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An asymptotic expansion for the expected number of real
zeros of real random polynomials spanned by OPUC
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Abstract

Let {¢i}72, be a sequence of orthonormal polynomials on the unit circle with respect
to a positive Borel measure u that is symmetric with respect to conjugation. We study
asymptotic behavior of the expected number of real zeros, say [E,(u), of random poly-

nomials
n
Pu(@) = ) migpi(2),
i=0
where 19, . . ., 1, are i.i.d. standard Gaussian random variables. When y is the acrlength

measure such polynomials are called Kac polynomials and it was shown by Wilkins
that [E, (Jd¢|) admits an asymptotic expansion of the form

E,(dé) ~ 7% log(n+ 1)+ Y Ap(n+ 1)

p=0

(Kac himself obtained the leading term of this expansion). In this work we general-
ize the result of Wilkins to the case where u is absolutely continuous with respect to
arclength measure and its Radon-Nikodym derivative extends to a holomorphic non-
vanishing function in some neighborhood of the unit circle. In this case E, (u) admits
an analogous expansion with coefficients the A, depending on the measure u for p > 1
(the leading order term and A( remain the same).
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1. Introduction and Main Results
In [2], Kac considered random polynomials
Pu@) =no+mz+-- +m,

where 7; are i.i.d. standard real Gaussian random variables. He has shown that [E, (€2),
the expected number of zeros of P,(z) on a measurable set Q C R, is equal to

l—hi+(x) 101 _ 2
En(Q)=%L \/l 1 d (n+ Dx"(1 —x°)

1 _ x2| X, hn+1(-x) = 1 _ x2n+2 El (1)

from which he proceeded with an estimate

E,(R) =

2+ o(1
o) logln+1) as n— oo.
T
It was shown by Wilkins [7], after some intermediate results cited in [7], that there exist
constants A,, p > 0, such that I£,(R) has an asymptotic expansion of the form

E,(R) ~ %log(rz +1)+ ZAp(n + 1) )
p=0

In another connection, Edelman and Kostlan [1] considered random functions of
the form
Pu(z) = nofo(2) + mifi1(2) + -+ - + Mufu(2)s 3)

where 7; are certain real random variables and f;(z) are arbitrary functions on the com-
plex plane that are real on the real line. Using beautiful and simple geometrical ar-
gument they have shown' that if 7o, ..., 7, are elements of a multivariate real normal
distribution with mean zero and covariance matrix C and the functions f;(x) are differ-
entiable on the real line, then

2

1 0
E,(©) = fg Pu()dx, py(x) = — = log (v(s) ()

bl

t=s=Xx

where v(x) = (fo(x),..., fn(x))T. If random variables 7; in (3) are again i.i.d. standard
real Gaussians, then the above expression for p,(x) specializes to

n+l n+l
n == 4
Prl) m Kp41(x, X) “@

1 VKt (0K D () — KO 02

(this formula was also independently rederived in [3, Proposition 1.1] and [6, Theo-

'In fact, Edelman and Kostlan derive an expression for the real intensity function for any random vector
1Mo, -- -, 1,) in terms of its joint probability density function and of v(x).



rem 1.2]), where

Kiizw) = X0, fifiw),
KV (zw) St f@fiw),
Zico f{ @Qf w).

In this work we concentrate on a particular subfamily of random functions (3),
namely random polynomials of the form

K(l’l)(z, w)

n+1

Pu(2) = nowo(z) + nie1(2) + - -+ + My (2), 5)

where 7; are i.i.d. standard real Gaussian random variables and ¢;(z) are orthonormal
polynomials on the unit circle with real coefficients. That is, for some probability Borel
measure 4 on the unit circle that is symmetric with respect to conjugation, it holds that

fT @i ©)p;(E)duE) = 6y, (©6)

where 9;; is the usual Kronecker symbol. In this case it can be easily shown using
Christoffel-Darboux formula, see [8, Theorem 1.1], that (4) can be rewritten as

IRVARNIE) (1= )b, (%)

n = - s hn =
on(X) -2 +1(X) 1 bi+1()€)

On+1 ()C)

£ bn ('x) = * £
HRANE)

@)

where ¢7 | (x) := x"1¢,.1(1/x) is the reciprocal polynomial (there is no need for con-
jugation as all the coeflicients are real). When u is the normalized arclength measure
on the unit circle, it is elementary to see that ¢,,(z) = 7" and therefore (7) recovers (1).

