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Abstract

Introduction—The cutaneous microbiome maintains skin barrier function, regulates 

inflammation, and stimulates wound healing responses. Burn injury promotes an excessive 

activation of the cutaneous and systemic immune response directed against commensal and 

invading pathogens. Skin grafting is the primary method of reconstructing full-thickness burns, 

and wound infection continues to be a significant complication.

Methods—In this study, the cutaneous bacterial microbiome was evaluated and subsequently 

compared to patient outcomes. Three different full-thickness skin specimens were assessed: 

1.)control skin from non-burned subjects; 2.)burn margin from burn patients; and 3.)autologous 

donor skin from the same cohort of burn patients.

Results—We observed that skin bacterial community structure of burn patients was significantly 

altered compared to control patients. We determined that the unburned autologous donor skin from 

burn patients exhibits a microbiome similar to that of the burn margin, rather than unburned 

controls, and that changes in the cutaneous microbiome statistically correlate with several post-

burn complications. We established that Corynebacterium positively correlated with burn wound 
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infection, while Staphylococcus and Propionibacterium negatively correlated with burn wound 

infection. Both Corynebacterium and Enterococcus negatively correlated with the development of 

sepsis.

Conclusions—This study identifies distinct differences in the cutaneous microbiome between 

burn subjects and unburned controls, and ascertains that select bacterial taxa significantly correlate 

with several co-morbid complications of burn injury. These preliminary data suggest that grafting 

donor skin exhibiting bacterial dysbiosis may augment infection and/or graft failure and sets the 

foundation for more in-depth and mechanistic analyses in presumably “healthy” donor skin from 

patients requiring skin grafting procedures.
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Introduction

The cutaneous microbiome exists as a diverse community capable of maintaining skin 

barrier function, regulating inflammation, and promoting wound healing responses (1–3). 

The pathophysiology of burn injury to the skin suggests an excessive activation of the 

cutaneous and systemic immune responses targeted against commensal and invading 

pathogens post-injury. It is interesting to theorize that, in some patients, a shift in the 

colonizing microbiota of the skin may provoke and propagate primary and secondary 

complications in burn patients, leading to increased morbidity and mortality. The 

identification of a “pathogenic” microbiota could lead to early diagnostic tools that may be 

able to predict infection risk or wound healing delays in burn subjects. Individuals with 

substantial burn injuries exhibit more diverse responses, as compared to other types of 

traumatic injury. For example, burn subjects exhibit greater morbidity than predicted using 

the injury severity scoring system (4), and they demonstrate a greater prevalence of sepsis 

and mortality (5, 6). These outcomes suggest that the destruction of the cutaneous barrier 

caused by severe burn injury may be provoking a unique impact on local and distal tissues, 

leading to increased morbidity and mortality. These outcomes are partially attributed to 

disturbances in the skin, including changes in innate immune function and the resident 

microbiota (7–9).

Skin grafting is the predominant method of reconstructing full-thickness burns. Autologous 

grafts from distal, unburned skin often exhibit functional deficiencies and tissue breakdown 

after grafting. Burn wound infection at both the donor and burn site remain a frequent and 

serious complication of major burn injury and account for over 50% of all deaths related to 

burn injury (6, 10, 11). We recently determined that epidermal lipid and antimicrobial 

peptide (AMP) responses are impaired in both donor skin and burn margin from human burn 

patients (12). These alterations in epidermal barrier function demonstrate that traumatic burn 

injury elicits a global change in the antimicrobial function of presumably normal skin, which 

would serve as donor skin for burn patients. Thus, after burn injury, the cutaneous 

microbiota is likely altered in donor skin, and may also be a source of graft failure, burn 

wound infections, and/or subsequent infectious complications in burn patients.
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To our knowledge, the impact of burn injury on the cutaneous microbiome in the context of 

skin grafting has not been evaluated. In this study, we hypothesize that unburned autologous 

donor skin from burn patients exhibits a microbiome similar to that of the burn margin, 

rather than unburned controls, and that features of the cutaneous bacterial microbiome form 

burn patients statistically correlate with several post-burn complications. We propose that the 

colonizing microbiota in the skin may be used as a tool to predict morbidity and graft failure 

in burn patients, or other patient cohorts necessitating skin grafting procedures.

