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Abstract

Introduction—Progesterone is critical for maintaining pregnancy and onset of labor. We 

evaluated CYP450-mediated progesterone metabolism, specifically the contribution of CYP3A 

isoforms.

Materials and Methods—In vitro progesterone metabolism was characterized in human liver 

microsomes (HLMs) with and without selective cytochrome P450 inhibitors and in recombinant 

CYP3A4, CYP3A5, and CYP3A7. 6β-hydroxyprogesterone (6β-OHP) and 16α-

hydroxyprogesterone (16α-OHP) metabolites were quantified by HPLC/UV and fit to the 

Michaelis-Menten equation to determine Km and Vmax. The effect of CYP3A5 expression on 

progesterone clearance was determined by in vitro in vivo extrapolation.

Results—Ketoconazole inhibited formation of both 6β-OHP and 16α-OHP more than 90%. 6β-

OHP and 16α-OHP were both produced by CYP3A4 (2.3 and 1.3 μL/min/pmol, respectively) to a 
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greater extent than by CYP3A5 (0.09 and 0.003 μL/min/pmol) and CYP3A7 (0.004 and 0.003 

μL/min/pmol).

Conclusions—Maternal clearance of progesterone by hepatic CYP450’s is driven primarily by 

CYP3A4, with limited contributions from CYP3A5 and CYP3A7.
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Chemical Compounds

Chemical compounds studied in this article are Progesterone (PubChem CID: 5994); 16α-
hydroxyprogesterone (PubChem CID: 243761); 6β-hydroxyprogesterone (PubChem CID: 
200149)

INTRODUCTION

Since the 1960s, there has been extensive examination of the role of progestogens in human 

parturition. A physiologic withdrawal of progesterone activity at the level of the uterus is 

associated with the subsequent onset of labor.(1–3) However, the molecular mechanisms 

responsible for progesterone’s maintenance of uterine quiescence are not clear. Proposed 

mechanisms include an increase in the myometrial ratio of progesterone receptor A to 

progesterone receptor B, a decrease in spontaneous myometrial contractions with an 

increased threshold for stimulation, and the inhibition of downstream signaling of the 

oxytocin receptor by progesterone metabolites.(1, 2, 4, 5) Additionally, several derivatives of 

progesterone have been identified, which modulate human myometrial contractility with 

variable potency.(6–9) Preliminary work by our group found that in a murine model, 

oxytocin-induced uterine contractility frequency was increased by 6β-hydroxyprogesterone 

(6β-OHP) but decreased by 16α-hydroxyprogesterone (16α-OHP). The opposing effects of 

these progesterone metabolites on oxytocin-induced uterine contractility suggests that the 

relative amounts of the metabolites may influence myometrial contractility.(10)

Progesterone and other steroids are substrates of cytochrome P450 (CYP) enzymes. Adrenal 

CYP17A1 metabolizes progesterone to 17α-hydroxyprogesterone and 16α-

hydroxyprogesterone (16α-OHP). (11) Yamazaki and Shimada demonstrated that CYP3A, 

the major CYP450 expressed in human liver, metabolizes progesterone to 6β-

hydroxyprogesterone (6β-OHP) and 16α-hydroxyprogesterone (16α-OHP), (12) a finding 

that has been confirmed by other groups. (13, 14) However, these studies did not examine 

the individual isoforms of CYP3A expressed in humans (CYP3A4, CYP3A5, and CYP3A7), 

which are known to have different substrate selectivity. CYP3A4 and CYP3A5 are the major 

isoforms in adults and are highly expressed in the liver and gastrointestinal tract. On the 

other hand, CYP3A7 is primarily expressed in fetal liver, although variants of CYP3A7 have 

been described that result in expression into adulthood.(15) Shortly after birth, hepatic 

CYP3A undergoes a transition from CYP3A7 expression in the fetus, to CYP3A4 and 

CYP3A5 in the first year of life.(16) CYP3A mRNA has also been detected in first and third 

trimester human placenta and in endometrium during pregnancy and the secretory phase of 

Quinney et al. Page 2

Fetal Pediatr Pathol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the menstrual cycle. (17–19) However, the CYP3A activity in these tissues is negligible; 

reported testosterone 6β-hydroxylation in the placenta is less than 2% of that fetal liver. (20, 

