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ABSTRACT

We study two-dimensional turbulent magnetic reconnection in a compressible fluid in the gas pressure dominated limit. We use
open boundary conditions and start from a Harris current sheet configuration with a uniform total pressure. A small perturbation of
the vector potential initiates laminar reconnection at the Sweet-Parker rate, which is allowed to evolve for several dynamical times.
Subsequently sub-Alfvenic turbulence is produced through random forcing at small wave numbers. The magnetic field topology
near the current sheet is strongly affected by the turbulence. However, we find that the resulting reconnection speed depends on the
resistivity. In contrast to previous results in three dimensions, we find no evidence for fast reconnection. The reconnection speed
exhibits strong variations, but the time averages increase smoothly with the strength of the turbulence.
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1. Introduction

Radio observations of a wide variety of astrophysical bodies (the
Sun, spiral galaxies, the Earth) show that a magnetic field is
usually present (see Priest & Forbes 2000, for review). These
magnetic fields have significant large scale components, i.e on
the scale of the objects themselves. The origin of these fields
is typically ascribed to the operation of a large scale magne-
tohydrodynamic dynamo (Ruzmaikin et al. 1988; Parker 1979,
1992; Hanasz et al. 2004; Lazarian & Vishniac 2008). Since dy-
namo theory involves the twisting and folding of field lines, it
is important that there is some process which can lead to effi-
cient smoothing of the small scale components of the field. In
other words, we need to invoke some kind of fast local mag-
netic diffusion. Even though astrophysical fluids are turbulent
(see Armstrong et al. 1995; Horbury & Balogh 2001; Elmegreen
& Scalo 2004; McKee & Ostriker 2007), the concept of turbu-
lent magnetic diffusivity (see Blackman & Field 2008), a popu-
lar heuristic concept used in early dynamo work, is known to be
ill-founded (Cattaneo & Vainshtein 1991; Gruzinov & Diamond
1994; Vainshtein & Cattaneo 1992). In particular, it does not ad-
dress the key question of how intersecting magnetic fluxes can
change their topology. In an ionized plasma, Ohmic diffusivity
fails by many orders of magnitude to supply the required mag-
netic diffusion.

For astrophysical dynamos to function smoothly, there must
be a process which allows reconnection to proceed at speeds
characteristic of local dynamical velocities. Since rms fluid ve-
locities are often comparable to the local Alfvén speed, this re-
quirement is in practice indistinguishable from Vrec ∼ VA. This is
called fast reconnection, meaning that it does not depend on re-
sistivity or depends on the resistivity logarithmically (see Parker
1979). There is also direct evidence for fast reconnection from
studies of solar flares (Yokoyama & Shibata 1995; Innes et al.
1997; Pagano et al. 2008).

The idea that there could be some way of producing fast
magnetic reconnection even in highly conducting fluids is not
new (Moffat 1978; Krause & Radler 1980), but early models of
reconnection (e.g. see Parker 1957; Sweet 1958) using realistic
astrophysical temperatures and densities gave a very slow recon-
nection rate, ∼VAS −1/2, where S ≡ η/(VAL) is the Lundquist
number, η is the resistivity, and L is the size of the current
sheet. It was Petschek (1964) who for the first time introduced a
model for fast reconnection with a rate proportional to (log S )−1.
Subsequent numerical simulations and theoretical analyses have
shown that the Petschek reconnection rate is only attainable in
very restricted circumstances. For instance, a modified version
can stably persist in a collisionless plasma (e.g. see Drake et al.
2006). This means that the length of the current sheet should not
exceed approximately 50 electron mean free paths (Uzdensky
2006; Yamada et al. 2006). This condition cannot be satisfied in
many astrophysical environments, e.g. in the interstellar medium
(Vishniac & Lazarian 1999). In a collisional plasma the X-point
region required for Petschek reconnection will collapse to the
Sweet-Parker geometry for large S (Biskamp 1996).

The failure of the Petschek model has increased interest in
the role of turbulence in reconnection. This interest has been
further stimulated because the turbulence is ubiquitous in astro-
physical environments where reconnection occurs, e.g. the ISM,
stars, the Sun and accretion disks (Ruzmaikin et al. 1988). The
idea that turbulence can affect reconnection has a long history,
although it was usually studied in two-dimensions (2D) (Priest &
Forbes 2000). Several researchers have approached this problem
numerically, e.g. Matthaeus & Lamkin (1985, 1986); Fan et al.
(2004, 2005); Servidio et al. (2009); Loureiro et al. (2009). They
found that it was possible to get many features expected from
reconnection theory, i.e. large and small-scale magnetic islands,
fluid jetting, and current filamentation and that the maximum re-
connection speed was higher for more powerful turbulence and
exceeded the Sweet-Parker rate (Fan et al. 2004, 2005).
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The most interesting result of their calculations (Fan
et al. 2004, 2005) was that under the influence of turbulence
they observed a two-step process of magnetic reconnection:
beginning with a slow Sweet-Parker mechanism and changing
later to a faster reconnection state that they identified with the
Petscheck process. In a similar manner, the most recent pa-
per (Loureiro et al. 2009) also observed that the presence of
turbulence significantly enhances the reconnection rate. They
further found that for a given value of diffusion and above a crit-
ical value of the turbulent injection power the reconnection pro-
cess accelerates substantially. However, in all these simulations
the authors used periodic boundary conditions, which prevents
inflow or outflow and conserves the total magnetic flux. This
made the actual reconnection rates difficult to evaluate. In par-
ticular, it was impossible to calculate the average reconnection
rate, which is important in view of the large fluctuations induced
by turbulence. In addition, one can argue that the reconnection
rate in these simulations is influenced by the conservation of the
total magnetic helicity (Blackman 2000). These difficulties can
be avoided by using boundary conditions that allow the inflow
and outflow of plasma and magnetic flux (Kowal et al. 2009).

More recently interest in the magnetic reconnection process
has moved from 2D magnetic configurations to more realistic
and generic three-dimensional ones. In particular, Lazarian &
Vishniac (1999, LV99) and Lazarian & Vishniac (2000) pro-
posed that in three dimensions a stochastic magnetic field com-
ponent can dramatically enhance reconnection rates, leading to
reconnection speeds comparable to the local turbulent velocity.
Their model is based on the Sweet-Parker reconnection scheme,
with a long narrow current sheet between two regions of dra-
matically different polarizations but similarly strong magnetic
fields, but it also includes the effects of turbulence and substruc-
ture in the magnetic field. This has two principal effects. First,
in three dimensions many independent patches of magnetic field
come into contact with the current sheet and undergo reconnec-
tion. Second, the outflow of plasma and shared magnetic flux
happens not over a microscopically narrow region determined
by Ohmic diffusion, but through a substantially wider region de-
termined by field wandering. Neither effect is present in two-
dimensions, although the formation of magnetic islands in two-
dimensions is roughly similar to the broadening of the outflow.
Together these effects are sufficient to trigger fast magnetic re-
connection. In this model the reconnection rate does not depend
on the Ohmic resistivity, but is determined only by turbulence, in
particular by its strength and injection scale. This fast reconnec-
tion model has been tested numerically by Kowal et al. (2009)
using inflow/outflow boundary conditions and a wide range of
injection scales and power for the turbulence. These simulations
have confirmed all of the predicted features of the LV99 model,
including the insensitivity to the Lundquist number.