Materials and Methods

Sample Collection and Clinical Information

All protocols were approved by the Institutional Review Board at Loyola University Chicago 

Health Sciences Campus. A standing approval for discarded skin was used to collect the 

tissue samples. Briefly, patients admitted to the Burn Intensive Care Unit (BICU) were 

excluded from the study under the following conditions: age < 18 years, pre-existing skin 

disease, pre-existing clinically-evident infection, previous transplant recipient, recent major 

traumatic injury <4 months prior to the burn injury, history of disseminated cancer, and/or 

pre-existing immunodeficiency. The following clinical characteristics and outcomes were 

extracted from the electronic medical records and entered into a database: age, gender, % 

total body surface area (%TBSA) injured, inhalation injury, burn injury mechanism, and 

subsequent pneumonia, urinary tract infection, graft failure, wound infection, sepsis and/or 

multisystem organ dysfunction (MODS), and mortality. Injury severity was determined 

based on %TBSA with partial and/or full thickness burns. Initial fluid resuscitation was 

directed according to the Parkland formula (4 mL / kg / % TBSA with half given during the 

first 8 hours following injury and the remaining half given over the next 16 hours), per the 

BICU standard protocol. Discarded skin samples from burn patients undergoing routine 

excision/debridement and skin grafting were obtained in the operating room. On average, the 

burn skin samples were obtained during routine surgeries (excision, debridement, and 

grafting) within 5 days post-burn. The burn margin (partial thickness) was obtained from the 

skin adjacent to the excised area of the burn and not directly in contact with the thermal 

source. Following excision of the burn wound, a 5–10 mm margin of grossly normal 

appearing skin was excised simultaneously with the wound. The wound itself was debrided 

up to the point of viable tissue to facilitate optimal wound healing in the patients, thus 

yielding viable tissue near the burn margin that was excised. Donor skin (partial thickness) 

was taken from a site distal to the original injury (autograft site), per standard surgical 

protocols. Although two burn patients required multiple surgeries, and thus contributed two 

samples for this study, none of the patients required repeat use of a specific donor site. 

Control skin samples were obtained from patients undergoing elective surgeries (e.g. breast 

reduction; panniculectomy).

Wound and Skin Care Prior to Surgery

In general, when burn patients arrive to the hospital, the wounds are immediately washed 

and manually debrided (with scrubbing) using a 4% chlorhexidine gluconate solution. The 

wounds are then typically dressed with a topical antimicrobial ointment, such as silver 

sulfadiazine, and gauze, and the dressings are routinely changed 1–2 times each day until 
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they undergo their surgical debridement; additional washings are not routine and the donor 

sites are not specifically washed with any solutions. Bacterial cultures from the burn unit are 

not routinely evaluated. Oral and/or intravenous antibiotics are not routinely administered 

unless a patient develops a clinical infection, which does occasionally happen (Table 2). 

Patients undergoing elective surgery (controls) are routinely asked to wash/shower using the 

same 4% chlorhexidine solution that is used on the burn patients, the evening prior to their 

surgery. Pre-operatively (immediately prior to surgery), similar topical antiseptic/

antimicrobial products are used on the donor skin prior to harvesting and the burn skin prior 

to debridement (both are prepped with a solution containing 4% chlorhexidine gluconate), as 

compared to the skin from controls (prepped with a solution containing 2% chlorhexidine 

gluconate and 70% isopropyl alcohol).