21) There is large inter- and intra-individual variability in CYP3A activity due to both 

genetic and non-genetic factors.(22) CYP3A5 is highly polymorphic, and more than 80% of 

Caucasians, but only 33% of African Americans, express a variant allele, most commonly 

CYP3A5*3 (rs776746) which produces a non-functional protein.(23) Activity of CYP3A4 is 

also known to increase during pregnancy, leading to increased hepatic clearance of CYP3A 

substrates.(24–27) Alterations in drug metabolism in pregnancy may also be due to by 

placental aromatase (CYP19A1), which has been shown to metabolize several drugs 

including methadone and buprenorphine. (28, 29)

While it was known that 6β-OHP and 16α-OHP are produced by CYP3A4, we recently 

showed that 6β-OHP and 16α-OHP are also produced by CYP3A5 and CYP3A7.(10) To 

our knowledge, the contribution of CYP3A5, CYP3A7, or placental CYP19A1 to the 

production of 6β-OHP and 16α-OHP has not been evaluated in detail. Therefore, the 

objectives of this in vitro drug metabolism study were to evaluate the ability of hepatic 

CYP450’s and CYP19A1 to form 6β-OHP and 16α-OHP from progesterone and to 

determine the Michaelis-Menten kinetic parameters for these metabolites for individual 

CYP3A isoforms. Using in vitro in vivo extrapolation, we also evaluated the effect of 

CYP3A5 polymorphism on the maternal and fetal hepatic production of 6β-OHP and 16α-

OHP.

MATERIALS AND METHODS

Chemicals

Progesterone, 6β-OHP, and 16α-OHP were obtained from Steraloids, Inc. (Newport, RI). 

6β-hydroxytestosterone, β-nicotinamide adenine dinucleotide phosphate tetrasodium salt 

(NADPH), and ketoconazole were purchased from Sigma-Aldrich, Co. (St. Louis, MO). 

Letrozole, α-naphthoflavone, omeprazole, pilocarpine, quecertin, quinidine, and 

sulfaphenazole were obtained from Sigma-Aldrich, Santa Cruz Biotechnology (Dallas, TX), 

or Cayman Chemical (Ann Arbor, MI). Pooled human liver microsomes (HLMs) from 150 

individual donors and baculovirus–expressed CYP3A4+b5, CYP3A5+b5 and CYP3A7+b5, 

CYP2A6, CYP19A1 were purchased from Corning Gentest (Woburn, MA). Acetonitrile 

(ACN) and methyltert-butyl ether were obtained from Fisher Scientific (Fair Lawn, NJ). All 

other chemicals were of high performance liquid chromatography (HPLC) grade and 

purchased from reputable manufacturers.

Analytical Methods

Quantification of the progesterone metabolites 6β-OHP and 16α-OHP were performed by 

high performance liquid chromatography (HPLC, Agilent 1100, Santa Clara, CA) with UV 

detection (254 nm). Separation was achieved on a Luna 5μ C18 100A 250 × 4.6 mm column 

(Phenomenex, Torrance, CA) with a gradient elution. Mobile phase A consisted of 0.25% 

acetic acid, 10% ACN, 90% H2O. Mobile phase B consisted of 0.25% acetic acid, 90% 

ACN, and 10% H2O. Mobile phase composition was as follows: 40% B at 0 minutes, 
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increasing linearly from 40 to 95% B from 1 to 28 minutes before resetting to the initial 

condition of to 40% B over 0.1 minute. Flow was set at 1.0 ml/min.

Stock solutions of 16α-OHP, 6β-OHP, and 6β-hydroxytestosterone (internal standard) 

dissolved in methanol (1 mg/mL) were prepared separately in polypropylene tubes and, and 

stored at −20°C. Standards were serially diluted into sodium phosphate buffer (100 mM, pH 

7.4) to attain desired concentrations. Standard curves were constructed by comparing the 

area under the curve (AUC) of metabolite (16α-OHP or 6β-OHP) to the AUC of 6β-

hydroxytestosterone. Limit of quantification (LOQ) was 0.05 μg/mL for 16α-OHP and 0.25 

μg/mL for 6β-OHP. Quality controls were constructed in triplicate. Inter- and intra-day 

coefficient of variation was less than 15%.