Theorem 1. Let P,(z) be given by (5)—(6), where u is absolutely continuous with re-
spect to the arclength measure and ' (€), the respective Radon-Nikodym derivative,
extends to a holomorphic non-vanishing function in some neighborhood of the unit
circle. Then E,(u), the expected number of real zeros of P,(z), satisfies

5 N-1
Ea(n) = ~log(n +1) + A + ZA’;,(n + 177+ Oy ((n+ D7N)
p=1
for any integer N and all n large, where On(-) depends on N, but is independent of n,

1 00
A0=%(10g2+f(; flf(t)olt+fl tl(f(t)—l)dt),

(1) := V1 — Pesch’t, and A‘,ﬁ, p = 1, are some constants that do depend on p.

Clearly, the above result generalizes (2), where du(¢) = |dé|/(2n).



2. Auxiliary Estimates

In this section we gather some auxiliary estimates of quantities involving orthonor-
mal polynomials ¢,,(z). First of all, recall [5, Theorem 1.5.2] that monic orthogonal
polynomials, say ®@,,(z), satisfy the recurrence relations

{ (DHH-I(Z) = ZcDm(Z) - a/mq);(z)v

D,,.1(2) = D, (2) = OwzPu(2),
where the recurrence coefficients {«,,} belong to the interval (-1, 1) due to conjugate
symmetry of the measure . In what follows we denote by p < 1 the smallest number
such that y’(¢) is non-vanishing and holomorphic in the annulus {p < [z| < 1/p}.
With a slight abuse of notation we shall denote various constant that depend on u
and possibly additional parameters r, s by the same symbol C,, ;. understanding that the

actual value of C, ., might be different for different occurrences, but it never depends
on z or n.

Lemma 2. It holds that

1 (O < Cun+ De V™ x < 1= (n+ 1)7V2,
Proor. It was shown in [8, Section 3.3] that

1 (0] < Cul(xbu()'], Xl < 1= (n+ D72

It was also shown in [8, Section 3.3] that

[(zb,(2))'] < Cu(n+ 1)[r”'" + Z IaiIJ, lzl<r<1.

i=m

It is further known, see [4, Corollary 2], that the recurrence coefficients ; satisfy

(&9
A Cus—ps™
@il < Cupss™ = D il < % p<s<l,

i=m

where C,, ;_, also depends on how close s is to p. Given a value of the parameter s, take

m to be the integer part of —Vn+ 1/logsand r = 1 — 1/ Vn + 1. By combining the
above three estimates, we deduce the desired inequality with a constant that depends
on u, s — p, and s. Optimizing the constant over s finishes the proof of the lemma. [J

Denote by D(z) the Szeg6 function of y, i.e.,

1
D(z) := exp{ﬂ fqr g J_r i log/,z’(f)ldfl}, lz| # 1.

This function is piecewise analytic and non-vanishing. Denote by D;,,(z) the restriction
of D(z) to |z| < 1 and by D,(2) the restriction to |z] > 1. It is known that both D;,,(z)



and D, ,(z) extend continuously to the unit circle and satisfy there

Dint(§)/Dew(§) = ' (£), 1€l = 1.

Moreover, since u’(¢) extends to a holomorphic and non-vanishing function in the an-
nulus p < |zl < 1/p, Din(z) and D, (z) extend to holomorphic and non-vanishing
functions in |z] < 1/p and |z| > p, respectively. Hence, the scattering function

S(@) := Di(2)Dexi(z), p <lzl <1/p,

is well defined and non-vanishing in this annulus. Since the measure u is conjugate
symmetric, it holds that D(Z) = D(z) and D,(1/z) = 1/D;,(z). Thus, |S(£)] = 1 for
[€] = 1 and S (1) = 1. For future use let us record the following straightforward facts.

Lemma 3. There exist real numbers s,, p > 1, such that

S = 1+300 s,(1 -2+ En(S;2)
§'@ = =30 (p+ Dspa(l =2 + En(S'32)
logS@) = ZM5'c,(1-2)P + Ey(logS;2)

forlz— 1] < T < 1 - p and any integer M > 1, where the error terms satisfy

WFllner (11 =2\
—1-2z/T T

|[En(F:2)| < ;

—1 k—1 .
and cp, = sp + 25::2 { ,2 it jy=p Sjy " Sj. Moreover; sy = s1(s1 + 1)/2. In partic-

ular, ¢y = 51 and c; = s1/2.

