and 2 range 

from below 5 kb/chromosome to above 2 kb/chromosome (Figure 6). This is similar, albeit 

slightly lower, than the values obtained from other studies (77, 78). Frenck et al. (78) found that, 

between an individual’s early 40s and late 70s, telomere length decreased from around 10.5 to 8 

kb/chromosome. Findings from Bischoff et al. (77), combined with data from Benetos et al. (41) 

indicate telomere length from whole blood decreases from 8.5 to 7.5 kb/chromosome between an 
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individual’s early 40s and late 70s. Although some samples were obtained from healthy 

individuals who were simply interested in participating in the study, many of the participants 

were recruited from Curans Heart Centre, a clinic for individuals with cardiac health concerns. 

Research has shown that cardiovascular diseases can result in increased telomere attrition (79). 

Particularly, heart conditions such as artery stiffness, the advanced stages of atherosclerosis, and 

coronary heart disease have all been found to cause an increased rate of telomere shortening (80, 

81, 82). Perhaps this could explain why the average absolute telomere length was slightly lower 

than expected. This could also be a possible explanation for the high variation of data. The 

results of this study show a slight decrease in Cohort 1’s average absolute telomere length over 

time from the age of 41 to 100 (Table 2 and Figure 6). This does follow the expected trend of a 

gradual decrease in telomere length from young adulthood to old age (78). The control group 

displaying the expected gradual attrition in telomere length does lend further support to the 

accuracy of the results.  

 

4.2 The effects of metformin use on average absolute telomere length 
 

In the earlier age ranges (41-50, and 51-60), the mean average absolute telomere length 

for Cohort 2 begins by being noticeably lower than the mean average absolute telomere length of 

Cohort 1 (Table 2, 3 and Figure 6). However, in the age ranges of 61-70 and 71-80, the mean 

average absolute telomere length for both Cohort 1 and 2 are nearly the same, indicating a 

relatively slower decrease in telomere length for Cohort 2 with advanced age when compared to 

the negative control (Table 2, 3 and Figure 6). This can be seen further in the 81-90 and 91-100 

age ranges in which the mean average absolute telomere length of Cohort 2 is noticeably higher 

than that of Cohort 1 (Table 2, 3 and Figure 6). It should be noted that these last two age ranges 
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have few data points (2 for Cohort 1 and 3 for Cohort 3 in the 81-90 age range, and 1 each for 

the 91-100 age range), so any conclusions relating to individuals over the age of 80 is more 

suspect than that of the younger age ranges. 

This relative slowing of telomere attrition in Cohort 2 could be due, in part, to the 

duration of metformin treatment. It has been shown in previous research that metformin is most 

effective at improving longevity with extended treatments (11). This could explain why telomere 

attrition in Cohort 2 slowed with age relative to the negative control. After the age of 45-50, the 

risk for developing type 2 diabetes increases (45). It could be inferred that most patients were 

likely diagnosed with type 2 diabetes during middle age and would have started the first-line 

metformin treatment around this age, resulting in Cohort 2 having relatively longer mean average 

absolute telomere lengths as time progressed and more years were spent taking the drug. 

Although these trends appear to be present through visual interpretation of Figure 6, the 

statistical t-tests did not show any statistical difference between the data from Cohort 1 and 2 

(Table 8). This was likely due to the relatively large spread in data points and subsequent large 

standard deviations (Table 2, Table 3). However, Cohort 3 has a considerably lower mean 

average absolute telomere length than both Cohort 1 and 2 (Table 2-4). For the age range of 61-

70, the t-test values seem to indicate that there is a significant difference between both Cohorts 1 

and 3, and Cohorts 2 and 3, with p-values of 0.0083 and 0.0074 respectively (Table 9, Table 10). 

The differences in mean average absolute telomere length for the age range of 71-80 did not 

show statistically significant values, giving p-values of 0.167591633 and 0.192657552 for 

Cohort 1 and Cohort 3 respectively (Table 9, Table 10).  