Progesterone metabolism in HLMs

Kinetic studies for 6β-OHP and 16α-OHP formation from progesterone were conducted in 

pooled HLMs. Progesterone in methanol (20–250 μM, final concentration) was added to 

glass tubes and evaporated to dryness prior to addition of HLMs (0.5 mg/mL) and 

microsomal buffer (100 mM sodium phosphate containing 5 mM MgSO4, pH 7.4) to a final 

reaction volume of volume 250 μL. The mixtures were equilibrated at 37° C for 5 minutes, 

and reactions initiated by addition of 5 μL of NADPH (10 mM). After 30-minutes, reactions 

were terminated by 1:1 addition of ice-cold acetonitrile. Ten μl of 10 mg/mL internal 

standard (6β - hydroxytestosterone), 250 μl citric acid (0.1 M, pH 3.2), and 3 ml methyltert-

butyl ether were added. Samples were vortex-mixed for 30 seconds prior to centrifugation 

for 5 minutes at 1200×g. The supernatant was transferred to clean glass tubes, and 

evaporated to dryness. The residues were reconstituted by adding 100 μl of mobile phase A. 

6β-OHP and 16α-OHP were quantified as described above. Assays were conducted in 

duplicate.

Inhibition Analyses

Rates 6β-OHP and 16α-OHP formation in HLMs was evaluated in the absence (control) and 

presences of known isoform-selective CYP inhibitors: ketoconazole (1 μM, CYP3A4), α-

naphthoflavone (1 μM, CYP1A2), letrozole (50 μM, CYP2A6), omeprazole (10 μM, 

CYP2C19), pilocarpine (50 μM, CYP2A6), quercetin (50 μM, CYP2C8), quinidine (1 μM, 

CYP2D6), or sulfaphenazole (10 μM, CYP2C9).(30) Progesterone (30 μM) and inhibitors 

were added to glass culture tubes and evaporated to dryness before the addition of HLMs 

(0.5 mg/mL) and microsomal buffer sufficient to bring the final reaction volume to 250 μL. 

Reactions were conducted in duplicate as described above.

Enzymatic Characterization of Metabolite Formation

To further characterize the role of individual CYP isoforms, rates of formation of 6β-OHP 

and 16α-OHP were determined with recombinant human CYP3A4, 3A5, and 3A7. 

Progesterone in methanol (10–250 μM for CYP3A4 and 20–250 μM for CYP3A5 and 

CYP3A7; 100 μM for CYP19A1) was added to glass tubes and evaporated to dryness prior 

to addition of CYP3A4 (25 pmol), CYP3A5 (20 pmol), CYP3A7 (20 pmol), or CYP19A1 

(25 pmol). Microsomal buffer (100 mM sodium phosphate containing 5 mM MgSO4, pH 

7.4) was added to bring the total volume to 250 μl. After a 5 minute equilibration, reactions 
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were initiated by addition of 5 μL of NADPH (10 mM). After 30-minutes, reactions were 

terminated by 1:1 addition of ice-cold acetonitrile. Protein was then precipitated by 

centrifugation and transferred to new glass tubes as described above. Control incubations 

with no cofactor were performed concurrently to validate CYP-dependent metabolism.

Statistics

Metabolite formation in the presence of inhibitors was compared to metabolite formation in 

the absence of inhibitors using one-way analysis of variance with post-hoc analysis by t-test 

with Bonferroni correction for multiple comparisons. All analyses were carried out in 

GraphPad Prism. Enzyme kinetic values, Vmax.(maximum rate of metabolism) and 

Km (substrate concentration at which metabolic velocity is half of Vmax,) were determined 

by fitting the data to the Michaelis-Menten equation using GraphPad Prism v6 (GraphPad 

Software, Inc. La Jolla, CA), and are presented as mean ± standard error. Intrinsic Clearance 

(CLint) was calculated as Vmax/Km.