Proor. Since c¢; = sy and ¢ = 55 — s%/2, we only need to show that s, = s;(s; + 1)/2.
It holds that s; = —S’(1) and s, = S”(1)/2. Using the symmetry 1 = S(2)S(1/z), one
can check that $”/(1) = §7(1)?> — S’(1), from which the desired claim easily follows. [J

Set 7 := D,,,(c0). It has been shown in [4, Theorem 1] that

71, (2)

O() = 72" DenDEn(@) — 5 o

p<lzd <1/p, ®)
for some recursively defined functions &,,(z), Z,,(z) holomorphic in the annulus p <
|z| < 1/p that satisfy

< Cpss™

|En(2) — 1] < < ,
lzl = s

and |Im(z)|

CH,SSZm
= p<s<lz <1/s, ©)

1 |zl

for some explicitly defined constant C,, , see [4, Equations (34)-(35)]. In particular, it
follows from (8) that

Enr1(2) = T2 VS () T 041(2)

bus1(2) = 'S (H(2),  Ho(2) := S (1/2) — 22 S DI, (1/2)"

(10)



for p < |z] < 1/p. It can be checked that the conjugate symmetry of yu yields real-
valuedness of H,(z) on the real line. Bounds (9) also imply that H,,(x) is close to 1 near
x = 1. More precisely, the following lemma holds.

Lemma 4. It holds for any p < p. < 1 that
|H,(x) = 1], [log Hy(x)| < (1 = X)Cppe V™, p.<x< 1.
Moreover, it also holds that |H,(x)| < C#,p*e*‘m on the same interval.

Proor. Define W,(2) 1= E,u1(z) — 1 = 227" DS 1(2)I,+1(2) and choose p < s <
5. < p. < 1. Since S (z) is a fixed non-vanishing holomorphic function in the annulus
p <zl < 1/p, it follows from (9) that

|Wn(z)| < Cy,s,s*(s/s*)n9 Sy < |Z| < I/Sx
It further follows from the maximum modulus principle that
[Wa(2) = Wo(1/2)l < 11 = 2Cis5.(s/5.)"s s <2l < 1/,

where, as agreed before, the actual constants in the last two inequalities are not neces-
sarily the same. Since |log(1 + {)| < 2|{| for || < 1/2, there exists a constant A,
such that

|H,(z) = 1],log Hy(2)| < |1 = 2lA55.(5/5.)", s < N2l < 1.
Observe that the constants Aﬂ,.mem(s/s*)” are uniformly bounded above. Then the

first claim of the lemma follows by minimizing these constants over all parameters
s < s, between p and p.. Further, it follows from Cauchy’s formula that

, Hn(g) -1 dg
H = — L A——
" (me L|=s*) ({-2? 2ni

for p, < |z|] < 1/p. and therefore it holds in this annulus that

IH ()| < Cpiss.p.(5/54)".

The last claim of the lemma is now deduced in the same manner as the first one. U

3. Proof of Theorem 1

Using (7), it is easy to show that

1 1[1—h,21+ (x)
E"(”)=,%f N e
4

1—x2



Furthermore, if we define do (&) := p’(=6)|d€|, then o7 (£) = u' (=€) is still holomorphic
and positive on the unit circle. Moreover, b, (z; o) = b,(—z; it). Therefore,

— =1, ()
E,(v):= f

Co1-x

E,(1) = E,(u) + By (o), dx, (11)

for v € {u,o}. Thus, it is enough to investigate the asymptotic behavior of Ez(y). To
this end, let

a=mn+D"? and x=:1-t/n+1), 0<t<a. (12)

We shall also write

= hp () =2 A1 + E, (1), (13)

for 1 — (n+ 1)""/2 < x < 1, where f(¢) was defined in Theorem 1.

Lemma 5. Given an integer N > 1, it holds that

E a(W) = —log(n+ 1)+ 1A0+G (r) —

N-1
% D H,+ )7+ 0y ((n+ D7)
p=1

for large n, where On(-) is independent of n, but does depend on N,

G,(t) := }T fo (' + Qe+ D) =07) fO) (1 + En0)'? - 1) dt

1 00
and H, := ﬁj(; (1= f@))"~dt for p > 1.

Proor. Set 8 := 1 — (n+ 1)"/2. It trivially holds that

fan-2 [ R AP R
1 o 1—x2__f f

o 1-x S ol-x

Denote the third integral above by B,(f). The second integral above is positive and
equals to

2 (7 X 2 d
- f HH( ) dx f i”(x)—x = O(ase‘z“),
T Jo 2 1-62
1+ —h +l()c)
where we used Lemma 2 for the last estimate. Therefore,

E,(u) = 7—1r log (1%2) +By(1) + oy ((n+ D7),

where oy(-) is independent of n, but does depend on N. Substituting x = 1 —¢/(n + 1)



into the expression for B, (f) and recalling (13), we get that

l < 12 Z(n + 1)
ﬂfo JO1 + Ea(D) 2niD-D

1(10g2+log1 ) ff(t) _lfﬁdt+@,(t).

