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Abstract
We prove that for every integer t � 1, the class of intersection graphs of curves in
the plane each of which crosses a fixed curve in at least one and at most t points
is χ -bounded. This is essentially the strongest χ -boundedness result one can get for
those kind of graph classes. As a corollary, we prove that for any fixed integers k � 2
and t � 1, every k-quasi-planar topological graph on n vertices with any two edges
crossing at most t times has O(n log n) edges.

Keywords String graphs · χ -Boundedness · k-Quasi-planar graphs
Mathematics Subject Classification 05C62 · 05C15

1 Introduction

Overview

A curve is a homeomorphic image of the real interval [0, 1] in the plane. The inter-
section graph of a family of curves has these curves as vertices and the intersecting
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pairs of curves as edges. Combinatorial and algorithmic aspects of intersection graphs
of curves, known as string graphs, have been attracting researchers for decades. A
significant part of this research has been devoted to understanding classes of string
graphs that are χ -bounded, which means that every graph G in the class satisfies
χ(G) � f (ω(G)) for some function f : N → N. Here, χ(G) and ω(G) denote
the chromatic number and the clique number (the maximum size of a clique) of G,
respectively. Although the class of all string graphs is not χ -bounded [24,25], known
constructions of string graphs with small clique number and large chromatic number
are very specific. One can expect that an appropriate restriction on the arrangement of
the curves will prevent such constructions and thus lead to a χ -bounded subclass of
the class of string graphs.

McGuinness [19,20] proposed studying families of curves that cross a fixed curve
exactly once. This initiated a series of results culminating in the proof that the class of
intersection graphs of such families is indeed χ -bounded [26]. By contrast, the class
of intersection graphs of curves each crossing a fixed curve at least once is equal to
the class of all string graphs and therefore is not χ -bounded. We prove an essentially
strongest possible generalization of the former result, allowing curves to cross the
fixed curve at least once and at most t times, for any bound t .

Theorem 1 For every integer t � 1, the class of intersection graphs of curves each
crossing a fixed curve in at least one and at most t points is χ -bounded.

Additional motivation for Theorem 1 comes from its application to bounding the
number of edges in so-called k-quasi-planar graphs, which we discuss at the end of
this introduction.

Context

Colorings of intersection graphs of geometric objects have been investigated since
the 1960s, when Asplund and Grünbaum [3] proved that intersection graphs of axis-
parallel rectangles in the plane satisfy χ = O(ω2) and conjectured that the class
of intersection graphs of axis-parallel boxes in R

d is χ -bounded for every integer
d � 1. A few years later Burling [5] discovered a surprising construction of triangle-
free intersection graphs of axis-parallel boxes in R

3 with arbitrarily large chromatic
number. Since then, the upper bound of O(ω2) and the trivial lower bound of Ω(ω)

on the maximum possible chromatic number of a rectangle intersection graph have
been improved only in terms of multiplicative constants [11,13].

Another classical example of a χ -bounded class of geometric intersection graphs
is provided by circle graphs—intersection graphs of chords of a fixed circle. Gyárfás
[10] proved that circle graphs satisfy χ = O(ω24ω). The best known upper and lower
bounds on the maximum possible chromatic number of a circle graph are O(2ω) [14]
and Ω(ω logω) [12,13].

McGuinness [19,20] proposed investigating the problem in a setting that allows
much more general geometric shapes but restricts the way how they are arranged in
the plane. In [19], he proved that the class of intersection graphs of L-shapes crossing a
fixed horizontal line is χ -bounded. Families of L-shapes in the plane are simple, which
means that any two members of the family intersect in at most one point. McGuinness
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[20] also showed that triangle-free intersection graphs of simple families of curves each
crossing a fixed line in exactly one point have bounded chromatic number. Further
progress in this direction was made by Suk [27], who proved that simple families
of x-monotone curves crossing a fixed vertical line give rise to a χ -bounded class
of intersection graphs, and by Lasoń et al. [17], who reached the same conclusion
without assuming that the curves are x-monotone. Finally, in [26], we proved that the
class of intersection graphs of curves each crossing a fixed line in exactly one point is
χ -bounded. These results remain valid if the fixed straight line is replaced by a fixed
curve [28].

The class of string graphs is not χ -bounded. Pawlik et al. [24,25] showed that
Burling’s construction for boxes in R

3 can be adapted to provide a construction of
triangle-free intersection graphs of straight-line segments (or geometric shapes of
various other kinds) with chromatic number growing as fast as Θ(log log n) with the
number of vertices n. It was further generalized to a construction of string graphs with
clique number ω and chromatic number Θω((log log n)ω−1) [16]. The best known
upper bound on the chromatic number of string graphs in terms of the number of
vertices is (log n)O(logω), proved by Fox and Pach [8] using a separator theorem for
string graphs due to Matoušek [18]. For intersection graphs of segments and, more
generally, x-monotone curves, upper bounds of the form χ = Oω(log n) follow from
the above-mentioned results in [27] and [26] via recursive halving. Upper bounds of
the form χ = Oω((log log n) f (ω)) (for some function f : N → N) are known for
very special classes of string graphs: rectangle overlap graphs [15,16] and subtree
overlap graphs [16]. The former still allow the triangle-free construction with χ =
Θ(log log n) and the latter the construction with χ = Θω((log log n)ω−1).

Quasi-Planarity

A topological graph is a graph with a fixed curvilinear drawing in the plane. For
k � 2, a k-quasi-planar graph is a topological graph with no k pairwise crossing
edges. In particular, a 2-quasi-planar graph is just a planar graph. It is conjectured that
k-quasi-planar graphs with n vertices have Ok(n) edges [4,23]. For k = 2, this asserts
a well-known property of planar graphs. The conjecture is also verified for k = 3
[2,22] and k = 4 [1], but it remains open for k � 5. The best known upper bounds
on the number of edges in a k-quasi-planar graph are n(log n)O(log k) in general [7,8],
Ok(n log n) for the case of x-monotone edges [9,29], Ok(n log n) for the case that any
two edges intersect at most once [28], and 2α(n)νn log n for the case that any two edges
intersect in at most t points, where α is the inverse Ackermann function and ν depends
on k and t [28]. We apply Theorem 1 to improve the last bound to Ok,t (n log n).

Theorem 2 Every k-quasi-planar topological graph G on n vertices such that any
two edges of G intersect in at most t points has at most μk,t n log n edges, where μk,t

depends only on k and t.

The proof follows the same lines as the proof in [28] for the case t = 1 (see Sect. 3).
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2 Proof of Theorem 1

Setup

We let N denote the set of positive integers. Graph-theoretic terms applied to a family
of curves F have the same meaning as applied to the intersection graph of F . In
particular, the chromatic number of F , denoted by χ(F ), is the minimum number
of colors in a proper coloring ofF (a coloring that distinguishes pairs of intersecting
curves), and the clique number of F , denoted by ω(F ), is the maximum size of a
clique inF (a set of pairwise intersecting curves inF ).

Theorem 1 (Rephrased) For every t ∈ N, there is a non-decreasing function ft : N →
N with the following property: for any fixed curve c0, every family F of curves each
intersecting c0 in at least one and at most t points satisfies χ(F ) � ft (ω(F )).

We do not state any explicit bound on the function ft above, because it depends
highly on the bound on the function f in Theorem 13 (one of our main tools), and no
explicit bound on f is provided in [6]. We assume (implicitly) that the intersection
points of all curves c ∈ F with c0 considered in Theorem 1 are distinct and each of
them is a proper crossing, which means that c passes from one to the other side of
c0 in a sufficiently small neighborhood of the intersection point. We can make this
assumption without loss of generality, as it can be guaranteed by appropriate small
perturbations of the curves that do not influence the intersection graph.

Initial Reduction

We start by reducing Theorem 1 to a somewhat simpler and more convenient setting.
We fix a horizontal line in the plane and call it the baseline. The upper closed half-
plane determined by the baseline is denoted by H+. A 1-curve is a curve in H+ that
has one endpoint (called the basepoint of the 1-curve) on the baseline and does not
intersect the baseline in any other point. Intersection graphs of 1-curves are known
as outerstring graphs and form a χ -bounded class of graphs—this result, due to the
authors, is the starting point of the proof of Theorem 1.