In vitro in vivo extrapolation

The in vivo formation clearances of 16α-OHP and 6β-OHP by maternal and fetal livers were 

estimated by in vitro in vivo extrapolation. Hepatic intrinsic clearance (CLint, H) was 

estimated as previously described: (31)

where CLint, enz(j) represents the intrinsic clearance for each CYP isoform (i.e. CYP3A4, 

CYP3A5, CYP3A7); ISEF is an intersystem extrapolation factor to account for intrinsic 

differences between recombinantly expressed enzymes and HLMs, Abundenz(j) represents 

the abundance of each individual CYP isoform, MPPGL is the microsomal protein content 

per gram of liver, and WtH is liver weight.

For scaling to maternal liver, 16α-OHP and 6β-OHP were assumed to be formed by 

CYP3A4 and CYP3A5. For fetal liver, only CYP3A5 and CYP3A7 activity were 

considered, as CYP3A4 activity is negligible prior to birth.(21, 32, 33) Maternal parameters 

were obtained from Simcyp v.14 (Pharsight): hepatic abundance of CYP3A4 and CYP3A5 

were set to 137 and 103 pmol/mg microsomal protein; liver was estimated as 1728 g and 

MPPGL as 39.8 mg/g. ISEF for CYP3A4 and CYP3A5 supersomes was set at 0.24 based on 

the SimCyp default values. Clearance of CYP3A substrates increases approximately 2-fold 

during pregnancy, apparently due to increased hepatic clearance.(24–27) To account for this, 

the estimate CLint, H was multiplied by a factor of two to determine final maternal hepatic 

intrinsic clearance.

Fetal abundance of CYP3A7 was estimated to be 235 pmol/mg microsomal proteins.(21) 

Recently, Vyhlidal et al. reported that an average of 42.1 pmol/mg CYP3A5 protein is 

expressed in fetal livers that carry the CYP3A5*1*1 genotype.(33) Estimated fetal liver 

weight at 38 weeks gestation is 130g,(34) and MPPGL in fetal liver is estimated to be 26 

mg/g.(35) In the absence of data, ISEF for CYP3A7 was conservatively set at 1.
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RESULTS

Progesterone metabolism by HLMs

A representative HPLC chromatogram of metabolite formation after progesterone (100 μM) 

incubation with HLMs (0.5 μg/mL) is shown in Figure 1. Major peaks eluted at times 

consistent with known standards: 16α-OHP (8.1 min), 6β-OHP (10.9 min), and 

progesterone (20.1 min). We were unable to chromatographically separate the 2α- and 17α-

hydroxyprogesterone metabolites, which both eluted at 14.2 minutes. However, the peak 

area was lower than that of the other metabolites, indicating that these metabolites were 

poorly formed by human liver microsomes. Therefore, we did not further investigate the 

formation kinetics of 2α- and 17α-hydroxyprogesterone. Further, incubation of 16α-OHP 

and 6β-OHP with HLMs did not yield additional metabolism products (data not shown).

Michaelis-Menten parameters for metabolite formation by HLMs were determined (Figure 

2). Vmax and Km were 1640±111 (95%CI, 1398–1881) pmol/min/mg protein and 27.7 ± 8.1 

(95%CI, 10.1–45.3) μM for formation of 6β-OHP and 192.1 ± 8.9 (95%CI, 172.7–211.5) 

pmol/min/mg protein and 29.8 ± 5.7 (95%CI, 17.2–42.3) μM for formation of 16α-OHP, 

respectively. Overall, the formation of 6β-OHP was 9 times faster than that of 16α-OHP, 

with intrinsic clearances (CLint) of 59.2 and 6.45 μL/min/mg protein, respectively.

Inhibition Assays

Inhibition of 6β-OHP and 16α-OHP formation by isoform-selective inhibitors was evaluated 

in HLMs (Figure 3). Ketoconazole inhibited formation of both 6β-OHP and 16α-OHP by 

over 95% (p< 0.01), indicating that CYP3A plays a major role in production of these 

metabolites. 6β-OHP formation was significantly inhibited by co-incubation with the 

CYP2C8 inhibitor quercetin (89%, p<0.05); CYP2A6 inhibitor letrozole (73%, p<0.05); 

CYP2A6 inhibitor pilocarpine (33%, p<0.05); and CYP2C9 inhibitor sulfpahenazole (29%, 

p<0.05). 16α-OHP formation was significantly inhibited by quercetin (62%, p < 0.05) and 

letrozole (75%, p<0.05), indicating potential roles for CYP2C8 and CYP2A6 metabolism.