It was shown in [7, Lemma 8] that

1 1-f@) 15 B B
—fo —dl:sz:;Hp(n+1)p+ON((n+1)N),

B, (1)

bg 2m+1)—1t

where Oy (+) is independent of n, but does depend on N. Moreover, it holds that

1 1+6 f@
- log (1—_5) (log 2 +log —— " ) f dr =

a 1 l—f(t)
:—1 A dr
7r0g1—(5+20 RL

Since loga — log(1 — 6) = log(n + 1) and it was shown in [7, Lemma 7] that

}Tj:o 1=/ _tf(t) dr = O(ae_z") =on ((n + l)_N),

where as usual oy(+) is independent of n, but does depend on N, the claim of the lemma
follows. U

We continue by deriving a different representation for the functions E,(¢). To this
end, notice that 2csch’s = 1 — 2/3 + O(t*) as t — 0 and therefore f2(r) = 12/3 + O(t*)
as t — 0. Hence, the function

Peschr)’
csc ) (14)

f®

is continuous and non-vanishing at zero. Once again, we use notation from (12).

x(® = (

Lemma 6. Set b2+1(x) =: e 02t gpd b (x) = (n+ e O~ Then it holds that

2 2w, (1) _ o Ha()
t 1 —e*

1- (1 - ) ¢ } Dy(t) = +
T

E, (1) = 17x(1) 2+ 1)) (1+Dy(1))>

Moreover, lim;_o+ E,(t) exists and is finite.

Proor. Since h,.1(1) = 1and x = 1 —¢/(n+ 1), it follows from (13) and the L’Hopital’s
rule that

i 1- hn+1(x) 1= 3 : n+l(x)
(n+1)?2x>1- (1 -x)? (n+1)2 x>0 1—x

lip 50 =



Since h,+1(z) is a holomorphic function around 1, the latter limit is finite if and only if
R ,(1) = 0. As Blaschke products b, 1(z) satisfy b,,1(x)b,;1(1/x) = 1, it holds that
hy1(x) = hy1(1/x), which immediately yields the desired equality.

To derive the claimed representation of E, (), recall (7) and substitute x = 1 —¢/(n+
1) into (13) to get that

2 2 2w, (H)-2t
ﬁmu+mmﬁ1—@ ! )(“e

T2+ 1)) (1= gm0
_ ( | t )2 2csch?te?n(®
2n+ 1)) 1+ D)

(s ¢ 2 )
_(_2M+D)O+Dmﬁﬂ

from which the first claim of the lemma easily follows. (]

=ﬂmb+fnn

In the next four lemmas we repeatedly use approximation by Taylor polynomials
with the Lagrange remainder:

M=1 B FOD
Foy= 3 L O L (s)
21k !

for some 6 € (0, 1) that dependents on both y and M.

Lemma 7. Put w(?) := t/(e* — 1). Given an integer N > 1, it holds for all n large that

N-1
1+ D)7 =1+ ) O+ D)+ ann@dn+ D7,

p=1

where the functions a,(t) are independent of n and N and are polynomials of degree
p in w with coefficients that are polynomials in t of degree at most 2p — 1, and the
Sfunctions a, N(t) are bounded in absolute value for 0 < t < a by a polynomial of degree
2N — 1 whose coefficients are independent of n. Moreover,

a,(t) = (p+ s} - psf_l(Zsl +Dr+0(f) as t—0.

Proor. We start by deriving an asymptotic expansion of y,(¢). It follows from Lemma 4
that log H,(x) = tO(a"?e™) = toy(1)(n + 1)~V uniformly for 0 < t < a. Fix T in
Lemma 3 and let ny be such that 1 < vny + 17T. Then it holds for all n > ny that
N-1
log(S Hy)(x) = Z cpt’(n+ 1) +ten(H)(n + nN,

p=1

where [ey(1)] < Curnt"™! + on(1) uniformly for 0 < ¢ < a and Cyry < CorT7V.