In this paper we return to two-dimensional reconnection us-
ing the same inflow/outflow boundary conditions. We have two
objectives in this work. First, since the explanation for fast re-
connection advanced in LV99 was intrinsically three dimen-
sional, we are interested in examining the effects of dimension-
ality on the reconnection rate. Second, this work constitutes
an examination of the importance of boundary conditions on
the two-dimensional model and a test of claims for fast recon-
nection in two-dimensions. Our numerical model of turbulent
reconnection in the ISM is calculated in a 2D box with open
boundary conditions. We use a Harris current sheet setup as an
initial configuration. Reconnection develops as a result of an ini-
tial vector potential perturbation. We do not drive reconnection.
We solve 2D non-ideal normalized isothermal MHD equations

numerically while varying the power and scale of turbulence,
and the magnetic resistivity (Kowal et al. 2009).

The plan of this paper is as follows. In Sect. 2 we describe
the numerical setup and input parameters, and we present our
method to measure the reconnection rate. The results are dis-
cussed in Sect. 3, where we analyze the time evolution of models
with different power of injecting turbulence. We present the de-
pendencies of the reconnection rate on the power of turbulence,
the injection scale, the viscosity and uniform and anomalous re-
sistivities. We also check the influence of initial magnetic field
configuration, boundary conditions and the method of driving
turbulence. We discuss our results in Sect. 4 and give our con-
clusions in Sect. 5.

2. Methods

2.1. Basic equations

We studied the problem of magnetic reconnection in the pres-
ence of weak turbulence using the magnetized fluid approxima-
tion governed by the isothermal non-ideal MHD equations of the
form

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂ρv
∂t
+ ∇ · (ρvv + P∗I − BB) = f + νΔv, (2)

∂A
∂t
= v × B − η∇ × B, (3)

where ρ is the gas density, v is the fluid velocity, A is the
magnetic vector potential, B ≡ ∇ × A is the magnetic field,
P∗ = c2

sρ+B2/8π is the total pressure, I is the Kronecker delta, cs
is the isothermal speed of sound, η is the resistivity coefficient,
ν is the viscosity, f = ρa represents the forcing term, and a is a
random acceleration.

We solved the MHD equations using the same code as in
Kowal et al. (2009) based on the following methods: a higher-
order shock-capturing Godunov-type scheme, the essentially
non-oscillatory (ENO) spatial reconstruction (e.g. see Londrillo
& Del Zanna (2000); Del Zanna et al. (2003)), a multi-state
Harten-Lax-van Leer (HLLD) approximate Riemann solver for
isothermal MHD equations (Mignone 2007) and the Runge-
Kutta (RK) time integration (e.g. see Del Zanna et al. 2003). The
choice of HLLD Riemann solver guarantees a good solution for
the Alfvén wave propagation, which is important in our model,
since most of the kinetic energy is transported through Alfvén
waves (see Kowal et al. 2009). The divergence of the magnetic
field must be kept zero everywhere at all times (∇ · B = 0).
To satisfy this condition the field interpolated constraint trans-
port (CT) scheme based on the staggered grid is used (e.g. see
Londrillo & Del Zanna 2000).

Some selected simulations that we performed include
anomalous resistivity modeled as

η = ηu + ηa

( |j|
jcrit
− 1

)
H

( |j|
jcrit

)
, (4)

where ηu and ηa describe uniform and anomalous resistivity co-
efficients, respectively, jcrit is the critical level of the absolute
value of current density above which the anomalous effects start
to work, and H is a step function. However, for most of our sim-
ulations ηa = 0.

Page 2 of 14



K. Kulpa-Dybel et al.: Reconnection in weakly stochastic B-fields in 2D

Fig. 1. 2D magnetic field configuration in our problem. The grey area
describes the diffusion region where the incoming field lines reconnect.
The longitudinal and transverse scales of the diffusion region are de-
scribed by the parameters Δ and δ, respectively. We use inflow and out-
flow boundary conditions at X and Y directions, respectively.

2.2. Initial and boundary conditions

We numerically investigated the turbulent magnetic reconnec-
tion model in 2D in a computational box of the size Lx × Ly,
where Lx = 1 and Ly = 2 with a spatial resolution of 1024× 2048
grid zones in the x and y directions, respectively. Figure 1 shows
a 2D visualization of the reconnection problem setup. The do-
main contains two regions of oppositely directed magnetic lines
separated by a diffusion region with a thickness δ and a length
Δ, where the magnetic lines reconnect and the product of this
process is ejected along the X direction with a speed Vout (see
Fig. 1). The initial magnetic field configuration is described by
a Harris current sheet Bx(x, y) = Bx0 tanh(y/θ), where Bx0 is the
initial strength of the anti-parallel magnetic field component and
θ is the initial thickness of the current sheet. The Sweet-Parker
reconnection is triggered by a small initial perturbation of the
vector potential δA(x, y) = δB0 cos(2πx) exp[−(y/d)2], where d
and δB0 denote the thickness of the perturbed region and the
strength of the initial perturbation, respectively. The initial setup
is completed by setting the density profile from the condition of
the uniform total pressure P∗(t = 0, x, y) = const. and setting the
initial velocity to zero everywhere.

The code (Kowal et al. 2009) uses dimensionless units. The
velocity and magnetic field are expressed in units of the char-
acteristic Alfvén speed VA ≡ |Bx0|/√ρ0, where the initial anti-
parallel component of magnetic field Bx0 = 1 and the density
ρ0 = 1 far from the diffusion region so that VA = 1 far from
the diffusion region in all models. Time is measured in units of
the Alfvén transit time tA ≡ 1/VA. In all models we used the
same value of the initial thickness of the current sheet θ = 0.05.
The speed of sound was set to cs = 4 (the plasma β ≡ p/pmag
was 32.0 for all models). We varied the resistivity coefficient ηu
between values 3 × 10−4 and 5 × 10−3 (in dimensionless units).
In the models which include anomalous effects, we varied the
anomalous resistivity coefficient ηa between 0.0 and 3 × 10−3.
The parameters describing the initial perturbation were set to
δB0 = 0.05 and d = 0.1.