Characterization of progesterone metabolite formation by recombinant enzymes

Progesterone metabolism was further studied in recombinant CYP3A4, CYP3A5, CYP3A7, 

and CYP19A1 (aromatase) microsomes. Incubation of progesterone (100 μM) with 

recombinant CYP19A1 microsomes resulted in minimal formation of 6β-OHP and 16α-

OHP metabolites (data not shown), so further characterization was not performed.

The Michaelis-Menten kinetic parameters for progesterone metabolite (6β-OHP and 16α-

OHP) formation catalyzed by recombinant CYP3A isoforms are illustrated in Figure 4 and 

summarized in Table 1. As observed in the HLM experiments, 6β-OHP formation was 

greater than that of 16α-OHP formation, with CYP3A4 and CYP3A5 preferentially forming 

6β-OHP. Intrinsic clearance of both products was highest in CYP3A4-expressing 

microsomes, with 25-fold greater enzymatic activity for 6β-OHP (CLint 2.3 μL/min/pmol 

protein vs. 0.09 μL/min/pmol protein) and 419-fold greater enzymatic activity than 

rCYP3A5 for 16α-OHP (CLint 1.3 μL/min/pmol protein vs. 0.003 μL/min/pmol protein). 

CYP3A5 had similar activity to CYP3A7 for 16α-OHP (CLint 0.003 μL/min/pmol protein, 

Quinney et al. Page 6

Fetal Pediatr Pathol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.003 μL/min/pmol protein), but 23-fold greater activity for 6β-OHP (CLint 0.09 pmol 

protein, 0.004 pmol protein).

In vitro in vivo extrapolation

Based on formation of 6β-OHP and 16α-OHP, maternal hepatic clearance of progesterone in 

CYP3A5 expressers is estimated as 1026 L/h. CYP3A5 nonexpressers are expected to 

exhibit a 5% reduction in clearance of progesterone (Table 2). 6β-OHP formation is 2-fold 

greater than 16α-OHP (679 L/h and 347 L/h, respectively). Overall, clearance from fetal 

liver is less than 0.1% that of the maternal liver. However, fetal CYP3A5 genotype appears 

to be an important determinant of fetal clearance. Fetuses that are CYP3A5 expressers 

(CYP3A5*1*1 genotype) are predicted to have 2.7-fold greater clearance of progesterone 

than nonexpressers, primarily due to increased formation of 6β-OHP by CYP3A5 in 

expressers.

DISCUSSION

Preterm birth continues to be a major cause of infant morbidity and mortality.(36) 

Progestogens are known to influence parturition, likely through multifactorial mechanisms.

(37, 38) We have recently reported that the primary metabolites of progesterone, 6β-OHP 

and 16α-OHP, have contradictory effects on oxytocin-induced contractile frequency.(10) 

While previous studies have shown that progesterone is metabolized in the liver by CYP3A 

enzymes, the relative importance of the three human isozymes CYP3A4, CYP3A5, and 

CYP3A7 had not been described.(12, 13, 39) Therefore, we undertook the current study to 

examine the CYP3A isozyme specific metabolic formation of 6β-OHP and 16α-OHP in 
vitro.

Consistent with other studies, we found that progesterone metabolism in HLMs could 

largely be inhibited with ketoconazole, indicating that CYP3A is the primary metabolic 

route.(12–14) The formation of both 6β-OHP and 16α-OHP were also inhibited >50% by 

letrozole and quercetin. Letrozole is a selective inhibitor of CYP2A6 (40). However, 

additional studies with recombinant CYP2A6 did not produce detectable metabolites (data 

not shown), consistent with reports from Niwa et al. indicating minimal formation of 6β-

OHP in of CYP2A6-expressing microsomes.(13) Quercetin is a non-selective inhibitor of 