Theorem 3 ([26]) There is a non-decreasing function f0 : N → N such that every
familyF of 1-curves satisfies χ(F ) � f0(ω(F )).

An even-curve is a curve that has both endpoints above the baseline and a positive
even number of intersection pointswith the baseline, each ofwhich is a proper crossing.
For t ∈ N, a 2t-curve is an even-curve that intersects the baseline in exactly 2t points.
A basepoint of an even-curve c is an intersection point of c with the baseline. Like
above,we assume (implicitly,without loss of generality) that the basepoints of all even-
curves in any family that we consider are distinct. Every even-curve c determines two
1-curves—the two parts of c from an endpoint to the closest basepoint along c. They
are called the 1-curves of c and denoted by L(c) and R(c) so that the basepoint of
L(c) lies to the left of the basepoint of R(c) on the baseline (see Fig. 1). A familyF
of even-curves is an LR-family if every intersection between two curves c1, c2 ∈ F is
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Fig. 1 L(c), R(c), M(c) (all the
dashed part), and I (c) for a
6-curve c L(c)

M(c)

R(c)

I(c)

an intersection between L(c1) and R(c2) or between L(c2) and R(c1). The main effort
in this paper goes to proving the following statement on LR-families of even-curves.

Theorem 4 There is a non-decreasing function f : N → N such that every LR-family
F of even-curves satisfies χ(F ) � f (ω(F )).

Theorem 4 makes no assumption on the maximum number of intersection points of
an even-curve with the baseline. We derive Theorem 1 from Theorem 4 in two steps,
first proving the following lemma, and then showing that Theorem 1 is essentially a
special case of it.

Lemma 5 For every t ∈ N, there is a non-decreasing function ft : N → N such that
every family F of 2t-curves no two of which intersect below the baseline satisfies
χ(F ) � ft (ω(F )).

Proof of Lemma 5 from Theorem 4 The proof goes by induction on t . Let f0 and f be
the functions claimed by Theorems 3 and 4, respectively, and let ft (k) = f 2t−1(k) f (k)
for t � 1 and k ∈ N. We establish the base case for t = 1 and the induction step for
t � 2 simultaneously. Namely, fix an integer t � 1, and let F be as in the statement
of the lemma. For every 2t-curve c ∈ F , enumerate the endpoints and basepoints
of c as p0(c), . . . , p2t+1(c) in their order along c so that p0(c) and p1(c) are the
endpoints of L(c) while p2t (c) and p2t+1(c) are the endpoints of R(c). Build two
families of curvesF1 andF2 putting the part of c from p0(c) to p2t−1(c) toF1 and
the part of c from p2(c) to p2t+1(c) to F2 for every c ∈ F . If t = 1, then F1 and
F2 are families of 1-curves. If t � 2, then F1 and F2 are equivalent to families of
2(t − 1)-curves, because the curve in F1 or F2 obtained from a 2t-curve c ∈ F
can be shortened a little at p2t−1(c) or p2(c), respectively, losing that basepoint but
no intersection points with other curves. Therefore, by Theorem 3 or the induction
hypothesis,wehaveχ(Fk) � ft−1(ω(Fk)) � ft−1(ω(F )) for k ∈ {1, 2}. For c ∈ F
and k ∈ {1, 2}, let φk(c) be the color of the curve obtained from c in an optimal proper
coloring of Fk . Every subfamily of F on which the pair (φ1(c), φ2(c)) is constant
is an LR-family and therefore, by Theorem 4 and monotonicity of f , has chromatic
number at most f (ω(F )). We conclude that χ(F ) � χ(F1)χ(F2) f (ω(F )) �
f 2t−1(ω(F )) f (ω(F )) = ft (ω(F )). ��
A closed curve is a homeomorphic image of a unit circle in the plane. For a closed

curve γ , the Jordan curve theorem asserts that the set R
2

� γ consists of two arc-
connected components, one of which is bounded and denoted by int γ and the other
is unbounded and denoted by ext γ .

123



Discrete & Computational Geometry (2019) 61:830–851 835

Proof of Theorem 1 from Theorem 4 We elect to present this proof in an intuitive rather
than rigorous way. Let F be a family of curves each intersecting c0 in at least one
and at most t points. Let γ0 be a closed curve surrounding c0 very closely so that γ0
intersects every curve in F in exactly 2t points (winding if necessary to increase the
number of intersections) and all endpoints of curves in F and intersection points of
pairs of curves inF lie in ext γ0.We apply geometric inversion to obtain an equivalent
family of curves F ′ and a closed curve γ ′

0 with the same properties except that all
endpoints of curves inF ′ and intersection points of pairs of curves inF ′ lie in int γ ′

0.
It follows that some part of γ ′

0 lies in the unbounded component of R
2

�
⋃

F ′. We
“cut” γ ′

0 there and “unfold” it into the baseline, transforming F ′ into an equivalent
familyF ′′ of 2t-curves all endpoints of which and intersection points of pairs of which
lie above the baseline. The “equivalence” ofF ,F ′, andF ′′ means in particular that
the intersection graphs of F , F ′, and F ′′ are isomorphic, so the theorem follows
from Lemma 5 (and thus Theorem 4). ��

A statement analogous to Theorem 4 fails for families of objects each consisting of
two 1-curves only, without the “middle part” connecting them. Specifically, we define
a double-curve as a set X ⊂ H+ that is a union of two disjoint 1-curves, denoted
by L(X) and R(X) so that the basepoint of L(X) lies to the left of the basepoint of
R(X), and we call a family X of double-curves an LR-family if every intersection
between two double-curves X1, X2 ∈ X is an intersection between L(X1) and R(X2)

or between L(X2) and R(X1).

Theorem 6 There exist triangle-free LR-families of double-curves with arbitrarily
large chromatic number.

The proof of Theorem 6 is an easy adaptation of the construction from [24,25] and
is presented in detail in Sect. 4. The rest of this section is devoted to the proof of
Theorem 4.

Overview of the Proof of Theorem 4

Recall the assertion of Theorem 4: the LR-families of even-curves are χ -bounded.
The proof is quite long and technical, so we find it useful to provide a high-level
overview of its structure. The proof will be presented via a series of reductions. First,
we will reduce Theorem 4 to the following statement (Lemma 7): the LR-families
of 2-curves are χ -bounded. This statement will be proved by induction on the clique
number. Specifically, we will prove the following as the induction step: if every LR-
family of 2-curvesF with ω(F ) � k − 1 satisfies χ(F ) � ξ , then every LR-family
of 2-curves F with ω(F ) � k satisfies χ(F ) � ζ , where ζ is a constant depending
only on k and ξ . The only purpose of the induction hypothesis is to guarantee that if
ω(F ) � k and c ∈ F , then the family of 2-curves in F � {c} that intersect c has
chromatic number at most ξ . For convenience, LR-families of 2-curves with the latter
property will be called ξ -families. We will thus reduce the problem to the following
statement (Lemma 9): the ξ -families are χ -bounded, where the χ -bounding function
depends on ξ .
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Wewill dealwith ξ -families via a series of technical lemmasof the followinggeneral
form: every ξ -family with sufficiently large chromatic number contains a specific
configuration of curves. Two kinds of such configurations are particularly important:
(a) a large clique, and (b) a 2-curve c and a subfamilyF ′ with large chromatic number
such that all basepoints of 2-curves inF ′ lie between the basepoints of c. At the core
of the argument are the proofs that

• every ξ -familywith sufficiently large chromatic number contains (a) or (b) (Lemma
16),

• assuming the above, every ξ -family with sufficiently large chromatic number con-
tains (a).

Combined, they complete the argument. Since the two proofs are almost identical, we
introduce one more reduction—to (ξ, h)-families (Lemma 15). A (ξ, h)-family is just
a ξ -family that satisfies an additional technical condition that allows us to deliver both
proofs at once.