Hence, it follows from (10) and [7, Lemma 2] that

wn(t) = —2(n+ 1)logx — 2t — 21og(S Hy)(x)
N-1
= D 'm0+ 1)+ im0+ 17, (16)
p=1

where
my(t) == 2(p+ D7t =2c,) and  m,n(0) = 2, n(O)N (N + 1) = 285(F)
with 1 < 7, n(f) < (3/2)V*!. Assuming that 7 < 2/3, we have that
Imun (D] < Curnt™ ™ @+ 1) + on(1) (17)
uniformly for 0 <7 < aand C, 7y < C,rT~V. Using (16) with N = 1, we get that

0] _ a0

n+1 17 i+l

Recalling the definition of D, (¢) in Lemma 6, we get from (15) that

|pen (0] = ' <Cu,r, 0<r<a. (18)

l_e—l—ln(l) lN_l (_1)k . 1 i (r)(_l)N N
Dy (1) = w(t)——— = w(0) [—; ; D) = e )

for some 6; € (0, 1) that depends on N and (). Plugging (16) into the above formula

gives us
N-1

D,(t) = w(t) tp_ldp(t)(n + )7 + w®)d, N(t)(n + n7v, (19)
p=1

where d,,(t) is a polynomial of degree p with coeflicients independent of n and N given

by p k
-1
dp(t) = — E ( kl) E mj, (t) . 'mjk(t)’
k=1 ’

JrE=p

here, each index j; € {1,..., p}, and d, 5(¢) is given by

Z Ly j N@) - my N (@) DN (n+ DY @ (1)
(T (nt DN NL g

N-1 X
duty ==y =)

k=1 Jite+jezN
with m,, ;n(f) := t/m;(f) when j < N and m,, y () := tm, y(f). Recall that #/(n+1) < 1
on0 <t < asince a = Vn + 1. Hence, the first summand above is bounded in absolute
value for 0 < ¢ < a by a polynomial of degree 2N — 1 whose coefficients depend on N
but are independent of n. We also get from (18) and (17) that

e D + DN (0)/1] < e N g ()Y < C NN+ 2)Y

10



for 0 < t < a. Further, using (19) with N = 1 and (18) gives us

D |t Cot (1)) CureSet
ID,(0)] = 20 “()‘s” O Sut€ g <i<a o)
e | ¢ 2 n+1 2Vn+1

Notice also that since ¢; = s; and ¢, = s;/2 by Lemma 3, we have that
di()=t-2s; and () = —(1/2)F + (251 +2/3) — 51251 + 1).

It follows from (20) that for any —1 < D < 0, there exists an integer np > ny such
that D < D, (¢) for 0 <t < a and n > np. Hence, we get from (15) that

=DYWN + DDY (1)
(1 +6:D,(0)N+2

N-1
(1+Dy(0) 2 = 1+ ) (~Di(k + DD +
k=1

for all n > np and some 6, € (0, 1) that depends on N and D, (¢). Then the statement of
the lemma follows with

P
a0 = 3 (=D k+ Dt O™ T dy (1) dj o)
k=1 Jr+e+ji=p

here again, each index j; € {1,..., p}, and

v (=DM + 1)DY (1)
(1 +6:D,(1)N+2

+(n+1)

Z d”,jl ,N(t) te dn,jk,N(t)

(n + 1)/rt+ic-N

N-1
ann(®) = Y (=D e Do)
k=1

SN

with d, ;n(?) := t1d i(t) when j < N and d, yn(?) := d, n(t). Reasoning as before lets
us conclude that the first summand in the definition of «, y(#) is bounded in absolute
value for 0 < ¢ < a by a polynomial of degree 2N — 1 whose coefficients depend on N
but are independent of n. Moreover, since

(n+ DNDJI (1)

NGt i, (Y C:’TeNCMvT t+2)N
(1 + 6:D, ()2 Ost<a

- 2N(1_D)N+2 - 2N(1_D)N+2 ’ - =7

by (20) and (17), the same is true for the second summand as well. Now, notice that
@y(1) = (= w®di ()" ((p + D(w®di (1) = p(p = Dtw(D)ds(1)) + OF)

ast — 0. Since 2w(t) = 1 —t + O(+*) as t — 0, the last claim of the lemma follows
after a straightforward computation. (]

Lemma 8. Given N > 1, it holds for all n large that

N-1
0 =14 B0+ D+ Bun@dn+ D7V,

p=1

11



where B,(2) is a polynomial of degree 2p whose coefficients are independent of n and N
and the functions 3, n(t) are bounded in absolute value when 0 < t < a by a polynomial
of degree 2N whose coefficients are independent of n. Moreover, as t — 0, it holds that

Bi(t) = =251 +2(s; + Dt — 12,
Bo(t) = s% —4s,(s1 + Dt +O(?),
B3(1) = 252(s1 + Dt + O(12),
By(t) =0(t*), p=4.