Bacterial Microbiome Analysis

For all analyses, skin specimens were frozen at −80°C until microbial DNA isolation and 

sequence analysis. Partial-thickness skin samples were thawed and homogenized in Assay 

Assure™. DNA was extracted from the cell pellets using a Qiagen DNeasy (Qiagen Inc., 

Valencia CA) tissue extraction kit. Genomic DNA was eluted in nuclease-free water and 

stored at 4°C until 16S rRNA PCR amplification and sequencing. The V1–V3 region 16S 

rDNA PCRs included 2 μl of skin gDNA preparation, Phusion high fidelity DNA 

polymerase (New England Biolabs, Ipswich, MA) and oligonucleotide primers, as 

previously described (13). Mothur software (version 1.23.0) was applied to deconvolute the 

454 sequence reads into individual samples based on complete matches to the barcode 

sequences. Primers and barcodes were clipped from each read and clipped sequences shorter 

than 200 bp were discarded. Low-quality and chimeric sequences were eliminated with 

default parameters as described in the Mothur’s standard operating procedure (http://

www.mothur.org/wiki/454_SOP) (14). Taxonomic classification (from phylum to genus 

level) of the sequence reads was conducted by the Ribosomal Database Project Classifier 

(version 2.4) with the default 0.8 confidence threshold (15). In total, 37,734 high-quality 

reads were obtained from 25 samples (1509±683.8). To minimize unequal sampling effects, 

subsampling without replacement was performed to randomly extract 750 reads from each 

sample. The process was then repeated 10 times and the average taxonomic count was 

employed for subsequent statistical analysis. Microbial diversity indices were calculated 

from subsampled sequence data, which was performed by subsampling without replacement 

of 1000 reads from each sample for 1000 times (if a sample contains less than 1000 reads in 

total, all of its reads were used for analysis without subsampling) to avoid any bias caused 

by the various sequencing depths of samples, as described previously (16, 17). Analyses of 

the bacterial abundance between each cohort was performed using the metagenomeSeq 

package with a built-in multiple test correction (18). We determined correlations using 

numerous diversity indices (S. chao1; S. ACE; Shannon; Simpson; Eveness; Inverse 

Simpson). All statistical tests were performed using the R software environment (http://

www.r-project.org). All of the sequences and associated metadata were deposited to the 

NCBI Sequence Read Archive under the BioProject ID is PRJNA293586.

Mock specimens were processed in parallel with skin specimens to monitor for reagent 

contamination. PCR Amplicons were purified by Qiaquick gel extraction kit (Qiagen) and 
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quantified by Quant-It HS double stranded DNA assay (Invitrogen, Carlsbad CA). Emulsion 

PCR and 454 library generation steps were performed according to the manufacturer’s 

protocol (454 Life Sciences). Sequencing was performed on a Roche/454 GS-FLX Titanium 

system at the Indiana University Center for Genomics and Bioinformatics, Bloomington, IN. 

All p values reported were corrected for multiple tests with the Benjamini-Hochberg 

procedure. Bray-Curtis dissimilarity was visualized using non-metric dimensional scaling 

(NMDS), a non-parametric ordination approach based on rank-order. All of the sequences 

and associated metadata were deposited to the NCBI Sequence Read Archive under the 

BioProject ID is PRJNA293586.

Results

Patient Demographics and Clinical Morbidities

Skin samples from 9 BICU patients (including males and females) aged 20–54 years were 

evaluated (median age: 47). The median total burn surface area (TBSA) in the study group 

was 35% (range 11–52%). Of the 9 burn patients studied, 44% (n = 4) developed 

pneumonia, 55% (n = 5) suffered a wound infection of the donor or burn site, and 44% (n = 

4) were treated for blood culture positive sepsis. Patients with no cutaneous burn were 

excluded (Table 1). The mortality rate was 20% (n = 1) for all patients in the study group; 

the individual who succumbed to their injury was 53 years old and had a 52% TBSA burn 

injury. Of the 9 burn patients studied, 44% (n = 4) were admitted for a scald burn, while 

55% (n = 5) were admitted for a flame burn (Table 2). Control skin samples were obtained 

from 9 non-burned volunteers aged 18–51 years (median age: 45). All patients (burn and 

control) received intravenous antibiotics prior to surgery (Table 2), which was determined 

based on several standard patient/clinical factors (including current/recent infections, 

allergies, etc.).