The one-way ANOVA test (Table 11), which compared all three cohort groups along the 

age range of 61-70, provided results which conflicted with the t-tests in Table 9 and Table 10. 
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This ANOVA test did not find a statistically significant difference between the three cohorts for 

the age range of 61-70 (Table 11). This discrepancy could be present because the one-way 

ANOVA test compares all three means against each other simultaneously, whereas both t-tests 

specifically compared Cohort 3 with Cohorts 1 and 2 separately. Perhaps the one-way ANOVA 

test was not able to register a statistically significant difference due to the variance of all three 

datasets, yet differences between the two cohorts exist. It is also possible the statistically 

significant p-values obtained from the t-tests were false positives (type I error). 

Overall, it appears that there might be some evidence to support the notion that the mean 

average absolute telomere length for diabetics not taking metformin is lower than the mean 

average absolute telomere length for type 2 diabetics taking metformin as well as healthy control 

samples. However, due to conflicting statistical analyses and the fact that this trend is only 

observed within a ten year age range, no definitive conclusions can be made at this time.  

 

4.3 Study limitations and future directions 
 

A limitation with this study is the relatively low sample size, specifically for Cohorts 3 

and 4. With greater numbers of samples from these two cohort groups, a more balanced study 

could be undertaken, proving more definitive conclusions about metformin’s effect on telomere 

length. It is likely that our relatively small numbers of individuals in each age group were not 

large enough to resolve the differences in telomere length seen in the previous studies with their 

hundreds of subjects. In future studies it might be pertinent to selectively recruit participants of 

similar sex, ethnic origin, health status, length of treatment, and dosage. Improved control of 

these external variables could result in more precise findings. 



66 
 

It may also prove useful, in future studies, to explore alternative analytical techniques for 

analyzing telomeres. The qPCR method is known to have a high degree of variability within its 

final results, lending to a higher variance of the data. Perhaps a method such as the Southern Blot 

technique, which is highly reproducible and considered to be quite precise, would be a more 

suitable option (93, 94). 

 

5 Conclusion 
 
 Although this preliminary study was able to identify several trends in how metformin and 

type 2 diabetes can affect telomere length, a conclusive link between metformin use and 

telomere length is still yet to be firmly established. All calculated telomere lengths were 

reasonable when compared to other published works, however, due to high standard deviations, 

statistical significance was not established between type 2 diabetics taking metformin (Cohort 2) 

and negative control samples (Cohort 1). Despite this, the mean average absolute telomere length 

did appear to have a decrease in its attrition rate when compared to the negative control values. 

This led to the mean average absolute telomere length of Cohort 2 matching and later surpassing 

the Cohort 1 levels with age.  

There did, however, appear to be a difference in average absolute telomere length 

between type 2 diabetics not taking metformin (Cohort 3) and Cohorts 1 and 2. Cohort 3 

appeared to have a reduced mean average absolute telomere length when compared to both 

Cohort 1 and Cohort 2. This lower telomere length in Cohort 3 when compared to Cohort 2 

indicates that metformin use may slow the process of telomere shortening in older adults. 

However, although t-testing indicates that this was statistically significant between the age of 71-
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80, one-way ANOVA testing showed no statistical difference between all three cohorts. Because 

of this, no definitive links between metformin and telomere length can be stated. 

 To determine more definitive results, a greater amount of data would likely need to be 

collected and balanced more evenly across the four cohort groups. To improve specificity, it may 

be prudent for future studies in this area to factor in variables such as sex, ethnic origin, exercise, 

caloric intake, lifestyle, health, metformin treatment length, and metformin dosage. It may also 

be useful to measure telomere length through alternative analytical techniques such as the 

Southern blot technique to compare and validate the measurement methods employed. Overall, 

this evidence from this study does hint at possible geroprotective effects for metformin, and 

would warrant further in-depth studies in the future. 
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Appendix A: Sample Calculations 
 
Determining how much double distilled H2O is required to dilute the purified DNA sample to 5 

ng/μL 

 Final volume for the qPCR - ready purified DNA solution = (20 μL (arbitrary starting 

volume) x the concentration determined from the Quantus fluorometer)/(5 ng/µL (known 

concentration needed for the qPCR)) 