Proor. We start by deriving an asymptotic expansion for w,(7). It follows from the
very definition of w,(¢) in Lemma 6, (10), and [7, Lemma 2] that

wp(t) = t+log % =t+nlogx+log ((SHn)(x) + %)
= S: PO+ 1)77 + gy + 1) + log ((S H,)(x) + w) :
p
where
¢p(t) := % and @, n(0) = (N—1 —~ %) N Q1)

with some 1 < 71, v(f) < (3/2)V. Further, notice that
SYH)(x) = SPx) +oy(D)(n+ D™ and (SH)(x) = oy(D)(n+ 1)

uniformly for 0 < ¢ < a, i € {0, 1}, by Lemma 4 and since S (z) is a fixed holomorphic
function in a neighborhood of 1. Fix T in Lemma 3. Then it holds for all n > ny that

N-1 tj

(SH)x) =1+ ; o SO+ 17,

and
) N-1 . tj,l R -y
(SH,Y (x) = — JZ; ISy ~ e

where |$y (7], | fv ()] < Cﬂ(t/T)N + on(1) uniformly for O < ¢ < a. Therefore,

N-1

DO+ T + e+ DT, (22)

J=1

L, = (SH)(x) — 1 + w _

+1

where
1i(1) = (st = )+ (= Dsjo1)

12



and

t Fu(t
L) = (N = Disyort¥! + 3n(0) - (1 - —) @
n+1l/n+1
In particular, it holds that
L@ < 2C,(t/T)Y + (N = Dsy_1 V™" + on(1) (23)
and therefore | c
1 (t
IL,(0)] < | 1()| \/ﬂTTl 0<r<a. 24)
n

Hence, given —1 < L < 0, there exists an integer n; > nr such that L < L,(¢) for
0 <t <aandn > ng. Thus, we get from (15) that

DMLY@
N(1 + 65 Ly(0)N

(l)kl

log(1 + L, (1)) = Z Lhn +

for some 65 € (0, 1) that depends on N and L,(#). Therefore, we get from (22) that

log ((S H,)(x) + M)
n+1

Z Yo+ 177 + gun@n+ D7,

where 1 ,(¢) is a polynomial of degree p with coefficients independent of n and N given
by

1 k—1
RCE —Z( S Yo RO} 5)

JEe=p

here, each index j; € {1,..., p}, and ¥, n(?) is given by

e NZ (=1k! Z LujyN@® = L ju N (2) e 1)y (=D ()
n.N —_— v
1, - PR (n + Djr++i=N N(1 + 65L, ()N
with £, jn(7) := #/"'1;() when j < N and [, yn(t) := L, n(t). As in the previous lemma,
since 2/(n + 1) < 1 when 0 < ¢ < q, the first summand above is bounded in absolute
value by a polynomial of degree N whose coefficients are independent of n. It also
follows from (24) and (23) that

(n+ DYILYOL _ O 1Y
L +6;L,N ~ -0V~ *a-pV

for all n > ny. Altogether, we have shown that
N-1
wy(f) = Z (P ¢p(0) + Yp)n+ 1) + (Gun (@) + Yun @)+ D7V (26)
p=1

with ¢, ¥, and ¢, v, ¥, v as described above. We also can deduce from (21) and (25)
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that t¢(£) + Y1 () = —s1 + t(s; + 1) — /2 and

—1)P-1 . i
(1) + (1) = © ; - d

P + (=1)P 4 (0)l(1) + O(F2) = —;‘ +0()  (27)

for p > 2, where we used that 2s, = sf + 51, see Lemma 3. Since

0] < @+ DI < ETET 024

by (24) for n > n;, we get from (26), applied with N = 1, and (21) that
¢n l(t) + wn l(t)

n+1

wa(D)] =

HTL’ OStSa, }’lZI’lL. (28)

Now, using (15) once more, we get
e — 1 4 Z _Wk(t) n e294wn(t)( ) N(t)

for some 8, € (0, 1) that depends on N and w,(f). Plugging (26) into the above formula
gives us the desired expansion with

p

By(0) := Z D o0+ @) (o0 0), (29

k=1 """ ji+e+ji=p

which is a polynomial of degree 2p with coefficients independent of n and N, and

2k . N i Nt
Bun(®) = Z > ) ”((ffl)flitf 2 ND) a2 (n+1)NwN(t)
Dt

with ¢, ;n(8) := /¢ ;(t), Y ;N (@) := (1) when j < N and ¢, yn(?) := N (D), Yunn(®) =
Y.n(%), which is bounded in absolute value when 0 < ¢t < a by a polynomial of degree
2N whose coefficients are independent of n due to (28) and the same reasons as in the
similar previous computations. Thus, it only remains to compute the linear approxima-
tion to 3,(¢) at zero. Now, it follows from (27) and (29) that

k

i ji=p

_ k . .
st s +1)Z( 2y Weenddly L o)