Burn Injury Augments Microbial Diversity

Burn subjects colonized with distinct microbiota will presumably develop secondary 

complications, which may contribute to graft failure or infection. To test this hypothesis, we 

used non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarity to 

first demonstrate that the bacterial microbiome in both donor skin and burn margin was 

significantly different than non-burned control skin (Figure 1A) (PERMANOVA test 

p<0.002, either with or without considering age, gender, and ethnic group as confounding 

factors in the test). Based on 16S rDNA sequences, most skin bacteria were classified into 

four phyla: Actinobacteria, Bacteroides, Firmicutes and Proteobacteria, similar to previous 

reports of the skin microbiome (3, 19). The results of this phyla level composition is to very 

broadly compare our results with previously published skin microbiome studies (2, 3, 19, 

20) and demonstrate that our dataset in burn subjects falls within the expected range of the 

bacterial phylogeny that are typically present on the skin. However, we do not assume that 

taxa within a phylum stimulate similar clinical responses. We next determined whether 

different bacterial taxa are enriched in donor skin and burn margin compared to control skin 

by analyzing genera abundance using a negative binomial mixed-effect model (taxa 

abundance was the response variable; skin type was the explanatory variable with age, 

gender and ethnic group as confounding factors; subjects were treated as the random effect 
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in the mixed model to account for intra-subject correlations). (Figure 1B). Donor skin and 

burn margin were enriched with several taxa in comparison to control skin, including 

Aeribacillus (p<0.005 and p<0.03, respectively), Caldalkalibacillus, (p<0.02 and p<0.02, 

respectively) and Nesterenkonia (p<0.004 and p<0.0007, respectively). These taxa are 

similar in that they are extremophiles, specifically thermophilic or halophilic (21–23), and 

have not been extensively associated or studied in the context of pathogenesis in humans. In 

contrast, Corynebacterium, a widespread skin commensal, was significantly lower in both 

donor skin and burn margin relative to control skin (p<0.001 and p<0.02, respectively). Of 

note, since innate differences in community structure/membership of skin sites exist (19), we 

ensured that the control sites matched the general microenvironment of the donor sites. A 

summary of the genera determined to be statistically more or less abundant between each 

cohort is represented in Table 3.

Microbial Diversity Correlates with Clinical Outcomes after Burn Injury

We next assessed whether skin bacterial taxa significantly correlated with the following co-

morbid complications of burn injury (Table 4): pneumonia (n = 3), wound infection (n = 7) 

and sepsis (n = 6) using a negative binomial model (response variable being each type of co-

morbid complications of burn injury, explanatory variable being the skin types, with age, 

gender and ethnic group as confounding factors). Five taxa in the burn margin were 

correlated with the development of pneumonia in burn subjects: Propionibacterium 
(negatively correlated, p= 0.00134), Aeribacillus (positively correlated, p=0.0297), 

Nesterenkonia (positively correlated, p=0.000358), Halomonas (positively correlated, 

p=0.000319), Sediminibacterium (positively correlated, p=0.00112), with Nesterenkonia 
being the most abundant genera enriched in those patients with pneumonia (14.91%). Three 

taxa in the burn margin were correlated with wound infection: Corynebacterium (positively 

correlated, p=0.00573), Staphylococcus (negatively correlated, p=0.00112), and 

Propionibacterium (negatively correlated, p=0.0261), with Corynebacterium being the most 

abundant genera enriched in those patients with wound infections (15.76%). Two taxa in the 

burn margin were negatively correlated with the development of sepsis: Corynebacterium 
(p=0.0231) and Enterococcus (p=0.000296), with Corynebacterium being the most abundant 

genera enriched in those patients without sepsis (7.84%).

Discussion

The intricate pathophysiology of burn injury stimulates major local and systemic effects 

mediated by the initial inflammatory response, thus influencing global skin function and the 

resident microbiota. In this study, we introduce the first assessment of the cutaneous 

bacterial community in burn subjects, a cohort of trauma patients with a high risk of 

morbidity and mortality. We were able to capture distinct features of the microbiome in both 

donor skin and burn margin from burn subjects, which significantly differ from unburned 

controls and correlate with infectious outcomes.