More Notation and Terminology

Let ≺ denote the left-to-right order of points on the baseline (p1 ≺ p2 means that p1
is to the left of p2). For convenience, we also use the notation≺ for curves intersecting
the baseline (c1 ≺ c2 means that every basepoint of c1 is to the left of every basepoint
of c2) and for families of such curves (C1 ≺ C2 means that c1 ≺ c2 for any c1 ∈ C1
and c2 ∈ C2). For a family C of curves intersecting the baseline (even-curves or
1-curves) and two 1-curves x and y, let C (x, y) = {c ∈ C : x ≺ c ≺ y} or
C (x, y) = {c ∈ C : y ≺ c ≺ x} depending on whether x ≺ y or y ≺ x . For a family
C of curves intersecting the baseline and a segment I on the baseline, let C (I ) denote
the family of curves in C with all basepoints on I .

For an even-curve c, let M(c) denote the subcurve of c connecting the basepoints
of L(c) and R(c), and let I (c) denote the segment on the baseline connecting the
basepoints of L(c) and R(c) (see Fig. 1). For a familyF of even-curves, let L(F ) =
{L(c) : c ∈ F }, R(F ) = {R(c) : c ∈ F }, and I (F ) denote the minimal segment on
the baseline that contains I (c) for every c ∈ F .

A cap-curve is a curve in H+ that has both endpoints on the baseline and does not
intersect the baseline in any other point. It follows from the Jordan curve theorem that
for every cap-curve γ , the set H+

�γ consists of two arc-connected components, one
of which is bounded and denoted by int γ and the other is unbounded and denoted by
ext γ .

Reduction to LR-Families of 2-Curves

We will reduce Theorem 4 to the following statement on LR-families of 2-curves,
which is essentially a special case of Theorem 4.

Lemma 7 There is a non-decreasing function f : N → N such that every LR-family
F of 2-curves satisfies χ(F ) � f (ω(F )).
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A component of a family of 1-curves S is an arc-connected component of
⋃

S
(the union of all curves inS ). The following easy but powerful observation reuses an
idea from [17,20,27].

Lemma 8 For every LR-family of even-curvesF , ifF � is the family of curves c ∈ F
such that L(c) and R(c) lie in different components of L(F )∪R(F ), thenχ(F �) � 4.

Proof Let G be an auxiliary graph where the vertices are the components of L(F ) ∪
R(F ) and the edges are the pairs V1V2 of components such that there is a curve c ∈ F �

with L(c) ⊆ V1 and R(c) ⊆ V2 or L(c) ⊆ V2 and R(c) ⊆ V1. Since F is an LR-
family, the curves inF � can intersect only within the components of L(F ) ∪ R(F ).
It follows that G is planar and thus 4-colorable. Fix a proper 4-coloring of G, and
assign the color of a component V to every curve c ∈ F � with L(c) ⊆ V . For
any c1, c2 ∈ F �, if L(c1) and R(c2) intersect, then L(c1) and R(c2) lie in the same
component V1 while L(c2) lies in a component V2 such that V1V2 is an edge of G, so
c1 and c2 are assigned different colors. The coloring ofF � is therefore proper. ��
Proof of Theorem 4 from Lemma 7 Weshow thatχ(F ) � f (ω(F ))+4,where f is the
function claimed by Lemma 7. We haveF = F1 ∪F2, whereF1 = {c ∈ F : L(c)
and R(c) lie in the same component of L(F )∪ R(F )} andF2 = {c ∈ F : L(c) and
R(c) lie in different components of L(F ) ∪ R(F )}. Lemma 8 yields χ(F2) � 4. It
remains to show that χ(F1) � f (ω(F )).

Let c1, c2 ∈ F1. We claim that the intervals I (c1) and I (c2) are nested or disjoint.
Suppose they are neither nested nor disjoint. The components of L(F ) ∪ R(F ) are
disjoint from the curves of the form M(c) with c ∈ F except at common basepoints.
For k ∈ {1, 2}, since L(ck) and R(ck) belong to the same component of L(F )∪R(F ),
the basepoints of L(ck) and R(ck) can be connected by a cap-curve γk disjoint from
M(c) for every c ∈ F except at the endpoints of M(c) when c = ck . We assume
(without loss of generality) that γ1 and γ2 intersect in a finite number of points and each
of their intersection points is a proper crossing. Since the intervals I (c1) and I (c2) are
neither nested nor disjoint, the basepoints of L(c2) and R(c2) lie one in int γ1 and the
other in ext γ1. This implies that γ1 and γ2 intersect in an odd number of points, by
the Jordan curve theorem. For k ∈ {1, 2}, let γ̃k be the closed curve obtained as the
union of γk and M(ck). It follows that γ̃1 and γ̃2 intersect in an odd number of points
and each of their intersection points is a proper crossing, which is a contradiction to
the Jordan curve theorem.

TransformF1 into a family of 2-curvesF ′
1 replacing the partM(c) of every 2-curve

c ∈ F1 by the lower semicircle connecting the endpoints of M(c). Since the intervals
I (c) with c ∈ F1 are pairwise nested or disjoint, these semicircles are pairwise
disjoint. Consequently, F ′

1 is an LR-family. Since the intersection graphs of F1 and
F ′

1 are isomorphic, Lemma 7 implies χ(F1) = χ(F ′
1) � f (ω(F ′

1)) � f (ω(F )).
��
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Reduction to �-Families

For ξ ∈ N, a ξ -family is an LR-family of 2-curvesF with the following property: for
every 2-curve c ∈ F , the family of 2-curves inF � {c} that intersect c has chromatic
number at most ξ . We reduce Lemma 7 to the following statement on ξ -families.

Lemma 9 For any ξ, k ∈ N, there is a constant ζ ∈ N such that every ξ -family F
with ω(F ) � k satisfies χ(F ) � ζ .

Proof of Lemma 7 from Lemma 9 Let f (1) = 1. For k � 2, let f (k) be the constant
claimed by Lemma 9 such that every f (k − 1)-family F with ω(F ) � k satisfies
χ(F ) � f (k). Let k = ω(F ), and proceed by induction on k to prove χ(F ) � f (k).
Clearly, if k = 1, then χ(F ) = 1. For the induction step, assume k � 2. For every
c ∈ F , the family of 2-curves inF�{c} that intersect c has clique number atmost k−1
and therefore, by the induction hypothesis, has chromatic number at most f (k − 1).
That is,F is an f (k − 1)-family, and the definition of f yields χ(F ) � f (k). ��

Dealing with �-Families

First, we establish the following special case of Lemma 9.

Lemma 10 For every ξ ∈ N, every ξ -familyF with
⋂

c∈F I (c) �= ∅ satisfiesχ(F ) �
4ξ + 4.

The proof of Lemma 10 is essentially the same as the proof of Lemma 19 in [28].
We need the following elementary lemma, which was also used in various forms in
[17,19,20,26,27].We include its proof, as we will later extend it when proving Lemma
12.

Lemma 11 (McGuinness [19, Lem. 2.1]) Let G be a graph, ≺ be a total order on the
vertices of G, and α, β ∈ N. Let G(u, v) denote the subgraph of G induced on the
vertices strictly between u and v in the order ≺. If χ(G) > (2β + 2)α, then G has an
induced subgraph H such that χ(H) > α and χ(G(u, v)) > β for every edge uv of
H. In particular, if χ(G) > 2β + 2, then G has an edge uv with χ(G(u, v)) > β.