We used outflow boundary conditions along the X direction
and inflow boundary conditions along the Y direction, setting the
normal derivatives of the fluid variables (density and momen-
tum) to zero. In the treatment of vector potential A at the bound-
ary we set its components transverse to the considered boundary
using the first order extrapolation, while the normal derivative of
the normal component was set to zero. This guaranteed that all

waves generated in the system were free to leave the box without
significant reflections. For a more detailed description of these
boundary conditions including their advantages and drawbacks
we refer the reader to Kowal et al. (2009).

2.3. Model of turbulence

In order to drive turbulence in our model we followed Kowal
et al. (2009) and used the method proposed by Alvelius (1999).
The forcing was driven across a specified distribution of wave
vectors. Here we used a Gaussian profile around a shell in
Fourier space with a radius which determined the injection scale
linj. The forcing was random in time and it was therefore uncor-
related with any of the time scales of the turbulent flow. For the
same reason the power input was defined purely by the force-
velocity correlation. The driving was completely solenoidal and
did not directly produce density fluctuations.

Forcing was imposed in the vicinity of the midplane, namely
in the region between y = −0.25 and y = 0.25. Turbulence was
introduced at a given injection scale and grew gradually in time
until it reached the desired amplitude corresponding to the tur-
bulent power Pinj. We drove the turbulence to its saturation level
over one Alfvénic time from tbeg = 9 to tend = 10. According
to the LV99 model, the injection scale and turbulent power de-
termine the rate of reconnection in 3D. Thus, in our model we
tested this correlation in 2D by changing these properties of tur-
bulence.

2.4. Input parameters

Our simulations can be divided into five groups. In each of them
we analyze the dependence of the reconnection rate by changing
only one of the crucial parameters: for models PD – the power
of turbulence Pinj, for models SD – the injection wavenumber kf ,
for models VD – viscosity ν, for models RD and AD the uniform
ηu and anomalous ηa resistivities, respectively. In Table 1 we list
parameters of all the models presented in this paper.

Among all parameters of the model we list those which vary,
i.e. the uniform and anomalous resistivities, ηu and ηa, respec-
tively, the uniform viscosity ν, the power of turbulence Pinj and
its injection wavenumber kinj with the half-thickness of the in-
jection shell Δkinj, the number of perturbed Fourier components
of velocity Nf and the amplitude of perturbation ṽf at the injec-
tion scale. In addition, we include the mean velocity amplitude
obtained at the end of each simulation.

2.5. Reconnection rate measure

For the laminar reconnection (Sweet-Parker and Petschek) the
rate can be measured by averaging the inflow velocity Vin di-
vided by the Alfvén speed VA over the inflow boundaries, i.e.

〈Vin/VA〉 = 1
2

∫ xmax

xmin

dx

(
vy

VA

∣∣∣∣∣
y=ymin

− vy
VA

∣∣∣∣∣
y=ymax

)
. (5)

Since we had two X boundaries, located at y = ymin and y = ymax,
we needed to take half of the resulting integral. This measure
works well for laminar reconnection, when the system is per-
fectly stable and where the time derivative of the magnetic flux
is zero. In the presence of turbulence, however, this time deriva-
tive can fluctuate or the turbulence in the center of the box can
affect the flow of the plasma. In this way we would get a flow of
magnetic flux without the presence of reconnection. To include
all effects that contribute to the change of the magnetic flux, we
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Table 1. List of models.

Name ηu [10−3] ηa [10−3 ν [10−3] Pinj kinj Δkinj Nf ṽf 〈|v|〉
PD 0.5 0.0 0.0 0.005 12 0.5 68 0.00006 0.03983

0.5 0.0 0.0 0.01 12 0.5 68 0.00009 0.04912
0.5 0.0 0.0 0.05 12 0.5 68 0.00019 0.08401
0.5 0.0 0.0 0.1 12 0.5 68 0.00028 0.10645
0.5 0.0 0.0 0.5 12 0.5 68 0.00062 0.21685
0.5 0.0 0.0 1.0 12 0.5 68 0.00088 0.28657

SD 0.5 0.0 0.0 0.1 8 0.5 48 0.00033 0.11618
0.5 0.0 0.0 0.1 12 0.5 68 0.00028 0.10645
0.5 0.0 0.0 0.1 16 0.5 112 0.00029 0.08927
0.5 0.0 0.0 0.1 20 0.5 112 0.00023 0.06626
0.5 0.0 0.0 0.1 24 1.0 36 0.00042 0.05534
0.5 0.0 0.0 0.1 28 1.0 32 0.00058 0.04633
0.5 0.0 0.0 0.1 32 1.0 32 0.00056 0.03997

RD 0.3 0.0 0.0 0.01 12 1.0 68 0.00009 0.05734
0.5 0.0 0.0 0.01 12 1.0 68 0.00009 0.04912
0.6 0.0 0.0 0.01 12 1.0 68 0.00009 0.04471
0.7 0.0 0.0 0.01 12 1.0 68 0.00009 0.04889
0.8 0.0 0.0 0.01 12 1.0 68 0.00009 0.05405
0.9 0.0 0.0 0.01 12 1.0 68 0.00009 0.04813
1.0 0.0 0.0 0.01 12 1.0 68 0.00009 0.05481
2.0 0.0 0.0 0.01 12 1.0 68 0.00009 0.05542
3.0 0.0 0.0 0.01 12 1.0 68 0.00009 0.06214
4.0 0.0 0.0 0.01 12 1.0 68 0.00009 0.06774
5.0 0.0 0.0 0.01 12 1.0 68 0.00009 0.07407
0.3 0.0 0.0 0.1 12 1.0 68 0.00028 0.11583
0.5 0.0 0.0 0.1 12 1.0 68 0.00028 0.10649
0.6 0.0 0.0 0.1 12 1.0 68 0.00028 0.10763
0.7 0.0 0.0 0.1 12 1.0 68 0.00028 0.10122
0.8 0.0 0.0 0.1 12 1.0 68 0.00028 0.10221
0.9 0.0 0.0 0.1 12 1.0 68 0.00028 0.10036
1.0 0.0 0.0 0.1 12 1.0 68 0.00028 0.09854
2.0 0.0 0.0 0.1 12 1.0 68 0.00028 0.08844
3.0 0.0 0.0 0.1 12 1.0 68 0.00028 0.08075
4.0 0.0 0.0 0.1 12 1.0 68 0.00028 0.07236
5.0 0.0 0.0 0.1 12 1.0 68 0.00028 0.06987

AD 0.5 0.0 0.0 0.1 12 1.0 68 0.00028 0.10645
0.5 0.5 0.0 0.1 12 1.0 68 0.00028 0.10534
0.5 1.0 0.0 0.1 12 1.0 68 0.00028 0.11071
0.5 2.0 0.0 0.1 12 1.0 68 0.00028 0.11252
0.5 3.0 0.0 0.1 12 1.0 68 0.00028 0.11465