We recently determined that epidermal AMP responses (e.g. protein levels and activity) are 

impaired in both donor skin and burn margin from human burn patients, which likely 

influences, or is influenced by, changes in the resident skin microbiota (12). Several skin 
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pathogens (e.g. Staphylococcus aureus) are known to induce antimicrobial molecules and 

pro-inflammatory cytokine production through cutaneous innate immune receptors, such as 

Toll-like Receptors (TLRs), and are the predominant species associated with skin wound 

infections. In parallel, resident commensal microbes (e.g. Staphylococcus epidermidis; 

Propionibacterium acnes) help maintain epidermal homeostasis by minimizing pro-

inflammatory cytokine release after skin injury (24–26) or by undergoing fermentation to 

restrict the overgrowth of other commensal bacteria (27). We observed in this study that a 

lower abundance of skin Propionibacterium correlated with a greater risk of pneumonia and 

wound infection in burn patients. Several skin pathologies and chronic wounds suggest an 

imbalance of this microbiota, without evidence of a clinical infection (2, 20). 

Corynebacterium and Propionibacterium, both prevalent members of Actinobacterium, were 

previously shown to be inversely correlated with non-resolvers and resolvers of pustule-

forming skin infections, respectively (28). Thus, these bacterial shifts likely promote subtle 

changes in skin function and immune defense at the burn site, which precipitate more robust 

complications observed in our patient population, including pneumonia, wound infection, 

and sepsis.

Interestingly, we observed that Aeribacillus, Caldalkalibacillus, Nesterenkonia, Halomonas, 

were enriched in the burn margin and/or donor skin. These taxa are analogous in that they 

are extremophiles, specifically thermophilic or halophilic, and tend to be isolated from soil 

and water sources (21–23). Of these, only Halomonas has been reported as pathogenic, 

causing bacteremia and peritonitis in dialysis centers (29, 30). We speculate that enrichment 

of these taxa may be partially derived from external exposure to hospital water (e.g. steam) 

sources following debridement procedures. We previously determined that burn injury 

significantly impairs normal skin barrier function in autologous donor skin in mice and in 

humans, which may facilitate invasion by these bacterial taxa during debridement 

procedures. However, our bacterial microbiome analysis includes full thickness skin samples 

(e.g. epidermal and dermal reservoirs), rather than only an external swab, and control 

samples did exhibit these taxa, but at a lower abundance. Thus, alternatively, cutaneous 

shifts in osmolarity caused by disruption of the local ionic environment after burn injury 

may facilitate their proliferation by providing nutrients that are normally limited in the skin. 

Both of these scenarios warrant further investigation as a mechanism to explain the positive 

correlation between these taxa and the development of pneumonia in our burn patient 

population.

Our findings suggest that the colonizing microbiota may be a useful biomarker to predict 

morbidity in burn subjects, but must be confirmed in subsequent studies with larger 

populations and a longitudinal assessment. Due to the relatively small sample size, we 

cannot consider various cofounding factors such as gender and race and sampling locations. 

However, even in a cohort of 242 subjects analyzed by the NIH Human Microbiome Project, 

only 1 taxa at 1 skin site (the antecubital fossa) was found to be differ significantly across 

races at the substantial FDR of q<0.2. Gender and other aspects of host phenotype were not 

found to statistically correlate with skin taxa in this large cohort (31).

Graft failure due to poor wound healing or infection remains a significant problem for 

subjects necessitating skin grafts. Because skin grafting is the predominant method of 
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reconstructing a defect in the skin, and is commonly used for the reconstruction of other skin 

pathologies (e.g. chronic ulcers, cutaneous malignancies), these data suggest that the 

bacterial microbiota in the donor skin may predict how well the graft site heals or resists 

pathogenic infection. Thus, grafting donor skin exhibiting bacterial dysbiosis may increase 

the risk for infection and/or graft failure in any patient requiring skin grafting. As such, 

treatment of donor skin with probiotics or prebiotics prior to grafting may improve patient 

outcomes. By increasing the abundance of “protective” bacteria on the skin prior to grafting, 

the time needed for the skin to regain its baseline barrier function may be significantly 

shortened. One study utilized topical Lactobacillus after various degrees of burn injury in 