Proof Let G[U ] denote the subgraph of G induced on a set of vertices U . Partition
the vertices of G into subsets V0 ≺ · · · ≺ Vn so that χ(G[Vi ]) = β + 1 for 0 � i < n
and χ(G[Vn]) � β + 1. This is done greedily, by processing the vertices of G in the
order ≺, adding them to V0 until χ(G[V0]) = β + 1, then adding them to V1 until
χ(G[V1]) = β + 1, and so on. For 0 � i � n, a proper (β + 1)-coloring of G[Vi ]
yields a partition of Vi into color classes V 1

i , . . . , V β+1
i that are independent sets in

G. Let r ∈ {1, . . . , β + 1} be such that χ
(
G

[⋃n
i=0 V

r
i

])
is maximized. It follows

that χ
(
G

[⋃n
i=0 V

r
i

])
� χ(G)/(β + 1) > 2α and thus χ

(
G

[⋃
i even V

r
i

])
> α or

χ
(
G

[⋃
i odd V

r
i

])
> α. Let H = G

[⋃
i even V

r
i

]
or H = G

[⋃
i odd V

r
i

]
accordingly,

so that χ(H) > α. Now, if uv is an edge of H , then u ∈ Vr
k and v ∈ V r

� for two distinct
indices k, � ∈ {0, . . . , n} of the same parity (because each Vr

i is an independent set
in G), and therefore G[Vi ] is a subgraph of G(u, v) for every (at least one) index
i ∈ {1, . . . , n − 1} strictly between k and �, witnessing χ(G(u, v)) > β. ��
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Proof of Lemma 10 Suppose χ(F ) > 4ξ + 4. Since
⋂

c∈F I (c) �= ∅, the 2-curves in
F can be enumerated as c1, . . . , cn so that L(c1) ≺ · · · ≺ L(cn) ≺ R(cn) ≺ · · · ≺
R(c1), where n = |F |. Lemma 11 applied to the intersection graph of F and the
order c1, . . . , cn provides two indices i, j ∈ {1, . . . , n} such that the 2-curves ci and
c j intersect and χ({ci+1, . . . , c j−1}) > 2ξ + 1. Assume L(ci ) and R(c j ) intersect;
the argument for the other case is analogous. There is a cap-curve ν ⊆ L(ci ) ∪ R(c j )
connecting the basepoints of L(ci ) and R(c j ). Every curve intersecting ν intersects
ci or c j . Since F is a ξ -family, the 2-curves in {ci+1, . . . , c j−1} that intersect ci
have chromatic number at most ξ , and so do those that intersect c j . Every 2-curve
ck ∈ {ci+1, . . . , c j−1} not intersecting ν satisfies L(ck) ⊂ int ν and R(ck) ⊂ ext ν, so
these 2-curves are pairwise disjoint. We conclude that χ({ci+1, . . . , c j−1}) � 2ξ + 1,
which is a contradiction. ��

It easily follows from Lemma 11 that every family of 2-curves F with χ(F ) >

(2β+2)2α contains a subfamilyH with χ(H ) > α such that any two intersecting 2-
curves c1, c2 ∈ H satisfy χ(F (L(c1), L(c2))) > β and χ(F (R(c1), R(c2))) > β.
This is considerably strengthened by the following lemma. Its proof is based on the
same general idea as the proof of Lemma 11 presented above.

Lemma 12 For every ξ ∈ N, there is a function f : N × N → N with the following
property: for any α, β ∈ N and every ξ -family F with χ(F ) > f (α, β), there
is a subfamily H ⊆ F such that χ(H ) > α and χ(F (x, y)) > β for any two
intersecting 1-curves x, y ∈ L(H ) ∪ R(H ).

Proof Let f (α, β) = (2β + 12ξ + 20)α. LetF be a ξ -family with χ(F ) > f (α, β).
Construct a sequence of points p0 ≺ · · · ≺ pn+1 on the baseline with the following
properties:

• the points p0, . . . , pn+1 are distinct from all basepoints of 2-curves in F ,
• p0 lies to the left of and pn+1 lies to the right of all basepoints of 2-curves in F ,
• χ(F (pi pi+1)) = β + 1 for 0 � i < n and χ(F (pn pn+1)) � β + 1.

This is done greedily, by first choosing p1 so that χ(F (p0 p1)) = β+1, then choosing
p2 so that χ(F (p1 p2)) = β + 1, and so on. For 0 � i � j � n, let Fi, j = {c ∈
F : pi ≺ L(c) ≺ pi+1 and p j ≺ R(c) ≺ p j+1}. In particular, Fi,i = F (pi pi+1)

for 0 � i � n. SinceF = ⋃
0�i� j�n Fi, j and χ(F ) � (2β + 12ξ + 20)α, at least

one of the following inequalities holds:

χ

( n⋃

i=0

Fi,i

)

> (2β + 2)α, χ

(n−1⋃

i=0

Fi,i+1

)

> (12ξ + 12)α,

χ

(n−2⋃

i=0

n⋃

j=i+2

Fi, j

)

> 6α.

In each case, we claimwe can find a subfamilyH ⊆ F such that any two intersecting
1-curves x ∈ R(H ) and y ∈ L(H ) satisfy x ∈ R(Fi, j ) and y ∈ L(Fr ,s), where
0 � i � j � n, 0 � r � s � n, and | j − r | � 2. Then, we have χ(F (x, y)) �
χ(F (pmin( j,r)+1 pmax( j,r))) � β + 1, as required.
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Suppose χ
(⋃n

i=0 Fi,i
)

> (2β + 2)α. We have χ(Fi,i ) � β + 1 for 0 � i �
n. Color the 2-curves in each Fi,i properly using the same set of β + 1 colors on
Fi,i and Fr ,r whenever i ≡ r (mod 2), thus partitioning the family

⋃n
i=0 Fi,i into

2β + 2 color classes. Since χ
(⋃n

i=0 Fi,i
)

> (2β + 2)α, at least one such color class
H ⊆ ⋃n

i=0 Fi,i satisfies χ(H ) > α. To conclude, for any two intersecting 1-curves
x ∈ R(H ) and y ∈ L(H ), we have x ∈ R(Fi,i ) and y ∈ L(Fr ,r ) for some distinct
indices i, r ∈ {0, . . . , n} such that i ≡ r (mod 2) and thus |i − r | � 2.

Now, suppose χ
(⋃n−1

i=0 Fi,i+1
)

> (12ξ + 12)α. Lemma 10 yields χ(Fi,i+1) �
4ξ + 4 for 0 � i � n − 1. Color the 2-curves in everyFi,i+1 properly using the same
set of 4ξ + 4 colors onFi,i+1 andFr ,r+1 whenever i ≡ r (mod 3), thus partitioning
the family

⋃n−1
i=0 Fi,i+1 into 12ξ + 12 color classes. At least one such color classH

satisfies χ(H ) > α. To conclude, for any two intersecting 1-curves x ∈ R(H ) and
y ∈ L(H ), we have x ∈ R(Fi,i+1) and y ∈ L(Fr ,r+1) for some distinct indices
i, r ∈ {0, . . . , n − 1} such that i ≡ r (mod 3) and thus |i + 1 − r | � 2.

Finally, supposeχ
(⋃n−2

i=0
⋃n

j=i+2 Fi, j
)

> 6α. This impliesχ
(⋃

i∈I
⋃n

j=i+2 Fi, j
)

> 3α, where I = {i ∈ {0, . . . , n − 2} : i ≡ 0 (mod 2)} or I = {i ∈ {0, . . . , n − 2} :
i ≡ 1 (mod 2)}. Consider an auxiliary graph G with vertex set I and edge set
{i j : i, j ∈ I , i < j , and Fi, j−1 ∪ Fi, j �= ∅}. If there were two edges i1 j1 and
i2 j2 in G with i1 < i2 < j1 < j2, then the 2-curves witnessing these edges, one
from Fi1, j1−1 ∪ Fi1, j1 and the other from Fi2, j2−1 ∪ Fi2, j2 , would intersect below
the baseline, which is impossible. This shows that G is an outerplanar graph, and thus
χ(G) � 3. Fix a proper 3-coloring of G, and use the color of i on every 2-curve in⋃n

j=i+2 Fi, j for every i ∈ I , partitioning the family
⋃

i∈I
⋃n

j=i+2 Fi, j into 3 color
classes. At least one such color class H satisfies χ(H ) > α. To conclude, for any
two intersecting 1-curves x ∈ R(H ) and y ∈ L(H ), we have x ∈ R(Fi, j ) and
y ∈ L(Fr ,s) for some indices i, r ∈ I , j ∈ {i + 2, . . . , n}, and s ∈ {r + 2, . . . , n}
such that j /∈ {r−1, r} (otherwise ir would be an edge ofG), j �= r+1 (otherwise two
2-curves, one from Fi,r+1 and one from Fr ,s , would intersect below the baseline),
and thus | j − r | � 2. ��

Lemma 2 in [26] asserts that for every family of 1-curves S with at least one
intersecting pair, there are a cap-curve γ and a subfamily T ⊆ S with χ(T ) �
χ(S )/2 such that every 1-curve in T is entirely contained in int γ and intersects
some 1-curve inS that intersects γ (equivalently, ext γ ). The proof follows a standard
idea, originally due to Gyárfás [10], to choose T as one of the sets of 1-curves at a
fixed distance from an appropriately chosen 1-curve in the intersection graph of S .
However, this method fails to imply an analogous statement for 2-curves.Wewill need
a more powerful tool—part of the recent series of works on induced subgraphs that
must be present in graphs with sufficiently large chromatic number.