VD 0.5 0.0 0.08 0.1 12 1.0 68 0.00028 0.10372
0.5 0.0 0.09 0.1 12 1.0 68 0.00028 0.09623
0.5 0.0 0.10 0.1 12 1.0 68 0.00028 0.09041
0.5 0.0 0.20 0.1 12 1.0 68 0.00028 0.08472
0.5 0.0 0.30 0.1 12 1.0 68 0.00028 0.08366
0.5 0.0 0.50 0.1 12 1.0 68 0.00028 0.07317
0.5 0.0 0.60 0.1 12 1.0 68 0.00028 0.06957
0.5 0.0 0.80 0.1 12 1.0 68 0.00028 0.06868
0.5 0.0 1.00 0.1 12 1.0 68 0.00028 0.06019
0.5 0.0 2.00 0.1 12 1.0 68 0.00028 0.04371
0.5 0.0 3.00 0.1 12 1.0 68 0.00028 0.03852
0.5 0.0 4.00 0.1 12 1.0 68 0.00028 0.03394
0.5 0.0 5.00 0.1 12 1.0 68 0.00028 0.02912

used a new and more general measure of the reconnection rate
compared to the one described in Kowal et al. (2009), which in
2D is given by the simplified equation

Vrec =
1

2|Bx,∞|
[ (

sign(Bx)Ez
)∣∣∣
ymax
− (

sign(Bx)Ez
)∣∣∣
ymin

−∂t

∫ ymax

ymin

dy|Bx|
]
, (6)

where |Bx,∞| is the asymptotic absolute value of Bx and Ez is
the Z component of the electromotive force. A more complete

discussion of this new reconnection measure can be found in
Kowal et al. (2009).

3. Results

3.1. Laminar reconnection

During the first stage of our simulations, before we start driving
the turbulence, the system evolves to reach the stationary state
of Sweet-Parker reconnection. After that the influence of turbu-
lence on the evolution of our system can be studied in detail. As

Page 4 of 14



K. Kulpa-Dybel et al.: Reconnection in weakly stochastic B-fields in 2D

Fig. 2. Time variations of the total mass M (solid line), magnetic Emag

(dashed line) and kinetic Ekin (dotted line) energies in the Sweet-Parker
reconnection stage with the uniform resistivity ηu = 5×10−4. For clarity
the kinetic energy Ekin has been amplified by a factor of 100.

Fig. 3. Time variation evolution of the reconnection rate in the Sweet-
Parker stage with the uniform resistivity ηu = 5 × 10−4.

mentioned above we start our simulations with a configuration of
the oppositely directed initial magnetic fields with a small mag-
netic perturbation. The perturbation initiates the Sweet-Parker
reconnection which reaches a stationary state in a few Alfén time
units which lasts until we start injecting turbulence.

We assume that we get the steady state of Sweet-Parker re-
connection when the total mass, reconnection rate, kinetic and
magnetic energies show very small time derivatives. Figure 2
shows the evolution of mass, kinetic and magnetic energy during
the laminar reconnection stage. In the beginning all these quan-
tities change slightly, but then reach almost constant values. The
reconnection rate (Fig. 3) initially increases until t ∼ 1.3, when
it starts to oscillate, finally stabilizing after a few time units.

Figure 4 shows the topology of the velocity (left panel) and
magnetic fields (middle panel), and the absolute value of the
current density (right panel) just before we start injecting tur-
bulence. The brighter shades correspond to high values of the
displayed quantities. The velocity field and magnetic field are
shown in the form of texture. The initial oppositely directed
magnetic field lines are transported to the middle of the box.
The Y-component of magnetic field emerges from the current
sheet and is ejected near the midplane through the left and right
boundaries. The reconnection process in the diffusion region and
the ejection of By cause the strong outflow of gas which is clearly
visible in the left panel of Fig. 4. The system reaches a steady
state despite this loss of mass due to the inflow of gas through
the top and bottom of the computational box.

The absolute value of the current density is shown in the right
panel of Fig. 4. As expected the highest values of the current den-
sity appear in the midplane and determine the diffusion region.
The state of the Sweet-Parker reconnection described above is
stationary and sufficient to study the influence of turbulence on
the reconnection process.

3.2. Reconnection in the presence of turbulence

In this section we present the influence of turbulence on the re-
connection process. Turbulence was injected at a time t = 9 and
at a given injection scale linj ∝ k−1

f in the vicinity of the mid-
plane. We gradually increased the strength of turbulence during
one Alfvén time, thus at a time t = 10 the power reached its
input value defined by Pinj.

Figure 5 shows the reconnection rate obtained for a model
with the uniform resistivity ηu = 5 × 10−4, a turbulent power
Pinj = 0.1 and an injection wavenumber kf = 12. Adding tur-
bulence to the system results in slight fluctuations of the recon-
nection rate until t = 11.5. Next, the reconnection rate increases
significantly until it reaches the maximum at a time t ∼ 13 and
then drops. We can distinguish four of these maxima, which are
roughly separated by two Alfvén times (t ∼ 13, t ∼ 15, t ∼ 17,
t ∼ 19). In Fig. 5 we mark three time steps corresponding to
the same time stages shown in Fig. 6, where we plot the current
density, magnetic and gas velocity fields.

In Fig. 6 (top and middle row) we see that the structure of
the magnetic and velocity fields are considerably different than
in the case of the Sweet-Parker reconnection (see Fig. 4). At
t1 = 12.15 (Fig. 6, first column, top panel) we are injecting tur-
bulence with the maximum power Pinj = 0.1 in a large volume
surrounding the the midplane. Thus the velocity field is strongly
perturbed and mixed in this region. Although the topology of
the velocity field is very complicated, we can distinguish the
main direction of the velocity fluctuations, which is parallel to
the mean magnetic field.

A smaller number of distinct features in the velocity field
are pointed perpendicular to the mean magnetic field. Close to
the midplane the magnetic field lines change their directions and
are substantially reduced in strength. Thus, velocity fluctuations
can bend magnetic field lines in this region. Another noticeable
difference in comparison to the Sweet-Parker configuration is
a significant change of the current density distribution. Adding
turbulence to the system creates a very complex configuration
of the magnetic field, so that we observe multiple reconnection
events happening at the same time (Fig. 6, t1 = 12.15, bottom
panel).

The magnetic field configuration looks quite different at the
next time step t2 = 13.85 (Fig. 6, second column, middle panel).
In the vicinity of the midplane we observe the formation of a
magnetic island. The velocity field (Fig. 6, second column, top
panel) is also more mixed in this region. However, the outflow
velocity of the gas velocity is quite low, which is confirmed by
the small reconnection rate (Fig. 5).

As the simulation proceeds a large loop of magnetic field
lines moves to the left boundary (Fig. 6, t3 = 15.15, last col-
umn). This causes a powerful outflow of gas, which results in a
violent and rapid growth of the reconnection rate (Fig. 5). We
see that the maxima of the velocity field associated with this
loop are where the value of magnetic field is low. The area of the
magnetic island t2 = 13.85 and t3 = 15.15 is also well defined
by the current density distribution (Fig. 6, bottom panel, middle
and right column).