humans, but the outcomes were not robust in terms of promoting healing and reducing 

infection (32). Our study indicates alternative bacterial taxa (e.g. Propionibacterium), which 

may be potential targets for topical “probiotics” to improve healing and limit secondary 

complications in burn subjects. Although the optimal “protective” bacterial profile remains 

elusive, the identification of novel mechanisms for shifts in the cutaneous microbiota after 

burn injury, or after traumatic injury in general, could prove rather beneficial. Specifically, 

further studies can potentially elucidate both the source of the distinct microbiota (e.g. 
steam; topical agents) and the molecular mechanisms by which a shift in the microbiota 

profile occurs in burn margin and autologous donor skin in burn subjects. There is the 

possibility that bathing and other hygienic activities conducted during hospitalization may 

influence the skin microbiome. However, recent work has demonstrated that the skin 

microbiome is stable over the long term despite these perturbations (33). Specifically, little 

to no effect on resident microbiota was observed after topical administration of soaps (34). 

Furthermore, chlorhexidine washes, which are broad spectrum antiseptic treatments, do not 

select for specific populations in the same way that antibiotics may. In our study, both 

controls and burn subjects were subjected to similar chlorhexidine compositions. While 

bacterial load is effectively reduced with these treatments, they do not change the 

composition or diversity of the skin microbiome. Our burn margin, donor sites, and control 

samples are partial-thickness samples (rather than skin swabs) comprised mostly of 

epidermis. Thus, our microbiome analysis will identify bacteria typically found within the 

epidermis and upper dermis. Future studies are necessary to identify temporal changes in the 

microbiome in burn patients, which will assess the stability of the cutaneous microbiome 

over the following year (s), as the patient continues to heal from their injuries. It is also 

possible that the skin microbiome of the burn patients is inherently transferred to their 

caregivers, and needs further exploration. It would also be of interest to investigate whether 

the loss of epidermis at the donor site after donor skin harvest will impact the developing 

microbiome over time, relative to other non-burned sites that contain epidermis, to assess 

whether it is the absence of epidermis or a local response to the burn/grafting that alters the 

microbiome.

Because it may take 1–2 days to evaluate a burn patient’s cutaneous microbiome by 16S 

rRNA gene sequencing, this information would not likely be rapidly available for inclusion 

in a Burn Injury Severity Score (BISS). However, it could potentially be used at a later time 

as an adjunct to the BISS to provide a modified score for subsequently predicting a patient’s 

prognosis. Expanded culture techniques may also be used to cultivate live bacteria from 

these patients, as bacterial genomic sequencing and expanded bacterial culture techniques 
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are emerging as critical complementary tools to identify bacterial dysbiosis under 

pathological conditions (35, 36). Controlling dramatic changes in the skin microbiota 

immediately after burn injury may have systemic implications, as the burn wound serves as 

the foundation for most of the secondary immune and wound healing responses and co-

morbidities. These preliminary studies suggest that grafting donor skin exhibiting bacterial 

dysbiosis may augment infection and/or graft failure in patients necessitating skin grafting 

procedures, and sets the foundation for more in-depth and mechanistic analyses in 

presumably “healthy” donor skin from burn patients.
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Figure 1. 
NMDS plot of control skin vs. donor skin and burn margin (A) demonstrates the impact of 

burn injury on the overall cutaneous bacterial microbiome. Control skin (CS) (green), N=9; 

donor skin (DS) (red), N=7; Burn margin (BM) (black), N=9. (B) The most abundant 

bacterial genera in control skin, donor skin, and burn margin skin are indicated in horizontal 

bar graphs. * indicates genera in donor skin and burn margin that are significantly enriched 

as compared to control skin. # indicates genera in donor skin and burn margin that are 

significantly deficient as compared to control skin.
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Table 3

The bacterial genera demonstrating a statistically significant difference in the relative abundance between 

different skin sites are shown. CS= control skin; DS= donor skin; BM= burn margin. Pairwise comparisons 

were performed between these three locations. A negative binomial mixed effect model was applied with age, 

gender, and race as confounding factors. The multiple test correction was applied to the P values with 

Benjamin-Hochberg procedure. The average relative abundance and the standard deviation from different skin 

communities of each interested genera are shown in the table.