Jrte+je=p JutJk

where n(jy,..., jx) is the number of 1’s in the partition {j,. .., ji} of p. To simplify

14



this expression observe that

k
=1+Z(k'> [(1+y)X+Z%] (30)
k=1 ’ j
P ok (15 i)
(=2) d+y)™e
[Z k) Z Jie e ]xp’

k=1 T Jidetji=p

where y is a free parameter. By putting y = 0 in this expression, we get that
p k -2 if p=1,
-2 1
Z (=2) Z =] 1 if p=2,
L k! J1e ik

Jitetje=p 0 if p=>3.
Moreover, by differentiating (30) with respect to y and then putting y = 0, we get

-2 if p=1,
z”:(—z)k Z nGi,...Jj) _ ) 4 if p=2,
Lkl A e -2 if p=3,
) ey 0 if p>4,
which clearly finishes the proof of the last claim of the lemma. (]

Lemma 9. Let x(¢) be given by (14). For any integer N > 1, it holds that

N-1
(1+Ex0)"? = 1= () D (0 + 177+ xOunn (@ + 17,
p=1

where u,(t) is bounded in absolute value’> on 0 < t < oo by a polynomial of degree
2p — 2 whose coefficients are independent of n and N and the functions u, n(t) are
bounded in absolute value when 0 < t < a by a polynomial of degree 2N — 2 whose
coefficients are independent of n.

Proor. Set

2 2w, (1)
t
R, (1) = (1 ) ¢

C 2+ 1)) (14 D)
Lemmas 7 and 8 yield that R, (¢) has the following asymptotic expansion:
N-1
Ru(t) =1+ ) (@ + 17 + ryn(d(n+ D7,
p=1

21n fact, u,(t) is a multivariate polynomial in w, y, and ¢.

15



where
)4 p-1 p—2
() = Y BiDay (1) = > By (D) + Y 2By (1)/4
j=0 Jj=0 Jj=0

with a(f) = Bo(?) := 1, and r,, y(¢) given by

2§2 zk: Bujn@ani-jn(@) kz_i 1B, jin @O j—1-jn (1) N = 2B i N (O 2N (D)4
i~ = (n + DN (n+ 1N p (n+ 1N

with @, ;n(®) = @;(0), B ;N (1) = B;(1) when j < N, a,nn() := ann (D), Bunn(D) =
Bun(D), and @, ;jn(f) = B, ;n(t) := 0 when j > N. It also follows from Lemmas 7 and 8
that the functions r,(¢) are independent of n and N and are polynomials in w of degree
p with coefficients that are polynomials in 7 of degree at most 2p, while the functions
rq.n(2) are bounded in absolute value for 0 < ¢ < a by a polynomial of degree 2N whose
coefficients are independent of n. Finally, we get from Lemmas 7 and 8 that

1 k
D B =1+0F) and > Bine (1) = OF)

J=0 j=0

for all k > 2. Therefore, it holds that r,,(t) = O(t*) as t — 0 forall p > 1.
It follows from Lemma 6 that E, (1) = 2¢(t)[1 — R,(t)]. Hence, plugging the
expansion of R,(¢) into this formula gives us

N-1
E,(t) = x(D| ) e+ D7 + eun@n+ 17|,
p=1
where e, (1) := —t‘zr,,(t) for any p and e, y(¢) := —t72r, n(?) for any n, N. It follows

from the properties of 7,(¢) that each e,(f) is a continuous function and is bounded in
absolute value on 0 < ¢ < oo by a polynomial of degree 2p — 2. Also, since x(f) is a
continuous function as well and lim,_,o+ E,,(¢) exists and is finite according to Lemma 6,
so must lim,_,g+ e, x(?) for all n, N. Then it follows from properties of r, y(¢) that e, x(f)
is bounded in absolute value when 0 < ¢ < a by a polynomial of degree 2N — 2 whose
coefficients are independent of n.