Theorem 13 (Chudnovsky et al. [6]) There is a function f : N → Nwith the following
property: for every α ∈ N, every string graph G with χ(G) > f (α) contains a vertex
v such that the subgraph of G induced on the vertices within distance at most 2 from
v has chromatic number greater than α.

The special case of Theorem 13 for triangle-free intersection graphs of curves any
two of which intersect in at most one point was proved earlier by McGuinness [21,
Thm. 5.3].
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c�

c1

c2

c3

γ

intγ

Fig. 2 Illustration for Lemma 14: G = {c1, c2, c3}

Lemma 14 For every ξ ∈ N, there is a function f : N → N with the following
property: for every α ∈ N and every ξ -family F with χ(F ) > f (α), there are a
cap-curve γ and a subfamily G ⊆ F with χ(G ) > α such that every 2-curve c ∈ G
satisfies L(c) ∪ R(c) ⊂ int γ and intersects some 2-curve in F that intersects ext γ .

Proof Let f (α) = f1(3α +5ξ +5), where f1 is the function claimed by Theorem 13.
Let F be a ξ -family with χ(F ) > f (α). It follows that there is a 2-curve c� ∈ F
such that the family of 2-curves within distance at most 2 from c� in the intersection
graph of F has chromatic number greater than 3α + 5ξ + 5. For k ∈ {1, 2}, let Fk

be the 2-curves inF at distance exactly k from c� in the intersection graph ofF . We
have χ({c�} ∪ F1 ∪ F2) > 3α + 5ξ + 5 (by Theorem 13) and χ(F1) � ξ (because
F is a ξ -family), so χ(F2) > 3α + 4ξ + 4. We haveF2 = G1 ∪G2 ∪G3 ∪G4, where

G1 = {c ∈ F2 : L(c) ≺ R(c) ≺ L(c�) ≺ R(c�)},
G2 = {c ∈ F2 : L(c�) ≺ L(c) ≺ R(c) ≺ R(c�)},
G3 = {c ∈ F2 : L(c�) ≺ R(c�) ≺ L(c) ≺ R(c)},
G4 = {c ∈ F2 : L(c) ≺ L(c�) ≺ R(c�) ≺ R(c)}.

Since χ(F2) > 3α+4ξ +4 and χ(G4) � 4ξ +4 (by Lemma 10), we have χ(Gk) > α

for some k ∈ {1, 2, 3}. Since no 2-curve in Gk intersects c� and neither basepoint of
c� lies on the segment I (Gk), the 2-curve c� and the family Gk can be separated in H+
by a cap-curve γ such that L(c�) ∪ R(c�) ⊂ ext γ and L(c) ∪ R(c) ⊂ int γ for all
c ∈ Gk (see Fig. 2). The lemma follows with G = Gk . ��

Reduction to (�, h)-Families

For ξ ∈ N and a function h : N → N, a (ξ, h)-family is a ξ -familyF with the following
additional property: for every α ∈ N and every subfamily G ⊆ F with χ(G ) > h(α),
there is a subfamily H ⊆ G with χ(H ) > α such that every 2-curve in F with
a basepoint on I (H ) has both basepoints on I (G ). We will prove the following
lemma.

Lemma 15 For any ξ, k ∈ N and any function h : N → N, there is a constant ζ ∈ N

such that every (ξ, h)-familyF with ω(F ) � k satisfies χ(F ) � ζ .
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The notion of a (ξ, h)-family and Lemma 15 provide a convenient abstraction of
what is needed to prove the next lemma and then to derive Lemma 9 from the next
lemma.

Lemma 16 For any ξ, k ∈ N, there is a function f : N → N such that for every
α ∈ N, every ξ -family F with ω(F ) � k and χ(F ) > f (α) contains a 2-curve c
with χ(F (I (c))) > α.

Proof of Lemma 16 from Lemma 15 For α ∈ N, let hα : N � β �→ β + 2α + 2 ∈ N,
and let f (α) be the constant claimed by Lemma 15 such that every (ξ, hα)-familyF
with ω(F ) � k satisfies χ(F ) � f (α). Let F be a ξ -family with ω(F ) � k and
χ(F (I (c))) � α for every c ∈ F . We show that F is a (ξ, hα)-family, which then
implies χ(F ) � f (α). To this end, consider a subfamily G ⊆ F with χ(G ) > hα(β)

for some β ∈ N. Take GL ,GR ⊆ G greedily so that L(GL) ≺ L(G � GL), χ(GL) =
α + 1, R(G � GR) ≺ R(GR), and χ(GR) = α + 1. Let H = G � (GL ∪ GR). It
follows that χ(H ) � χ(G ) − χ(GL) − χ(GR) > hα(β) − 2α − 2 = β. If there is a
2-curve c ∈ F with one basepoint on I (H ) and the other basepoint not on I (G ), then
GL ⊆ F (I (c)) or GR ⊆ F (I (c)), so χ(F (I (c))) � α + 1, which is a contradiction.
Therefore, every 2-curve in F with a basepoint on I (H ) has both basepoints on
I (G ). This shows that F is a (ξ, hα)-family. ��
Proof of Lemma 9 from Lemma 15 Let h be the function claimed by Lemma 16 for ξ

and k. Let ζ be the constant claimed by Lemma 15 for ξ , k, and h. LetF be a ξ -family
with ω(F ) � k. We show that F is a (ξ, h)-family, which then implies χ(F ) � ζ .
To this end, consider a subfamily G ⊆ F with χ(G ) > h(α) for some α ∈ N. Lemma
16 yields a 2-curve c ∈ G such that χ(G (I (c))) > α. Every 2-curve in F with a
basepoint on I (c) has both basepoints on I (c), otherwise it would intersect c below
the baseline. Therefore, the condition on F being a (ξ, h)-family is satisfied with
H = G (I (c)). ��

Dealing with (�, h)-Families

The rest of this section is devoted to the proof of Lemma 15. Its structure and prin-
cipal ideas are based on those of the proof of Theorem 3 presented in [26]. For each
forthcoming lemma, we provide a reference to its counterpart in [26].

A skeleton is a pair (γ,U ) such that γ is a cap-curve andU is a family of pairwise
disjoint 1-curves each ofwhich has one endpoint (other than the basepoint) on γ and all
the remaining part in int γ (see Fig. 3). For a family of 1-curvesS , a skeleton (γ,U )

is anS -skeleton if every 1-curve inU is a subcurve of some 1-curve inS . A family
of 2-curves G is supported by a skeleton (γ,U ) if every 2-curve c ∈ G satisfies
L(c) ∪ R(c) ⊂ int γ and intersects some 1-curve in U . A family of 2-curves H is
supported from outside by a family of 1-curves S if every 2-curve in H intersects
some 1-curve in S and every 1-curve s ∈ S satisfies s ≺ H or H ≺ s.