CYP2C8 that has also been shown to inhibit CYP3A, which may explain the moderate 

inhibition of progesterone metabolism observed in this study. Niwa et al. did not find 

evidence of CYP2C8 metabolism of progesterone. (13)

Previous studies of progesterone metabolism by CYP450 enzymes have examined its 

metabolism in CYP3A4, but not in CYP3A5 or CYP3A7. Therefore, we further explored the 

selectivity of CYP3A4, CYP3A5, and CYP3A7 isozymes towards progesterone metabolism 

using recombinantly expressed enzymes. The CYP3A4 isozyme most efficiently formed 

both 6β-OHP and 16α-OHP, with both metabolites formed to a similar extent. However, 

CYP3A5 was found to preferentially form 6β-OHP over 16α-OHP, although both were 

formed at a much lower rate than by CYP3A4. Progesterone is a weak substrate for the fetal 

CYP3A7 enzyme, indicating minimal metabolism of progesterone in fetal liver. Our study is 
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consistent with previous studies identifying 6β-OHP and 16α-OHP as the primary 

metabolites of progesterone in human liver microsomes.(41)

Utilizing an in vitro in vivo extrapolation approach, we probed the effect of CYP3A5 

genotype on the production of 6β-OHP and 16α-OHP in maternal and fetal livers. As shown 

in Table 2, it is expected that CYP3A5 genotype has a minimal effect on the overall 

metabolism of progesterone from the maternal system. While fetal clearance of progesterone 

is minute with respect to overall clearance, fetuses who express an active CYP3A5 were 

estimated to form ~3-times more 6β-OHP than nonexpressers. Based on our prior in vitro 

work indicating pro-contractility effects of 6β-OHP and anti-contractility effects of 16α-

OHP (10), we hypothesize that the higher 6β-OHP/16α-OHP ratio in CYP3A5 expressers 

may contribute to increased preterm labor risk in CYP3A5 expressers. Additional studies are 

needed to evaluate this hypothesis.

Our study does not address the metabolism of progesterone by extra-hepatic CYPs, other 

than CYP19A1. Swart et al. studied progesterone metabolism in microsomes derived from 

CYP17A1-transfected COS1 cells. 17α-OHP and 16α-OHP were the primary metabolites 

identified, with a Km of 0.75 μM and Vmax of 0.46 nmol/h/mg protein for 17α-OHP and 

0.70 μM and 0.12 nmol/h/mg protein for 16 α-OHP. (11) CYP17A1 is expressed in adult 

and fetal adrenal glands, thecal cells of the ovary, kidney, thymus, spleen, heart, and adipose 

tissue. (42) Therefore, extrahepatic metabolism likely plays a primary role in the formation 

of 16α-OHP and contributes greatly to the overall clearance of progesterone. However, 

because there is limited data on the quantitative expression level of CYP17A1 in these 

tissues and in the in vitro expression systems studied, it is not possible to estimate the 

contribution of CYP17A1 to progesterone metabolism using in vitro in vivo extrapolation 

techniques. However, we do note that inclusion of CYP17A1 pathway in our prediction may 

further minimize the role of CYP3A5 polymorphisms.

Our study is also limited by the inadequacies inherent to in vitro studies. Specifically, the 

use of recombinant systems may be confounded by the absence of endogenous cofactors 

(including progesterone itself) that are known to impact enzyme activity. The HLM’s used in 

these experiments were from men and women, and may not represent the CYP450 enzyme 

activity of pregnant women. The formation of progesterone metabolites by CYP3A5 and 

CYP3A7 were near the limit of detection for the assay, contributing to increased variability 

in formation rates at lower concentrations of substrate. This variability contributes to the 

wide confidence interval of Km for these enzymes. We also lacked access to fetal liver 

microsomes for confirmation of role of CYP3A7 in fetal liver metabolism. However, despite 

this limitation, the use of recombinantly expressed CYPs, including rCYP3A7, allowed 

investigation of the contribution of individual enzymatic isoforms to the biotransformation 

pathway. Based on literature reports of CYP3A5 and CYP3A7 expression in fetal liver and 

in vitro in vivo extrapolation techniques, we are able to estimate the contribution of 

CYP3A5 and CYP3A7 to fetal formation of 6β-OHP and 16α-OHP.(33) However, it should 

be noted that extrapolation of the in vitro data to in vivo clearance is limited by the 

availability of data regarding physiologic changes and enzyme expression during pregnancy.
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Our understanding of the role of progesterone in the onset of parturition continues to evolve. 