 

Amount of double distilled water to add to purified DNA solution (to achieve a concentration of 

5 ng/μL) = the final volume for the qPCR - ready purified DNA solution (calculated above) -20 

μL (the arbitrary starting volume) 

 

 

Calculations for the Starting Quantity (length) of the Telomere (Telo) standards for the lowest 

dilution in the dilution series (1/10,000) 

 The oligomer standard is 84 bp in length (TTAGGG multiplied by 14), also having a 

molecular weight of 26667.2 g/mol (1).  The weight of one molecule is determined by dividing 

the molecular weight (2.6667E+04 g/mol) by Avogadro’s Number (6.02E+23 mol) = 0.44 × 10-

19 g. 

A 1/10 dilution of the telo standard has a mass of 349.33 ng/μL. Multiply this value by 4 

μL (the amount of sample used in each PCR reaction) to get 1397.32 g per reaction. Divide this 

number by 1000 to get the mass per reaction for a 1/10,000 dilution (the highest concentration in 

dilution series). This equates to 1.39732 g per reaction. To put the units into picograms per 

reaction, this value is multiplied by 1000, giving 1,397,32 pg per reaction.  
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Therefore, there are 1,397,32 pg/0.44E-19 = 3.15436E10 molecules of oligomer in the 

telo standard. 

The amount of telomere sequence in the telo standard is calculated: 3.15436E10 × 84 

/(oligomer length) = 2.6497E06. This is then divided by 1000 to give the value in kb in the 

1/10,000 serial dilution: 2.6497E09 kb 

 

Calculations for the Starting Quantity (length) of the 36B4 standards for the lowest dilution in 

the dilution series (1/10) 

 

The synthesised 36B4 oligomer standard is 75 bp in length with a MW of 23268.1 g/mol. 

The weight of one molecule is the molecular weight divided by Avogadro’s number. The mass of 

the of the 36B4 oligomer standard is: (2.32681E+04 g/mol)/(6.02E+23 mol) = 

0.38 × 10-19 g. 

 

The highest concentration standard (SCG STD A) had (360.00ng/μL *4 μL = 1440 ng) 

of the 36B4 oligomer standard for a 1/10 dilution. This is equivalent to 1440 pg per reaction for 

a 1/10,000 dilution. 

 

Therefore, there are (1440E-12 g)/ (0.38E-19) = 3.7256E10 copies of the 36B4 amplicon in the 

36B4 standard. Divide this value by 2 to get 1.86282E10 diploid genome copies for the 1/10,000 

dilution 

 

This value is divided by two since the standard has a diploid genome copy, giving 1.9156E+12. 
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This value is then multiplied by 75 base pairs to give: 1.4367E+14 kb. 

 
The rest of the standard dilution is known as well  
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Appendix B: Information Used in qPCR Set-up 
 
 
 
 
Table 13: Information of the standards and primers used for the qPCR amplification (35) 

 
 
 
Table 14 The contents of each qPCR amplification reaction (35) 
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Appendix C: Analyzing qPCR Amplification Curves and Determining 
Average Absolute Telomere Length 
 
 Eighteen qPCR amplifications were required to obtain all the data for this study. 

Including all eighteen amplification curves, standard curve calculations, standard curves, and 

final calculations would be quite cumbersome and rather inefficient, a sample of only one qPCR 

amplification is included here for reference. All eighteen amplifications were processed 

identically to the one shown here, and the resultant data from all amplifications can be found in 

Table 1. 

Below is the amplification curve (Figure 8). The CFX manager software was used to 

analyze the qPCR data and it measure the amount of amplification cycles which crossed a 

predetermined threshold level of reflective fluorescent units (RFUs). This generates a value 

known as Cq, which is analogous to the cycle threshold (Ct).  

 

 
Figure 7: A sample of amplification curves from the qPCR amplification reaction run with a 
Biorad Real Time System C1000 Thermocycler, detected with a CFX96 Optics Module, and 
tabulated via the CFX Manager software. 
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The known concentrations of the telomere standards are plotted alongside the resultant 

Cq values obtained from the CFX Manager Software to create a telomere length standard curve 

with a known slope (Table 8, Figure 9).  