Lemma 17 (cf. [26, Lem. 5]) For every ξ ∈ N and every function h : N → N, there
is a function f : N × N → N such that for any α, β ∈ N, every (ξ, h)-family F with
χ(F ) > f (α, β) contains at least one of the following configurations:
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γ

u1 u2 u3 u4

c1 c2

intγ

Fig. 3 A skeleton (γ, {u1, u2, u3, u4}), which supports c1 but not c2

• a subfamily G ⊆ F with χ(G ) > α supported by an L(F )-skeleton or an R(F )-
skeleton,

• a subfamily H ⊆ F with χ(H ) > β supported from outside by a family of
1-curves S such that S ⊆ L(F ) or S ⊆ R(F ).

Proof Let f (α, β) = f1(2α+h(2β)+4), where f1 is the function claimed by Lemma
14. Let F be a (ξ, h)-family with χ(F ) > f (α, β). Apply Lemma 14 to obtain a
cap-curve γ and a subfamily G ⊆ F with χ(G ) > 2α + h(2β) + 4 such that every
2-curve c ∈ G satisfies L(c)∪ R(c) ⊂ int γ and intersects some 2-curve inFext. Here
and further on,Fext denotes the family of 2-curves inF that intersect ext γ . Let UL

be the 1-curves that are subcurves of 1-curves in L(F ), have one endpoint (other than
the basepoint) on γ , and have all the remaining part in int γ . LetUR be the analogous
subcurves of 1-curves in R(F ). Thus (γ,UL) is an L(F )-skeleton, and (γ,UR) is an
R(F )-skeleton. Let GL be the 2-curves in G that intersect some 1-curve in UL , and
let GR be those that intersect some 1-curve in UR . If χ(GL) > α or χ(GR) > α, then
the first conclusion of the lemma holds. Thus assume χ(GL) � α and χ(GR) � α.
Let G ′ = G � (GL ∪ GR). It follows that χ(G ′) � χ(G ) − 2α > h(2β) + 4.

The rest of the argument is illustrated in Fig. 4. By Lemma 8, the 2-curves c ∈ G ′
such that L(c) and R(c) lie in different components of L(G ′)∪ R(G ′) have chromatic
number at most 4. Therefore, there is a component V of L(G ′) ∪ R(G ′) such that
χ(G ′

V ) � χ(G ′) − 4 > h(2β), where G ′
V = {c ∈ G ′ : L(c) ∪ R(c) ⊆ V }. There is a

cap-curve ν ⊆ V connecting the two endpoints of the segment I (G ′
V ). Suppose there

is a 2-curve c ∈ Fext with both basepoints on I (G ′
V ). If L(c) intersects ext γ , then

the part of L(c) from the basepoint to the first intersection point with γ , which is a
1-curve inUL , intersects ν (as ν ⊆ V ⊂ int γ ) and thus intersects a 2-curve in G ′; this
implies G ′ ∩GL �= ∅, which is a contradiction. An analogous contradiction is reached
if R(c) intersects ext γ . This shows that no 2-curve in Fext has both basepoints on
I (G ′

V ).
SinceF is a (ξ, h)-family andχ(G ′

V ) > h(2β), there is a subfamilyH ′ ⊆ G ′
V such

that χ(H ′) > 2β and every 2-curve in F with a basepoint on I (H ′) has the other
basepoint on I (G ′

V ). This and the above imply that no 2-curve inFext has a basepoint
on I (H ′). Since every 2-curve in H ′ intersects some 2-curve in Fext, the family
H ′ is supported from outside by the family of 1-curves L(Fext) ∪ R(Fext). We have
H ′ = HL ∪ HR , where HL are the 2-curves in H ′ that intersect some 1-curve in
L(Fext) andHR are those that intersect some1-curve in R(Fext). Sinceχ(H ′) > 2β,
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γ

intν
s

I(H ′)
I(G ′

V )

Fig. 4 Illustration for the proof of Lemma 17: the component V is drawn by black and blue solid lines; the
family H ′ (drawn blue) is supported from outside by the single red 1-curve s

we conclude that χ(HL) > β or χ(HR) > β and thus the second conclusion of the
lemma holds with (H ,S ) = (HL , L(Fext)) or (H ,S ) = (HR, R(Fext)). ��
Lemma 18 (cf. [26, Lem. 8]) For every ξ ∈ N and every function h : N → N, there
is a function f : N → N such that for every α ∈ N, every (ξ, h)-family F with
χ(F ) > f (α) contains a subfamily G ⊆ F with χ(G ) > α supported by an L(F )-
skeleton or an R(F )-skeleton.

Proof Let f (α) = f1(α, f1(α, f1(α, 4ξ))), where f1 is the function claimed by
Lemma 17. Let F be a (ξ, h)-family with χ(F ) > f (α). Suppose for the sake
of contradiction that every subfamily of F supported by an L(F )-skeleton or an
R(F )-skeleton has chromatic number at most α. Let F0 = F . Apply Lemma 17
(and the second conclusion thereof) three times to find familiesF1,F2,F3,S1,S2,
and S3 with the following properties:

• F = F0 ⊇ F1 ⊇ F2 ⊇ F3,
• for 1 � i � 3, we have Si ⊆ L(Fi−1) or Si ⊆ R(Fi−1), and Fi is supported
from outside by Si .

• χ(F1) > f1(α, f1(α, 4ξ)), χ(F2) > f1(α, 4ξ) and χ(F3) > 4ξ .

There are indices i and j with 1 � i < j � 3 such that Si and S j are of the
same “type”: either Si ⊆ L(Fi−1) and S j ⊆ L(F j−1) or Si ⊆ R(Fi−1) and
S j ⊆ R(F j−1). Assume for the rest of the proof that Si ⊆ R(Fi−1) and S j ⊆
R(F j−1); the argument for the other case is analogous. LetSL = {s ∈ S j : s ≺ F j },
SR = {s ∈ S j : F j ≺ s}, FL be the 2-curves in F j that intersect some 1-curve in
SL , andFR be those that intersect some 1-curve inSR . ThusFL ∪FR = F j . This
and χ(F j ) � χ(F3) > 4ξ yield χ(FL) > 2ξ or χ(FR) > 2ξ . Assume for the rest
of the proof that χ(FL) > 2ξ ; the argument for the other case is analogous.

The rest of the argument is illustrated in Fig. 5. LetS min
L be an inclusion-minimal

subfamily ofSL subject to the condition that L(c) intersects some 1-curve inS min
L for

every 2-curve c ∈ FL . Let s� be the 1-curve inS min
L with rightmost basepoint, and let

F �
L = {c ∈ FL : L(c) intersects s�}. SinceF is a ξ -family, we have χ(F �

L) � ξ . By
minimality ofS min

L , the familyF �
L contains a 2-curve c� disjoint from every 1-curve
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c� c
s�ssi

intν

ξ
ξ

Fig. 5 Illustration for the proof of Lemma 18: members ofSmin
L are drawn red

in S min
L other than s�. Since c� ∈ F j ⊆ Fi and Fi is supported from outside by

Si , there is a 1-curve si ∈ Si that intersects L(c�). We show that every 2-curve in
FL � F �

L intersects si .
Let c ∈ FL � F �

L , and let s be a 1-curve in S min
L that intersects L(c). We have

s �= s�, as c /∈ F �
L . There is a cap-curve ν ⊆ s ∪ L(c). Since s ≺ s� ≺ L(c)

and s� intersects neither s nor L(c), we have s� ⊂ int ν. Since L(c�) intersects s�

but neither s nor L(c), we also have L(c�) ⊂ int ν. Since s ∈ S j ⊆ R(Fi ) and
si ≺ Fi or Fi ≺ si , the basepoint of si lies in ext ν. Since si intersects L(c�) and
L(c�) ⊂ int ν, the 1-curve si intersects ν and thus L(c). This shows that every 2-curve
inFL �F �

L intersects si . This and the assumption thatF is a ξ -family yield χ(FL �

F �
L) � ξ . We conclude that χ(FL) � χ(F �

L) + χ(FL � F �
L) � 2ξ , which is a

contradiction. ��
A chain of length n is a sequence ((a1, b1), . . . , (an, bn)) of pairs of 2-curves with

the following properties:

• for 1 � i � n, the 1-curves R(ai ) and L(bi ) intersect,
• for 2 � i � n, the basepoints of R(ai ) and L(bi ) lie between the basepoints of

R(ai−1) and L(bi−1), and L(ai ) intersects R(a1), . . . , R(ai−1) or R(bi ) intersects
L(b1), . . . , L(bi−1).