From what precedes, we get that

0<t<a.

o) < XOens @ Cur
T n+ “n+l’

Hence, for any —1 < E < 0 there exists an integer ng such that £ < E,(¢) for all
0 <t <aandn > ng. Thus, by applying (15) one more time, we get that

N-1

no 1/2) . (1/2) E) ()
B 1_;‘(k BO\N T o0 7
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for some 65 € (0, 1) that depends on N and E, (). Therefore, the claim of the lemma

follows with
O (172) s
u,,(t)::Z(k)X O ). e)-e ),

k=1 Jr+ei=p

which is bounded in absolute value on 0 < ¢ < oo by a polynomial of degree 2p — 2
whose coefficients are independent of n and N, and

won® :=§‘j(”2)xk-l o Y en,,»,,N(r».--en,{»k,N(r)+(1/2) (n+ DVEY (1)

i\ k P (n + D)ir+-+ie=N N (1 + 65E,()N-112

where e, jn(t) := e;(t) when j < N and e,yn(t) := e,n(?), which is bounded in
absolute value on 0 < ¢ < a by a polynomial of degree 2N — 2 whose coefficients are
independent of n due to the same reasoning as in two previous lemmas. O

Lemma 10. Given N > 1, it holds that

A+ E ()% -1

N-1
= - -N
S D=7 —x(o;vpm(ml)"+x<r>vn,N(r><n+1> :

where v,(t) is bounded in absolute value on 0 < t < co by a polynomial of degree 2p—4
whose coefficients are independent of n and N and the functions v, N(t) is bounded in
absolute value when 0 < t < a by a polynomial of degree 2N — 4 whose coefficients are
independent of n.

Proor. Since 0 <t <a= Vn+ 1, we get from (15) that

1

N-1
_ - -N
ST ;zpm(n + D)7+ @+ 17,

where
2—NIN—I

(1 = Bgt/2(n + )N+

for some 64 € (0, 1) that depends on N and ¢. Therefore, the claim of the lemma follows
from Lemma 9 with

V(1) 1= ZZ](Z‘)MP () and vun() = Z Z Zn,ji NV jp NT) NV jp N (1)

T (h+ N
k= N ji+j2= k (n+ 1)

2, =271 and  z,n(f) =

where ji, j» € {1,..., N}, 2o jn (@) 1= 2j(®), unjn(@) = uj(®) for j < N, and z,, n(t) =
ZaN@®), U NN (8) = 1y N(D). O

With the notation introduced in Lemmas 5, 9, and 10, the following lemma holds.
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Lemma 11. Given N > 1, it holds that

N-1
G, =1+ 1) + Z (I + Ip)n+ 1) + Oy ((n+ D7)

p=2
for all n large, where

1 r= 1 =
I, = f ! fty(Duy(t)dt  and J, = fo FOx (v, (t)de

0

(observe that t™' f(¢) is a continuous and bounded function on 0 < t < oo, x(t) decreases
exponentially at infinity, and the functions u,(t), v,(t) are bounded by polynomials).

Proor. By the very definition of G, (#) in Lemma 5 we have that G,(¢) = I,,(¢) + J,(?),
where

L(1) := %fr“f(t)((l + Ey(t)"? = 1) dt

_ (1+E (r))l/2 -1
Ju(t) := ff() 2+ 1) = dr

Using Lemma 9, we can rewrite the first integral above as

and

N-1
L) = ) I+ 1) = S,(0) + Ta(0),

p=1

where
1 N-1 o
Sult) =~ D+ 1y f ! FOx @y (0dt

p=1 a

and

T,(0) := %(n+ H™N f 7 F O Oun n(t)dt.

Since u,(1) = O(?772), f(t) = O(1), and x(¢) = O(t*¢™') as t — oo, it holds that

N-1 N-1
Salt) = Z(n *h pf o e™)dr = Z(” + 1) PO(a*H e =
p=1 p=1

= Oy (ae_2“> = oy ((n + 1)_N) .

Moreover, since u, y(t) is bounded by a polynomial of degree 2N —2 for 0 < ¢ < a, we
have that T,,(f) = On((n + 1)™N).
Similarly, we get from Lemma 10 that

N-1

Iy = D I+ 17 = Un0) + Va(0),

p=2

18



where
N-1

1 00
Un(t) =~ > (n+ 1)7" f FOx@v,y(dt

p=2
and

1 (1
V= T fo FO (D,

An argument as above argument shows that U,(f) = Oy(e™>) = oy((n + 1)™) and
Vu(t) = On((n + 1)) for large n, which finishes the proof of the lemma. O

Lemma 12. The claim of Theorem 1 holds.

Proor. It follows from Lemmas 5 and 11 that given an integer N > 1, it holds that

N-1
E(u) = 717 log(n + 1) + %Ao + D+ Ty = Hy[2)(n+ 1) + Oy ((n+ 1Y),
p=1

where we set Ji' := 0. The claim of Theorem 1 now follows from (11) by taking
A =T, + 15 + Ty + JT — Hp,. a
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