Genera Corrected P value Average relative abundance in CS 
(standard deviation)

Average relative abundance in DS 
(standard deviation)

CS vs. DS

Cloacibacterium 4.92E-09 2.47% (3.93%) 0.05% (0.06%)

Corynebacterium 6.53E-06 52.13% (31.66%) 2.91% (2.84%)

Diaphorobacter 7.53E-06 4.30% (5.00%) 0 (0)

Nesterenkonia 0.000730168 1.61% (1.80%) 14.43% (10.80%)

Aeribacillus 0.003681914 3.86% (4.89%) 24.71% (19.31%)

Hydrogenophilus 0.011783222 2.73% (4.03%) 0.20% (0.48%)

Caldalkalibacillus 0.018756316 0.48% (0.48%) 3.01% (2.19%)

CS vs. BM

Genera Corrected P value Average relative abundance in CS 
(standard deviation)

Average relative abundance in BM 
(standard deviation)

Cloacibacterium 2.10E-20 2.47%(3.9%) 0.18% (0.24%)

Diaphorobacter 1.71E-05 4.35% (5.00%) 0.31% (0.34%)

Nesterenkonia 0.005316297 1.61% (1.80%) 11.36% (8.54%)

Corynebacterium 0.028968988 52.13% (31.66%) 11.16% (11.18%)

Aeribacillus 0.028968988 3.86% (4.89%) 16.85% (11.01%)

Hydrogenophilus 0.028968988 2.73% (4.03%) 0.33% (0.48%)

Caldalkalibacillus 0.028968988 0.48% (0.48%) 2.04% (1.83%)

DS vs. BM

Genera Corrected P value Average relative abundance in DS 
(standard deviation)

Average relative abundance in BM 
(standard deviation)

Lactobacillus 5.86E-06 0.18% (0.33%) 1.03% (1.40%)

Corynebacterium 0.010124178 2.91% (2.84%) 11.16% (11.18%)
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Table 4

Significant correlations between genera within the skin bacterial community structure of burn margin (BM) 

and patient co-morbidities (i.e. pneumonia, wound infection, and Sepsis). A negative binomial mixed effect 

model was applied with age, gender, and race as confounding factors. The multiple test correction was applied 

to the P values with Benjamin-Hochberg procedure. The average relative abundance and the standard deviation 

of the interested genera in different patient co-morbidities cohorts are shown in the table.

Genera Corrected P value Average relative 
abundance in Pneumonia

+ (standard deviation)

Average relative 
abundance in Pneumonia

− (standard deviation)

Pneumonia+ vs. pneumonia− 
(BM)

Nesterenkonia 0.000407149 14.91% (9.36%) 8.52% (7.60%)

Halomonas 0.000407149 3.55% (3.28%) 0.17% (0.22%)

Propionibacterium 0.001468212 3.86% (0.91%) 23.96% (34.23%)

Sediminibacterium 0.001433633 2.86% (3.00%) 0.79% (1.03%)

Aeribacillus 0.035263334 21.20% (12.26%) 13.37% (9.77%)

Wound infection+ vs. Wound 
infection− (BM)

Genera Corrected P value Average relative 
abundance in Infection+ 

(standard deviation)

Average relative 
abundance in Infection− 

(standard deviation)

Staphylococcus 0.001029655 5.00% (3.97%) 9.15% (15.30%)

Corynebacterium 0.007617801 15.76% (12.46%) 5.41% (6.84%)

Propionibacterium 0.028735336 5.79% (5.31%) 26.58% (38.79%)

Sepsis+ vs. sepsis− (BM)
Genera Corrected P value Average relative 

abundance % in Sepsis+
(standard deviation)

Average relative 
abundance % in Sepsis− 

(standard deviation)

Sepsis+ vs. sepsis− (BM) Enterococcus 0.000249211 0.32% (0.32%) 1.12% (1.12%)

Corynebacterium 0.027060777 7.84% (12.08%) 13.81% (13.81%)
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