Lemma 19 (cf. [26, Lem. 11]) For every ξ ∈ N and every function h : N → N, there
is a function f : N → N such that for every n ∈ N, every (ξ, h)-family F with
χ(F ) > f (n) contains a chain of length n.

Proof of Lemma 15 from Lemma 19 Let ζ = f (2k + 1), where f is the function
claimed by Lemma 19 for ξ and h. Let F be a (ξ, h)-family with χ(F ) > ζ . By
Lemma 19, F contains a chain of length 2k + 1. This chain contains a subchain
((a1, b1), . . . , (ak+1, bk+1)) of pairs of the same “type”—such that L(ai ) intersects
R(a1), . . . , R(ai−1) for 2 � i � k + 1 or R(bi ) intersects L(b1), . . . , L(bi−1) for
2 � i � k + 1. This subchain contains a clique {a1, . . . , ak+1} or {b1, . . . , bk+1},
respectively, which is not possible when ω(F ) � k. ��
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Proof of Lemma 19 We define the function f by induction. We set f (1) = 1; if
χ(F ) > 1, then F contains two intersecting 2-curves, which form a chain of length
1. For the induction step, fix n � 1, and assume that f (n) is defined so that every
(ξ, h)-family H with χ(H ) > f (n) contains a chain of length n. Let f1 be the
function claimed by Lemma 12 and f2 be the function claimed by Lemma 18. Let

β = f1
(
f (n), h(2ξ) + 4ξ + 2

)
, f (n + 1) = f2( f2( f2(β))).

Let F be a (ξ, h)-family with χ(F ) > f (n + 1). We claim that F contains a chain
of length n + 1.

Let F0 = F . Lemma 18 applied three times provides families of 2-curves F1,
F2, F3 and skeletons (γ1,U1), (γ2,U2), (γ3,U3) with the following properties:

• F = F0 ⊇ F1 ⊇ F2 ⊇ F3,
• for 1 � i � 3, (γi ,Ui ) is an L(Fi−1)-skeleton or an R(Fi−1)-skeleton supporting
Fi ,

• χ(F1) > f2( f2(β)), χ(F2) > f2(β), and χ(F3) > β.

There are indices i and j with 1 � i < j � 3 such that the skeletons (γi ,Ui )

and (γ j ,U j ) are of the same “type”: either an L(Fi−1)-skeleton and an L(F j−1)-
skeleton or an R(Fi−1)-skeleton and an R(F j−1)-skeleton. Assume for the rest of
the proof that (γi ,Ui ) is an L(Fi−1)-skeleton and (γ j ,U j ) is an L(F j−1)-skeleton;
the argument for the other case is analogous.

ByLemma12, sinceχ(F j ) � χ(F3) > β, there is a subfamilyH ⊆ F j such that
χ(H ) > f (n) and χ(F j (x, y)) > h(2ξ) + 4ξ + 2 for any two intersecting 1-curves
x, y ∈ L(H )∪ R(H ). Since χ(H ) > f (n), there is a chain ((a1, b1), . . . , (an, bn))
of length n inH . Let x and y be the 1-curves R(an) and L(bn) ordered so that x ≺ y.
Since they intersect, we have χ(F j (x, y)) > h(2ξ) + 4ξ + 2.

The rest of the argument is illustrated in Fig. 6. SinceF j ⊆ Fi andFi is supported
by the skeleton (γi ,Ui ), every 2-curve inF j (x, y) intersects some 1-curve inUi . Let
G be the family of curves inF j (x, y) that intersect at least one 1-curve inUi (x, y). If
a 2-curve c ∈ F j (x, y) intersects no 1-curve inUi (x, y), then c intersects the 1-curve
inUi with rightmost basepoint to the left of the basepoint of x (if such a 1-curve exists)
or the 1-curve inUi with leftmost basepoint to the right of the basepoint of y (if such
a 1-curve exists). This and the fact thatF is a ξ -family imply χ(F j (x, y)�G ) � 2ξ
and thus χ(G ) � χ(F j (x, y)) − 2ξ > h(2ξ) + 2ξ + 2.

Let uL be the 1-curve inUi (x, y) with leftmost basepoint and uR be the 1-curve in
Ui (x, y) with rightmost basepoint. Every 1-curve inUi (x, y) lies in the closed region
K bounded by uL , uR , the segment of the baseline between the basepoints of uL and
uR , and the part of γi between its intersection points with uL and uR . Since F is
a ξ -family, the 2-curves in G intersecting uL or uR have chromatic number at most
2ξ . Every other 2-curve c ∈ G satisfies L(c) ⊂ K or R(c) ⊂ K . Those for which
L(c) ⊂ K but R(c) �⊂ K satisfy R(c) ∩ K = ∅ and therefore are disjoint from each
other. Similarly, those for which R(c) ⊂ K but L(c) �⊂ K are disjoint from each other.
Let G ′ = {c ∈ G : L(c) ⊂ K and R(c) ⊂ K }. It follows that χ(G � G ′) � 2ξ + 2
and thus χ(G ′) � χ(G ) − 2ξ − 2 > h(2ξ).
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K

R(at) x uL u uR L(bt)
I(H ′) c�

u�

y

γ i
γ j

Fig. 6 Illustration for the proof of Lemma 19

Since F is a (ξ, h)-family and uL ≺ G ′ ≺ uR , there is a subfamily H ′ ⊆
G ′ with χ(H ′) > 2ξ such that every 2-curve c ∈ F with a basepoint on I (H ′)
satisfies uL ≺ c ≺ uR . Since H ′ ⊆ F j and F j is supported by (γ j ,U j ), every
2-curve in H ′ intersects some 1-curve in U j . If a 2-curve c ∈ H ′ intersects no
1-curve in U j (I (H ′)), then c intersects the 1-curve in U j with rightmost basepoint
to the left of I (H ′) (if such a 1-curve exists) or the 1-curve in U j with leftmost
basepoint to the right of I (H ′) (if such a 1-curve exists). Since F is a ξ -family, the
2-curves inH ′ intersecting at least one of these two 1-curves have chromatic number
at most 2ξ . Therefore, since χ(H ′) > 2ξ , some 2-curve in H ′ intersects a 1-curve
in U j (I (H ′)). In particular, the family U j (I (H ′)) is non-empty.

Let u� ∈ U j (I (H ′)). The 1-curve u� is a subcurve of L(c�) for some 2-curve
c� ∈ F j−1. The fact that the basepoint of L(c�) lies on I (H ′) and the property
of H ′ imply uL ≺ c� ≺ uR . Since c� ∈ F j−1 ⊆ Fi and Fi is supported by
(γi ,Ui ), the 1-curve R(c�) intersects a 1-curve u ∈ Ui , which can be chosen so
that uL � u � uR , because c� ⊂ int γi and both basepoints of c� lie in K . Let
an+1 = c� and bn+1 be the 2-curve in Fi−1 such that u is a subcurve of L(bn+1).
Thus x ≺ {R(an+1), L(bn+1)} ≺ y. For 1 � t � n, the facts that the 1-curves R(at )
and L(bt ) intersect, they are both contained in int γ j (as at , bt ∈ F j ), the basepoint of
u� lies between the basepoints of R(at ) and L(bt ), and u� intersects γ j imply that u�

and therefore L(an+1) intersects R(at ).We conclude that ((a1, b1), . . . , (an+1, bn+1))

is a chain of length n + 1. ��

3 Proof of Theorem 2

Lemma 20 (Fox et al. [9, Lem. 3.2]) For every t ∈ N, there is a constant νt > 0
such that every family of curves F any two of which intersect in at most t points has
subfamilies F1, . . . ,Fd ⊆ F (where d is arbitrary) with the following properties:

• for 1 � i � d, there is a curve ci ∈ Fi intersecting all curves inFi � {ci },
• for 1 � i < j � d, every curve inFi is disjoint from every curve in F j ,
• |F1 ∪ · · · ∪ Fd | � νt |F |/ log |F |.
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Proof of Theorem 2 Let F be a family of curves obtained from the edges of G by
shortening them slightly so that they do not intersect at the endpoints but all other
intersection points are preserved. If follows that ω(F ) � k − 1 (as G is k-quasi-
planar) and any two curves in F intersect in at most t points. Let νt , F1, . . . ,Fd ,
and c1, . . . , cd be as claimed by Lemma 20. For 1 � i � d, since ω(Fi � {ci }) �
ω(F ) − 1 � k − 2, Theorem 1 yields χ(Fi � {ci }) � ft (k − 2). Thus χ(F1 ∪ · · · ∪
Fd) � ft (k − 2) + 1. For every color class C in a proper coloring ofF1 ∪ · · · ∪Fd

with ft (k − 2) + 1 colors, the vertices of G and the curves in C form a planar
topological graph, and thus |C | < 3n. Thus |F1 ∪ · · · ∪ Fd | < 3( ft (k − 2) + 1)n.
This, the third property in Lemma 20, and the fact that |F | < n2 yield |F | <

3ν−1
t ( ft (k − 2) + 1)n log |F | < 6ν−1

t ( ft (k − 2) + 1)n log n. ��

4 Proof of Theorem 6

Proof of Theorem 6 A probe is a section of H+ bounded by two vertical rays starting at
the baseline. We use induction to construct, for every positive integer k, an LR-family
Xk of double-curves and a family Pk of pairwise disjoint probes with the following
properties:

(1) every probe inPk is disjoint from L(X) for every double-curve X ∈ Xk ,
(2) for every probe P ∈ Pk , the double-curves in Xk intersecting P are pairwise

disjoint,
(3) Xk is triangle-free, that is, ω(Xk) � 2,
(4) for every proper coloring of Xk , there is a probe P ∈ Pk such that at least k

distinct colors are used on the double-curves inXk intersecting P .

This is enough for the proof of theorem, because the last property implies χ(Xk) � k.
For a pair (Xk,Pk) satisfying the conditions above and a probe P ∈ Pk , letXk(P)

denote the set of double-curves inXk intersecting P .
For the base case k = 1, we letX1 = {X} andP1 = {P}, where X and P look as

follows:

P

L(X) R(X)

It is clear that conditions (1)–(4) are satisfied.
For the induction step, we assume k � 1 and construct the pair (Xk+1,Pk+1)

from (Xk,Pk). Let (X ,P) be a copy of (Xk,Pk). For every probe P ∈ P , put
another copy (X P ,P P ) of (Xk,Pk) inside P below the intersections of P with the
double-curves in X (P). Then, for every probe P ∈ P and every probe Q ∈ P P ,
let a double-curve X P

Q and probes AP
Q and BP

Q look as follows:
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AP
Q BP

Q

X (P)

P

X P

X P(Q)

Q

L(XP
Q) R(XP

Q)

In particular, X P
Q intersects the double-curves in X P (Q), AP

Q intersects the double-

curves in X (P) ∪ X P (Q), and BP
Q intersects the double-curves in X (P) ∪ {X P

Q}.
Let

Xk+1 = X ∪
⋃

P∈P
X P ∪

⋃

P∈P

{
X P
Q : Q ∈ P P}

, Pk+1 =
⋃

P∈P

{
AP
Q, BP

Q : Q ∈ P P}
.

Conditions (1) and (2) clearly hold for (Xk+1,Pk+1), and (2) for (Xk,Pk) implies
(3) for (Xk+1,Pk+1). To see that (4) holds for (Xk+1,Pk+1) and k + 1, consider a
proper coloringφ ofXk+1. Letφ(X)denote the color of a double-curve X ∈ Xk+1 and
φ(Y ) denote the set of colors used on a subsetY ⊆ Xk+1. By (4) applied to (X ,P),
there is a probe P ∈ P such that |φ(X (P))| � k. By (4) applied to (X P ,P P ), there
is a probe Q ∈ P P such that |φ(X P (Q))| � k. Since X P

Q intersects the double-

curves in X P (Q), we have φ(X P
Q) /∈ φ(X P (Q)). If φ(X (P)) �= φ(X P (Q)),

then Xk+1(AP
Q) = X (P) ∪ X P (Q) yields |φ(Xk+1(AP

Q))| = |φ(X (P)) ∪
φ(X P (Q))| � k+1. Ifφ(X (P)) = φ(X P (Q)), thenXk+1(BP

Q) = X (P)∪{X P
Q}

and φ(X P
Q) /∈ φ(X (P)) yield |φ(Xk+1(BP

Q))| = |φ(X (P)) + 1| � k + 1. This
shows that (4) holds for (Xk+1,Pk+1) and k + 1. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Ackerman, E.: On the maximum number of edges in topological graphs with no four pairwise crossing
edges. Discrete Comput. Geom. 41(3), 365–375 (2009)

2. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number
of edges. Combinatorica 17(1), 1–9 (1997)

3. Asplund, E., Grünbaum, B.: On a coloring problem. Math. Scand. 8, 181–188 (1960)

123

http://creativecommons.org/licenses/by/4.0/


850 Discrete & Computational Geometry (2019) 61:830–851

4. Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)
5. Burling, J.P.: On Coloring Problems of Families of Polytopes. PhD thesis, University of Colorado,

Boulder (1965)
6. Chudnovsky, M., Scott, A., Seymour, P.D.: Induced subgraphs of graphs with large chromatic number.

V. Chandeliers and strings (2016). arXiv:1609.00314
7. Fox, J., Pach, J.: Coloring Kk -free intersection graphs of geometric objects in the plane. Eur. J. Comb.

33(5), 853–866 (2012)
8. Fox, J., Pach, J.: Applications of a new separator theorem for string graphs. Comb. Probab. Comput.

23(1), 66–74 (2014)
9. Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. SIAM J. DiscreteMath. 27(1),

550–561 (2013)
10. Gyárfás, A.: On the chromatic number of multiple interval graphs and overlap graphs. Discrete Math.

55(2), 161–166 (1985). Corrigendum: Discrete Math. 62(3), 333 (1986)
11. Hendler, C.: Schranken für Färbungs- und Cliquenüberdeckungszahl geometrisch repräsentier-

barer Graphen (Bounds for Chromatic and Clique Cover Number of Geometrically Representable
Graphs). Master’s thesis, Freie Universität Berlin (1998). http://page.math.tu-berlin.de/~felsner/
Diplomarbeiten/hendler.pdf

12. Kostochka, A.V.: O verkhnikh otsenkakh khromaticheskogo chisla grafov (On upper bounds for the
chromatic number of graphs). In: Dementyev, V.T. (ed.) Modeli i Metody Optimizacii. Trudy Instituta
Matematiki, vol. 10, pp. 204–226. Akademia Nauk SSSR SO, Novosibirsk (1988)

13. Kostochka, A.V.: Coloring intersection graphs of geometric figures with a given clique number. In:
Pach, J. (ed.) Towards a Theory of Geometric Graphs. Contemporary Mathematics, vol. 342, pp.
127–138. American Mathematical Society, Providence (2004)

14. Kostochka, A.V., Kratochvíl, J.: Covering and coloring polygon-circle graphs. Discrete Math. 163(1–
3), 299–305 (1997)

15. Krawczyk, T., Pawlik, A., Walczak, B.: Coloring triangle-free rectangle overlap graphs with
O(log log n) colors. Discrete Comput. Geom. 53(1), 199–220 (2015)

16. Krawczyk, T., Walczak, B.: On-line approach to off-line coloring problems on graphs with geometric
representations. Combinatorica 37(6), 1139–1179 (2017)
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