Page 5 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913218&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913218&pdf_id=3


A&A 514, A26 (2010)

Fig. 4. Absolute value of the current density distribution (right panel), the magnetic (middle panel) and velocity field (left panel) topology during
the Sweet-Parker stage for a time t = 9 in a model with the uniform resistivity ηu = 5 × 10−4. Brighter shades correspond to the higher values of
the displayed quantities. All panels show the moment just before we start injecting turbulence.

Fig. 5. The evolution of the reconnection speed for a model with Pinj =
0.1, a mean wavenumber of the injected turbulence kf = 12 and uni-
form resistivity ηu = 5 × 10−4. Marked time steps correspond to those
presented in Fig. 6.

Figure 7 shows the evolution of the reconnection speed for
Pinj = 0.5, five times larger than in the previous case. As before
the reconnection rate does not reach a stationary state. We ob-
serve a few maxima, but they do not appear periodically as in
the previous case (Fig. 5). In fact, we have two main well de-
fined maxima at times t ∼ 14.6 and t ∼ 19.5. The peak in the
reconnection speed is again caused by a fast outflow of gas visi-
ble at a time t1 = 13.90 in Fig. 8 (first column, top panel). If we
look at the magnetic field topology at the same time (Fig. 8 first
column, middle panel), we see a magnetic island which appears
in the region of the fast outflow.

At the next time step (t2 = 15.70) the topology of magnetic
and velocity fields are still very mixed and complex (Fig. 8, sec-
ond column, top and middle panel), but the magnetic field does
not exhibit the very strong bending seen in the previous step. As
the simulation proceeds the reconnection rate slowly decreases,
reaching even slightly negative values1 (Fig. 7, from t ∼ 16 to
t ∼ 18.5).

1 This should not be taken too literally. Our measure of the reconnec-
tion speed is misleading when the midplane magnetic field topology
becomes progressively more tangled.

At the time step t3 = 18.15 (Fig. 8, last column) we show
how our model looks when the measured reconnection rate is
negative. We can see a strong accumulation of the magnetic field
around the midplane which extends over almost the whole com-
putational domain. The region of velocity fluctuations is broad-
ened in comparison to the previous time steps, even though the
volume within which we drive turbulence is unchanged. This
quite unstable situation sets off the extreme growth of the re-
connection rate (from t ∼ 18.5 to t ∼ 19.5) shown in Fig. 7.
The current density distribution is plotted in the bottom row in
Fig. 8. At every time step many small reconnection events occur,
as indicated by the local growth of the current density.

To verify the influence of magnetic islands on the overall
recconection rate we calculated the mean reconnection rate in
the two defined periods of time. First, when the magnetic is-
land is presented in the computational domain (from t = 13.5
to t = 15.5 for the model with Pinj = 0.1 and from t = 13.5
to t = 15.0 for model with Pinj = 0.5) and second, when mag-
netic islands do not appear (from t = 17.0 to t = 19.0 for the
model with Pinj = 0.1 and from t = 15.0 to t = 16.0 for the
model with Pinj = 0.5). For the magnetic islands created in
the domain and subsequently ejected through the boundaries,
the mean reconnection rate is equal to Vr = 0.059 ± 0.027
and Vr = 0.105 ± 0.042 for models with Pinj = 0.1 and
Pinj = 0.5, respectively. On the other hand, when we do not ob-
serve any magnetic island the corresponding reconnection rates
are Vr = 0.034 ± 0.006 and Vr = 0.052 ± 0.013 for models
with Pinj = 0.1 and Pinj = 0.5, respectively. Comparing these
values with the overall reconnecton rate (Vr = 0.039 ± 0.019
for Pinj = 0.1 and Vr = 0.064 ± 0.062 for Pinj = 0.5) we no-
tice that the magnetic islands do not lead to a significant growth
of the reconnection pace but are the sources of the very large
fluctuations.

3.2.1. Dependence on the strength of turbulence

To check how the reconnection rate VTB
t depends on the strength

of turbulence we made several simulations with different values
of the turbulent power Pinj (see model PD in Table 1). The rest
of the input parameters had the same value in all these models.
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Fig. 6. Topology of the velocity (top panels) and magnetic field (middle panels) in the presence of turbulence shown at three times t1 = 12.15,
t2 = 13.85, t3 = 15.15. In the lower panels we plot the absolute value of the current density at these times. The variation of the reconnection speed
VTB

r for this model is presented in Fig. 5. Turbulence is injected with a power Pinj = 0.1 and at a scale k = 12. The uniform resistivity ηu is equal
to 5 × 10−4. The brighter shades correspond to the higher values of the displayed quantities.
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Fig. 7. The evolution of the reconnection speed for the model with
Pinj = 0.5, injection scale kf = 12 and uniform resistivity ηu = 5× 10−4.
Marked times correspond to those shown in Fig. 8.

In Fig. 9 we present the dependence of the averaged recon-
nection speed on the power of the injected turbulence. Diamonds
and squares correspond to the reconnection rate with and without
the turbulence respectively. Both were averaged over the fixed
period of time: from t = 7 to t = 9 – laminar reconnection
(Sweet-Parker stage) and from t = 10 to t = 20 – turbulent re-
connection. The variance of the reconnection rate was calculated
with the standard deviation method. For the Sweet-Parker recon-
nection the variance is negligible and is not shown here. On the
other hand, in the presence of turbulence the reconnection rate
undergoes continuous strong variations, and the variance is only
slightly smaller than the mean reconnection rate. We find that
the reconnection rate increases with the power of turbulence and
scales as ∼P1/3

inj .

3.2.2. Dependence on the injection scale

Similarly we determined the dependence of the reconnection rate
VTB

r on the wavenumber at which we inject turbulence kf . We
computed several models with varying kf while keeping all other
parameters the same (see model PD in Table 1).

Figure 10 shows the resulting dependence. We can clearly
see the strong relation between the injection scale kf and the re-
connection speed, i.e. the reconnection rate and errors increase
with a decreasing injection wavenumber kf . Fitting to the simu-
lation results gives VTB

r ∼ l2/3inj .

3.2.3. Dependence on the resistivity

The most important goal in our study was to check the depen-
dence of the reconnection rate on the uniform resistivity. We
run several simulations with different values of the uniform re-
sistivity ηu and the power of turbulence Pinj (see model RD in
Table 1).

In Fig. 11 we plot the obtained dependence of reconnection
rate on uniform resistivity. For the Sweet-Parker configuration
the averaged reconnection rate VSP

r is represented by squares.
The dispersion of the calculated points is almost negligible and
not shown. As we can see the reconnection speed VSP

r increases
with uniform resistivity. From the fitting we obtain that the re-
connection rate VSP

r scales with the uniform resistivity as ∼η1/2
u .