Progesterone and its metabolites appear to elicit characteristic effects on oxytocin-induced 

uterine contractility, suggesting that relative amounts of each compound may alter 

myometrial contractility.(10) Our study identifies the primary sources of progesterone 

metabolite formation and describes the influence of CYP3A isoforms on the relative 

amounts of 6β-OHP and 16α-OHP produced from progesterone. While our in vitro in vivo 

extrapolation does not indicate that maternal CYP3A5 genotype will influence formation of 

progesterone metabolism, it is unknown whether increased 6β-OHP by fetal liver will 

influence localized 6β-OHP/16α-OHP ratio and whether this will effect uterine contractility. 

Future work may consider whether variation in CYP3A enzyme function alters the relative 

amounts of progesterone metabolites produced in vivo and the effect of these hormones on 

uterine contractility.
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Figure 1. 
HPLC chromatograph of progesterone with human liver microsomes in the presence (lower 

line) and absence (upper line) of NADPH. A) 16α-OHP, 8.1 minutes; B) 6β-OHP,10.9 

minutes; C) 2α- and 17α-hydroxyprogesterone co-eluted at 13.5 minutes; and D) 

progesterone, 20.1 minutes. The internal standard (6β-OHT), which eluted at 4.7 minutes is 

not shown.
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Figure 2. 
Kinetics for (A) 6β-OHP (Vmax = 1640±111 pmol/min/mg protein; Km = 27.7 ± 8.1 μM and 

(B) 16α-OHP (Vmax = 192.1 ± 8.9 pmol/min/mg protein; Km = 29.8 ± 5.7 μM) formation in 

human liver microsomes. Progesterone 20μM, 50μM, 75μM, 100μM, 150μM, 200μM and 

250μM were incubated with 0.5mg/ml of HLM for 30min. Formation rates of 6β-OHP and 

16α-OHP were fit to the Michaelis-Menten equation using GraphPad Prism.
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Figure 3. 
Effect of CYP450 Inhibitors on 16α-OHP (A) and 6β-OHP (B) formation following 

incubation of progesterone (30 μM) with human liver microsomes (0.5 mg/mL) for 30 

minutes in the absence (control) and presences of known isoform-selective CYP inhibitors: 

ketoconazole (CYP3A4), α-naphthoflavone (CYP1A2), letrozole (CYP2A6), omeprazole 

(CYP2C19), pilocarpine (CYP2A6), quecertin (CYP2C8), quinidine (CYP2D6), or 

sulfaphenazole (CYP2C9). Data is presented as mean ± SD of duplicate experiments. * 

indicates p<0.05 compared to control.

Quinney et al. Page 14

Fetal Pediatr Pathol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Michaelis-Menten plots of 6β-OHP and 16α-OHP formation by recombinant CYP3A 

isoforms. A.) Formation of 6β-OHP (squares) and 16α-OHP (circles) from progesterone 

following 10 minute incubation with 25 pmol CYP3A4. B.) Formation of 6β-OHP (squares) 

and 16α-OHP (circles) following 30 minute incubation with 25 pmol CYP3A7. C) 

Formation of 6β-OHP following 10 minute incubation of progesterone with 25 pmol 

rCYP3A5. D) Formation of 16α-OHP from progesterone following 30 minute incubation 

with CYP3A5. Error bars indicate standard error.
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Table 2

Estimated maternal and fetal formation clearances of 16α-OHP and 6β-OHP

CYP3A5 Genotype 16α-OHP CLf
(L/h)

6β-OHP CLf
(L/h)

CLint, H
(L/h)

Maternal CYP3A5*1*1 347 679 1026

CYP3A5*0*0 346 624 970

Fetal CYP3A5*1*1 0.14 0.74 0.88

CYP3A5*0*0 0.13 0.19 0.32

CLf: formation clearance estimated from recombinant enzyme CLint and scaled to in vivo values as described in Materials and Methods.
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