 

Table 15: Resultant qPCR data and nucleic acid quantification data needed to construct a 
telomere standard curve. 

Telomere standard 
serial dilution 

Average concentration 
of standard (ng/uL) 

Telomere 
length (kb) 

LOG telomere 
length (kb) Cq Average 

100K 0.001217 9293454.5 6.968177179 22.94 
1M 0.0001217 929345.45 5.968177179 26.04 
10M 0.00001217 92934.545 4.968177179 29.615 

 
 

 
Figure 8: The resultant standard curve obtained from the LOG quantity of telomeres and the Cq 
values (Table 15). The equation of the line is y = -3.337x + 46.11 and the r2 value is 0.998. 

 
 

Similarly, the known concentrations of the 36B4 standards are plotted alongside the 

resultant Cq values obtained from the CFX Manager Software to create a (single genome copy 

standard curve with a known slope (Table 9, Figure 10).  
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R² = 0.9983
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Table 16: Resultant qPCR data and nucleic acid quantification data needed to construct a single 
gene copy standard curve. 

36B4 standard 
serial dilution 

Average Concentration 
of Standard (ng/uL) 

single genome 
copies 

LOG single 
Genome Copies 

Cq 
average: 

100K 0.00066 34736842 7.540790335 11.267 
1M 0.000066 3473684.2 6.540790335 17.507 
10M 0.0000066 347368.42 5.540790335 20.483 

 
 

 
Figure 9: The resultant standard curve obtained from the LOG quantity of telomeres and the Cq 
values (Table 16). The equation of the line is y = -4.608x + 46.55 and the r2 value is 0.959. 
 
 
 

Lastly, the unknown samples that were amplified are tested. The sample have their Cq 

values compared to each standard curve, with the samples amplified using telomere primers 

compared to the telomere standard curve and the samples amplified using 36B4 primers 

compared to the single genome copy standard curve. For this, the log (telomere length (kb)) and 

log (single genome copies) can be calculated. The antilog function can be used convert to units 

of telomere length (kb) and single genome copies. The absolute telomere length per genome can 

be determined by dividing the calculated telomere length (kb) by the number of single genome 

copies. This number can be divided by 46 to obtain the average absolute telomere length per 

chromosome (See Table below for how this can be completed) 

y = -4.608x + 46.559
R² = 0.9599
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Table 17: Data required for the calculation of the absolute telomere length genome (kb/genome) 
and Average Absolute Telomere Length per chromosome (kb/chromosome) 

Sample 

CQ 
Value 
for 
samples 
treated 
with 
telomere 
primers 

CQ 
Value  
for 
samples 
treated 
with 
36B4 
primers 

LOG 
telomere 
length (kb) 

LOG single 
genome copies 

Telomere 
length (kb) 

36B4 (single 
genome 
copies) 

Absolute 
telomere 
length/ genome 
(kb/genome) 

Average absolute 
telomere length/ 
chromosome 
(kb/chromosome) 

36 20.33 23.1 7.72550195 5.088975694 53149838.3 122737.0539 433.0382444 9.413874879 

67 17.727 19.665 8.5055439 5.834418403 320290385 682996.3815 468.9488756 10.19454077 

40 19.257 21.665 8.04704825 5.400390625 111441833 251414.6757 443.2590608 9.636066539 

49 16.155 21.2 8.97662571 5.501302083 947601439 317177.2894 2987.608101 64.9480022 

46 19.247 22.187 8.05004495 5.287109375 112213459 193690.9704 579.3427487 12.59440758 

10 18.63 22.15 8.23494156 5.295138889 171767725 197305.3625 870.5679517 18.92539025 

7 23.047 25.387 6.91129757 4.592664931 8152627 39143.97547 208.2728414 4.527670466 

28 21.49 20.133 7.37788433 5.732855903 23871753.8 540574.9325 44.1599349 0.959998585 

72 28.667 22.173 5.22715013 5.290147569 168713.616 195050.7252 0.864973028 0.018803761 
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