This agrees with the theoretical prediction (Sweet 1958; Parker
1957) and confirms that our 2D model works well in the laminar
reconnection stage.

Adding turbulence to the system leads to a weaker depen-
dence between the reconnection rate and the uniform resistivity.
Moreover, the power of turbulence also influences this relation-
ship, as is clearly visible in Fig. 11 (triangles – Pinj = 0.01,
squares – Pinj = 0.1). We fit lines to calculated points and
find that the dependence between reconnection rate and uni-
form resistivity is stronger for lower values of Pinj. Namely, for
Pinj = 0.1 and Pinj = 0.01 we see that the reconnection rate
scales as ∼η1/5

u and ∼η1/3
u , respectively.

For low values of the uniform resistivity (ηu ≤ 1 × 10−3–
Pinj = 0.1 and ηu ≤ 7 × 10−4–Pinj = 0.01) we see that the ob-
tained reconnection speeds VTB

r are almost the same. These sim-
ilar values of the reconnection rate may be caused by prevailing
numerical diffusion. Even if we take into account higher values
of ηu, it does not modify the overall value of the total resistivity.
However, in this case the numerical diffusion will also influence
the reconnection rate in the Sweet-Parker configuration, which
does not happen in our simulations (see Fig. 11).

Results described above indicate that in 2D turbulent recon-
nection depends on the uniform resistivity. However, the ob-
tained dependencies are not certain because of the large disper-
sion of results for low values of the uniform resistivity ηu.

We also tested the dependence of the reconnection rate on
the anomalous resistivity. We run several models with the same
value of the uniform resistivity ηu = 5 × 10−4 and the critical
current density jcrit = 50, but for different values of the anoma-
lous resistivity ηa (see model AD in Table 1). In Fig. 12 we plot
the reconnection rate calculated for the Sweet-Parker configu-
ration (squares) and in the presence of turbulence (diamonds).
The dash-dotted line determines the mean value of the recon-
nection rate (VTB

r (ηa�0) = 0.051) obtained for models with the
anomalous resistivity. As we see, the presence of anomalous re-
sistivity causes an increase in the reconnection speed compared
to a model with ηa = 0 – dotted line (VTB

r = 0.039). However,
for different values of the anomalous resistivity the reconnection
speed is almost the same. More precisely, we observe a nearly
negligible increase in the reconnection rate and a clear increase
in the variance at higher values of the anomalous resistivity ηa.

3.3. Dependence on the viscosity

In a next step we tested the influence of viscosity on the recon-
nection rate for fixed values of the injection scale, turbulence
strength and uniform resistivity (see model VD in Table 1). The
results are shown in Fig. 13 where we plot averaged reconnec-
tion rates for the laminar (squares) and turbulent (diamonds)
cases. In the Sweet-Parker configuration the reconnection rate
VSP

r is almost the same for viscosity ν ≤ 1 × 10−3 and starts to
decrease for ν ≥ 2× 10−3. In the presence of turbulence the fit to
the calculated points shows that the reconnection rate VTB

r scales
with the viscosity as ∼ν−1/3. Furthermore, when the viscosity is
higher than 1 × 10−3, the rates of reconnection for models with
and without turbulence are similar.

3.4. The case of a uniform initial configuration

To check the influence of our boundary conditions and method
of driving turbulence on the reconnection process we compare
two models with different initial magnetic field configurations:
antiparallel and uniform. The antiparallel initial configuration of
the magnetic field is the same as for the Sweet-Parker recon-
nection, the uniform one is horizontal with Bx = 1. The rest of
the parameters characterizing both models are ηu = 5 × 10−4,
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Fig. 8. Topology of the velocity (top panels) and magnetic field (middle panels) in the presence of turbulence shown at three times t1 = 13.90,
t2 = 15.70, t3 = 18.15. In the lower panels we plot the absolute value of the current density for the same times. The evolution of the reconnection
speed VTB

r for this model is shown in Fig. 7. Turbulence is injected with Pinj = 0.5 at the wavenumber k = 12. The uniform resistivity ηu is equal
to 5 × 10−4. Brighter shades correspond to higher values of the displayed quantities.
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Fig. 9. Dependence of the reconnection rate on the power of the in-
jected turbulence Pinj for models with and without turbulence, VTB

r and
VSP

r , respectively. In all models we use the same values of the uniform
resistivity ηu = 5× 10−5 and the injection scale kinj = 12. The error bars
indicate the variance of the reconnection rate. For the Sweet-Parker re-
connection (squares) the errors are neglected and not shown.

Fig. 10. Dependence of the reconnection rate on the injection scale linj

for models with and without turbulence, VTB
r and VSP

r , respectively. In
all models we use the same values of the uniform resistivity ηu = 5 ×
10−5 and the power of the injected turbulence P = 0.1. For the Sweet-
Parker reconnection (squares) the variance is negligible and not shown.

kf = 12, P = 0.1 and inflow/outflow boundary conditions. In
both models we injected turbulence in the same way from t = 9
to t = 10.

In Fig. 14 we show the comparison of reconnection rates ob-
tained for the uniform and antiparallel initial magnetic field con-
figuration. In the first case the reconnection rate is almost equal
zero. We can see some small fluctuations, but we cannot observe
any significant growth of the reconnection rate. In the second

Fig. 11. Dependence of the reconnection rate on the uniform resistivity
ηu for models with and without turbulence, VTB

r (diamonds and trian-
gles) and VSP

r (squares), respectively. Turbulence is injected at the scale
k = 12 with Pinj = 0.1 and Pinj = 0.01. For the Sweet-Parker reconnec-
tion (squares) the variance is negligible and not shown.

Fig. 12. Dependence of the reconnection rate on the anomalous resis-
tivity ηa for models with and without turbulence, VTB

r (diamonds) and
VSP

r (squares), respectively. Turbulence is injected at the wavenumber
kf = 12 with Pinj = 0.1. The uniform resistivity ηu is equal to 5 × 10−4.
The dotted line represents the mean reconnection rate obtained for the
Sweet-Parker stage, dash-dotted marks the value of the reconnection
rate without anomalous resistivity and the dashed line corresponds to
the mean reconnection rate calculated for four models with different
values of the anomalous resistivity.

case the value of reconnection rate is higher and changes vio-
lently. For a more precise description of this case see Sect. 3.2.

The almost negligible value of the reconnection rate for the
model with a uniform initial magnetic field indicates that as ex-
pected magnetic reconnection does not occur. This also supports
the conclusion that our calculation of the reconnection rate is not
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Fig. 13. Dependence of the reconnection rate on the viscosity ν for mod-
els with and without turbulence, VTB

r and VSP
r , respectively. In all models

we use the same values of the uniform resistivity ηu = 5 × 10−5, turbu-
lence strength P = 0.1 and the injection wavenumber kinj = 12. For the
Sweet-Parker reconnection (squares) the variance is negligible and not
shown.

Fig. 14. Comparison of the reconnection rates obtained for models with
uniform and antiparallel initial magnetic field configurations. All pa-
rameters for the models are the same: the power of turbulence Pinj = 0.1,
the injection wavenumber kf = 12, and the uniform resistivity coeffi-
cient ηu = 5× 10−4. The topology of the velocity and magnetic velocity
fields as well as the distribution of the current density for both mod-
els are shown in Fig. 6 (antiparallel initial magnetic field) and Fig. 15
(uniform initial magnetic field).

an artifact of our boundary conditions or our method for imple-
menting turbulence.

Figure 15 shows the topology of the magnetic and velocity
field as well as the distribution of current density for the model
with an initial uniform configuration of the magnetic field. As
before turbulence was injected in a volume surrounding the mid-
plane, which causes perturbations of the velocity field in this
region (see the left panel in Fig. 15). Most of the fluctuations
propagate along the mean magnetic field, running more or less
parallel to the midplane (see the middle panel in Fig. 15). The
well defined bend of the magnetic lines presented in the case
of turbulent reconnection is not visible here. This is because we
do not have a diffusion region, where the magnetic lines change

their direction and strength and can be bent by fluctuations. On
the other hand, turbulence causes small perturbations of mag-
netic field, which leads to an enhancement of the absolute value
of the current density (see the middle panel in Fig. 15).

3.5. Long term variance of the reconnection rate

The time evolution of the reconnection rate for the same model
as in Fig. 5 but calculated over a longer period of time (tend = 50)
is shown in Fig. 16. We see that even after 50 Alfénic times
the reconnection rate does not reach a steady state. Strong and
continuous fluctuations are seen over the whole simulation time.
All these quasiperiodic changes of the reconnection rate are ap-
parently driven by something like the tearing mode instability,
namely, big loops of magnetic field are continuously created (see
Fig. 18) and ejected through boundaries.

In Fig. 17 we show the evolution of mass, magnetic and ki-
netic energy during the Sweet-Parker reconnection (from t = 0
to t = 9) and turbulent (from t = 9 to t = 50) reconnection. We
see that adding turbulence to the system or using open boundary
conditions does not introduce instabilities in the total mass or
kinetic and magnetic energies.

What is more, increasing tend from 20 to 50 only slightly
influences the average reconnection rate and its variance. For
models with tend = 20 and tend = 50 we get VTB

r = 0.039 ±
0.019 and VTB

r = 0.041± 0.017, respectively. This indicates that
extending the simulation time does not lead to a stable state of
reconnection and does not change our results.

4. Discussion

4.1. The goals of this study

The present paper provides a follow-up study to Kowal et al.
(2009). In that paper fast magnetic reconnection of a 3D weakly
stochastic magnetic field, predicted in the LV99 theoretical
study, was confirmed. Can turbulent reconnection be fast in 2D
as well? The question may sound rather academic, as the nature
we deal with is definitely three dimensional. However, there are
at least two reasons why answering this question is important.
First of all, the claim in LV99 is that 3D effects are essential for
fast reconnection. Thus it is important to test this claim and to
explore whether fast reconnection in the presence of turbulence
can be carried over to 2D. Then, in a number of earlier studies it
was conjectured that magnetic reconnection could become fast
in the presence of turbulence for purely 2D reconnection config-
urations.

In all respects apart from dimensionality the present numeri-
cal set-up is identical to that in Kowal et al. (2009). In partic-
ular, the excitation of turbulence in both cases takes place at
subAlfvénic velocities, thereby preventing field reversals aris-
ing from turbulence. For measurements of the reconnection rate
we adopt the procedure presented in Kowal et al. (2009). This
enables us to make easy comparisons between the 3D and 2D
reconnection results.

4.2. 2D versus 3D reconnection

Until very recently 2D geometry has been favored for magnetic
reconnection studies. Its advantage stems from the fact that it al-
lows one to achieve much higher Lundquist numbers compared
to its 3D counterpart. The most important question is whether
the nature of reconnection is the same in 3D and in 2D. An affir-
mative answer is likely if the reconnection of laminar magnetic

Page 11 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913218&pdf_id=13
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913218&pdf_id=14


A&A 514, A26 (2010)

Fig. 15. Topology of the velocity (left panel) and magnetic field (middle panel), and the absolute value of the current density distribution (right
panel) for the initially uniform magnetic field at the time t = 14. Brighter shades correspond to higher values of the displayed quantities. Turbulence
is injected with the power Pinj = 0.1 at a wavenumber kf = 12. The uniform resistivity ηu is equal to 5 × 10−4. For comparison, the model with the
same set of parameters but with an initially antiparallel configuration of magnetic field is presented in Fig. 6.

Fig. 16. Time evolution of the reconnection speed for the model with t Pinj = 0.1, an injection wavenumber kf = 12 and a uniform resistivity
ηu = 5 × 10−4.

field is involved. Our results on the Sweet-Parker reconnection
above are very similar2 to the results of the Sweet-Parker recon-
nection in Kowal et al. (2009). At the same time our compari-
son of the results in the present paper with those in Kowal et al.
(2009) shows that the reconnection in the presence of turbulence
is very different.

The aforementioned difference is not surprising if one takes
into account that the nature of the 2D and 3D MHD turbulence is
rather different. In particular, magnetic field wandering, which is
an essential part of the LV99 reconnection model, has a radically
different nature in 3D and 2D. What we have in 2D is a coherent
displacement of magnetic field lines by Alfvénic perturbations,
while in 3D magnetic field lines can slip past one another, enjoy-
ing the freedom provided by the additional dimension. As a re-
sult, in LV99 different bundles of wandering magnetic field lines
can enter the reconnection zone independently, and reconnect si-
multaneously. It was shown in LV99 that it is this simultaneous

2 The obtained dependence of reconnection pace on the uniform re-
sistivity coincide in 2D and 3D and is consistent with theory, i.e.
VSP

r ∼ η1/2
u .

reconnection of independent magnetic flux bundles that makes
reconnection insensitive to resistivity. This effect is absent in 2D,
where the entry of fresh flux into the reconnection zone is con-
strained by the rate of removal of reconnected flux.

The second effect that enables fast reconnection in the LV99
model is an increase of the thickness of the outflow region.
There we see some similarity between 2D and 3D reconnection.
Indeed, while the outflow in the Sweet-Parker reconnection is
constrained by the thin slot determined by Ohmic diffusivity, it
is due to an increase of the thickness of the outflow through tur-
bulence that 2D turbulent reconnection is faster than the Sweet-
Parker rate. The outflow region for both 2D and 3D depends
on the intensity of driving and the scale of turbulence injection.
However, the functional dependencies are different, and this dif-
ference stems from the difference in the reconnection physics.

As we mentioned earlier, magnetic field wandering plays a
decisive role in 3D reconnection. In 2D reconnection it is not
fast, since we observe the creation of magnetic islands as a re-
sult of turbulence. This process is rather limited unless the tur-
bulent injection velocity approaches VA. We believe that this
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Fig. 17. Time evolution of the total mass M (solid line), magnetic Emag

(dashed line) and kinetic Ekin (dotted line) energies during the Sweet-
Parker reconnection (from t = 0 to t = 9) and turbulent (from t = 9 to
t = 50 reconnection with a uniform resistivity ηu = 5×10−4. The kinetic
energy Ekin is not amplified in this plot.

Fig. 18. Topology of magnetic field in the presence of turbulence at a
time t = 49. The uniform resistivity ηu is equal to 5 × 10−4. Turbulence
is injected with the power Pinj = 0.1 at a scale k = 12. Brighter shades
correspond to higher values of the displayed quantities.

explains why the dependence of the reconnection rate on the
Ohmic resistivity becomes steeper as the turbulence weakens
(see Fig. 11). Indeed, for a weaker turbulence the alternate com-
pression and expansion of the current sheet, which leads to mag-
netic island formation, is weaker and the reconnection is sim-
ilar to the Sweet-Parker model. Similarly, the combination of
anomalous resistivity and magnetic island formation3 reaches a
saturated level of efficiency for modest values of the anomalous
resistivity and appears to become insensitive to further increases
(see Fig. 12).

It is important to note that magnetic field structures, i.e. the
magnetic islands, which we observe in 2D simulations do not

3 While the 3D reconnection of a weakly stochastic magnetic field de-
pends on the Alfvénic, i.e. the incompressible, component of magnetic
turbulence, the creation of magnetic islands depends on the compress-
ible component of the turbulence (see Cho & Lazarian 2003, for the
decomposition of MHD turbulent motions).

appear in 3D simulation (Kowal et al. 2009). What is more,
Kowal et al. (2009) obtained a stable value of the reconnection
speed in the presence of turbulence in a short period, about one
Alvén time. In our work we are unable to reach this state be-
cause the reconnection rate continuously and violently fluctu-
ates. Consequently the average speed of turbulent magnetic re-
connection in 2D is burdened with much higher statistical errors
than in 3D.

In our work we determine the dependence of the reconnec-
tion rate on four quantities: the power of turbulence Pinj, the in-
jection wavenumber kf , the uniform ηu and the anomalous ηa re-
sistivities. The same analysis was done by Kowal et al. (2009) in
three dimensions. For the power of turbulence and injection scale
they found the following scalings: VTB

r ∼ P1/2
inj and VTB

r ∼ l3/4inj .
Compared to our findings the dependencies obtained in 3D are
stronger. Namely, in the 2D case the reconnection rate grows
with the power of turbulence as VTB

r ∼ P1/3
inj and with the injec-

tion scale as VTB
r ∼ l2/3inj .

4.3. Earlier studies of 2D turbulent reconnection
and their relation to work

As we mentioned in the introduction, the concept of turbulent
enhancement of reconnection is not unprecedented. In Kowal
et al. (2009) we presented a list of papers where turbulent ef-
fects were cited as the source of fast astrophysical reconnec-
tion. Compared to the present paper, all these papers lacked a
precise means of measuring the reconnection speed, and there-
fore the numerical simulations were providing mostly qualitative
results. Moreover, they adopted periodic boundary conditions,
which made it difficult to study turbulent reconnection for more
than a single Alfvén time.

Among these papers, the pioneering works were the numeri-
cal studies in Matthaeus & Lamkin (1985, 1986). There the anal-
ysis of 2D simulations of turbulence revealed the formation of
magnetic islands and X-points reminiscent of the Petscheck pro-
cess.

In our 2D model of turbulent reconnection we also observe
the continuous formation of magnetic islands which are ejected
from the reconnection zone due to open boundary conditions.
For instance, we observe that when a big loop of the magnetic
field is removed from the box through boundaries, the reconnec-
tion rate increases sharply. After that the reconnection rate drops
until a new magnetic island can be created.

The formation of islands is also a consequence of the tear-
ing instability. In this vein, Loureiro et al. (2005) examined the
nonlinear growth of tearing modes and obtained a fast growth of
magnetic islands. However, in their simulations they used peri-
odic boundary conditions, which keep such islands in the recon-
nection zone.

The most directly relevant work is Fan et al. (2004, 2005).
They found that the turbulent magnetic reconnection in the solar
atmosphere could be described by a two phase process: first-slow
and second-fast. The rapid stage of reconnection is caused by the
coalescence instability described in Biskamp & Welter (1980);
Wu & Chang (2001), which may also enhance the reconnection
rate in our simulations.

Here, and in contrast to the 3D model of LV99, we find that
in 2D the influence of the uniform resistivity on the reconnection
rate is stronger for higher values of ηu and lower values of Pinj.
Similar results have also been obtained by Loureiro et al. (2009).
They claimed that the reconnection process is fast in 2D only
in some particular circumstances, i.e. for higher values of the
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Lundquist number and moderate levels of turbulence. We dis-
agree with the claim of fast turbulent reconnection in 2D. In fact,
in most of the models analyzed by Loureiro et al. (2009) the re-
connection process depends on the uniform resistivity. Again an
important limitation of the aforementioned study is their limited
averaging, arising from their choice of boundary conditions.

4.4. Implications

Two-dimensional magnetic reconnection is the result of a rather
artificial configuration. The value of our present study is that
it clarifies the role of the effects of dimensionality for the actual
3D reconnection of astrophysical magnetic fields in the presence
of weak turbulence. The latter has many essential implications
starting from the First Order Fermi acceleration of energetic par-
ticles (de Gouveia dal Pino & Lazarian 2005; Lazarian & Opher
2009) to Solar Flares (see Lazarian et al. 2009) and the removal
of the magnetic field during star formation (Santos-Lima et al.
2010) These implications are discussed in more detail in Kowal
et al. (2009).

5. Conclusions

In this paper we have examined the results of 2D simulations of
the reconnection process in the presence of subAlfvenic turbu-
lence. Our findings may be summarized as follows:

– Unlike the Sweet-Parker reconnection, the reconnection of a
weakly stochastic magnetic field is fundamentally different
in 2D and 3D, in agreement the LV99 study. Reconnection
in 2D depends on resistivity and is not fast.

– The enhancement of magnetic reconnection in 2D arises
from an increase in the thickness of the plasma outflow layer
due to the creation of magnetic islands, which are ejected
from the reconnection layer.

– The power of turbulence Pinj and the injection scale kf have
an influence on the reconnection rate. In our study this is
VTB

r ∼ P1/3
inj ∼ l2/3inj .
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